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PME1NA+History+and+Goals+
 

 
PME came into existence at the Third International Congress on Mathematical Education (ICME-3) 
in Karlsrühe, Germany in 1976. It is affiliated with the International Commission for Mathematical 
Instruction. PME-NA is the North American Chapter of the International Group of Psychology of 
Mathematics Education. The first PME-NA conference was held in Evanston, Illinois in 1979. 

 
The major goals of the International Group and the North American Chapter are: 

• To promote international contacts and the exchange of scientific information in the 
psychology of mathematics education; 

• To promote and stimulate interdisciplinary research in the aforesaid area, with the 
cooperation of psychologists, mathematicians, and mathematics teachers; 

• To further a deeper and better understanding of the psychological aspects of teaching and 
learning mathematics and the implications thereof. 

 

PME1NA+Membership+
 

 
Membership is open to people involved in active research consistent with PME-NA’s aims or 
professionally interested in the results of such research. Membership is open on an annual basis 
and depends on payment of dues for the current year. Membership fees for PME-NA (but not 
PME International) are included in the conference fee each year. If you are unable to attend the 
conference but want to join or renew your membership, go to the PME-NA website at 
http://pmena.org. For information about membership in PME, go to http://www.igpme.org and 
click on “Membership” at the left of the screen. 
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Preface+
 

 

On behalf of the 2015 PME-NA Steering Committee, the 2015 PME-NA Local Organizing 
Committee, and Michigan State University, we welcome you to the 37th Annual Meeting of the 
International Group for the Psychology of Mathematics Education – North American Chapter held on 
the campus of Michigan State University in East Lansing, Michigan. The year 2016 marks 30 years 
since the conference was hosted by Michigan State University, and we hope it is the best PME-NA 
yet! 
 
The theme of this year’s conference is Critical Responses to Enduring Challenges in Mathematics 
Education. The theme of this year’s conference invites mathematics education scholars to reflect 
upon and critically respond to enduring challenges in teaching and learning mathematics for all 
students. To ignite discussion within the field, we organized the conference around four focal 
enduring challenges, each of which is featured in one of four plenary talks: teaching as responsive to 
various conceptions of mathematics (Plenary #1, Dr. Jerry Lipka, Dr. Melfried Olson, Dora Andrew-
Ihrke, Evelyn Yanez); addressing the needs of marginalized populations in school mathematics 
(Plenary #2, Dr. Robert Q. Berry III); (3) the impact of teacher evaluation and high-stakes 
assessment in teaching (Plenary Panel: Craig Huhn, Lisa Jilk, Marty Schnepp, Marie Smerigan); the 
role of assessment in teaching and learning (Plenary #4: Dr. Malcolm Swan). Our hope is that the 
conference will catalyze collective reflection, collaborative inquiry, and discussion about various 
means for responding to and addressing these, and other, challenges. 
 
For this year’s conference, we received 528 submissions. The overall acceptance rate was 64%. We 
are pleased to offer 92 Research Report sessions, 96 sessions, 136 Posters, and 12 Working Groups 
in our conference program. 
 
We wish to acknowledge and thank the many people who generously volunteered their time in 
preparation for this conference to ensure a high-quality program, including proposal authors, 
reviewers, Strand Leaders, the PME-NA Steering Committee, and the 2015 PME-NA Local 
Organizing Committee. In particular, we want to highlight the extremely generous financial and 
personnel support provided by the MSU CREATE for STEM Institute.  We are deeply grateful for 
the hard work and support of both Dr. Robert Geier and Sue Carpenter at the Institute. We also wish 
to thank the generous financial support of the MSU Program in Mathematics Education (PrIME), the 
MSU College of Education, and the MSU Department of Teacher Education. 

 
Finally, we wish to thank this year’s attendees for their hard work, passion and enthusiasm for 
addressing enduring challenges in mathematics education. You have inspired us to do our best to 
provide a venue for exchanging ideas and promoting ongoing reform in mathematics education. We 
hope you will enjoy the conference! Go Green! 

 
 

Tonya Bartell & Kristen Bieda 
Conference Co-Chairs 
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INDIGENOUS KNOWLEDGE PROVIDES AN ELEGANT WAY TO TEACH THE 
FOUNDATIONS OF MATHEMATICS 

 Jerry Lipka 
University of Alaska Fairbanks 

jmlipka@alaska.edu 
 

 

Dora Andrew-Ihrke 
University of Alaska Fairbanks 

dmandrewihrke@alaska.edu 

David Koester 
University of Alaska Fairbanks 
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Victor Zinger 
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Evelyn Yanez 
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Don Rubinstein 
University of Guam 

don.rubinstein@gmail.com 

This unlikely cast of characters, by working collaboratively in a trusting learning community, was 
able to identify an approach to teaching rational numbers through measuring from the everyday 
practices of Yup’ik Eskimo and other elders. “The beginning of everything,” as named by a Yup’ik 
elder, provided deep insights into how practical activities were conceptualized and accomplished by 
means of body proportional measuring and nonnumeric comparisons. These concepts and practices 
shed light on the importance of measuring as comparing and the importance of relative units of 
measure, and helped us imagine a way to establish an alternative learning trajectory and school-
based curriculum that begins with the insights gained from Yup’ik and other elders. This approach 
may well provide teachers a way to teach aspects of elementary school mathematics in an integrative 
and elegant way.  

Keywords: Measurement, Number Concepts and Operations, Curriculum 

Introduction 
More than 30 years ago, Evelyn Yanez, Dora Andrew-Ihrke, and Jerry Lipka almost blindly 

began a journey to map the landscape of Yup’ik elders’ knowledge, practices, and conceptions of 
mathematics. Evelyn and Dora were students in the Cross-Cultural Education Development Program 
(X-CED), University of Alaska Fairbanks, in Dillingham, Alaska, and Jerry was a field faculty 
member. Little did we know that insights gained from our long-term collaboration with Yup’ik elders 
and our more recent work with Indigenous Knowledge (IK) holders from the Yap Outer Islands, 
Greenland, Kamchatka, and Norway would result in a way to teach aspects of the foundation of 
elementary school mathematics. Nor did we realize that this would become our life’s work. 

From 1995 to approximately 2010, we worked with a dedicated group of Yup’ik elders and 
teachers. The most significant outcome of this phase of our collaborative work was the publication of 
the Math in a Cultural Context series—ten elementary school culturally based mathematics modules 
and ten accompanying storybooks. During this time, we also developed a culturally based and 
reform-oriented pedagogical approach (Lipka, with Mohatt & the Ciulistet, 1998), which 
incorporated aspects of Sternberg’s theory of intelligence (Sternberg, Lipka, Newman, Wildfeuer, & 
Grigorenko, 2006). We shared our curricular and pedagogical approach in many teacher training 
institutes and workshops. This was our response to identifying conceptions and contexts of 
mathematical behavior and thinking based on Indigenous Knowledge and applying them to a 
classroom context. Quantitative and qualitative journal articles documented both teachers’ 
pedagogical practices while implementing MCC curriculum and outcome studies on the efficacy of 
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the curriculum (Kisker, Lipka, Adams, Andrew-Ihrke, Yanez, & Millard, 2012; Lipka, Hogan, 
Webster, Yanez, Adams, Clark, & Lacy, 2005). 

Yet, we were not satisfied, as we were beginning to perceive a more cohesive approach to 
teaching elementary school mathematics based on Indigenous Knowledge (Lipka, Andrew-Ihrke, & 
Yanez 2011; Lipka, Wong, & Andrew-Ihrke, 2013). Could we identify and understand the embedded 
and encoded mathematics in everyday Yup’ik activities in a systematic way? We wondered what it is 
that enables Yup’ik and other elders to accomplish an array of everyday tasks without overburdening 
memory. Yup’ik people are generalists; individuals have needed to make clothing, build houses, fish 
racks, smokehouses, and kayaks, and orient themselves in various weather conditions when traveling 
on the tundra, in forests, and on rivers and open seas. Were there concepts that cohesively supported 
the performance of these tasks?  

Our latest grants have enabled us to continue this exploration into mathematical concepts 
embedded in the everyday activities of Indigenous Knowledge holders among the Yup’ik and other 
cultural groups across the Arctic as well as an “outlier” group from Yap State in the Federated States 
of Micronesia. This work has allowed us to imagine what an elementary school mathematics 
curriculum would look like if developed from key aspects of Indigenous Knowledge. We began this 
phase of our research aware of the importance of symmetry and measuring in the everyday activities 
of Yup’ik elders (Lipka, Andrew-Ihrke, & Yanez, 2011). Measuring is the major conception of 
“mathematics” that elders have identified and use in their everyday activities (Lipka, with Mohatt & 
the Ciulistet, 1998; Lipka, Wong, & Andrew-Ihrke, 2013).This paper reports on what we have 
learned to date.  

From the outset of our work, because numbers and operations represent such an overwhelming 
part of the curriculum, we were initially unable to see how a cultural group such as Yup’ik, which 
does not prize numbers in its daily activities, could provide us with key insights on how to teach the 
foundations of school mathematics. Yet, the information that follows is what we found, and it is what 
was right in front of us for years. Even though there are fundamental epistemological differences 
between Yup’ik practical activity and school mathematics, the embedded mathematical principles in 
everyday activity can generalize to the teaching of school mathematics. Because their measuring 
approach occurs in a nonnumeric environment, the embedded mathematical principles provide a 
generalized model for teaching aspects of rational number reasoning and other aspects of 
mathematics. In fact, rational number learning (fractions, ratios, and scaling) has been identified as a 
difficult topic for most U.S. students (Confrey, Maloney, Wilson, & Nguyen, 2010; Wu, 2011; 
Lamon, 1999), and rational number reasoning is considered a key concept in students’ mathematical 
education (National Mathematics Advisory Panel, 2008).  

This article describes how measuring can be perceived as a central and integrative concept across 
a wide range of everyday activities conducted by Yup’ik and other Indigenous Peoples. We will 
identify and describe a few cultural activities that highlight underlying generative cultural and 
mathematical principles. We briefly describe these principles and will argue that the principles 
embedded in activity provide an alternative pathway to teaching the foundations of mathematics. The 
key curricular and teaching examples demonstrated in this paper from Indigenous Knowledge 
connect measuring with the elders’ halving algorithm and demonstrate how this can be an exemplar 
to teach place value in base 2.  

Brief Methodological Considerations 
Math in a Cultural Context (MCC) is a long-term project at the University of Alaska Fairbanks; 

federally funded grants have supported this work. A cohort of Yup’ik students enrolled in the X-CED 
Program and coauthor Jerry Lipka began working with elders in the late 1980s as a first step in 
understanding and connecting their everyday knowledge to elementary school teaching. This unlikely 
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long-term collaboration (well documented in Transforming the Culture of Schools: Yup’ik Eskimo 
Examples) occurred among Yup’ik elders, Yup’ik teachers and now-retired Yup’ik teachers, and 
academics (mathematicians, mathematics educators, linguists, cultural anthropologists, and 
educators) to make teaching elementary school math more cohesive, accessible, and relevant. Critical 
to our long-term work has been the establishment of trust, respect, and continuity, as we have been 
working with some elders for over twenty years and, in the process, have become “elders” ourselves. 
Evelyn Yanez, a coauthor and retired Yup’ik teacher and current MCC faculty, stated that “elders 
trusted us enough to give us their stories and knowledge so that it may go into the future like an 
arrow. They knew we would prepare books for future generations; they were excited about sharing 
their work” (personal communication, June, 2015). The meetings were important to the elders as the 
following anecdote describes. Lily Gamechuk, an elder from Manokotak, Alaska, and now deceased, 
came to a meeting in Fairbanks some years ago. She needed to go to the hospital but refused to go 
until she told her story to the gathered group. Elders would often state to us how MCC was one of the 
few programs in which their knowledge counted. 

Over these many years, insiders and outsiders have met three or four times a year for three to five 
days per meeting, when possible through grant funding. These meetings included storytelling, 
describing and performing everyday tasks such as making clothing and patterns, and discussing and 
simulating star navigation. Less often, we would practice these skills and knowledge in situ. 
However, more remarkable, our elder meetings at times have become Socratic in character as the 
discursive activities of the entire group demonstrate and refine the growing understanding of 
connections between Yup’ik cosmology, epistemology, and practice as a system, and as we relate 
this Indigenous Knowledge System to school mathematics. Koester (2014) describes the process as 
“getting to ‘mathematical foundations’ from oral accounts of activities, a discursive process that 
invokes metaphor, symbols, and various forms of discursive displacement.”  

Jerry Lipka, Principal Investigator of MCC and first author of this paper, cannot stress enough 
the absolute importance of the long-term collaborative inquiry, which has allowed exploration of 
topics in depth and in new ways and has allowed opportunity for serendipitous events to occur, ones 
from which completely new lines of inquiry developed. For example, a single geometrical 
construction performed by Dora Andrew-Ihrke, which she was not going to share because she 
“thought everyone knew this,” led to a generalized way to construct many different planar shapes as 
well as three-dimensional shapes. (It is beyond the scope of this paper to explore in depth the 
methodological considerations or the geometrical constructions.) 

The Beginning of Everything: Connecting Everyday Activity and Mathematical Reasoning 
In one of our first meetings with Yup’ik elders many years ago, we asked Lily Gamechuk, a 

respected elder from Manokotak, Alaska, to share with the group how she made clothing. Lily asked 
one of the Yup’ik teachers-in-training in the room to stand. Without any instruments, and without 
touching her, Lily “measured” her. The measuring took place in her mind’s eye. Minutes later, Lily 
had made a complete outfit out of butcher paper including a dress, belt, hat, and boots. The only 
instrument she used was a pair of scissors. How did she do this? How did she measure? She never 
told us directly, as it was more important from her point of view that we learn this skill in our way. 
What mental operations did she employ to transfer her visual perception to the practice of cutting and 
sewing proportionally? Little did we know that understanding how Yup’ik elders performed such 
everyday math would transform our own thinking.  

In a recent elders’ meeting with the Yup’ik cohort, Raphael Jimmy, an elder of approximately 90 
years from Mountain Village, Alaska, slowly raised his hands above the table lifting them at eye 
level so that we could all see that he had crossed his left and right index fingers, forming right-angled 
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axes referred to here as a plus sign: “+” (Figure 1). Simultaneously, he stated, “What was once 
hidden is now revealed” (personal communication, November, 2013).  

 
Figure 1: The beginning of everything 

Mr. Jimmy explained that his crossed fingers represent “the beginning of everything.” In a 
practical sense, this meant that the embodied abstraction was the starting point for many, if not most, 
practical activities. Even a length or a line segment has an implied center; folding material in half 
establishes a line of symmetry and two equal parts. Once Mr. Jimmy shared this concept, other 
members in our group realized that they too use this concept, heretofore unnamed, in their everyday 
constructions. We slowly realized that the concept reflected a culturally preferred way of perceiving, 
thinking, and performing across a wide variety of activities. Other members in our research group 
had also described this process, but until that moment, the process had gone unnamed. We have 
begun to observe the importance of “the beginning of everything” in other cultural groups with 
whom we are working, most notably the Yap Outer Islanders from the Federated States of 
Micronesia.  

The cultural and mathematical activity-generating concepts signaled by Mr. Jimmy’s action of 
crossing his fingers include the Yup’ik concepts of qukaq [center] and ayagneq [a place to begin], 
avek [halving], tapluku [to fold it, partitioning material], and ayuquk [testing and verifying 
congruence and symmetry or identifying equality]. This cluster of concepts and actions relate space, 
locating, and measuring space by invoking a line of symmetry that emerges through the action of 
folding material in half, or as a mental image in which the whole contains its parts, and a process of 
verifying equalities (is this side equal to the other side?). These words and actions establish a center 
and a place to begin many different projects performed by Yup’ik elders. The following few 
examples from Yup’ik cultural activity will illustrate how ubiquitous this concept is.  

Although Dora Andrew-Ihrke, a long-term Yup’ik colleague and coauthor of this paper, did not 
have a name for “+,” she uses the concept in her geometric constructions, such as for making a 
square out of irregular uneven material and in numerous other projects. Through body proportional 
measuring and folding, she establishes the center of the material. The “+” becomes the inner structure 
for a square, as shown in Figure 2. (The drawn lines are for demonstration purposes.) 

The square and its center are co-constructed, as Dora refers to the initial center point as “fake,” 
meaning approximate. The square and its center become “real” when she verifies the congruence of 
each fold (vertical, horizontal, and diagonals). 
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Dora uses these same processes and the concept of the orthogonal center to create patterns. She 
folds a square in half from top to bottom and side to side twice. This produces smaller squares, all the 
while verifying that she has maintained the orthogonal center. Figure 3 shows an example of this 

 
2a. Irregular material  2b. One fold creates an edge; 2c. Measuring from the edge 

 
 2d. Folding and cutting to find the approximate centerline 

 
2e. Perpendicular fold 2f. The approximate center of the square is established  

 and Dora continues to construct the square 
Figure 2: Geometric constructions using the concept of “+” 
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Figure 3: An example of geometrical similarity and scaling 

similarity and scaling. Scaling is invoked through many everyday activities within the Yup’ik culture 
and is part of our school-based program. 

The square is Dora’s central geometrical shape, which she transforms through symmetrical 
folding into a circle or other planar shapes (Lipka, Wong, & Andrew-Ihrke, 2013). Aspects of the 
Yup’ik orientation system guide the transformation of a square into a circle by folding along lines of 
symmetry oriented by the winds, then the in-between winds, and once more between-those-winds 
until there are 16 points on the square (Figure 4).  

 

Figure 4: 

When the square has been transformed into a many-sided polygon, Dora cuts a circle out of the 
square; the circle is inscribed in the square as shown in Figure 4 (Lipka, Andrew-Ihrke, & Yanez, 
2011). All of these actions occur through the axial center.  

Mrs. Nanalook, a respected elder from Manokotak, Alaska, has been a working member of the 
Yup’ik elders’ cohort for a long time. Recently, she showed us step-by-step how she begins to weave 
a grass basket (Figure 5). A detailed ethnographic description is beyond the scope of this paper, but 
by referring to Mrs. Nanalook’s key movements around the center point (see photographs in Figure 
6), you can imagine how she begins weaving a grass basket.  

Mrs. Nanalook takes a blade of grass, and if it is wide, she cuts it in half along its line of 
symmetry. As shown in Figure 6, she takes the two parts of the blade of grass and forms a cross, 
positioned in reference to the basket maker. Her actions of going up [quletmun] and going down 
[acitmun] along the vertical axes are coordinated by her actions of going left-to-right or right-to-left 
on the horizontal axes [canitmun]. She further orients the grass’s motion in reference to her body as 
the grass is going inside toward her body [ilutmun] and is going away from her body [elatmun]. The 
upward and downward and sideway folds form the loop at the center of the basket [qukaq]. The 
process is repeated along the horizontal plane, as these motions going inside/inward, and, going 
outward form another loop. The process is repeated six times until the beginning of the grass basket 
has been constructed.  

Motions around the center, coupled with specialized demonstratives that aid orientation and 
location in reference to the speaker/weaver, reveal aspects of this generalized system. The Yup’ik 
language is exceedingly rich in demonstrative words that describe locating and orienting 
differentiating space (see Jacobson, 1984, pp. 653–662). Underlying this system is the central, 
bodily-situated orthogonal axis that functions as a cultural code of practical action and supports a 
wide range of activities from locating one’s own self on the tundra or in the bays and surrounding 
waters, to orienting patterns and weaving the structure of a grass basket, to assisting a seamstress in 
measuring, cutting, and sewing clothing. In fact, even the Yup’ik counting system—base 20 and sub-
base 5—uses movement across the spatially oriented four sectors of the body in relation to the axial 
center.  
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Figure 5: Yup’ik coiled grass basket 

 
6a. Establishing the center 6b. Going downward 6c. Going horizontally 

 
6d. Establishing the center of the basket 

Figure 6: Mrs. Nanalook demonstrates basket weaving 

The following examples are from both the Yapese and the Yup’ik context. These examples were 
chosen because they reveal how actions around the center (line of symmetry) contain both practical 
knowledge, used in making everyday products, and mathematical knowledge, applicable to teaching 
the foundation of mathematics. The illustration in Figure 7 shows Larry Raigetal, a Lamotrek (Yap 
Outer Islands) knowledge holder who lives on the main island of Yap, the state capital of fourteen 
widely dispersed atolls. Larry demonstrates to members of our research/study group how he 
transforms a coconut leaf into a “ruler.” (Typically, a master canoe builder would use a pandanus leaf 
[personal communication, Cal Hachibmai, August 20, 2015].)  

Larry first measures the desired length of the leaf by holding it between his thumb and index 
finger, stretching it over the top of the rest of his fingers and down the side of his hand until he 
reaches his wrist (proportional to his body) (Figure 8). He then constructs the tool by folding the 
measured leaf in half, and then he folds from one edge to the center and folds in half again. He 
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repeats this process on the other side of the leaf and then folds each of the four segments in half again 
until there are eight segments in total. Master carvers use this measuring tool to build boats, and such 
tools are used to build traditional houses. We have observed others in the Yap Outer Islands as well 
as in Chuuk (also part of the Federated States of Micronesia, 1500 kilometers away from Yap, with a 

 

Figure 7:  

distinct although related language and culture) use repeated halving to create tools and build canoes 
and houses, and as a way to fashion loom-woven cloth. For the Yap Outer Islands, this process is 
well documented (Alkire, 1970). 

 

Figure 8: Measured proportional to the hand 

Dora Andrew-Ihrke similarly learned how to fold material as a young girl from her mother, 
Annie Andrew, a well-known seamstress. Mrs. Andrew demonstrated and explained to Dora that 
there are two kinds of folds: easy and difficult. Easy folds are the same as those demonstrated by 
Larry, using either serial or recursive half-folds, producing 2, 4, 8, and so on, number of parts. 
Difficult folds are odd folds that include 6 equal parts, as 6 equal parts are constructed by multiplying 
an odd and even number. 

When Dora folds a strip of paper into three equal parts, she follows her mother’s folding 
algorithm and principle—always use the simplest fold, the half-fold. The main difficulty we had in 
understanding this halving algorithm was in moving away from our habituated way of seeing three 
parts of the whole as thirds, when in fact Dora was consistently expressing the relationship between 
two parts: “Is this half equal to that half?” (See Figure 9). 

Stating Mrs. Andrew’s folding algorithm more formally, it is n-1, when n is an odd number. For 
elementary school classroom purposes, we demonstrate this process using small numbers as a model 
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for the algorithm and managing the number of folds. Thus, with the single-digit prime numbers 3, 5, 
and 7 using the n-1 algorithm, the number of folds reverts to the simple half-fold. Subtracting 1 from 
those primes results in 2, 4, and 6 parts each, and these specific examples are achievable through the 
half-fold. The process is illustrated and described in Figure 9. 

The halving algorithm represents movements around the center, as shown in previous examples. 
This algorithm provides a crucial part of Indigenous Knowledge that transfers to the teaching of  

 

 

Figure 9: 

school mathematics. Examples described below further develop the connection between Indigenous 
Knowledge and its potential in teaching rational numbers in a school context. Applying the n-1 
folding algorithm to create three equal parts, we can either estimate Length A or Length C as the 
estimated third part. In the diagram shown in Figure 9, we estimated Length C as one-third of the 
whole. This leaves segment n-1, which is folded in half to create Length A and Length B. As 
illustrated, the halving algorithm is used twice. 

When Lengths A and B were folded on top of each other, Dora treated them as a single entity and 
again referred to the notion: Are Lengths A and B with A folded on top of B equal to C? When we 
understood these actions and descriptions from her Yup’ik perspective, the centrality and the power 
of this halving algorithm (binary operation) became clear from within a Yup’ik cultural context. This 
realization opened a new and deeper understanding of how Yup’ik practical knowledge relates to 
fundamental aspects of numbers and relations. 

The last cultural example is a variation of the halving algorithm, which both Mrs. Andrew and 
Dora use in their constructions. We observed other Yup’ik elders using the following algorithm, but 
clearly, Mrs. Andrew and Dora have refined this process at an expert level. In fact, other Yup’ik 
people learn from them. To find the difference between two quantities, for example Length A and 
Length B, Dora aligns them and then folds back the difference, Length C, so that Length A minus 
Length C equals Length B. (We have demonstrated this process in multiple workshops and institutes 
by comparing the length of Jerry’s foot with that of Dora’s. By finding the difference using the 
method shown in Figure 10, Dora eventually establishes a common unit that can measure both sets of 
feet.) 

The difference between Length A and Length B is C. Dora uses C as the divisor. She now divides 
(or measures) Length A and Length B by the divisor, C. She folds until there is no remainder. In this 
simplified example, there is no remainder after two folds. C is now established as the common unit 
that can be used to measure Lengths A and B. Algebraically, B = 2C and A = 3C. This algorithm was 
developed in an Indigenous culture, but it is essentially Euclid’s famous algorithm 
(https://en.wikipedia.org/wiki/Euclidean_algorithm), used to find the greatest common divisor of two 
numbers as well as the greatest common factor.  
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Figure 10:  

Discussion: Indigenous Knowledge as a Basis for Teaching the Foundations of Mathematical 
Thinking 

The above-described examples represent only a fraction of our data and provide evidence that in 
an Indigenous cultural context, measuring—as a means of comparing objects in practical activity—
models the concept of ratios, expressed as rational numbers. When Dora creates a square from 
irregular material, or when Larry creates a measuring tool, both the square and the tool are 
constructed based on body measures and bodily techniques that establish ratios and proportions. The 
resulting products are made in proportion to the body of the person creating them. Everything is 
balanced between the user and the crafted product or clothing. The products and processes reflect 
relational thinking and relative units. 

Mr. Jimmy identified the beginning of everything as a cultural code, which Mrs. Nanalook 
enacted while weaving her grass basket. This culturally grounded code is transferrable to the teaching 
of rational numbers in the elementary school. Dora’s mantras are part of that cultural code: “What 
you do to one side you must do to the other side,” and “Is this side equal to the other side?” 
Measuring as comparing (including body proportional measuring) reflects Lockhart’s (2012) concept 
of measuring: 

How are we going to measure the length of two sticks? Let’s suppose (for the sake of argument) 
that the first stick is exactly twice as long as the second stick. Does it matter how many inches or 
centimeters they come out to be? I certainly don’t want to subject my beautiful mathematical 
universe to something mundane and arbitrary like that. For me, it is the proportion (that 2:1 ratio) 
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that’s the important thing. In other words, I’m going to measure these sticks relative to each 
other. (Lockhart, 2012, p.32) 

We believe that it is through measuring as comparing that we can establish an integrative 
approach to teaching aspects of rational numbers. Measuring proportionally is about quantitative 
comparisons, comparing two or more lengths (or measurable attributes of quantities such as length, 
area, mass, and volume). A set of seemingly simple principles reflects the generative cultural 
practices and ways of thinking, which we then use to establish a mathematical starting point for 
developing school-based mathematics. The generative principles and processes can be expressed as: 

• measuring as comparing 
• relative units, ratios and rational numbers 
• symmetry, halving, and verifying 
• scaling 

Applying Indigenous Knowledge to the Development of Rational Number Reasoning 
These generative principles are the active ingredients that we have identified, and based on the 

knowledge of these principles and processes, we have begun the development of supplemental 
curriculum materials and a learning trajectory. Our work is informed by the Measure Up program, 
University of Hawaiʻi at Mānoa’s Curriculum Research Development Group. The Measure Up 
program follows the experimental curriculum developed in Russia by Elkonin-Davydov (Dougherty 
& Simon, 2014), in which first grade students explore quantitative relationships through nonnumeric 
comparisons as a way to establish early algebraic reasoning including generalizing. Elkonin-
Davydov’s curriculum was influenced by Vygotsky’s cultural-historical-activity theory (Engeström, 
Miettinen, & Punamäki, 1999). According to Davydov (2008), “the basic task of the school 
mathematics curriculum is to bring the students to the closest possible understanding of the 
conception of real number.” Davydov goes onto to state, “the properties of quantities are discovered 
when a person works with real lengths, volumes, weights, time intervals, and so on (even before 
these are expressed in numbers)” (Davydov, 2008, p. 148). Moxhay (2008), who adapted the 
Elkonin-Davydov curriculum, and implemented and assessed it in the Portland School District in 
Maine, noted: 

All the children are exposed to the same, very high level of mathematical content, which at first 
view looks like high-school mathematics (use of algebraic notation, counting in bases other than 
10). In particular, Davydov’s curriculum has the goal of developing, in all students, a scientific, 
or theoretical, concept of number, from the very beginning of Grade 1. (Moxhay, 2008, p.2) 

The developmental psychologist Sophian, at the University of Hawaiʻi at Mānoa, who 
collaborated with the Measure Up program, makes a persuasive argument for why the comparison-
of-quantities approach should be considered a legitimate alternative to the “counting first approach.” 
Sophian contrasts the concept of number and quantity as follows: 

In order to clarify the contrast between these two perspectives, the concept of number needs to be 
differentiated from that of quantity. In the senses most pertinent to the present discussion, 
Webster’s New World Dictionary (Neufeldt & Guralnik, 1994) defines number as “a symbol or 
word, or a group of either of these, showing how many or which one in a series”; and quantity as 
… “that property of anything which can be determined by measurement.” (Sophian, 2008, p. 3)  

She notes an ontological difference between number and quantity by explaining that quantity is 
associated with physical things which can be compared in a variety of ways, while numbers are not 
physical things but are a mental operation (Sophian, 2008). She cites the work of Gal’perin and 
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Georgiev (1969), that numbers arise from the comparison of a quantity and a unit, and that different 
numbers occur if the unit size changes (Sophian, 2008). This approach leads to the recognition that 
“numerical values are essentially representations of the relation between the quantity they represent 
and a chosen unit” (Sophian, 2008, p. 7). The Davydov approach in some ways mirrors the cultural 
practices of some Indigenous People. Davydov takes measuring as comparing, as an alternative 
approach to establishing the foundations of mathematical thinking in a school context.  

Measuring as Comparing Connects to Properties of Equality 
Introduction to early algebraic thinking via the comparison of nonnumeric quantities. The 

measuring approach has allowed us to reverse and refine the sequence of introducing early algebraic 
thinking prior to the concept of number. In our approach, students compare and explore with 
quantities, understand, and slowly formalize algebraic operations (addition, subtraction, division, and 
multiplication) through the comparison of nonnumeric quantities, experimenting with length 
segments represented by strips. Elders’ comparison of quantities lends itself directly to classroom 
application. Such experimentation organically leads to generating, representing, and verifying the 
basic algebraic properties of inequality and equality such as those noted below: 

Properties of Inequality 

• !"#$%&%'!!! < !"#$%&%'!! 
• !"#$%&%'!!! > !!"#$%&%'!! 

Properties of Equality 

• Reflexive: !! = !! 
• Symmetric:!!"!!! = !!, !ℎ!"!!! = !! 
• Transitive:!!"!!! = !!!!"#!!! = !!, !ℎ!"!!! = !! 
• Substitution: !"!!! = !, !ℎ!"!!!!"#!!"!!"#!$%$"$&'!!"#!!!!"!!"#!!"#$!%%&'(  
• Commutative Property of Addition:!!! + !!! = !!! + ! 
• Associative Property of Addition and Multiplication: (!! + !!) !+ !!! = !!! + !(!! + !!) 
• Division Property:!!"!!! = !!!!ℎ!"! !! = !!  

A Curricular Example: Halving, Comparing, and Place Value 
The Measuring Proportionally curriculum construction process follows the lessons that we 

learned from working with Indigenous cultures. Measuring as comparing, the binary nature of the 
halving algorithm, and the concept and process of measuring by dividing a quantity by a unit of 
measure is ideally suited for modeling place value understanding. We believe that Indigenous 
practices that highlight halving and comparing lend themselves to modeling place value through base 
2. The process of “halving,” which is intuitively accessible to young students, becomes a powerful 
algorithm for furthering students’ understanding of numbers. Research has shown that many students 
do not have a generalized understanding of place value systems (Venenciano & Dougherty, 2014). 
Recent work suggests that for students to understand a positional place value system, they need to 
compare base 10 to other systems (Schmittau & Morris, 2004; Slovin & Dougherty, 2004). We use 
measuring, halving, and properties of equality, particularly equivalence substitutions, as a way to 
conceptually develop this understanding. We describe this process below.  

Place value example. Before engaging in these activities, students would have had ample 
opportunity to measure lengths by units of measures; to generate numbers from comparing a quantity 
and a unit of measure; and to explore through project materials many of the properties of inequality 
and equality enumerated above. Students are provided with an unnamed length, but for purposes of 
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this discussion, we skip the processes involved in naming and representing quantities. We will name 
this example Length D. Students will be given a few different strips equal in length to Length D. 
They will be asked to keep Length D whole. With the other strips, through a series of recursive folds 
(1, 2, and 3 folds), they will create strips with 2, 4, and 8 parts. The strips will be labeled as shown in 
Figure 11.  

 

Figure 11:  

Students will generate numeric values as they measure a quantity such as Length D by a unit of 
measure such as Length A. After they have had a chance to explore and communicate 
mathematically, students will be told that they are developing a Measuring Kit (Figure 12) based, in 
part, on the ways that Larry and Dora create their own measuring tools. Each Measuring Kit will 
contain only one of each length. Students will be challenged to measure various objects simply by 
using these lengths.  

 

 

Figure 12:  

Students will create a table of values by using Length A to measure the other quantities. This 
method results in !! = 8, !! = 4, !! = 2, and !! = 1.  

   = !! = 8 and so on 

Students can either create or account for the units using a recording table as they measure the 
specific objects. There are only two numbers in this system: a unit of measure is used or a unit of 
measure is not used. Classes that have piloted these lessons have used 0 to indicate that they did not 
use a particular length, and they have used 1 to indicate that they did use a particular length. Some 
classes used “Y” for yes (they used a particular length) and “N” for no (they did not use a particular 
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length). Each of these aspects of the activities on place value makes for interesting classroom 
discussions.  

We challenge students to measure a set of objects. These objects are equivalent in base 10 lengths 
ranging from 1A to 16A. As students use their measuring kits to measure objects, they are faced with 
a few challenges, such as how to measure when your measuring kit has only one of each unit, and 
how to create a new unit of measure for your measuring kit when all of the units in the kit have been 
used. To facilitate solving these challenges, students receive a recording table (Table 1) and objects 
to be measured. For purposes of this presentation, we limited the number of objects to be measured.  

Table 1. Recording Table 

Object to be measured     

    1 

   1 0 

   1 1 

  1 0 0 

 
Length A (the length of A equals the length of the first object) is used to measure the first object 

one time. Students record 1 in the A column to show that one Length A was used. However, Length 
A is too small to measure the second object. Two Length A’s would be needed to measure the second 
object. When students try to place 2 in the A column, they realize that there is space for one Length 
A and there is only one Length A in the kit. They can immediately observe that two Length A’s = the 
second object, and that two Length A’s = Length B. They can substitute two A’s for Length B. 
Students record that they used 1 Length B and 0 Length A’s. The specific measuring code for the 
second object is 10 (read as “one zero”). 

objects        
 ------ = 1. -------- = 1         -------    = 1  

units        

The next object is measured by (B + A) units, and thus it is recorded in the table as 11 (read as 
“one one”). 

 

 

The process continues as described above. Students measure multiple objects designed so that 
they continually experience the process of adding a unit, substituting the next unit from the tool kit, 
and moving from one place value column in a right-to-left direction.  

Students continue this process until they reach a quantity that is exactly one unit longer than their 
entire set of measuring tools concatenated. They are then challenged to create a new unit of measure, 
Length E, that follows the system’s exponential relationships: Length B is two times longer than 
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Length A; Length C is two times longer than Length B; Length D is two times longer than Length C. 
Now the students need to realize that Length E is twice as long as Length D. With these concrete 
objects and the structure of the recording table, the students are learning through measuring, building 
on prior knowledge related to properties of equality and equivalence substitutions. Only two numbers 
are allowed in each column (0 and 1), and each column to the left increases by a power of 2. In fact, 
this example models any positional number place value system, and may enhance understanding of 
base 10.  

Discussion and Conclusion 
This paper provides a glimpse into a long-term and continuing collaboration between Indigenous 

Knowledge holders—retired Yup’ik teachers who bridge Indigenous Knowledge and Western 
schooling—and academicians. We believe that the insights gained from everyday Indigenous activity 
and the ongoing intensive discussions among the Yup’ik cohort have enabled us to see how 
Indigenous Knowledge could have relevance for modern Western schooling. Measuring as 
comparing, and Dora’s and Mrs. Andrew’s folding algorithm, have implications for teaching aspects 
of the foundation of mathematics that go well beyond the scope of this paper. Our school-based 
curriculum development approach is attempting something not often done in academia or in the 
teaching of school mathematics: to use Indigenous Knowledge as a starting point for developing an 
approach to learning a core academic subject. Here we are building an elementary mathematics 
supplemental curriculum and learning trajectory from the perspective of Indigenous Knowledge. 
Measuring Proportionally is aided by insights gained from allied programs such as Measure Up and 
the work of Davydov and his colleagues. The halving algorithm and Euclidean-like way of 
generating the greatest common divisor are key aspects of our approach learned from Indigenous 
People, which distinguishes this approach from the work spearheaded by Davydov and his followers.  

Yup’ik and Micronesian elders, in particular, use a process of measuring as comparing and 
halving to create tools and subunits across a wide spectrum of everyday activity. We are applying 
this process to our mathematical and pedagogical approach to teaching elementary school 
mathematics. Because the same processes are used in making the simplest of comparisons, such as 
direct comparisons of two quantities, to modeling place value, to comparing fractions and creating 
common units, our approach supports a cohesive way to teach aspects of elementary school 
mathematics. Similarly, our approach provides teachers with an integrative way of teaching 
foundations of mathematics. Measuring as comparing nonnumeric quantities establishes early notions 
of algebraic reasoning, and establishes relational units (as an early form of ratios). Proportional 
measuring and symmetrical folding are used in constructing geometrical shapes. The approach is 
both horizontally and vertically integrative. The same processes and halving algorithm used to 
compare two length quantities are also used to model and teach division of fractions, proportions, and 
scaling. Similarly, these cultural/mathematical principles are applied to Dora’s and other elders’ 
everyday construction of geometrical shapes and designs. Constructing a square and transforming a 
square into other planar shapes through symmetrical folding links the elders’ knowledge to aspects of 
teaching geometry in school, including geometrical similarity (Lipka, Andrew-Ihrke, & Yanez, 
2011). Scaling is invoked through many everyday activities within the Yup’ik culture and is taught in 
our program in the same fundamental ways as has been described for the comparison of quantities. 

We believe that the mathematical pedagogical approach being developed by this project has 
potential to provide students and teachers with an elegant way to teach the foundations of 
mathematical thinking. This remains an empirical question.  

The distance that this program has traveled—from its exploratory beginnings with elders to a 
more systematic collaborative study of everyday activity—continues to amaze and inspire those of us 
who are working in it. 
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ADDRESSING THE NEEDS OF THE MARGINALIZED STUDENTS IN SCHOOL 
MATHEMATICS: A REVIEW OF POLICIES AND REFORMS 
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rqb3e@virginia.edu 

Introduction 
An examination of past research, policies, and reforms in mathematics education suggests that 

there have always been, and remain, tensions in conceptualizing the aims and goals of mathematics 
teaching and learning.  These tensions have focused on addressing three concerns: (1) what 
mathematics students should learn; (2) how students should be taught mathematics; (3) who is 
qualified to teach mathematics?  When examining how responses to these questions have addressed 
the needs of learners who are identified as marginalized (defined here as Black1, Latin@2, 
Indigenous, and poor) there is a constant pattern in which they are routinely given the least access to 
advanced mathematics content, the fewest opportunities to learn through methods other than 
memorizing facts and mimicking teacher-modeled procedures, and the least access to well-prepared 
mathematics teachers (Berry, Ellis, & Hughes, 2014).  As a result, these learners experience the 
following conditions: a) reduced access to advanced mathematics courses that prepare them for 
higher education and improved career options; b) routine exposure to activities that focus primarily 
on rote, decontextualized learning through drill and practice with little to no engagement that 
promote reasoning and use mathematics as a tool to analyze social and economic issues, critique 
power dynamics, and build advocacy; and c) less access to qualified teachers of mathematics who 
both understand mathematics deeply and understand their students’ cultural and community context 
deeply in order to give learners access to mathematical knowledge (Ellis, 2008; Flores, 2007; 
Gutiérrez, 2008; Martin, 2007).  The effect of these conditions on marginalized learners’ attainment 
in mathematics demonstrates well that such an approach constrains outcomes to a narrow range of 
proficiencies focused on basic skills.   

While the disproportionality and conditions of marginalized learners is a cause for concern, it is 
important to understand that addressing the needs of these learners may not have been the primary 
goal of prior policies and reforms in mathematics education.  Berry, Ellis, and Hughes (2014) argued 
that prior policies and reforms in mathematics education have failed due to having been developed to 
address the needs and interests of the larger dominant culture3, not those of marginalized learners.  In 
fact, many past policies and reforms in mathematics teaching and learning have come at the expense 
of the needs and interests of marginalized learners by framing policies and reforms based on 
economic, technological, and security interests of the dominant culture.  There are statements such as 
“Mathematics has become a critical filter for employment and full participation in our society. We 
cannot afford to have the majority of our population mathematically illiterate: Equity has become an 
economic necessity” (NCTM, 1989, p. 4).  This situates equity in mathematics education as serving 
economic interests of the dominant culture by situating participation as supporting the drivers of an 
economy.  A consequence of this framing is that participation in mathematics education is based on 
ensuring that the dominant culture’s economic, technological, and security interests are met rather 
than addressing the needs of learners.  Examining the convergence of interests allows us to 
understand the motivating factors for policies and reforms that might lead to fortuitous benefits for 
marginalized students.  

Derrick Bell, a former attorney with the National Association for the Advancement of Colored 
People (NAACP) during the Civil Rights Era, employed his interest-convergence principle to explain 
how the United States Supreme Court issued the landmark ruling in Brown v Board of Education of 
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Topeka, Kansas (Brown I) in 1954.  The Supreme Court’s ruling in the Brown case revoked the 
“separate but equal” doctrine, which legally sanctioned segregation in public education and all 
aspects of daily life.  Bell (2004) argued that the Brown decision was not the result of America 
coming to terms with its democratic ideals or moral sensibilities.  Rather, the Supreme Court was 
more interested in providing “immediate credibility to America’s struggle with communist countries 
to win the hearts and minds of emerging third world people” than in doing what was morally right (p. 
233).  Thus, under the interest-convergence principle, the Brown decision is best understood as 
progress requiring the coincidence of a pressing issue, more than a commitment to justice (Donnor, 
2005). 

Brown provided the impetus for legislation, such as the Elementary and Secondary Education Act 
(ESEA) of 1965 and it reauthorizations Improving America’s School Act of 1994 and No Child Left 
Behind Act (NCLB) of 2001 (Zion & Blanchett, 2011).  These along with other legislations and 
mandates established requirements that address the need to ensure that all students in the United 
States are provided equal educational opportunities.  Although not fully realized, the requirements of 
these legislative acts and mandates created pressure to address the historical inequity in educational 
opportunity, achievement, and outcomes.  Zion and Blanchett (2011) argued that  the reason why 
large scale improvement in outcomes for all students have yet to be realized is that the problem has 
not yet been framed appropriately.  The problem must be framed as part of the history and legacy of 
racism, and as an issue of civil rights and social justice, viewed through a critical lens.  This article 
use a critical lens to apply the interest-convergence principle informed largely by the work of legal 
scholar, Derrick Bell (1980 & 2004), to examine motivating factors of policies and reform efforts in 
mathematics education.  Specifically, this article makes the case that policies and reforms in 
mathematics education were not designed to address the needs of marginalized learners; rather these 
policies and reforms are often designed and enacted to protect the economic, technological, and 
social interests of the dominant culture. 

Theoretical Framework:  Interest-Convergence Framework 
Social institutions are set up by those in power and are organized to support and value the types 

of cultural and social capital held by those in power (Bourdieu & Passeron, 1990).  Schools are 
institutions where power is controlled by the dominant culture’s interests.  In many schools we find 
values of individualism and independence, self-direction, competitiveness, decontextualized 
teaching, and passive methods of communication and learning (Stein, 2004). For many marginalized 
students, they must choose to engage using the values of the dominant culture or choose to resist 
becoming a part of the value set (Zion & Blanchett, 2011).  Policies and reforms in education, and 
those particularly geared to marginalized learners, often portray these learners as deficient or in need 
of “fixing” to be more align with the values of the dominant culture (Stein 2004).  Stein (2004) 
described the language of education policies as positioning marginalized people as being culturally 
deprived and deficiencies for marginalized learners are within their cultures, families, and 
communities.  Consequently, policies and reforms frame marginalized students as problems to fixed 
through labels (i.e. Title I students; culturally deprived) then propose policies and reforms that are in 
the interests of those in power.  That is, if marginalized students adopt the values of the dominant 
culture, then the economic, technological and security interest of those in power are maintained.  
Policies and reforms are more about the dominant culture’s interest and less about needs and interests 
of marginalized students. 

Interest-convergence is an analytical viewpoint for examining how policies and reforms are 
dictated by those in power to advance their political, social, and economic interests (Donnor, 2005).  
Bell’s (1980; 2004) interest-convergence principle theorizes that any empowered group will not help 
any disempowered group unless it is in their best interest to do so.  For Bell, the historical 
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advancement of Black people’s needs and interests is a result of being fortuitous beneficiaries of 
measures directed at furthering aims other than racial equity and social justice (Bell 2004).  Bell 
states, “Even when interest-convergence results in an effective racial remedy, that remedy will be 
abrogated at the point that policymakers fear the remedial policy is threatening the superior societal 
status of Whites, particularly those in the middle and upper classes” (Bell, 2004, p. 69).    Interest-
convergence has its theoretical grounding in critical race theory (CRT) which draws from a broad 
literature in law, sociology, history, education and women’s studies (DeCuir & Dixson, 2004; 
Ladson-Billings & Tate, 1995; Matsuda, Lawrence, Delgado, & Crenshaw, 1993; Solorzano & 
Yosso, 2001). Historically, its roots can be traced to legal studies.  With respect to CRT’s use in 
education, as Solorzano and Yosso (2002) explained, “critical race theory in education is a 
framework or set of basic insights, perspectives, methods, and pedagogy that seeks to identify, 
analyze, and transform those structural and cultural aspects of education that maintain subordinate 
and dominant racial positions in and out of the classroom” (p. 25).  In education, interest 
convergence provides framework to discuss power dynamics as framed by systemic interests and a 
loss–gain binary (Milner, 2008).  Interest-convergence has been used to examine policies and 
practices related to teacher education programs (Milner, 2008); practices for STEM education 
serving marginalized learners at universities (Barber, 2015); intercultural movements in multicultural 
education (Caraballo, 2009); inclusion and equity in special education (Zion & Blanchett, 2011); 
intercollegiate athletics (Donner, 2005); the development of historically Black colleges and 
universities (Gasman & Hilton, 2012); and postsecondary access for Latino immigrant populations 
(Alemán & Alemán, 2010).  This body of work provides the lens for using the interest-convergence 
principle to examine the motivating factors for policies and reforms in mathematics education to 
understand whose interests are served and the resulting fortuitous beneficiaries. 

Historical Perspectives in School Mathematics 
In their review of the history of school mathematics, Ellis and Berry (2005) noted a tension that 

reforms in mathematics education focused on efficiencies with an emphasis on procedural learning 
coupled with a belief that mathematics beyond arithmetic should be reserved for those deemed 
capable of advancing to such heights.  Efforts to improve mathematics education,   

…situated many learners in an a priori deficit position relative to disembodied mathematical 
knowledge—meaning learning mathematics was taken to be harder for certain groups of students 
due to their backgrounds and/or innate abilities—and failed to acknowledge the importance of 
mathematics for all students. (Ellis & Berry, pp. 10-11) 

Throughout this history, systems of standardized assessment were developed as a means to 
justify the separation of students within and between schools by race, class, and ethnicity.  The use of 
assessments to stratify was built on the assumption that a distribution of mathematical ability exists 
that can be fairly measured and meaningfully interpreted as the basis for separating students and 
providing unequal access to opportunities to learn mathematics. The conflation of this with societal 
beliefs about race and intelligence cannot be overlooked; the interest of those with power was 
preserved. This article documents some policies and reforms along the historical trajectory in 
mathematics education using the lens of interest-convergence to examine whose interests are served 
and whether there were any fortuitous benefits for marginalized students. 

New Math, Sputnik, & Brown 
The launch of the first artificial satellite, Sputnik, on October 4, 1957, by the Russians gave 

impetus to the drive to improve mathematics education in America.  The launching of Sputnik 
brought heightened concern about America’s national security as well as concern that America was 
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lagging behind the Russians in mathematics and science.   Influenced by the launch of Sputnik, 
federal funds for mathematics education became available through the National Defense Education 
Act (NDEA) of 1958 (Walmsley, 2003).  Title V of the NDEA Act laid the groundwork for gifted 
programs and began the trend of using standardized testing in schools to measure competency 
(Walmsley, 2003).  NDEA provided funds to identify “best and brightest” young scientific minds and 
was designed to fulfill defense interests in mathematics, science, engineering and foreign languages.  
The appeal to identify “best and brightest” was built on protecting national security and defense 
interests (Tate, 1997).   

Approximately three years prior to the launching of Sputnik, the United States Supreme Court 
issued the landmark ruling in Brown v Board of Education of Topeka, Kansas which revoked the 
“separate but equal” doctrine.  Black parents and community leaders sought desegregation based on 
the assumption that better school resources accompanied schools were White children were taught 
and that better resources provided greater opportunities.  The Brown decisions occurred in the midst 
efforts to reform what mathematics should be taught and how it should be taught.  This reform,  the 
“new math” reform, offered teaching new mathematics content as well as new pedagogical 
approaches (Walmsley, 2003).  One main idea of “new math” was to reduce focus on the drill and 
practice approach with approaches where students could develop conceptual understanding of 
mathematics.  These pedagogical approaches included the use of manipulatives, guided-discovery 
learning teaching practices, and the spiral curriculum (Walmsley, 2003; Willoughby, 2000).   

When we consider that many schools were still segregated and the process of desegregation was 
slow, and that schools serving Black children often received used textbooks handed down from 
schools serving white students (Snipes & Waters 2005), the reforms of “new math” did very little to 
address the needs of marginalized children, specifically Black children (Tate, 2000).  That is, Black 
children did not have access to new content nor experienced the pedagogies to teaching associated 
with the “new math” reform.  Within the interest-convergence framework, this era was characterized 
“benign neglect” (Tate, 2000; p. 201) for marginalized students because the needs and interest of 
marginalized students were largely ignored.  This does not imply that these learners did not have 
access to quality teaching in segregated schools, in fact, there is a body of research that suggest that 
many teachers in segregated schools “made do” with substandard materials and provide high quality 
teaching (Foster, 1997; Siddle-Walker, 2000; Snipes & Waters, 2005; Standish, 2006).   Rather, the 
“new math” reforms focused on identifying the best and brightest while ignoring the needs of 
marginalized students. 

Great Society & Segregation 
During the mid-1960s, President Lyndon Johnson had a vision for a “Great Society,” which was 

an effort to address issues of civil rights, poverty, economic inequities, health care, housing, jobs, and 
education (Levitan & Taggart, 1976).  Title I was enacted through the Elementary and Secondary 
Education Act of 1965 which allocated federal funds to schools with high concentrations of poverty 
in order to improve the educational opportunities of poor students (Wong & Nicotera, 2004).  The 
Civil Rights Act of 1964 forbade job discrimination and the segregation of public accommodations; 
the Voting Rights Act of 1965 suspended use of literacy tests, other voter qualification tests, and 
stopped poll taxes; and the Civil Rights Act of 1968 banned housing discrimination and extended 
constitutional protections to Native Americans on reservations.  These legislative acts provided 
greater opportunities for marginalized people but the activities of the Civil Rights movement 
facilitated these acts.  In response to the radical protests of this period, the interest of those motivated 
by America’s image to the world converged with the interests of the Civil Rights movement (Bell, 
1980).   



Plenary!Papers! ! 23!

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

In 1966, the Equality of Educational Opportunity, commonly referred to as the Coleman Report, 
argued that school resources had little effect on student achievement and that student background and 
socioeconomic status are much more important in determining educational outcomes (Coleman, 
Campbell, Hobson, McPartland, Mood, & Weinfeld, 1965).  The Coleman report was a challenge to 
President Johnson’s policies on education that increased spending.  One finding that received 
significant attention from policymakers was that peer effects had a significant impact on student 
achievement, meaning the background characteristics of other students influenced student 
achievement.  This finding was interpreted to mean that marginalized children, specifically Black 
children, would have higher test scores if a majority of their classmates were white (Wong & 
Nicotera, 2004).  This finding coupled with the tensions of desegregation was a catalyst for busing 
that occurred in many places in the United States.  Busing was an effort to desegregate schools and 
marginalized children were more likely to be bused than white children.  Thus, many marginalized 
children were displaced from their neighborhoods (Doughty, 1978).  Busing was a policy sought to 
“fix” marginalized students because it existed primarily to assist these students by allowing them 
entrance to perceived superior schools that served white students; thus allowing marginalized 
students to receive the benefits of peer effect as described in the Coleman report.  By displacing 
marginalized students from their communities, it positioned these students’ communities as problem 
centers rather than as resources.  In an effort to desegregate schools busing and peer effect policies 
served the interests of those who had power to make decisions about which children will be displaced 
from their home communities.  Further, these policies assumed that immersion into schools serving 
white students will help marginalized students with better achievement and reap values that served 
the interests of those in power.     

While busing sought to desegregate at the school-level, we must consider what happened at the 
classroom-level.  In schools where significant numbers of marginalized children were bused, these 
children experienced resegregation for their mathematics instruction.  In fact 70% of school districts 
had racially identifiable classrooms as a result of resegregation (Doughty, 1978).  That is, because of 
the development of and placement in low-level mathematics courses, marginalized children were 
placed in mathematics classrooms that denied them access to high-level mathematics content and 
these students were in segregated classroom within integrated schools.  Not only were students 
resegregated for mathematics instruction but a disproportionate number of marginalized students 
were placed in special education programs.  Doughty (1978) estimated that 91% of Black children in 
special education programs during this period were incorrectly assigned on the basis of low 
expectations and inaccuracies in IQ scores.  The misuse of a standardize test had negative 
consequences for many marginalized students.  Michelson (2001) argued that resegregation in 
classrooms through tracking undermined any potential benefits of school-level desegregation.  Given 
the consequences of resegregation at the classroom-level,  it is plausible to consider that 
desegregation as policy for reform was a facade to hide the interests of those who wanted to maintain 
segregation but appease the interests who fought for desegregation.     

Schools are as segregated today as they were in the 1960s and 1970s, and many schools are 
rapidly resegregating (Garda, 2011). In 2014, the percentage of public school students who were 
considered to be part of a racial or ethnic minority group was greater that the percentage of students 
considered being white (Hussar & Bailey, 2013).  Yet, white children are the most racially isolated 
group of students in the United States; they have little contact with students from other ethnic groups.  
Nearly half of white students attend schools that are more than 90% white and approximately one-
third of white students attend schools that are more than 95% white (Garda, 2011).  These statistics 
suggest that Brown did not permanently integrate schools in the long-run; in fact the intended goal of 
racial balance and desegregation of Brown has not been realized.   
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“Back to Basics” 
In the late 1960s and early 1970s, the “back to basics” reform movement in mathematics 

emerged in response to the perceived shortcomings of “new math” (Burrill, 2001).  During this 
period, the National Science Foundation discontinued funding programs focused on “new math,” and 
there was a call to go back to the “core curriculum” which was understood to be basic skills in 
mathematics.  The “back to basics” movement called for teaching basic mathematics procedures and 
skills and was closely connected to the minimum competency testing movement used extensively by 
states in the 1970s and 1980s (Resnick, 1980; Tate, 2000).  Testing had a significant impact on the 
mathematics content that was taught and the methods used to teach mathematics. Typically, students 
were taught mathematics content deemed important for passing tests.  Although the emphasis on 
skills did result in slightly improved standardized test scores for marginalized children, it did not 
adequately prepare these students for mathematics coursework requiring higher levels of cognition 
and understanding (Tate, 2000).  Thus, marginalized students were underrepresented in the upper 
achievement distribution and in upper-level mathematics courses (Tate, 2000).  

Considering the impact of desegregation and resegregation at the classroom-level coupled with 
an emphasis on testing, it plausible that the pedagogies and the curriculum offerings during the “back 
to basics” reform were similar for marginalized students during the “new math” reform.  The 
pedagogies of “back to basic” were already apart of marginalized students’ mathematical 
experiences.  The growing emphasis on testing during this period was used to legitimize the 
perception that many marginalized students are not capable of rigorous studies in mathematics (Perry 
2003).  The “back to basics” movement provided more focus of using achievement tests to 
pathologize marginalized students as being inferior, deficit and deviant.  We find the first of many 
research studies focusing on the achievement gap in mathematics during this period describing 
marginalized students as deficient and in need of fixing (Perry, 2003).  The analysis of achievement 
gap language advantaged the values of the dominant culture and ignored the ongoing experiences 
resegregation of marginalized students.  If one considers the context of the late 1960s and 1970s and 
the persistent limited educational opportunities available to marginalized children, discussion of an 
achievement gap serves to reinforce an ideology about marginalized children’s intellectual 
inferiority.  The focus on testing served the interest of those who focused on efficiency and 
stratifying learners to identify the “cognitive elite” (Hernstein & Murray, 1994) to protect the interest 
of those with power. 

Increased Enrollments in Upper-Level Mathematics Courses 
In 1983, the National Commission on Excellence in Education issued a report titled, A Nation at 

Risk: The Imperative for Educational Reform.  The report suggested that education reform is 
necessary because competitors throughout the world are overtaking America’s preeminence in 
commerce, industry, science, and technology.  Furthermore, the report stated, “If an unfriendly 
foreign power had attempted to impose on America the mediocre educational performance that exists 
today, we might well have viewed it as an act of war” (p. 1).   The inflammatory rhetoric of A Nation 
at Risk heightened concerns about national security and America was lagging in mathematics and 
science when compared internationally.  A Nation at Risk stated that through educational reform, 
American children’s promise of economic, social, and political security in the future would be earned 
by meritocratic ideals of effort, competence, and informed judgment.   

As a reaction to A Nation at Risk Many states placed Algebra I as a high school graduation 
requirement.  Between 1982 and 1992, students enrolled in Algebra I increased from 65 to 89 
percent, in Algebra II from 35 to 62 percent, and in calculus from 5 to 11 percent (Raizen, McLead, 
& Rowe, 1997).  Planty, Provasnik, and Daniel (2007) reported that the percentage of graduates who 
completed a semester or more of Algebra II rose from 40 percent in 1982 to 67 percent in 2004.  This 
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evidence suggests that the average number of mathematics courses at or above Algebra I taken by 
high school students has increased.  The increased focus on maximizing students’ performance on 
standardized tests has led schools to rethink course-taking patterns (Kelly, 2009).  While there were 
increases in the enrollments rates of all students, the enrollment rates for marginalized students in 
higher-level mathematics courses was still relatively low (Jetter, 1993).  Black students to be more 
likely to be enrolled in Algebra I and geometry but less likely enrolled in higher-level courses (Jetter, 
1993).  In the early 1990s, Bob Moses, a leader in the civil rights movement, argued that access to 
algebra is the “new” civil rights (Jetter, 1993). Moses contended that algebra served as a curricular 
gatekeeper tracking numerous students out of many in-school and out-of-school opportunities.  
Within an interest-convergence framework, Algebra I as a graduation requirement was to improve 
America’s standing on internationally comparisons which lead to increase enrollments in for some 
marginalized students in high-level mathematics courses.  These increased enrollments supported the 
economic, social, and political interests of those in power. 

The increased enrollment in the upper-level mathematics courses did not influence instructional 
methodologies to meet the increase in the diverse learning needs of children (Porter, Kirst, Osthoff, 
Smithson, & Schneider, 1993).  That is, for marginalized learners, instruction focused primarily on 
the acquisition of skills.  Additionally, much of the increase in mathematics course enrollment 
occurred by simply placing students in Algebra I tracks.  When the increased enrollment in 
mathematics courses seemed an insufficient means for increasing student achievement, policymakers 
and reformers began to investigate notions of systemic reform within the larger education system 
(Raizen, McLead, & Rowe, 1997).  In the fall of 1989, President George H. W. Bush, the nation’s 
governors, and other leaders held an educational summit in Charlottesville, Virginia.  One result of 
this meeting was a call for national standards.  Participants at the 1989 National Education Summit 
made a commitment to make U.S. students first in the world in mathematics and science by the year 
2000.   

Standards Movement 
  In 1980, NCTM put forth its Agenda for Action, which diverged from “back to basics.”  The 

Agenda for Action put forward recommendations that broadens the notion of basic skills as the 
acquisition of skills toward focusing on problem solving, use of technology, called for measures 
other than conventional testing, and an effort to meet students’ diverse ne advocated for pedagogy 
and curriculum to accommodate the diverse needs of the student population.  While the Agenda for 
Action was not a standards document, it was the foundation for the first standards document, 
Curriculum and Evaluation Standards for School Mathematics (CSSM), developed by NCTM 
(1989).   

CSSM provided broad frameworks for mathematics content and processes across grade bands.  
Emphasis was placed on an inquiry-based approach to mathematics teaching and learning.  The 
inquiry-based approach supported conceptual understanding as a primary goal and algorithmic 
fluency would follow once conceptual understanding was developed.  Critics of CSSM argued that 
the primary goal of conceptual understanding through an inquiry-based approach did not help 
children acquire basic skills efficiently nor learn standard algorithms and formulas (Klein, 2003).  
CSSM’s release came at a time when there were calls for national mathematics standards and it 
received support from the U.S. Department of Education and the National Science Foundation 
(NSF).  Through the 1990s, NSF supported the creation and development of commercial 
mathematics curricula aligned to the standards in CSSM.  Critics of the curricula objected to the 
inquiry-based approaches, claiming that not enough emphasis was placed on acquisition of basic 
skills and general mathematics principles (Klein, 2003).  Tension between proponents and opponents 
of CSSM resulted in the “Math Wars.”  There were proponents for improving mathematics 
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instruction for marginalized children on both sides of the “Math Wars.”  The primary tensions focus 
on mathematics content, pedagogical approaches, and student achievement, with both sides agreeing 
that reform is necessary for America’s economic, technological, and security interests. 

There is a long history indicating that during times of reform, the interests and needs of 
marginalized children are in many ways dismissed.  The tensions of the “Math Wars” appear to have 
an underlying narrative focusing on the nation’s technological interests, social efficiency, and 
perpetuation of privilege.  There are intense debates focusing on curriculum, teaching, and 
assessment but little debate focusing on understanding the realities of children’s lives.  For 
marginalized learners, issues of race, racism, identity, and conditions were not under consideration in 
the “Math Wars.”  There is evidence from the CSSM to suggest that the standards were moving 
towards a democratic vision by including “for all” language.  However, critics of the “for all” 
language argue that the use does not delve into serious considerations of the social and structural 
realities faced by Black children; rather the language suggests a myopic focus on modifying 
curricula, classrooms, and school cultures (Martin, 2003).  Consequently, the underpinning of the 
“for all” message has done little to understand the variables that impact mathematics teaching and 
learning for marginalized learners.     

The CSSM outlined four social goals for schools: (a) mathematically literate workers, (b) lifelong 
learning, (c) opportunity for all, and (d) informed electorate.  These four goals derived from the fact 
that at the time society was moving towards an increase in technologies.  These goals situated social 
justice issues in school mathematics within the framework of economic competition and national 
technological interests.  Positioning social justice in mathematics education within the framework of 
economic competition and national technological interests situates mathematics education as being 
primarily utilitarian.  Using the utilitarian perspective situates, increasing marginalized  learner’s 
participation in mathematics education is based on ensuring the  economic and social interests of 
those with power.  Consequently, the interests of marginal learners’ needs are not given careful 
consideration; it was the interests of the broader American contexts that drove the implementation of 
standards.  Within this context, mathematics is always situated as a utilitarian area of study, and the 
focus of mathematics education is on the needs of national interests rather than the needs of a 
democratic society.   

NCTM revised it standards document in 2000 through the release of the Principles and 
Standards for School Mathematics (PSSM).  The PSSM revision provided slightly greater emphasis 
on the importance of algorithms and computational fluency.  PSSM was received as more balanced 
than CSSM, which led to some calming of but not an ending to the “Math Wars.”  PSSM highlighted 
equity as one of its six principles for school mathematics by stating that equity requires: (a) high 
expectations and worthwhile opportunities, (b) accommodating differences to help everyone learn 
mathematics, and (c) resources and support for all classrooms and all students.  These points situate 
equity in a broad context but fail to recognize issues of social justice or understanding social, 
economic, and political context in which mathematics is learned.  Martin (2003) is critical of PSSM’s 
Equity Principle for not providing a sense of equity that considers the contexts of students’ lives, 
identities of students, and conditions under which mathematics is taught and learned.  He states: 

…the Equity Principle of the Standards contains no explicit or particular references to African 
American, Latino, Native American, and poor students or the conditions they face in their lives 
outside of school, including the inequitable arrangements of mathematical opportunities in these 
out of school contexts. I would argue that blanket statements about all students signals an 
uneasiness or unwillingness to grapple with the complexities and particularities of race, 
minority/marginalized status, differential treatment, underachievement in deference to the 
assumption that teaching, curriculum, learning, and assessment are all that matter. (p. 10) 
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Too often, race, racism, social justice, contexts, identities, conditions, and others are relegated as 
issues not appropriate for mathematics education when in fact these issues are central to the learning 
and teaching of mathematics for marginalized students.     

No Child Left Behind & Common Core 
In 2002, President George W. Bush signed the Elementary and Secondary Education Act better 

known as the No Child Left Behind Act (NCLB) into law with the declared intention of helping “all 
students meet high academic standards” (NCLB, 2002).  NCLB required states to implement student 
testing, collect and disseminate subgroup results, ensure teachers are highly qualified, and guarantee 
that all students achieve academic proficiency by 2014.  States were required to use sanctions to hold 
schools and districts accountable for their success in meeting adequate yearly progress (AYP) goals, 
set by the states, for both overall performance and performance in each subgroup.  Similar to 
previous reforms, NCLB motives are cast in the interests of improving America’s standing 
international measures and the interests of the future of the dominant culture maintaining power.  
NCLB narrows the definition of achievement, thus focusing on measureable outcomes and applying 
technical solutions, such as setting Standards and using tests to measure attainment of the standards.  
NCLB stated a desire to close the “achievement gap between high- and low-performing children, 
especially the achievement gap between minority and non-minority students and between 
disadvantaged children and their more advantaged peers” (NCLB, 2002; Sec 1001).  To achieve 
these goals NCLB takes a position in instruction and measurement by insisting that instructional 
approaches be deemed based on “scientifically based research” (Stein, 2004).  However, it is not 
clear in NCLB what constituted “scientifically based research.”  Given the language of measurement 
focused on closing the achievement gap and the language of standards, it is plausible that 
“scientifically based research” instructional approaches are approaches that can be measured and 
quantified.  Through standards and assessment there are restrictions in the autonomy of teachers.  
Consequently, teachers are restricted in the ways to meet the needs and interest of students.  NCLB 
assumed that members within a subgroup have static identities that are quantifiable in term of race, 
class, gender, language, etc. (Gutierrez, 2008).   

NCLB unintentionally create incentives that encourages states to lower their academic standards, 
promote school segregation and the push out of poor and minority students, and reinforces the 
unequal distribution of good teachers (Ryan, 2004). The category of “failing school” was based on 
whether or not schools met a set of performance standards drafted by the states which were grounded 
in test-based measures of academic proficiency, states had incentives to lower their standards so that 
fewer schools are identified as failing (Ryan, 2004).  Stein (2004) found that many states lowered 
performance standards rather than raised standards.  To improve the chances that a particular school 
or schools within a district make AYP, administrators have an incentive to minimize the numbers of 
marginalized students.  Since marginalized students traditionally do not perform as well as white and 
more affluent peers on standardized tests, the incentives to exclude these students are grounded on 
improving status (Ryan, 2004).  Attaching consequences to test results creates incentives for teachers 
to avoid schools that are likely to not meet AYP. Thus, teaching will be less attractive in those 
schools where teachers must spend a great deal of time preparing for the tests.  

In mathematics education, it is likely that marginalized students’ needs and interests were served 
minimally by NCLB.  As with previous reforms, these students most likely experienced mathematics 
as procedural and rote.  This time of instruction appears to be consistent across all reforms.  Similar 
to other reforms, the emphasis on testing was used to legitimize negative perception about 
marginalized students’ capabilities in mathematics.  As noted earlier, under NCLB schools serving 
predominately marginalized students were likely to be deemed as failing, have the least access to 
good teachers, and were stigmatized.  The emphasis on testing does not recognize the external factors 
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that contribute to testing results which could lead to a labeling that impacts the quality of 
mathematics that students experience.  For students, in schools or subgroups labeled as failing the 
experience is focused on increasing test scores and for students in schools or subgroups that 
consistently meet AYP the experience may be more enriching. 

When considering an interest-convergence perspective, we must consider whose interests are 
served under NCLB.  If we consider one context in which NCLB was developed, there was public 
pressure on legislatures for competition in public schools through school choice and vouchers.  These 
pressures lead to increase in public options for schooling, including the increase in charter schools.  
The interests of proponents of school choice were served.  A consequence of NCLB has been the 
narrowing of the conception of what constitutes a ―good school.  Judging schools simply based on 
standardized test scores had implications beyond the schools themselves.  In a study examining 
property values and schools designated as failing because of NCLB, Bogin and Nguyen-Hoang 
(2014) found that the “failing” designations significantly decrease home prices and that low and 
moderate income neighborhoods were negatively impacted.  Public schools are primarily funded 
through property taxes in most areas.  This means that in neighborhoods with higher property values, 
the schools in that area get more resources.  Similar to the peer finding of the Coleman report, 
proponents of school choice supported giving students options to be in “good” schools with the idea 
that placement in “good” schools would have positive effects.  This conclusion ignores the external 
factors that contribute to failing schools. 

A factor that contributed to the creation of the Common Core State Standards (CCSS) was the 
“known-yet-unacknowledged failure of No Child Left Behind” (Schneider, 2015; p. 20).   One 
complication of NCLB was the lack of consistency among states and what constituted AYP.  As a 
result there was agreement among the Council of Chief State School Officers (CCSSO) that 
consistent standards were necessary.  In 2010 the Common Core State Standards for Mathematics 
(CCSSM) were released by the National Governors’ Association and CCSSO.  The mission 
statement  for the Common Core makes clear these reforms are emerging from the same interests of  
college and career readiness by positioning American students to be able to compete in a global 
economy  (National Governors Association Center for Best Practices and Council of Chief State School 
Officers, 2010) 

Nowhere to be found is mention of the gross inequities within society that continue to be 
reflected in students’ educational outcomes.  Framing the reform from the position of economic interest, 
diminishes the needs of learners to focus primarily on the acquisition of mathematics content and 
practices.   

Conclusion 
The interest convergence principle provides an intellectual and political frame within which to 

question the motivating factors of policies and reforms in mathematics education to understand how 
they are designed to address the needs of marginalized learners.  Employing the interest-convergence 
principles, I raise the following questions:  (1) Whose interests are served by policies and reforms in 
mathematics education?  (2) Where are opportunities for convergence?     

Whose interests are benefited by policies and reforms in mathematics education?  The review of 
policies and reforms suggest that economic, technological and security interests were the drivers of 
many policies and reforms.  It is difficult to argue against ensuring students’ competitive place in the 
global marketplace.   However, a careful look at policies and reforms focused on labeling and 
identifying the “best and brightest,” identifying high achievers, stratifying students based on 
characteristics, or identifying “failing” schools.  Such labeling and identifying determines groups or 
populations as having merit and others as being deficit.  Policies and reforms have typically not 
attended to or appreciated the social realities and needs of marginalized students in ways that lead to 
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improvements in their life circumstances.  This critique suggests that marginalized students voices 
and experiences within a broader context are either missing or are situated within deficit perspectives 
in mathematics education research, policy, and reform.  In fact, patterns over time suggest that 
marginalized students have experienced mathematics instruction as a focusing on the acquisition of 
facts over the entire history discussed in this article.  Thus, policies and reform have had little to no 
impact on the type of instruction these children receive. 

Where are opportunities for convergence?  The stage is set for convergence to occur, given the 
growing body of research focused on context, identities and conditions and the interests of practices 
and process in mathematics teaching and learning.  There is a growing body of research that positions 
marginalized students (Berry, 2008; Boaler, 2014; Jett, 2011; Gutiérrez, 2010; Martin, 2000; Noble 
2011; Stinson, 2010; Thompson & Lewis, 2005, Walker, 2006).  This body of research considers 
issues of race, racism, contexts, identities, and conditions as variables that impact the mathematical 
experiences of marginalized.  This body of research challenges the dominant discourse and pushes 
the field of mathematics education to consider sociological, anthropological, and critical theories.  It 
encourages researchers to consider outcomes other than achievement as the primary measure of 
success.  One finding that we find from this research is that educators must create opportunities for 
students to experience mathematics learning using the resources they bring to classrooms; teachers 
must know and understand learners’ identities, histories, experiences, and cultural contexts and 
consider how to use these to connect students meaningfully with mathematics. There is a need of 
policies and reforms that focus on leveraging communities and community-members.  Mathematics 
teaching and learning not only occurs in classrooms but also occurs in other spaces.  By leveraging 
these resources, we situate mathematics teaching and learning as a way to structure experiences that 
are contextual and provide opportunities for exchange in mathematical ideas.  The use of context in 
mathematics education can help learners to recognize and build upon the cultural and social 
resources they bring to the mathematics classroom. 

Endnotes 
1I use the term Black to acknowledge the Black Diaspora and to highlight that Black people 

living in North America have ancestry dispersed around the world.  Black learners who attend 
schools and live in North America are racialized in similar ways regardless of country of origin. 

2I borrow Latin@ from Rochelle Gutiérrez (2013) who stated that the use of the “@ sign to 
indicate both an “a” and “o” ending (Latina and Latino). The presence of both an “a” and “o” ending 
decenters the patriarchal nature of the Spanish language where is it customary for groups of males 
(Latinos) and females (Latinas) to be written in the form that denotes only males (Latinos). The term 
is written Latin@ with the “a” and “o” intertwined, as opposed to Latina/Latino, to show a sign of 
solidarity with individuals who identify as lesbian, gay, bisexual, transgender, questioning, and queer 
(LGBTQ)” (p. 7). 

3A dominant culture is one that is able, through economic or political power, to impose its values, 
language, and ways of behaving.  This is often achieved through oppression and political suppression 
of other sets of values and patterns of behavior. 
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DESIGNING FORMATIVE ASSESSMENT LESSONS  
FOR CONCEPT DEVELOPMENT AND PROBLEM SOLVING  

Malcolm Swan 
University of Nottingham  

malcolm.swan@nottingham.ac.uk 

Formative assessment is the process by which teachers and students gather evidence of learning and 
then use this to adapt the way they teach and learn. I describe a design research project in which we 
integrated formative assessment strategies into lesson materials that focus on developing students’ 
conceptual understanding and their capacity to tackle non-routine problems. A theoretical 
framework for assessment task design is presented, together with an analysis of research-based 
principles for formative assessment lesson design. Particular aspects are highlighted: the roles of 
pre-assessment, formative feedback questions and sample work for students to critique. While there 
are some early signs that these lessons provide an effective model for teachers to introduce formative 
assessment into everyday classroom practice, the materials require a radical shift in the predominant 
culture within most classrooms. 

Keywords: Assessment and Evaluation; Design Experiments 

Introduction 
There is little doubt that assessment has a profound impact on the nature of student learning, and 

that this is often detrimental in nature. Our assessment practices have the potential to convey our 
valued learning goals to students, but this is often unrealized because the tasks and methods we use 
do not reflect these values. It has been found, for example, that even when teachers clearly 
acknowledge the importance of eliciting students’ understanding and of giving useful, qualitative 
feedback, the tests they use encourage ‘rote and superficial learning’ and appear more concerned 
with grading and record keeping than with developing learning (Black & Wiliam, 1998). The poor 
design of summative, high-stakes tests must take some of the blame for this. These are designed to be 
cheap, predictable and simple to grade and, in consequence, focus on fragments of mathematical 
performance. Policy makers tend to ignore their powerful backwash effect and continue to claim that 
tests are merely measuring instruments (ISDDE, 2012). 

Assessment needn’t be this way. High quality assessment, focused on important mathematics, 
can be a powerful lever for positive change. This requires a radical shift away from multiple choice, 
computer-based assessments of procedural knowledge toward assessments that focus on the 
mathematics we care about - understanding, reasoning and problem solving. More substantial 
assessment tasks are required and scoring must begin to assess the quality of students’ extended 
reasoning. (This is possible even in high stakes assessment when human judgment, rather than 
machine scoring, is allowed to have a role. Point scoring rubrics of chains of reasoning, long 
established in other subjects, can give reliable scores on mathematics tests.  Reliable qualitative 
methods, such as adaptive comparative judgment, are also now recognized as a possible way forward 
(Jones, Pollitt, & Swan, 2015).  Further, when teachers are involved in scoring, suitably organized, it 
can have considerable value for professional development.) 

In this paper, however, I have insufficient space for a thorough discussion of high stakes 
assessment. Instead I wish to focus on the potential of classroom assessment to produce significant 
and substantial student learning gains. This potential was brought to our attention by the research 
reviews of Black, Wiliam and others (Black, Harrison, Lee, Marshall, & Wiliam, 2003; Black & 
Wiliam, 1998; Black & Wiliam, 1999). In their original definition, the term ‘formative assessment’ is 
taken to include: 
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… all those activities undertaken by teachers, and by their students in assessing themselves, 
which provide information to be used as feedback to modify the teaching and learning activities 
in which they are engaged. Such assessment becomes ‘formative assessment’ when the evidence 
is actually used to adapt the teaching work to meet the needs. (Black & Wiliam, 1998, p. 140) 

This definition is wide-ranging, and includes both pre-planned and incidental assessment 
activities, such as diagnostic tests, oral questioning, collaborative tasks and observation of students. 
Improving the nature and focus of teacher-student and student-student communication is central. 
Most importantly, however, it must lead to adaptive action, not just the reteaching of the material 
concerned.  

Since their work was published, this definition has often been mutated to mean more frequent 
testing, scoring and record keeping. In the UK, for example, one government initiative, “Assessing 
Pupil Progress” (APP) degenerated into the atomized profiling of pupils. This involved teachers in 
monitoring work, keeping files on pupils and regularly assessing progress against detailed criteria. 
Teacher workload was significantly increased and many teachers did not use the feedback to improve 
instruction. Recognizing such mutations, Black and Wiliam refined their definition a little differently 
in a later paper, laying more emphasis on the agents in the process: teachers, learners and peers, and 
the requirement for each of these agents to make effective use of the evidence obtained: 

Practice in a classroom is formative to the extent that evidence about student achievement is 
elicited, interpreted, and used by teachers, learners, or their peers, to make decisions about the 
next steps in instruction that are likely to be better, or better founded, than the decisions they 
would have taken in the absence of the evidence that was elicited. (Black & Wiliam, 2009, p. 9) 

The interaction between these agents and the three main aspects of formative assessment: 
identifying where learners are in their learning, where they are going, and how to bridge the gap have 
been clearly articulated by Wiliam, and Thompson (2007), see Table 1. Within the matrix formed, 
are their five “key strategies” of formative assessment.  

Table 1: Key Strategies of Formative Assessment  
 Where the learner is going Where the learner is right now How to get there 

Teacher 
1. Clarifying learning intentions and 
criteria for success 
 

2. Engineering effective class-
room discussions and other 
learning tasks that elicit evidence 
of student understanding 

3. Providing feedback that 
moves learners forward 
 

Peer  Understanding and sharing learning 
intentions and criteria for success 4. Activating students as instructional resources for one another 

Learner Understanding and sharing learning 
intentions and criteria for success 5. Activating students as the owners of their own learning 

 
Black and Wiliam launched programs of work that aimed at engaging teachers in these key 

strategies, but found that regular meetings over a period of years were needed to enable a substantial 
proportion of teachers to acquire the “adaptive expertise” (Hatano & Inagaki, 1986) needed for self-
directed formative assessment. This is clearly an approach that is challenging to implement on a large 
scale.  

The Mathematics Assessment Project 
In 2009, the Bill & Melinda Gates Foundation approached us at Nottingham to develop a suite of 

“formative assessment lessons” to form a key element in the Foundation’s program for “College and 
Career Ready Mathematics” based on the Common Core State Standards for Mathematics (NGA & 
CCSSO, 2010). In response, the Mathematics Assessment Project (MAP) was designed to explore 
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how far well-designed teaching materials can enable teachers to make high-quality formative 
assessment an integral part of the implemented curriculum in their classrooms, even where linked 
professional development support is limited or non-existent. The lessons are thus designed, not only 
to provide teachers with diagnostic information, but to enable them use it to move each student’s 
reasoning forward. 

To date, we have designed and developed about a hundred formative assessment lessons to 
support US Middle and High Schools in implementing the new Common Core State Standards for 
Mathematics (CCSSM). Each lesson consists of student resources and an extensive teacher guide. 
The data we have does appear to support the assertion that these lessons have enabled teachers to 
integrate the key strategies for formative assessment, as identified in Table 1, into their normal 
teaching. The research-based design of these lessons, now called Classroom Challenges, forms the 
focus of this paper. 

A Design-Based Methodology 
Our methodology for lesson design was based on design research principles, involving theory-

driven iterative cycles of design, enactment, analysis and redesign (Barab & Squire, 2004; Bereiter, 
2002; Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003; DBRC, 2003; Kelly, 2003; van den Akker, 
Graveemeijer, McKenney, & Nieveen, 2006).  In contrast with much design research, we worked to 
ensure that the products were robust in large-scale use by fairly typical end-users. This is, in fact why 
some prefer the term “engineering research” to design research (Burkhardt, 2006). Each lesson was 
developed, through two iterative design cycles, with each lesson trialed in three or four US 
classrooms between each revision. This sample size enabled us to obtain rich, detailed feedback, 
while also allowing us to distinguish general implementation issues from more idiosyncratic 
variations by individual teachers. As we were designing at a distance, revisions had to be based on 
structured, detailed feedback from experienced local observers in California, Rhode Island and the 
Midwest. We obtained approximately 700 observer reports of lessons, from over 100 teachers (over 
50 schools) using these materials. We also observed many of the lessons first-hand, in UK schools. 

In order for feedback to be useful in the revision process it had to be specific and reliable, based 
on a detailed description of what happed in each lesson. To meet this challenge, a protocol was 
developed. Two design questions permeated the protocol: How well did the materials communicate 
the formative assessment strategies to the teacher? How far was the learning experience profitable for 
students? The protocol was in three parts. The first part was descriptive, asking for the context, the 
nature of the students, the environment, the support given to the teacher, followed by a vivid 
description of the course of the lesson, illustrated by a sample of student work of varied quality. 
Significant events that might inform the designer were noted. The second part was analytical. 
Observers were asked for: their overall impressions; deviations from the lesson plan; quality of 
teacher questioning; quality of student reasoning, explanations, discussion and written work. They 
were also asked to provide evidence of learning. They were specifically asked about the relevance of 
the formative assessment opportunities. The third part sought the teacher’s views, through an 
interview after the lesson. Teachers were asked about their lesson preparation, their views on the 
lesson plan, the lesson and the response of students, and implications for professional development. 
In developing 100 Classroom Challenges over the course of the project, about 700 such reports were 
obtained and discussed by the design team. This process enabled us to obtain rich, detailed feedback, 
while also allowing us to distinguish general implementation issues from idiosyncratic variations by 
individual teachers. On this basis the lessons themselves were revised, and ultimately published on 
the web: http://map.mathshell.org.uk/materials/index.php. 
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Theoretical Framework for Assessment Task Design 
Our first priority was to clarify the learning intentions for Classroom Challenges. The CCSSM 

make it clear that the goals of the new curriculum are to foster a deeper, connected conceptual 
understanding of mathematics, along with the strategic skills necessary to tackle non-routine 
problems. A particular emphasis is the development of mathematical practices that should permeate 
all mathematical activity. We rapidly found it necessary to distinguish between tasks that are 
designed to foster conceptual development from those that are designed to develop problem-solving 
strategies. In the former, the focus of student activity is on the analysis and discussion of different 
interpretations of mathematical ideas, while in the latter the focus is on discussing and comparing 
alternative approaches to problems.  

The intention was that concept lessons might be used partway through the teaching of a particular 
topic, providing the teacher with opportunities to assess students’ understanding and time to respond 
adaptively. Problem solving lessons were designed to be used more flexibly, for example between 
topics, to assess how well students could select already familiar mathematical techniques to tackle 
unfamiliar, non-routine problems and thus provide a means for improving their strategic thinking.  

The validity of any assessment scheme lies in the design of the tasks, which should reflect the 
intentions of the curriculum in a balanced way. We therefore begin by describing our task design 
framework. This is followed by a review of the research we used to design the formative assessment 
lesson structures within which the tasks are embedded.  

 (i) Assessment Task Genres for Concept Development 
The tasks we selected for concept Classroom Challenges were designed to foster collaborative 

sense-making. Sierpinska (1994) suggests that people feel they have understood something when 
they have achieved a sense of order and harmony, where there is a sense of a ‘unifying thought’, of 
simplification, of seeing an underlying structure and that in some sense, feeling that the essence of an 
idea has been captured. She lists four mental operations involved in understanding: “identification: 
we can bring the concept to the foreground of attention, name and describe it; discrimination: we can 
see similarities and differences between this concept and others; generalisation: we can see general 
properties of the concept in particular cases of it; synthesis: we can perceive a unifying principle.” To 
this, we would add the notions of representation. When we understand something, we are able to 
represent it in a variety of ways: verbally, visually, and/or symbolically. In the light of this, we 
developed four ‘genres’ of tasks for our concept development lessons (Table 2).  

Space dictates that we only provide a few examples. For Classify and define, students were 
typically invited to sort a collection of cards showing mathematical objects using their own, or given 
criteria. The results of their sorting were then offered to other students, who would reconstruct the 
criteria that had been used. The objects ranged from geometric shapes to algebraic functions. As 
Zaslavsky (2008) has shown, this is a powerful way of enumerating properties of mathematical 
objects. Occasionally, students were presented with a mathematical object and were invited to list as 
many of its properties as possible. The task then became: “do any of these properties, taken 
individually, define the object?” or “do any pairs of these properties define the object?” (Figure 1). 
This resulted in a search for justifications and counterexamples. (This could be very demanding. For 
example, consider the pair of statements: “When x = 0, y = 0”;  “When x doubles in value, y doubles 
in value”. Do these statements define proportion? If not, then find a function that satisfies these 
statements but is not a proportion). Seeking definitions in this way lies at the very heart of 
mathematical activity (Lakatos, 1976). 
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Table 2: Assessment Task Genres for Concept Development  
Assessment task genres Sample classroom activities. 

Classify and define  
mathematical objects and 
structures. 

Identifying and describing attributes and sorting objects accordingly. 
Creating and identifying examples and non-examples.  
Creating and testing definitions. 

Represent and translate  
between mathematical concepts 
and their representations. 

Interpreting a range of representations including diagrams, graphs, 
and formulae. 
Translating between representations and studying the co-variation 
between representations.   

Justify and/or prove  
mathematical conjectures, 
procedures and connections. 

Making and testing mathematical conjectures and procedures. 
Identifying examples that support or refute a conjecture. 
Creating arguments that explain why conjectures and procedures may 
or may not be valid.  

Identify and analyze structure 
within situations 

Studying and modifying mathematical situations. 
Exploring relationships between variables. 
Comparing and relating mathematical structures. 

 
 
Mathematical 
object 

A square 
 

A proportional relationship exists between two 
continuous variables x and y.  

Properties Four equal sides 
Two equal diagonals 
Four right angles 
Two pairs of parallel sides 
Four lines of symmetry 
…. 

The graph of y against x is linear. 
y ÷ x always gives the same result. 
When x = 0, y = 0 
When x doubles in value, y doubles in value 
When x increases by equal steps then so does y 
…. 

Figure 1:  Observe, Classify and define:  Listing properties and building definitions 

For represent and translate, we developed activities that require students to translate between 
numerical, verbal, graphical, algebraic and other representations. Typically, groups of students were 
given collections of cards that they were asked to sort according to whether or not the cards convey 
equivalent representations. Common misinterpretations were foregrounded by including translations 
that are commonly confused. For example, students were given a collection of four money cards 
($100; $150; $160; $200) and a collection of ten ‘arrow’ cards showing percentage increase and 
decrease (e.g. “up by 25%”; “down by 25%). They were asked to place the money cards in a square 
formation and place the percentage cards between them in appropriate places (Figure 2 shows just 
one side of the ‘square’). Typically, students considered “up by 25%” and “down by 25%” to be 
inverse statements and placed them together between the money cards $160 and $200. Subsequently, 
the teacher introduced further arrow cards showing “decimal multipliers” (e.g. x 1.25; x 0.8). As 
students place these, they checked both with a calculator and by relating them to the percentage cards 
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Figure 2:  Represent and translate:  Percentage increase and decrease. 

already in position. This created “cognitive conflict” and discussion as inconsistencies were found. 
Later, further cards were added, as shown. Connections were drawn between all these representations 
and generalizations were made. 

For justify or prove category, we designed collections of conjectures, and it was the students’ task 
to determine their domains of validity. Figure 3 illustrates a typical selection of such assertions.  

 
Pay rise 

Max gets a pay rise of 30%. 
Jim gets a pay rise of 25%. 

So Max gets the bigger pay rise. 

Fractions 
If you add the same number to the numerator 

and denominator of a fraction, the fraction will 
increase in value. 

Area%and%perimeter%
When!you!cut!a!piece!off!a!shape!you!reduce!

its!area!and!perimeter.!
 

Right angles 
A pentagon has fewer right angles than a 

rectangle. 

Diagonals 
The diagonals of a quadrilateral divide the 

quadrilateral into 4 equal areas. 

Right triangle 
If a right-angled triangle has integer sides, the 

incircle has integer radius. 
Figure 3:  Justify or prove:  A selection of conjectures to test. 

Normally, a set of cards was related to a single mathematical topic, and contained some 
commonly held beliefs. Students were instructed: “If you consider a statement to be always true or 
never true, then try to explain clearly how you be sure. If you think a statement is sometimes true, 
then try to describe all the cases when it is true and all the cases when it is false.”!!Thus students had 
first to identify the variables involved and then test the assertion by constructing examples and 
counterexamples. In some cases a formal proof could be sought. When students became stuck, the 
teacher pointed them toward particular cases to test. For example, in Diagonals, students often 
claimed that the statement is true for squares, but not for rectangles. The teacher needed to prompt 
them to re-consider and then go on to study a wider range of quadrilaterals to try to find all cases 
where the statement was valid.   

Finally, we turn to identify and analyze structure. When students had tackled a conventional 
word problem, for example, they were invited to analyze its structure and in so doing construct 
further problems. The problem was rewritten as a list of variables together with their original values, 
including the solution to the original problem (see Figure 4). The task was to first describe how each 
variable might be obtained from the others, then to explore the effect of changing variables 
systematically. So the teacher erased the profit and asked: “How may this be constructed from the 
other variables?” (60x4-50 or p=ns-k). Then the profit was reinstated and the selling price was 
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Card Set A: Money Cards (1) 

 
$100 

 
$150 

 
$200 

 
$160 
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Card Set B: Percent Increases and Decreases 

  

  

  

  

  

  

Down By 50% 
 

Down by 20% 
 

Up by 25% 
 

Up by 60% 
 

Down By 33⅓% 
 

Down by 37½% 
 

Down By 25% 
 

Up by 50% 
 

Up by 33⅓% 
 

Up by 100% 
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Card Set B: Percent Increases and Decreases 
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Down by 20% 
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Card Set C: Decimal Multipliers   

  

  

  

  

  

  

× 1.6 
 

× 0.6 
 

× 0.75 
 

× 2 
 

× 1.5 
 

× 0.625 
 

× 0.8 
 

× 1.3 
 

× 0.5 
 

× 1.25 
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Card Set D: Fraction Multipliers 
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Card Set A: Money Cards (1) 
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erased. How might this be found? (s=(p+k)/n). After working through each variable separately, the 
teacher considered variables in pairs. Suppose both n and p are erased?  How will the profit depend 
on the number of cards made? Students could then generate a table and/or graph. Finally students 
might be asked to erase all values and describe the general structure algebraically (p=ns-k). This 
strategy could easily be used whenever students tackle word problems in order to focus more 
explicitly on structural relationships.  

(ii) Assessment Task Genres for Problem Solving 
These lessons were designed to assess and improve the capability of students to solve multi-step, 

non-routine problems and to extend this to the formulation and tackling of problems from the real 
world. We define a problem as a task that the individual wants to tackle, but for which he or she 
“does not have access to a straightforward means of solution” (Schoenfeld, 1985). One consequence 
of this definition is that it is pedagogically inconsistent to design problem-solving tasks for the 

 
 
Making and Selling Candles  
 
Original word problem 
 
A student wants to earn some money by making and selling candles.  
Suppose that he can make 60 candles from a $50 kit and that these will each be sold for $4.  
How much profit will be made? 
 
Rewritten problem 

 
 

 Figure 4:  Identify and analyze structure:  Working with word problems 

purpose of practicing a procedure or to develop understanding of a particular concept. In order to 
develop strategic competence, students must be free to experiment with a range of approaches. They 
may or may not decide to use any particular procedure or concept; these cannot be pre-determined. 
Problem solving is contained within the broader processes of mathematical modelling. Modelling 
additionally requires the formulation of problems by, for example, restricting the number of variables 
and making simplifying assumptions. Later in the process, solutions must be interpreted and 
validated in terms of the original context. Some task genres and sample classroom activities for 
strategic competence are shown in Table 3.  

Making(and(selling(candles

k

The(cost(of(buying(one(kit $ 50
n

The(number(of(candles(that(can(be(made(with(the(kit 60 candles

s

The(price(at(which(each(candle(is(sold( $ 4
p

Total(profit(made(if(all(candles(are(sold. $ 190
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Table 3: Task Genres for Problem Solving Lessons 
Assessment task genres Sample classroom activities. 

Solve a non-routine problem by 
creating an extended chain of 
reasoning.  

Selecting appropriate mathematical concepts and procedures. 
Planning an approach.  
Carrying out the plan, monitoring progress and changing direction, 
where necessary. 
Reflecting on solutions; examining for reasonableness within the context. 
Reflecting on strategy; where might it have been improved? 

Formulate and interpret a 
mathematical model of a situation 
that may be adapted and used in a 
range of situations. 

Making suitable assumptions to simplify a situation. 
Representing a situation mathematically. 
Identifying significant variables in situations. 
Generating relationships between variables. 
Identifying accessible questions that may be tackled within a situation. 
Interpreting and validating a model in terms of the context.  

 
The essence of a task in this category is that it should be amenable to a variety of alternative 

approaches, so that students may learn from comparing these approaches. An example of each type is 
given in Figure 5. The first is a pure mathematics ‘puzzle’ type problem set in an artificial context, 
that of a playground game. The second, a modelling task, is taken from a real-life context and 
involves the student in making simplifications and assumptions. Both however may be tackled in a 
variety of ways. The playground game may be tackled by practical drawing and measuring; by 
repeated use of Pythagoras’ theorem; and also by ‘pure, non-quantitative, geometric reasoning’. 
Having Kittens may be modelled with a wide variety of representations, and therein is its educational 
value. 
  
The Playground Game 

 
This is a plan view of a 12 meter by 16 meter playground. 

 
The children start at point S, which is 4 meters along the 
16-metre wall. 

 
They have to run and touch each of the other three walls 
and then get back to S. 

 
The first person to return to S is the winner. 

 
What is the shortest route to take? 
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Having Kittens 

Here is a poster published by an organization that looks after stray cats. 

Figure out whether this number of descendants is 
realistic.  
Here are some facts that you will need: 

Figure 5: Tasks for assessing and improving problem solving processes. 

Research-based Principles for Formative Assessment Lesson Design 
Having discussed the mathematical focus of the tasks we used, we now turn our attention to how 

these tasks were incorporated into formative assessment lessons.  
The principles that underpinned the design of our lessons were rooted in our “Diagnostic 

Teaching” program of design research in the 1980s. This was essentially formative assessment under 
another name (See e.g. Bell, 1993; Swan, 2006a). In a series of studies, on many different topics, we 
began to define an approach to teaching that we showed were more effective, over the longer term, 
than either expository or guided discovery approaches (Bassford, 1988; Birks, 1987; Brekke, 1987; 
Onslow, 1986; Swan, 1983). This approach consisted of four phases. The first involved offering a 
task designed that would expose students’ existing conceptual understanding and make students 
aware of their own intuitive interpretations. The second involved the provocation of cognitive 
conflict by asking students to compare their responses with those of their peers or by asking them to 
repeat the task using alternative representations and methods. This feedback generated ‘cognitive 
conflict’ as students began to realize and confront the inconsistencies in their own and each others’ 
interpretations and methods. Considerable time was then spent reflecting on and discussing the 
nature of this conflict and students were encouraged to write down the inconsistencies and possible 
causes of error. The third phase was whole class discussion aimed at resolving conflict. During this 
phase the teacher would introduce the mathematician’s interpretation. Finally, new learning was 
‘consolidated’ by using the newly acquired concepts and methods on further problems. Students were 
also invited to create and solve their own problems within given constraints, analyze completed work 
and diagnose causes of error for themselves.  

From these studies it was deduced that the value of diagnostic teaching appeared to lie in the 
extent to which it assessed, identified and focused on the intuitive methods and ideas that students 
brought to each lesson, and created the opportunity for discussions between students; the greater the 
intensity of the discussion, the greater was the impact on learning. This is a clear endorsement of the 
formative assessment practices described in Table 1.  

Cats can’t add but they do multiply! 
In just 18 months, this female cat can have 2000 
descendants. 



Plenary!Papers! ! 42!

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

More recently, these results have been replicated on a wider scale. UK government funded the 
design and development of a multimedia professional development resource to support diagnostic 
teaching of algebra (Swan & Green, 2002). This was distributed to all Further Education colleges, 
leading to research on the effects of implementing collaborative approaches to learning in 40 classes 
of low attaining post 16 students. This again showed the greater effectiveness of approaches that 
assess and address conceptual difficulties through student-student and whole class discussion (Swan, 
2006a, 2006b; Swan, 2006c). A particular design feature of these lessons was the use of a pre- and 
post-lesson assessment task that would allow both the teacher and the student to assess growth in 
understanding. The government, recognizing the potential of such resources, commissioned the 
design of a more substantial multimedia professional development resource, ‘Improving Learning in 
Mathematics’ (DfES, 2005). This material was trialed in 90 colleges, before being distributed to all 
English FE colleges and secondary schools. This material provided many of the resources that where 
subsequently redeveloped for the Mathematics Assessment Project.   

In addition to our own research, we drew inspiration from the ways in which other researchers 
have structured the design of lessons. These include the Lesson Study research in Japan and the US 
(Fernandez & Yoshida, 2004; Shimizu, 1999). In Japanese classrooms, lessons are often structured 
into four phases: hatsumon (the teacher gives the class a problem to discuss); kikan-shido (the 
students tackle the problem in groups or individually); neriage (a whole class discussion in which 
alternative strategies are compared and contrasted and in which consensus is sought) and finally the 
matome, or summary, where teachers comment on the qualities of the approaches used. Formative 
assessment is clearly evident in the way in which the teacher carefully observes students working 
during the hatsumon and kikan-shido phases, and selects the ideas to be discussed in the neriage 
stage. The neriage phase is considered the most crucial. This term also refers to kneading or 
polishing in pottery, where different colours are blended together. This serves as a metaphor for the 
selection and blending of students’ ideas. It involves great skill on the part of the teacher, as she must 
assess student work carefully then select and sequence examples in a way that will elicit fruitful 
discussions.  

Other researchers have adopted similar models for structuring classroom activity. They too 
emphasize the importance of: anticipating student responses to demanding tasks; carefully 
monitoring student work; discerning the value of alternative approaches; purposefully selecting ideas 
for whole class discussion; orchestrating this discussion to build on the collective sense-making of 
students by careful sequencing of the work to be shared; helping students make connections between 
and among different approaches and looking for generalizations, and recognizing and valuing and 
students’ constructed solutions by comparing this with existing valued knowledge (Brousseau, 1997; 
Chazan & Ball, 1999; Lampert, 2001; Stein, Eagle, Smith, & Hughes, 2008).  

In order to illustrate how these principles, together with the key strategies in Table 1, have 
influenced the design of our lessons, we now illustrate the design of complete lessons.  

Examples of Formative Assessment Lessons  
We now illustrate how this research has informed the lesson structure of the Classroom 

Challenges, integrating the formative assessment strategies of Table 1. A complete lesson guide for 
this and the other lessons may be downloaded from http://map.mathshell.org.  

A Concept Development Lesson 
The objective of this lesson is to provide a means for a teacher to formatively assess students’ 

capacity to interpret distance-time graphs. The lesson is preceded by a short diagnostic assessment, 
designed to expose students’ prior understandings and interpretations (Figure 6). We encourage 
teachers to prepare for the lesson by reading through students’ responses and by preparing probing 
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questions that will advance student thinking. They are advised not to score or grade the work. 
Through our trials of the task, we have developed a “common issues table” that forewarns teachers of 
some common interpretations students may have, and suggests questions that the teacher might pose 
to advance a student’s thinking. This form of feedback has been shown to more powerful than grades 
or scores, which detract from the mathematics and encourage competition rather than collaboration 
(Black et al., 2003; Black & Wiliam, 1998). Some teachers like to write their questions on the student 
work while others prepare short lists of questions for the whole class to consider.  
 
Journey to the bus stop 
Every morning Tom walks along a straight road from 
his home to a bus stop, a distance of 160 meters. The 
graph shows his journey on one particular day.  
 

 
1. Describe what may have happened. Include details like how fast he walked.  
2. Are all sections of the graph realistic? Fully explain your answer. 
 
 

Issue Suggested questions and prompts 
Student interprets the graph as a 
picture  
 
For example: The student assumes 
that as the graph goes up and down, 
Tom’s path is going up and down or 
assumes that a straight line on a 
graph means that the motion is along 
a straight path.  

• If a person walked in a circle around their home, what would the graph 
look like?   

• If a person walked at a steady speed up and down a hill, directly away from 
home, what would the graph look like?   

• In each section of his journey, is Tom’s speed steady or is it changing? 
How do you know?   

• How can you figure out Tom’s speed in each section of the journey?   
 

Student interprets graph as speed–
time  
The student has interpreted a positive 
slope as ‘speeding up’ and a negative 
slope as ‘slowing down’.  

• If a person walked for a mile at a steady speed, away from home, then 
turned round and walked back home at the same steady speed, what would 
the graph look like?   

• How does the distance change during the second section of Tom’s journey? 
What does this mean?  

• How can you tell if Tom is traveling away from or towards home?   
 

Figure 6: Initial assessment task: Journey to school, and an extract from the  
‘Common issues table’ 

The lesson itself is structured in five parts: 

1. Make existing concepts and methods explicit. An initial task is offered with the purpose of 
clarifying the learning intentions, making students aware of their own intuitive 
interpretations, creating curiosity and modeling the level of reasoning to be expected during 
the main activity (Table 1, strategy 1). The teacher displays the task shown in Figure 7 and 

Student materials Interpreting Distance-Time Graphs  S-1 
 © 2015 MARS, Shell Center, University of Nottingham 

Journey to the Bus Stop 
Every morning Tom walks along a straight road from his home to a bus stop, a distance of 160 meters. 
The graph shows his journey on one particular day. 

 

1. Describe what may have happened. 
You should include details like how fast he walked. 

 

 

 

 

 

 

 
 

2. Are all sections of the graph realistic? Fully explain your answer. 
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asks students to select the story that best fits the graph. This usually results in a spread of 
student opinions, with many choosing option B. The teacher invites and probes explanations, 
and labels the diagram with these explanations, but does not correct students, nor attempt to 
reach resolution at this point.  

 
Figure 7: Introductory activity: Interpreting distance-time graphs 

2. Collaborative activity: Matching graphs, stories and tables.  
This phase is designed to create student-student discussions in which they share and 
challenge each others’ interpretations (Table 1, strategy 2). Each group of students is given a 
set of the cards shown in Figure 8. Ten distance/time graphs are to be matched with nine 
‘stories’ (the tenth to be constructed by the student). Subsequently, when the cards have been 
discussed and matched, the teacher distributes a further set of cards that contain distance/time 
tables of numerical data. These provide feedback by enabling students to check their own 
responses (by plotting if necessary), and reconsider the decisions that have been made. 
Students collaborate to construct posters displaying their reasoning. While students work, the 
teacher is encouraged to ask the pre-prepared questions from the initial diagnostic assessment 
(Table 1, strategy 3).  

3. Inter-group discussion: Comparing interpretations. Students’ posters are displayed, and 
students visit each other’s posters and check them, demanding explanations for matches that 
do not appear to be correct (Table 1, strategy 4).  

4. Plenary discussion. Students revisit the task that was introduced at the beginning of the 
lesson and resolution is now sought. Drawing on examples of student work produced during 
the lesson, the teacher draws attention to the significant concepts that have arisen (e.g. the 
connection between speed, slopes on graphs, and differences in tables).  Further questions are 
posed to check learning, using mini-whiteboards. “Show me a distance time graph to show 
this story”; “Show me a story for this graph”; “Show me a table that would fit this graph”. 
(Table 1, strategy 2) 

5. Individual work: Improving solutions to the pre-assessment task. Students now revisit 
the work they did on the pre-assessment task. They describe how they would now answer the 
task differently and write about what they have learned. They are also asked to solve a fresh, 
similar task (Table 1, strategy 5).  

Interpreting Distance-Time Graphs Projector Resources 

Matching a Graph to a Story 

P-1 

A. Tom took his dog for a walk 
to the park.  He set off 
slowly and then increased 
his pace. At the park Tom 
turned around and walked 
slowly back home. 

C. Tom went for a jog.  At the 
end of his road he bumped 
into a friend and his pace 
slowed.  When Tom left his 
friend he walked quickly 
back home. 

B. Tom rode his bike east from 
his home up a steep hill. 
After a while the slope 
eased off. At the top he 
raced down the other side. 

Distance 
from  

home 

Time 
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Figure 8: Matching cards: Graphs and stories.  

A Problem Solving Lesson 
The problem solving lessons were constructed in a similar way, but with a different emphasis. 

Teachers found it very difficult to interpret, monitor and select students’ extended reasoning during a 
problem-solving lesson. We therefore decided again to precede each lesson with a preliminary 
assessment in which students tackle the problem individually. The teacher reviews a sample of the 
students’ initial attempts and identifies the main issues that need addressing. This time the issues 
focus on approaches to the problem. If time permits, teachers write feedback questions on each 
student’s work, or alternatively prepare questions for the whole class to consider. Figure 9 illustrates 
some of the common issues and suggested questions for the task “Having Kittens” (Figure 5). 
 

Issue Suggested questions and prompts 
Has difficulty starting • Can you describe what happens during first five months? 
Does not develop a suitable 
representation  

• Can you make a diagram or table to show what is happening? 

Work is unsystematic • Could you start by just looking at the litters from the first cat? 
What would you do after that? 

Develops a partial model  • Do you think the first litter of kittens will have time to grow and 
have litters of their own? What about their kittens? 

Does not make clear or 
reasonable assumptions  

• What assumptions have you made?   
Are all your kittens are born at the beginning of the year? 
Are all your kittens females? 

Makes a successful attempt • How could you check this answer using a different method? 

Figure 9: An extract from the ‘Common issues table’ for Having Kittens 

Now we come to the lesson itself. While the precise structure is problem-specific, these lessons 
are generally structured as follows: 
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1. Introduction. The teacher re-introduces the main task for the lesson and returns students’ 
work along with the formative questions. Students are given a few minutes to read these 
questions and respond to them, individually (Table 1, strategy 3) 

2. Group work: comparing strategic approaches. The students are asked to work in small 
groups to discuss the work of each individual, then to produce a poster showing a joint 
solution that is better than the individual attempts. Groups are organised so that students with 
contrasting ideas are paired. This activity promotes peer assessment and collaboration. The 
teacher’s role is to observe groups and challenge students using the prepared questions and 
thus refine and improve their strategies (Table 1, strategy 2).  

3. Inter-group discussion: comparing strategic approaches. Depending on the range of 
approaches in evidence, the teacher may at this point ask students to review the strategic 
approaches produced by other groups in the class, and justify their own. (Most will not have 
arrived at a solution by this stage). If there is not a sufficient divergence of methods, or more 
sophisticated representations are not becoming apparent, then the teacher may move directly 
to the next stage. (Table 1, strategy 4)  

4. Group work: critiquing pre-designed ‘sample student work’. The teacher introduces up to 
four pieces of “sample student work”, provided in the materials (Figure 10). This work has 
been chosen to highlight significant, alternative approaches. For example, it may show 
different representations of the situation. Each piece of work is annotated with questions that 
focus students’ attention. (E.g. “What has each student done correctly? What assumptions 
have they made? How can their work be improved?”) This intervention is discussed further in 
the following section.  

5. Group work: refining solutions. Students are given an opportunity to respond to the review 
of approaches. They revisit the task and try to use insights to further refine their solution 
(Table 1, strategy 4). 

6. Whole class discussion: a review of learning. The teacher holds a plenary discussion to 
focus on the processes involved in the problem, such as the implications of making different 
assumptions, the power of alternative representations and the general mathematical structure 
of the problem. This may also involve further references to the approaches in the sample 
student work.  

Questions for students 
• What has Wayne done correctly?  
• What assumptions has he made?  
• How can Wayne’s work be improved?  

Notes from the teacher guide 
Wayne has assumed that the mother has six kittens after 6 
months, and has considered succeeding generations. He has, 
however, forgotten that each cat may have more than one litter. 
He has shown the timeline clearly. Wayne doesn’t explain where 
the 6-month gaps have come from. 

 
 
 
 

Figure 10:  Sample work for discussion, with commentary from the teacher guide. 
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The above lesson description contains many features that are not common in mathematics 
teaching, at least in the US and UK. There is a strong emphasis on the use of preliminary formative 
assessment, which enables the teacher to prepare for and adapt interventions to the student reasoning 
that will be encountered. Students spend much of the lesson in dialogic talk, focused on comparing 
mathematical processes. The successive opportunities for refining the solution enable students to 
pursue multiple methods, and to compare and evaluate them. Finally, designed ‘sample student work’ 
is used to foster the development of critical competence. This aspect has become the focus of our 
recent research, and we now draw out some of the issues this raises. 

Students Assessing Student Work 
In Cobb’s terms, the products of design research are ‘humble’ theories that guide future designs 

(Cobb et al., 2003). As we have worked through successive refinements, many of the findings from 
the data have been incorporated into the designs themselves. Below we just one of the features of 
these lessons that we are continuing to study further (Evans & Swan, 2014); that of students 
critiquing pre-designed ‘sample student work’. 

Researchers (e.g. Stein et al., 2008) have emphasised the importance of students assessing 
approaches to cognitively demanding tasks, but this has proved difficult for teachers to put into 
practice, particularly for problem solving, where student reasoning is extended, complex and often 
poorly articulated. In a busy classroom, teachers find it difficult to observe, interpret and select 
suitable work for sharing. In whole class discussions we frequently observe students presenting 
posters of their reasoning, to a sea of incomprehension. Teachers also find it difficult to quickly 
recognize and make connections between students’ ideas and draw out significant learning points. It 
is therefore understandable that, in practice, the sharing of ideas often degenerates into mere ‘show 
and tell’, with participation prioritized over learning (Stein et al., 2008). 

In response to this challenge we are researching the potential uses of pre-designed ‘sample 
student work’ to focus classroom discussion on key concepts and processes, while at the same time 
developing critical competence. We construct this work by analyzing a sample of genuine student 
responses to a problem, then identifying conceptual difficulties or problem solving strategies that will 
provide significant learning opportunities for students. When problem solving, for example, very few 
students autonomously decide to employ an algebraic method (Treilibs, 1979). Given choice they 
tend to resort to more secure numerical or graphical methods. For this reason we may include an 
algebraic method among the sample work so that students will be confronted with methods they may 
not yet have considered. We present this work in clear, legible, handwritten form, to suggest that the 
work is tentative, open for criticism and improvement. We have found that students feel more able to 
criticize such work than the work of peers, where social pressures often come into play. 

We have found that pre-designed sample student work has many potential uses. In problem 
solving, for example, it can be used to encourage a student that is stuck in one line of thinking to 
consider others, to enable comparison of alternative representations and to focus on the identification 
of modeling assumptions. In concept learning it may be used to draw attention to common 
mathematical misconceptions and alternative interpretations. Perhaps most importantly, the sample 
work may provide an opportunity for ‘clarifying our learning intentions and criteria for success’ 
(Table 1, strategy 1). By assessing the work of others, students become more aware of the criteria by 
which their own work is judged. Thus, for example, by asking students to compare four methods and 
judge which is most ‘powerful’, ‘clear’, or ‘elegant’, then they may come to understand what such 
terms may mean. 

In our classroom observations (in the UK and the US), however, we found that there were 
frequent problems with implementation (Evans & Swan, 2014). These included: students 
commenting superficially, focusing merely on presentation and clarity; students being given 
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insufficient time to engage with the reasoning presented in the work; students spending time 
correcting errors rather than focusing on strategy; students not using the work to improve their own 
solutions; students failing to make comparisons between approaches. In response, we established the 
following guidelines for the design of sample work: 

• Discourage superficial analysis by students, by stating explicitly the purpose of the sample 
work, and by asking specific questions that relate to this purpose; 

• Encourage holistic comparisons by making the sample work short, accessible and clear, and 
by excluding procedural and other errors that distract attention away from the identified 
purpose; 

• Leave the work unfinished, so that students have to engage with the reasoning in order to 
complete it; 

• Sequence the distribution of the sample student work so that successive pairwise comparisons 
of approaches may be made; 

• Offer students sufficient time and opportunity to incorporate what they have learned from the 
sample work into their own solutions; 

• Offer the teachers support for the whole class discussion so that they can identify and draw 
out criteria for the comparison of alternative approaches. 

When these guidelines were followed, however, we found that critiquing work provides the potential 
to refocus students’ attention away from ‘getting answers’ towards ‘thinking about reasoning’ and a 
deeper awareness of the learning intentions of the teacher and the criteria for success.   

Concluding Remarks 
In this brief paper, I have attempted to describe how systematic design research has enabled us to 

tackle a significant pedagogical problem: how might we enable teachers to embed formative 
assessment practices into their normal classroom practice?  I have discussed the five strategies 
described by Black and Wiliam and shown how these have been integrated into the structure of the 
Classroom Challenges. In particular, I have attempted to show how: 

• Learning intentions and criteria for success may be clarified by making use of task genres 
that require the mathematical practices that we seek to foster; by sharing these intentions and 
modeling the reasoning required at the beginning of lessons; and by encouraging students to 
focus on criteria for success as they critique and evaluate the work of others.    

• Evidence of student understanding may be elicited through: pre-assessment tasks that offer 
students opportunity to engage with a problem individually, before group discussion takes 
place; and through group activities that require shared resources and dialogic talk in which 
students share interpretations and strategies. These give the teacher opportunities to reflect on 
student reasoning and to plan and make appropriate interventions.  

• Common issues tables may be used to help teachers plan appropriate feedback that will 
prompt students to reconsider their thinking and move them forward.  

• Students may become instructional resources for one another as they work collaboratively 
and review and comment on the work of their peers.  

• Students may take a greater responsibility for their own learning as they become more aware 
of what they have learned and what they still need to learn through reflection at the end of 
lessons and through the matching of their own responses to the designed sample student 
work.  
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Of course, we realize that however carefully we design lesson structures, each classroom is 
unique and teachers will modify what we offer in their own way. Early evidence of their impact is, 
however, encouraging. Drawing on a national survey of 1239 mathematics teachers from 21 states, 
and interview data from four sites, Research for Action (RFA, 2015), found that a large majority of 
teachers reported that the use of the Classroom Challenges had helped them to implement the 
Common Core State Standards, raise their expectations for students, learn new strategies for teaching 
subject matter, use formative assessment; and differentiate instruction. 

The National Center for Research on Evaluation, Standards and Student Testing (CRESST) 
examined the implementation and impact of Classroom Challenges in 9th grade Algebra 1 classes 
(Herman et al., 2015). This study used a quasi-experimental design to compare student performance 
with Classroom Challenges to a matched sample of students from across Kentucky comparable in 
prior achievement and demographic characteristics. On average, study teachers implemented only 
four to six Challenges during the study year (or 8-12 days), yet, relative to typical growth in math 
from eighth to ninth grade, the effect size for the Classroom Challenges represented an additional 4.6 
months of schooling. Although teachers felt that that the Challenges benefited students’ conceptual 
understanding and mathematical thinking, they reported that sizeable proportions of their students 
struggled, and it appeared that lower achieving students benefitted less than higher achievers. This 
they suggested, may be due to the great difference in challenge and learning style required by these 
lessons, compared with their previous diet of procedural learning. 

Finally, Inverness Research (IR, 2015) in 2014 surveyed 636 students from 31 trial classes (6th 
grade to High School) across five states in the US. They found that the majority of students enjoyed 
learning math through these lessons, reported that they understood it better, had increased in their 
participation, listening to others, and in explaining their mathematical thinking. About 20%, 
however, remained unaffected by or disaffected with these lessons. This was because they didn't 
enjoy working in groups, they objected to the investigative approach, and/or they felt that these 
lessons were too long, or too difficult 

In conclusion, it does appear that the Classroom Challenges provide a model for teachers as they 
attempt to introduce formative assessment into their everyday classroom practice, but they do require 
a radical shift in the predominant culture within many classrooms. The potential for improving 
learning through the integration of these formative assessment practices into everyday teaching is, 
however, clear.  This project has shown that classroom materials with this focus can help teachers 
make it a reality in their classrooms.  How far teachers transfer this approach into the rest of their 
teaching is the focus of ongoing research. 
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This session will provide information about current funding opportunities in mathematics education 
research and development from the National Science Foundation. The following programs of 
particular interest to PME-NA participants will be included in the discussion: EHR Core Research, 
Discovery Research K-12, and CAREER. Program officers will also provide guidance and 
suggestions for preparing proposals for a variety of programs.  

 Currently, the National Science Foundation has a number of programs in the Education and 
Human Resources Directorate that provide opportunities for funding for the mathematics education 
research and development across K-12, undergraduate, and graduate education. In this session, 
program officers will provide information about current program announcements as well as 
suggestions for preparing proposals. The following programs of particular interest to PME-NA 
participants will be included in the discussion: EHR Core Research, Discovery Research K-12, and 
CAREER. Investigators should also refer to other opportunities in the EHR directorate for funding. 
Investigators should refer to the NSF website (www.nsf.gov) for current solicitation information 
when preparing proposals for submission. Investigators should also refer to the Common Guidelines 
for Education Research and Development when preparing materials and designing their projects 
(2013). In this session, we will present an overview of current programs (20 minutes) followed by 
time for questions from participants (20 minutes). New faculty and graduate students are particularly 
encouraged to attend. 
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The interaction between types of communication and socio-mathematical norms on students’ 
learning autonomy in five curriculum programs was investigated. Uni-directional, contributive, 
reflective, and instructive types of communications were present in curriculum programs studied. 
Investigations in Number Data and Space and Math Trailblazers provided opportunities for students 
to explain, justify, and compare solution strategies. Math in Focus and Scott Foresman Addison 
Wesley-Mathematics required explanations, justifications, and comparisons of solution strategies, 
but those were mainly provided by the teacher. The former and latter programs potentially foster 
intellectual autonomous and intellectual heteronomous learning in students, respectively, while 
Everyday Mathematics almost equally supports both. 

Key words: Curriculum Analysis; Classroom Discourse; Curriculum 

Classroom discourse is critical for sharing, reflecting upon, refining, supporting, and extending  
students’ mathematical ideas (NCTM, 2014), and the ways in which teachers organize classroom 
discussion influence student thinking. Curriculum materials (CMs) communicate to teachers in ways 
that can position students as largely independent learners, as learners depending heavily on an 
authority, or as both types of learners during enactment. Yackel and Cobb (1996) described students 
who “make sense of explanations, compare solutions, and make judgments about similarities and 
differences” (p. 466) as intellectually autonomous and otherwise as intellectually heteronomous(i.e., 
relying heavily on an authority to lead and determine mathematically appropriate ways to act). These 
descriptions by Yackel and Cobb imply that kinds of engagement opportunities offered to students in 
the classroom determine the degree of independence provided to students in the learning process. 
Yackel and Cobb also recommended teachers establish what they call socio-mathematical norms—
“normative aspects of mathematical discussions that are specific to students' mathematical  activity” 
(p. 458) in their classroom so that students can decide for themselves what is mathematically 
appropriate and acceptable with minimal mathematical input from the teacher.  Little is known about 
the interaction between communication types and socio-mathematical norms embedded in CMs and 
their impacts on students’ autonomy. This study examines CMs for types of communication they 
promote and the kind of learning autonomy fostered. To investigate this, we asked a research 
question: What are potential impacts of communication types and socio-mathematical norms 
embedded in written lessons? Three reasons suggest that investigating the potential impacts of the 
interaction between communication types and socio-mathematical norms might benefit the 
mathematics education community. 

First, students need to develop authority in the mathematics they learn, and teachers are in the 
position to foster desired “students’ mathematical authority” (Stein, Engle, Smith, & Hughes, 2008, 
p. 332). Teachers might be able to do this when curriculum designers embed such practices in CMs. 
Examining the impact of communication types embedded in written lessons might explain the kind 
of mathematical authority teachers are expected to promote in students.  

Second, Hiebert, Morris, Berk, and Jansen (2007) argued that teachers ought to learn from 
teaching in order to improve their practice. A possible way of doing this is by communicating to 
teachers through CMs what counts as a mathematical explanation and justification, which has 
possibility to develop “teachers’ mathematical knowledge for teaching” (Ball, Thames, & Phelps, 
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2008, p. 394). As teachers understand what counts as mathematical explanation and justification, 
they might be able to orchestrate classroom interaction to develop mathematical authorities students 
need to be successful.  

Third, Shulman (1986) recommended that teachers should understand both substantive and 
syntactic structures of mathematical ideas students are to learn. An understanding of ways CMs 
communicate, what is communicated, and the potential impact on students’ mathematical authority 
may provide insights into whether teachers’ learning of substantive and syntactic structures of 
mathematics is promoted. 

Theoretical Perspectives 
Researchers have investigated classroom discourse to identify ways in which teachers 

communicate and how these might affect students’ mathematical thinking. Brendefur and Frykholm 
(2000) identified four hierarchical types of communication between two preservice teachers and their 
students: uni-directional, contributive, reflective, and instructive. They defined uni-directional 
communication as dominated by teachers; contributive as limited to sharing of ideas with minimal 
attention given to discussing them; reflective communication makes shared ideas objects of 
discussion; and instructive communication focuses on students’ thought processes that reveal their 
strengths and limitations. Brendefur and Frykholm argued that classifying these four types is 
important because they affect classroom norms. 

Cobb, Yackel and Wood (1989) and Yackel, Cobb, and Wood (1991) identified examples of 
socio-mathematical norms in classrooms as explanations, justifications, and argumentation. Yackel 
and Cobb (1996) argued that socio-mathematical norms focusing on “what counts as mathematically 
different, mathematically sophisticated, mathematically efficient, and mathematically elegant … 
acceptable mathematical explanation and justification” (p. 461) create additional learning 
opportunities for students and can develop their mathematical thinking.   

CMs can contribute to teachers’ classroom practice by promoting productive communications 
among teachers and students (Ball & Cohen, 1996; Davis & Krajcik, 2005) and supporting them to 
establish appropriate socio-mathematical norms in the classroom. As such, it is natural to ask 
whether CMs explicitly support teachers for effective classroom discourse, in terms of socio-
mathematical norms and different types of communication. Because of the critical role CMs can play 
in influencing classroom practice, we drew on the works of Brendefur and Frykholm (2000) and 
Yackel and Cobb (1996) to identify types of communications embedded in CMs and potential 
impacts of communications types and socio-mathematical norms.  

Methods 
Data for this study were drawn from five curriculum programs used in a larger project, Improving 

Curriculum Use for Better Teaching (ICUBiT). We selected written lessons from each of the five 
curriculum programs: (a) Investigations in Number, Data, and Space(Investigations);(b)Everyday 
Mathematics (EM); (c) Math Trailblazers (MTB); (d) Scott Foresman Addison Wesley-Mathematics 
(SFAW-Mathematics), and (e)Math in Focus(MiF). The first three programs are reform-oriented and 
their designs were funded by the National Science Foundation; the fourth is commercially developed 
and widely used in U.S. classrooms; and the fifth, originally from Singapore, is gradually and 
steadily gaining prominence in U.S. classrooms. Teacher’s guides of these five curriculum programs 
were analyzed, focusing on the guidance provided in the main portion of lessons—devoted to the 
main content, excluding routine practice. Fifteen written lessons in grades 3-5 (five per grade) 
randomly selected from each program were analyzed. 

The main parts of each lesson were coded sentence by sentence and the analysis went through 
five stages. First, each sentence was associated with one of the following codes: (1) Uni-directional – 
directly speaking to teachers or students (through teacher); (2) contributing –explaining and 
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demonstrating possible ideas; (3) reflecting – engaging students in making sense and generating 
meaning through use of representations, strategies, and discussions; and (4) instructing –posing 
situations that encourage students to compare and make judgments. Second, each sentence was again 
coded for socio-mathematical norms (i.e., forms of students’ engagements): (1) making sense of 
explanations; (2) comparing solutions and strategies; (3) making judgments about similarities and 
differences; and (4) providing explanations, demonstrations, and justifications. Third, we made a 
summary for the number and percentage of sentences for each type of communication. Fourth, within 
each type of communication, we used socio-mathematical norms promoted to determine the degree 
of possible students’ autonomy fostered in each program. When CMs communicate to teachers to 
engage students in making comparisons of solutions and strategies, providing explanations, 
demonstrations, or justifications, students appear to be supported to be more intellectually 
autonomous. Otherwise, they may be moving toward the intellectually heteronomous end, depending 
on the teacher or an authority to understand and articulate mathematical concepts or ideas. Fifth, for 
each program, we identified patterns in types of communication promoted and described the kinds of 
autonomy fostered, as described above, and compared the five programs in terms of kinds of 
communications and the type of student learning autonomy the programs tend to support. 

Results 
Table 1 shows that all four types of communications are present in all five curriculum programs, 

but with varying emphasis. For each program, the most dominant type of communication is uni-
directional. Contributive communication is the least emphasized 

Table 1: Percentages of Communication Promoted  
Types of 

Communication 
INVESTIGATI

ONS 
SFAW-

MATHEMATICS 
EM MTB MiF 

Uni-directional 60.0 80.5 76.9 84.1 70.2 
Contributive 9.0 3.5 4.7 4.6 10.1 
Reflective  16.1 5.6 10.7 6.2 6.4 
Instructive 14.9 10.4 7.7 5.1 13.3 
Grand Total 100 100 100 100 100 
 
type in all of these programs, although MiF allocated a greater portion of its guidance to this type 

of communication, followed by Investigations. However, most of the contributions in MiF are from 
the teacher, whereas in Investigations they are from students. The proportion of sentences allocated 
for reflective communication is greatest for Investigations and least for SFAW-Mathematics. 
Investigations provide students opportunities to provide explanations, justifications, comparison of 
solution methods, and strategies presented, whereas in SFAW-Mathematics these are often provided 
by teachers. The proportion of sentences allocated for instructive communications is greatest for 
Investigations and least for MTB. In spite of this proportional difference, Investigations and MTB 
lessons guide teachers to use students’ thinking to shape subsequent lessons. In other words, what 
students struggle with is used to design subsequent lessons. 

The emphasis on types of communication propagated by each curriculum program indicates the 
kind of autonomy nurtured in student learning. Figure 1 shows a continuum from intellectually 
heteronomous to intellectually autonomous and the location of each curriculum program used for this 
study along this continuum.  
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Figure 1: Intellectually Heteronomous-Intellectually Autonomous Continuum. 

Intellectually Autonomous 
All types of communications in Investigations provide students with opportunities to justify, 

demonstrate, and make sense. Contributive communications in Investigations position students to 
provide their solution strategies and methods, justifying and demonstrating to others. For example, 
Investigations provides an anticipated student’s explanation of how a 120-degree angle is formed as 
“I put four 30-degree angles (on shape O) together to make 120, because 4 times 30 is 120,” which 
also includes a justification of why the strategy and reasoning is mathematically appropriate. 
Students are also expected to demonstrate their solutions in class with others, as Investigations 
directs teachers to “ask students to demonstrate each of their strategies with the Power Polygon 
pieces they used.” As students provide explanations, justifications, and demonstrations, other 
students are provided with opportunities to make sense, compare, and identify similarities and 
differences with theirs. 

Instructive communication in Investigations provides questions to teachers to determine whether 
students are making sense and justifying their solutions. For example, “Do students correctly identify 
each angle? Do they use what they know about the measure of other angles, such as right angles, to 
help them find the measure of new angles?” These questions when posed to students provide 
opportunities to compare and make judgments. Therefore, Investigations seems to position students 
to rely more on their capability, thereby making them intellectually autonomous. 

In MiF, instructive communication emphasizes comparing solution methods to determine which 
is simpler. During Guided Practice, MiF directs teachers to “Have students work in pairs to solve the 
problem. Have each pair choose a method to solve it. Then have students explain why their method is 
simpler.”  In this task, students are required to compare solution methods presented to them by the 
teacher and determine which is more efficient.  

In EM, reflective communication suggests that students compare their work, such as “before 
turning in their work, have students compare their answers with a partner.” This has the potential of 
moving students beyond just comparison of answers to reflecting on their solution strategies in case 
their answers are different or they have different solution methods to understand mathematical ideas 
in them. In MTB, reflective communication demands that students support their thinking. Questions 
are provided that asks for mathematical justifications from students for what decision they make. For 
example, questions such as, “Which fraction is larger: ? How do you know? Show me with 

circles,” are suggested to teachers to pose to students. MTB further asks teachers to “tell students that 
they are going to defend their choice to the class.” These questions could potentially modify 
students’ mathematical understanding by causing them to reflect on a representation and provide 
substantive arguments to support their reasoning. MTB directs teachers to position students to be 
reflective by letting them know that whatever choice they make needs to be defended. This, in a way, 
increases the “cognitive demand” (Stein, Grover, & Henningsen, 1996) of the tasks students are 
engaged with. 

MTB supports the use of multiple strategies in classrooms but these come from students, in 
contrast to MiF. For example, MTB provides sentences such as, “Did anyone think of it in another 
way? Can you use another tool?” These different strategies contributed by students could enable 
them to build their confidence in doing mathematics. It also provides multiple entry points by which 
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students come to understand a mathematical idea rather than depending on the unique approach 
usually provided by teachers. It also communicates to students that in the absence of the teacher’s 
direct guidance, they could devise valuable and appropriate solution strategies and move their own 
learning forward. 

In some cases, the authors of SFAW-Mathematics recommend that teachers provide reflective 
opportunities to students by asking questions such as, “Suppose the survey question in Example A 
had been asked to 50 people at a dog show. Would the sample represent the entire population well? 
Explain.” Such questions position students to think about what a sample of a population means and 
whether the selected sample can adequately represent a population. It also positions students with 
opportunities to reflect on how a sample can be selected so that it adequately represents that 
population from which it is drawn. An important idea students must understand before making such a 
reflection is, what is a population? The authors of SFAW-Mathematics direct teachers to explain what 
an entire population is, in case students do not understand it (example provided under intellectual 
heteronomous). Although reflective opportunities are provided to students, the authors of SFAW-
Mathematics often take away such moments and immediately hand them over to the teacher.  

IntellectuallyHeteronomous 
In MiF, contributive communication dominates, but solution strategies and methods presented are 

mainly from the teacher. For example, sentences such as “Show students how to rename a mixed 
number as an improper fraction using multiplication and addition with as an example” are used 

often, and this is followed by the methods which must be demonstrated by the teacher. In MiF, 
reflective communication emphasizes comparison of methods used, but the comparison is done 
mainly by teachers. For example, teachers are asked to “compare this method to the method in the 
previous Learn. Lead students to see that both methods involve multiplication followed by addition.” 
The teacher is expected to make judgments about similarities and differences, and learning 
opportunities for students to develop these understandings themselves are lost. This implies that in 
MiF, students are not provided with opportunities to make sense of solution strategies presented and 
provide justifications why the methods work. Therefore, students seem to be frequently positioned in 
a way that makes them rely heavily on an authority, mainly the teacher. 

In some situations, EM solely positions teachers to be the main authority in class, providing vital 
mathematical definitions and explanations, and demonstrating solution methods to students. For 
example, EM directs teachers to “explain that a map scale is a tool that helps to estimate real 
distances between two places shown on a map by relating the distances on the map to distances in the 
real world.” Also, EM asks teachers to “model the following solution methods in your discussion.” 
At other times, EM provides a step-by-step approach for teachers to lead students through to their 
solution. The methods teachers are asked to model above for students illustrate this approach. 
Although these are instructive, most of it comes from the teacher, communicating to teachers that 
students must depend on them. 

In SFAW-Mathematics, instructive communication is mainly for teachers to direct students on 
what to do or provide explanations of mathematical concepts for student learning. The authors of 
SFAW-Mathematics speak to teachers about possible modifications that should be made to foster 
students’ learning of mathematics. For example, they communicate to teachers that “if students do 
not understand what is meant by the entire population, explain that this is the whole group of people 
being considered by those who are conducting the survey. For example, it might be everyone living 
in the United States over the age of 18.” Also, the authors of SFAW-Mathematics identify possible 
errors students might make and suggest ways teachers might engage students in fixing them, instead 
of recommending an instructive approach that positions students to depend on the teacher’s authority. 
For example, SFAW-Mathematics authors suggests that “if students cannot decide whether 
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statements are fact or opinion, then point out that words such as best, good, and favorite are clues that 
a statement is probably an opinion.” In this way, the teacher is positioned as the main classroom 
authority students must look up to in times of difficulties or challenges on certain mathematical 
ideas. As such, these students might be given the signal that the teacher must evaluate every response 
as correct or incorrect before they can proceed. Students exposed to this kind of approach might not 
develop the ability to determine for themselves whether an approach or argument is mathematically 
sound and accurate. 

Discussion/Significance 
Many researchers have described curriculum materials as carriers of educational reform because 

whatever ideas for improvement are conceptualized, they must pass through these materials to get 
into classrooms. One of the goals of reform efforts has been to make students independent learners. 
In other words, reform efforts seek to develop students’ understanding of mathematical concepts as 
they reason and provide justification for why an explanation is accurate, decide for themselves what 
is mathematically correct and acceptable, and critique the reasoning of others students (NCTM, 
2000) to learn independently and be certain progress is made. In order for this to happen, teachers 
need to create such a learning environment. NCTM (2000) recommended that teachers should create 
environments “in which intellectual risks and sense making are expected” (p. 197).  

In this study, some curriculum materials have been found to communicate to teachers in ways 
that make intellectual risk taking a substantial part of classroom discourse, while others have 
minimally done so. For example, the authors of Investigations and MTB have provided teachers with 
ways students might be thinking about particular mathematical concepts and the depth of the ideas 
embedded in students’ thoughts. The authors of these two curriculum programs have also provided 
questions teachers might ask to help engage or motivate students to take intellectual risks. In other 
words, these two programs have communicated the risk-taking environments by providing what 
students may say and how ideas presented can be deliberated upon. These programs have opened up 
opportunities for students to justify whatever they say and embrace critique from their peers. These 
two programs have the potential to empower teachers to support students in figuring out their 
difficulties and making judgments while depending less on the teacher. Hence, when teachers 
implement suggestions from curriculum programs similar to these two, focusing on learning goals, 
students in such classrooms are likely to develop intellectually autonomous habits of mind, 
monitoring their own progress and making substantial claims of what they understand and what 
challenges them. 

Other curriculum programs such as MiF and SFAW-Mathematics have attempted to provide 
opportunities for explanations and justification, but mainly by the teacher. As mentioned above, these 
programs often require teachers to explain mathematical ideas and strategies to students as well as 
provide justifications for why approaches they demonstrate are mathematically accurate. These 
programs implicitly communicate to teachers to take absolute control of the mathematics taking place 
in their classes. As such, students are to follow, depending heavily on the teacher to “show” them 
what is correct to copy. Such students are likely to depend greatly on the teacher or any other 
authority, possibly making them intellectually heteronomous. This does not mean students taught this 
way might never become intellectually autonomous, but that it might take them a much longer time, 
thereby achieving this retrospectively and delaying learning of other mathematical concepts. 
Cumulatively, delays of this sort might have a long-term negative impact on students’ learning, 
causing students to be discouraged about mathematics. 

Although many studies have emphasized the kinds of resources CMs make available to teachers 
(e.g., Ball & Cohen, 1996; Davis & Krajcik, 2005), the study reported here extends our 
understanding of the kinds of resources that CMs offer to teachers. In addition to overall 
organization, development of content, and how this content should be taught (e.g., Davis & Krajcik, 
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2005),mathematics CMs also offer ways teachers might communicate to students to support their 
learning of mathematical content. Brendefur and Frykholm (2000) identified four types of 
communication teachers use in their classroom to interact with students. The study reported in this 
paper found that these four types of communications are provided in all CMs mentioned above. 
Although Brendefur and Frykholm did not indicate the kind of curriculum materials used by teachers 
in their study, it is possible the teachers may have been drawing on resources/guidance from their 
CMs to communicate with their students. Teachers are therefore encouraged to pay close attention to 
ways CMs communicate with them and how CMs expect them to communicate with students in 
order to promote student learning, as the communication types identified by Brendefur and Frykholm 
have been found to create learning opportunities for students if judiciously used. 

This study found that CMs can foster both kinds of learning autonomy, although some may 
strongly propagate one type or the other or even both in some significant proportion (like EM). 
Reform efforts (e.g., NCTM, 2014) support intellectual autonomy for students by recommending that 
effective teaching provide opportunities for students to share ideas, clarify mathematical 
understanding, justify their approaches, and also critique ideas of others. This recommendation 
underscores the importance of autonomous learning that students might achieve and teachers need to 
support to effectively make student learning of mathematics autonomous. One way to support 
teachers to gain such knowledge to promote students’ autonomous learning of mathematics is by 
embedding such moves in the teachers’ guide. Although some curriculum programs have begun 
doing this, as the results of this study indicate, it is important to note that curriculum designers may 
make use of this finding to develop better ways of promoting students’ learning autonomy and 
communicate these to teachers effectively. Hence, these findings are potentially useful for curriculum 
designers to deliberately position students on the path of intellectual autonomy.  

These findings are also potentially useful for teacher educators. Although during teacher training 
preservice teachers often take a look at curriculum programs, they have done so mainly in the light of 
preparing lessons to teach during field work. Rarely have preservice teachers been focused on 
examining the curriculum in the direction of promoting students’ learning autonomy. Teacher 
educators might use these results to engage their preservice teachers in examining curriculum 
programs for how teachers are positioned to promote learning autonomy in students beyond simply 
asking students to engage with tasks. This can potentially support teachers to gain skills in assessing 
curriculum materials for use in schools based on which kind of learning autonomy is fostered. 

Providing students opportunities to share their solutions, explain their work, make comparisons, 
and justify their thinking might not automatically develop the needed intellectual autonomy for 
students. Although this study has revealed the relationship between types of communications and 
desired intellectual autonomy and identified the pathway to sustained intellectual autonomy, the 
following questions still need to be answered: How can teachers effectively foster students’ 
intellectual autonomy in the classroom environment of sharing, comparing, explaining, and justifying 
reasoning? This question is important because teachers must be able to assess and conclude that their 
students can work independently and still make sense. Further research involving many classroom 
observations over an extended period of time might provide results that can fully describe and 
characterize intellectual autonomy. 
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We describe two metaphors that we hope can be used to better understand the contemporary 
mathematics curriculum context in U.S. middle schools, to see how this new context is both similar to 
and different from prior curriculum contexts. We explain the role and positioning of middle school 
mathematics curriculum materials over the last century or more and build from learning theory to 
develop the metaphors. The first metaphor, curriculum as delivery mechanism, builds from technical 
rational or scientific discourses and encompasses perspectives that are so pervasive they are often 
unstated and unquestioned. The second metaphor, curriculum as epistemic device, posits that role of 
curriculum is to provoke interactions that generate understanding. In this metaphor, the role of tasks 
in curriculum materials is to provoke and progressively refine student thinking, individually and 
collectively. 

Keywords: Curriculum Design; Middle School Mathematics; Learning Theory 

Purpose 
The U.S. curriculum context is rapidly changing with the increased use of digital and open source 

materials, the introduction of the Common Core State Standards, and the expansion in the numbers of 
individuals and organizations involved in curriculum development. In an effort to better understand 
how this new context is both similar to and different from prior curriculum contexts, we explore two 
curriculum metaphors that encompass broad trends in the role and positioning of middle school 
mathematics curriculum materials over the last century or more. The first metaphor, curriculum as 
delivery mechanism, encompasses perspectives that are so pervasive they are often unstated and 
unquestioned. This dominant metaphor appeals to modernist discourses of science and technical 
rationalism that permeate educational and other policy contexts (Datnow & Park, 2009) in spite of 
decades of work to deconstruct such discourses (cf. de Alba et al., 2000). Language referencing the 
dominant modernist or scientific perspective is often used to market products ostensibly developed 
using rigorous scientific methods. We deconstruct this metaphor and its manifestations in curriculum 
materials to highlight its influence on learning opportunities in middle school classrooms. Our goal is 
to highlight the nature of teachers’ work and decisions when working with these materials and the 
impact of those decisions on the educational experiences of middle school mathematics students. We 
then describe an alternative metaphor, curriculum as epistemic device, which is implicitly if not 
explicitly evident in some curriculum programs, including those developed as a result of National 
Science Foundation (NSF) funding in the 1990s and 2000s.   

Perspective: Curriculum as Tool 
In order to explore how curriculum design gets taken up by various stakeholders, we employ a 

perspective that considers human cognition in terms of action that is mediated by resources and tools 
situated in particular contexts (Engestrom, 1999; Pea, 1993; Wertsch, 1998). That is, human 
knowledge and understanding are manifest in action, which is mediated by the available tools and 
resources in ways that align with a person’s goals and purposes. This contrasts with the idea of 
cognition as something that strictly happens inside the head of individuals and which has universal 
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attributes. The context in which human action / cognition takes place influences the nature and goals 
of activity, division of labor, mediating artifacts, and discourse channels (Engestrom; Gee, 1999). 
With respect to curriculum, resources are deployed or mobilized in relation to the characteristics of 
the teacher and the curriculum program, prior teacher-curriculum interactions, and the curriculum 
goals of the teacher (Brown, 2009). Given the situated view of cognition from which we operate, we 
see teachers as curriculum designers, in that they exercise agency as they draw from resources in 
curriculum programs to design lessons, inevitably altering the resources in ways big and small (Ben-
Peretz, 1990; Remillard, 2005). 

The nature of curriculum materials influences the actions of the teacher and transforms both the 
goals and the activities of the teacher, while simultaneously the teacher employs the resources within 
curriculum programs according to a given history (personal, organizational, and political) and 
context that mediate how the resources are taken up (Remillard, 2005). Curriculum resources include 
representations of mathematics, representations of mathematical tasks and instructional activities, 
articulation of instructional goals, recommendations for lesson structure and requisite materials, and 
so forth. Because the enacted curriculum is a dynamic and interactive process of co-constructed 
activity between teachers and students (Ball & Cohen, 1996), curriculum resources are transformed 
as they are enacted in classrooms, with the enacted curriculum varying in ways both anticipated and 
unanticipated by the designers or teacher. The intended written curriculum is thus an inert form of 
curriculum that becomes ‘lived’ when enacted in classrooms (Guedet, Pepin, & Trouche, 2012).  

Methods/Modes of Inquiry 
This paper is primary conceptual and theoretical in nature; nevertheless, we describe the process 

by which we came to consider these metaphors. First, we turned to prior research which suggests 
that, in most U.S. middle school classrooms, the typical lesson consists of teachers explaining a 
topic, modeling a particular procedure or skill, and then having the students independently work on 
sets of problems around that problem or skill, with minimal solving of complex or novel problems 
(Jacobs, et al., 2006; Stigler & Hiebert, 1999). This pattern reflects the presentation of mathematics 
in most middle school curriculum materials, which follow a similar explain-model-independent 
practice-problem solving (predictably applying the skill just practiced) sequence. This pattern also 
reflects the delivery metaphor.  

The curriculum as epistemic device metaphor emerged from a five-year study of teachers using 
the Connected Mathematics Program (CMP) curriculum program (Lappan et al., 1998, 2006), 
conducted by the lead author. In this study, two of the teachers used the materials in ways quite 
distinct from their counterparts (Author, 2009, 2011a, 2011b, 2011c). These two teachers attended 
closely to student thinking, typically using the initial tasks in an instructional sequence to elicit 
students’ informal reasoning. Subsequent tasks were used to refine and develop students’ reasoning 
and the language used to describe mathematical concepts and relationships. In short, these teachers 
used the tasks in the curriculum materials as a means of eliciting and refining students’ reasoning, 
language, and strategies.  

A current project involving all four authors and a national sample of middle school teachers using 
materials from six different curriculum programs has provided corroborating evidence that these 
metaphors can be used to describe the practices of many of these teachers. However, the metaphors 
needed a stronger conceptual treatment in order to be useful for developing analytic categories to 
describe teachers’ understanding and use of curriculum materials. In order to develop the metaphors, 
we have been reviewing literature on the history of mathematics curriculum trends in the U.S., on 
teachers’ understanding and use of curriculum materials, and on theories of learning. Our ongoing 
synthesis of these literatures is presented below. 
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Dialogic and Monologic Functions of Text 
The two curriculum metaphors are distinguished largely by the extent to which their primary goal 

is to transmit information or to promote dialogue. Wertsch and Toma (1995), citing Lotman’s work, 
discuss the dual functions of text as monologic and dialogic. The monologic function follows the 
delivery or conduit metaphor (Reddy, 1979, as cited in Wertsch and Toma), in which the main 
functions of text are encoding, transmission, and decoding. The monologic function is the primary 
function of curriculum as delivery mechanism, with an implication that messages as encoded in text 
or curriculum can be delivered with fidelity. Lotman describes the dialogic function of text in terms 
of text as thinking device in which the “main structural attribute of a [dialogic] text is its internal 
heterogeneity” (Lotman, p. 37, as cited in Wertsch and Toma) and second is that of a generator of 
meaning. Internal heterogeneity refers to the extent to which different approaches or interpretations 
are afforded. These different approaches or interpretations are generators of meaning when their 
differences and underlying similarities are made explicit, in the process generating new 
understanding or meaning in that community. We thus consider that the dialogic function of 
curriculum materials is to promote interactions that generate understanding and consequently 
emphasize the term interactions rather than dialogue in our discussion below. Although all texts 
simultaneously have monologic and dialogic functions, Wertsch and Toma (1995) state that 
“communication models based on the unidirectional transmission of messages cannot be amended in 
any simple way to deal with the issue of texts as thinking devices” (p. 166), suggesting that there 
need to be a priori decisions made about which function to emphasize. Thus, curriculum can be 
thought of as text that primarily serves as a generator of interactions or as a conduit to transmit 
information or knowledge, with the design situated near one pole or the other.  

Two Contrasting Curriculum Metaphors 
Below, we unpack each metaphor in terms of its broad historical and epistemological 

foundations. We then describe how each metaphor is manifest in existing U.S. middle school 
curriculum programs. We then describe each metaphor in terms of task design, how teachers are 
positioned, and the underlying principles of curriculum development. First, we discuss the nature of 
tasks and how they provide opportunities to initiate dialogue and then we describe how teachers are 
positioned in this metaphor. We conclude with implications regarding learning experiences 
engendered by materials from each metaphor, the curriculum features essential to each metaphor, and 
the kinds of teacher understanding entailed by each metaphor.  

Curriculum as Delivery Mechanism Metaphor 
The first metaphor, curriculum as delivery mechanism, speaks to the perspective that the primary 

goal of curriculum is to transmit information and knowledge. In the U.S., this perspective has a rich 
and long tradition. Curriculum as delivery mechanism stems from the technical rational approach to 
curriculum that has been the predominant curriculum perspective over the last century in the U.S. and 
was first espoused in the early 1900s (Kliebard, 1975).  Early adherents to the technical rational (also 
termed scientific) approach, such as Bobbitt (1918, 1924) and Charters (1923) describe curriculum 
development as entailing a highly detailed analysis of disciplinary experts’ knowledge and 
performance, rather than activity from the perspective of the child. Rigorous analysis of expert 
knowledge and task analysis of expert performance ostensibly are performed to identify the discrete 
bits of knowledge and skills that, when mastered, constitute competence in a discipline (e.g., the 
mastery perspective). Of this approach Gravemeijer (2004) states: 

Older design principles take as their point of departure the sophisticated knowledge and strategies 
of experts to construe learning hierarchies… The result is a series of learning objectives that can 
make sense from the perspective of the expert, but not necessarily from the perspective of the 
learner.  (p. 106) 
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The discrete bits of knowledge have the added property of being more easily measured than 
broader, more complex, and consequently ill-defined knowledge (Eisner, 1967). This property 
extends the appeal of the technical rational approach to those interested in developing psychometric 
methods to assess student learning and thus to policy makers who wish to use assessments of student 
achievement data to gauge teacher and school effectiveness (Datnow & Park, 2009).   

This approach appeals to modernist notions of scientific advancement by ostensibly employing 
disciplinary rigor. Although actual attempts to develop curriculum using this approach have been 
critiqued as impractical and ultimately subjective (Eisner, 1967; Kliebard, 1975), claims of 
scientifically-based approaches persisted through the 1900s and are currently evident in the 
marketing of publisher-developed curriculum programs (defined as those programs developed by 
large publishers, according to perceived market demand) and neo-liberal educational policies related 
to assessment and accountability. For example, see the debates around the use of terms such as 
‘scientifically-based research,’ ‘evidence-based,’ ‘high-quality,’ or ‘rigorous’ (Darling-Hammond & 
Youngs, 2002; No Child Left Behind, 2002; Schoenfeld, 2006; U.S. Department of Education, 2002, 
2003). Mainly, the modernist or scientific discourse is used to market an approach or product, while 
the scientific or rigorous nature of the process is rarely explained or examined in detail.  

Curriculum development in the technical rational approach embodies the delivery metaphor, in 
which knowledge can be detached from an authority or expert (i.e., textbook, teacher) and 
transmitted to the novice learner (student), what Jackson (1986) calls the mimetic tradition. In the 
technical rational approach, expertise flows directly from the expert or authority to the learner, 
allowing those far from classrooms to exert control over content (Datnow & Park, 2009), thus 
minimizing the role of the teacher. Schoenfeld (2006) describes what he terms traditional U.S. 
curriculum materials in the following way: 

For most of the 20th century, the dominant perspective on learning in most fields, and 
specifically in mathematics, was that learning is the accumulation of knowledge; that practice 
solidifies mastery; and that knowledge is demonstrated by the ability to solve particular (well-
studied) classes of problems. (p. 15) 

The mastery perspective in this metaphor focuses at the scale of lesson or topic, with mastery 
expected on one topic before proceeding to the next. Furthermore, the transmission approach 
inherently entails a deficit view of the learner. The curriculum design is based on explaining and 
modeling concepts and procedures, which presumes that the learner has minimal understanding of 
the subject matter or intuitive understandings on which to base instruction. The treatment of language 
in curriculum materials from the delivery metaphor mirrors the treatment of mathematics content. 
There is typically an emphasis on early formalization and precision, with little validation of less 
formal or everyday terminology. In general, terms are defined and explained before students have 
had opportunities to explore the content.  

The delivery approach is so pervasive that there is typically a minimal effort to explain the 
learning model beyond appeal to a mastery perspective. That is, there is little overt description of an 
instructional philosophy or theory of learning in the curriculum materials, especially publisher-
developed programs. Furthermore, authorship of the materials is often anonymous, with only a listing 
of the experts consulted during the development process. Distinctions between curriculum programs 
developed through this approach usually entail the scope and sequence of content, the aesthetics of 
the materials, and the ancillary materials that are emphasized by publishers to market the materials.  

Dissatisfaction with materials developed from this perspective has been longstanding, 
widespread, and multifaceted, with critiques focusing on the passive nature of student activity 
(National Council of Teachers of Mathematics, 1989), the coherence and rigor of the materials 
(Schmidt, McKnight, & Raizen, 1997), unexamined issues of power and identity (c.f. Gutierrez, 
2002), and the limited role of the teachers as presenters of content (Confrey, et al., 2008). This 
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dissatisfaction has led to numerous attempts to transform mathematics curriculum, including 
systematic and well-funded efforts, such as those associated with the New Math era and the programs 
funded by the National Science Foundation in the 1990s. 

Curriculum as Epistemic Device   
We conceptualize an alternative metaphor as curriculum as epistemic device, in which the 

primary goal of curriculum is to provoke interactions that generate understanding. In this metaphor, 
the role of tasks in curriculum materials is to provoke and progressively refine student thinking, 
individually and collectively, as opposed to serving as a delivery mechanism for content. This 
conceptualization of curriculum design builds from a notion of text as thinking device that promotes 
dialogic interaction (Wertsch & Toma, 1995).  

A primary characteristic that shapes task affordances in this metaphor is the potential for 
heterogeneous approaches that vary in terms of their entry points and sophistication, or what has 
been called low-threshold, high ceiling tasks (Myers, Hudson, & Pausch, 2000). Myers and 
colleagues described software interfaces in terms of being low-threshold and high ceiling, meaning 
that the software was relatively easy to learn at a basic level but could be used to accomplish 
complex and difficult problems. This idea can be applied to tasks that are accessible to intuitive 
approaches while also allowing for the possibility of more abstract or symbolic approaches.  
Comparing intuitive approaches to more abstract or symbolic approaches creates opportunities for 
making connections that promote conceptual understanding.  

Kapur and Bielaczyc provide insights into the dialogic potential or affordances that result from 
low-threshold, high ceiling tasks (Kapur, 2008; Kapur & Bielaczyc, 2012). Such tasks afford 
opportunities for students to initially attempt a problem before encountering challenges that require 
additional personal and collective resources. Kapur and Bielaczyc refer to the phenomenon of 
allowing students to reach the limit of their current resources and understanding before seeking 
assistance as productive failure. Productive failure typically entails the use of informal approaches 
and invented representations or over-generalized application of previous skills that are eventually 
contrasted with properties of more productive representations or efficient approaches, which helps 
students to better understand the conceptual properties of a given representation or approach. 
Students who were allowed to reach productive failure on complex tasks called on their individual 
and collective epistemic resources in ways that helped them connect their evolving mathematical 
understandings to more conventional and efficient representations and approaches. Students’ 
epistemic resources include their intuitive forms of reasoning, their invented representations, and 
informal language (Hammer, Elby, Scherr, & Redish, 2005; Kapur & Bielaczyc, 2012).  

The discussion above emphasizes the emergent and localized construction of knowledge that is 
associated with dialogic curriculum and instruction. When tasks promote interactions that generate 
sense-making and afford opportunities for students to draw on and coordinate their epistemic 
resources, local and idiosyncratic forms of knowledge are more likely to be emphasized as sense-
making resources. This process has been conceptualized as knowledge building by Scardamalia and 
Bereiter (2006). They state that schools should focus on the emergent and collective development of 
understanding in a knowledge-building community so that student thinking is viewed in terms of its 
epistemic value – its ability to advance the knowledge of the community. This contrasts with the 
process of evaluating student thinking with respect to conventional knowledge, as is typically done in 
classrooms. The emergent and collective development of understanding in a knowledge-building 
community is facilitated when participants see how their ideas build from one another and how they 
are positioned with respect to more conventional or expert knowledge. Students’ solutions serve as 
epistemic artifacts (Sterelny, 2005, as cited in Scardamalia and Bereiter) that serve to advance the 
understanding of mathematics in the classroom community.  
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In summary, the metaphor of curriculum as epistemic device focuses on the dialogic affordances 
of tasks that offer the potential for interactions that promote understanding through their 
accessibility, ambiguity, and connections to big mathematical ideas. These low-threshold high-
ceiling tasks allow for students to draw on their epistemic resources in ways that contribute to the 
collective and emergent development of mathematical understanding. This stands in contrast with the 
more remote authority manifest in the transmission or delivery metaphor.  

In this metaphor, teachers are positioned as orchestrators of mathematical discussions (O’Connor 
& Michaels, 1996). In order for the dialogic affordances of tasks to be mobilized, teachers need to 
recognize the heterogeneous approaches and the relations between those approaches in order to 
support the development of dialogue around those approaches. Furthermore, teachers need to 
understand how student reasoning develops across instructional sequences, which stands in contrast 
to the much more local conception of mastery in the delivery metaphor. Similarly, students are 
positioned as active intellectual contributors with challenging epistemic roles (O’Connor & 
Michaels, 1993, 1996).  

The development of curriculum in this metaphor departs from the technical-rational or scientific 
approach in the delivery metaphor. Gravemeijer (1994) describes curriculum development as 
integrating elements of research and design, in part by conducting design experiments that inform the 
development of curriculum materials. These design experiments (Cobb et al., 2003) focus on 
developing local instruction theories (Gravemeijer, 2004) that are situated within particular 
instructional sequences. The instructional sequences are enacted in classrooms, generating data and 
insights that are used to revise the sequence. This process involves intensive observations of how 
student thinking is elicited and refined over the sequence, positioning students as key resources not 
only in classroom enactments but also as dynamic agents in the design experiment. Another feature 
of curriculum development is the notion of progressive formalization (Bransford, et al., 2000) in 
which instruction elicits and builds from students’ informal or pre-formal thinking, which is then 
progressively refined toward more formal mathematical representations and terminology. 
Gravemeijer argues that teachers’ ability to recognize and build from student thinking is related to 
their understanding of how that thinking is situated within a broader instructional sequence. 

The curriculum as epistemic device approach is based on interactions that promote sense-making 
or understanding, which inherently involves heterogeneous voices (Wertsch & Toma, 1995), 
including those based in everyday or informal language. The instructional sequences provide 
opportunities for this language to be revisited and revised, and a primary role of the teacher is to 
facilitate the process of language development. Thus, the view on language development in this 
metaphor contrasts sharply with the delivery metaphor.  

Conclusion 
We elaborate two metaphors, in part to draw distinctions between two approaches historically 

evident in U.S. middle school mathematics curriculum materials but also to develop an analytic lens 
for looking at new materials and technologies related to the rapid and comprehensive move to digital 
forms of curriculum resources. In many cases, new digital materials have intensified features that 
follow the delivery metaphor and accompanying technical rational basis. A few prominent programs, 
such as Khan Academy, deliver mathematical explanations in new platforms, while others situate 
traditional content in learning management systems (Author, 2014). Few programs as yet provide the 
potential to elicit and make public student thinking in ways that utilize those approaches as epistemic 
devices in classrooms.  

Moving forward, it will be important to analyze curriculum programs and enactments of those 
programs with respect to which metaphor prevails. Given the emphasis on knowledge creation in 
civic and economic life, it is imperative that curriculum resources and associated instructional 
systems help teachers recognize and build from student thinking in mathematically productive ways.  
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This paper explores students’ ways of thinking about the average rate of change of a multivariable 
function and how they generalize those ways of thinking from rate of change of single-variable 
functions. I found that while students thought about the average rate of change of a multivariable 
function as the change in the independent quantity with respect to the changes in the dependent 
quantities, they had difficulty determining a process to assign a value to that rate of change. Most 
tried to represent the average rate of change as a singular expression, generalizing the Δy/Δx 
expression to create expressions of the form Δz/[Δx and Δy], yet did not appear to have a sense of 
what they believed they were measuring. This suggests that quantitative reasoning, or lack thereof, 
was at the heart of the students’ generalizations .A pedagogical implication of this research is that 
students’ natural tendency to try to determine a singular expression for the average rate of change of 
a multivariable function could serve as useful as motivating the need to hold a variable fixed. 

Keywords: Advanced Mathematical Thinking; Cognition; Post-Secondary Education 

Introduction 
While it is clear to experts how multivariable calculus topics are mostly natural extensions of 

single-variable calculus topics, how students come to see the relationship between ideas like function 
and rate of change in single- and multivariable calculus is not well understood. Though some recent 
advances have been made with regard to student thinking about these ideas, these studies are only 
preliminary (Kabael, 2011; Martinez-Planell & Trigueros, 2013; Trigueros & Martinez-Planell, 2010; 
Yerushalmy, 1997). Multivariable functions are used extensively in the sciences, engineering, 
statistics, and higher mathematics. It is imperative that we learn more about student understanding of 
multivariable functions, as they serve as the foundational tools by which students make sense of and 
represent relationships between quantities in complicated systems in these fields. I focus in particular 
on average rate of change in three dimensions for two reasons. First, a coherent image of it is 
necessary to understand the mathematical construction of instantaneous rate of change. While 
average rate of change (e.g. average speed) exists in the real world, instantaneous rate of change is a 
mathematical construction that relies on anticipating the result of taking averages rates of change 
over infinitesimally small intervals. Second, since multivariable calculus topics like rate of change 
build on single-variable calculus topics, I think it is important to study students’ understanding of the 
multivariable topic with respect to their understanding of its single-variable counterpart. That is, I 
focus on how students generalize ideas, which yields insight into both what students understand 
about a new idea and how they use prior knowledge in the process of making sense of new content. 
To address these two aims, I sought to answer the following research question: How do students think 
about the average rate of change of a multivariable function and how is this generalized from their 
understanding of the average rate of change of a single-variable function? 

Background Literature  
Findings from literature indicate many difficulties that students have understanding rates of 

change. Thinking about rate of change as a measurement of how fast quantities are changing is 
foundational to calculus, yet many students have difficulty reasoning about rate in this way 
(Rasmussen, 2001; Thompson & Silverman, 2008). Thompson (1994) proposed that understanding 
constant rate of change depends on coordinated understandings of respective accumulations of 
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accruals in relation to total accumulations. The understanding of constant rate of change he described 
entails quantities having covaried (Saldanha & Thompson, 1998; Thompson, 2011). This is not at all 
obvious to students. Rather, some students interpret the average rate of change of a single-variable 
function as the arithmetic mean of some number of instantaneous rates of change (Bezuidenhout, 
1998; Dorko & Weber, 2013). Students may also struggle with computing Δy/Δx to estimate the rate 
of change of linear and non-linear functions (Orton, 1983). Thompson (1994) and Zandieh (2000) 
have suggested that these difficulties may be attributed to not conceiving of rate of change as a ratio, 
but instead thinking of it as the steepness of a function. 

To the author’s knowledge, there are two studies about students’ thinking about slopes and rate 
of change in three dimensions. McGee and Moore-Russo (2014) found that at the beginning of 
instruction about slope in three dimensions, students asked to determine the slope between the points 
(1,2,1) and (3,2,5) computed m = Δy/Δx. Some of these students found it difficult to understand that 
this formula did not work in three dimensions. Once students accepted that m = Δy/Δx did not work 
in three dimensions, they agreed that the “rise” of the slope should be Δz, but were not sure what the 
“run” was. Weber (2015) also investigated how students conceived of rate of change in three 
dimensions, and found that students often sought a way to combine the rates of change of two 
independent quantities into a single rate of change. My work extends these studies’ findings by 
focusing on students’ generalizations of rate of change in addition to their conceptions of it. 

Theoretical Perspective 
My theoretical perspective drew from two sources, both with constructivist underpinnings. First, 

I used Ellis’ (2007) framework for studying generalization. She defines generalization as the 
influence of prior activity on novel activity, even if the student’s action in the new activity is not 
mathematically correct. It is important to note that by framing my work in terms of Ellis’ framework, 
I implicitly adopt an actor-oriented perspective (Lobato, 2003) for characterizing students’ ways of 
thinking, which sets aside normative notions of correctness and allows us to focus on how students 
make sense of a situation rather than the outcome of that sense-making. Ellis’ framework 
characterizes students’ generalizing activity in terms of generalizing actions and reflection 
generalizations, which we explain later in the methods. Second, I drew from Thompson’s (1990) 
work on quantitative reasoning, which characterizes a specific way of conceiving of situations. Two 
key ideas from his work that I draw on here are quantity (a measurable attribute of an object), and 
quantification (the process of assigning a value to that attribute), which help to explain the different 
meanings for average rate of change that students generalized, and the different ways in which they 
attempted to calculate average rate of change.  

Data Collection and Analysis 
I conducted hour-long semi-structured interviews with eleven students currently enrolled in 

integral calculus at a large university in the Pacific Northwest. While eleven students is not a 
particularly large sample size, I believe that these results have what Maxwell (1996) calls face 
generalizability, or there is “no obvious reason not to believe that the results apply more generally” 
(p. 97, emphasis original). That is, even a case study of a few students is likely to generate results 
that apply more generally. Interviews were recorded with LiveScribe technology, which gives a 
synched record of students’ written work and talk. Interviews were subsequently transcribed for use 
in coding. In this paper, I focus on students’ responses to the following two tasks:  

[Q1] Let V(s) = s3 represent the volume of a cube. What is the average rate of change of the 
volume of the cube if the length of its sides increases by one? 

[Q2] Let A(L,W) = LW represent the area of a rectangle. What is the average rate of change of the 
area of the rectangle if the length increases by one and the width increases by two?  
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I chose area and volume as contexts for talking about average rate of change because I 
hypothesized that they would be novel contexts and hence allow me to observe students in the 
process of generalizing. If students became stuck, I asked them one or both of the following 
problems, which we thought would be more familiar: 

[QA] What is the average rate of change of f(x) = x2 over the interval [0,5]? 
[QB] Suppose you are in a car and you travel from mile 324 to mile 360 in one hour. What is 

your average speed? 
The V(s) and f(x) function tasks (and other similar area and volume tasks not reported on here) 

allowed me to observe how students thought about the average rate of change of a single-variable 
function, while the A(L,W) = LW task (and other similar area and volume tasks not reported on here) 
allowed me to observe how students thought about the average rate of change of a multivariable 
function. Comparing students’ responses from the single-variable to the multivariable tasks allowed 
me to analyze how students generalized their thinking about average rate of change from one setting 
to the other.  

I used Ellis’ (2007) generalization taxonomy as an analytic framework. This taxonomy 
distinguishes between generalizing actions, or students’ mental activity as they generalize as inferred 
through their activity and talk, and reflection generalizations, or students’ final statements of 
generalization. In this paper, I focus only on students’ generalizing actions (Table 1) because these 
reveal student thought during the process of understanding a situation, while reflection 
generalizations are often summary statements of a generalization. Analysis consisted first of reading 
the transcripts and coding instances of generalization. I then re-read those instances, and coded them 
based on the categories shown in Table 1. Due to space limitation, I give examples for only the 
categories that appeared in this study. The examples in Table 1 are from Ellis’ (2007b) paper.  

Table 1. Ellis’ Generalization Taxonomy (adapted from Ellis, 2007a; 2007b) (Ellis, 2007) 
Generalizing Actions 

Type I: 
Relating 

1. Relating situations: 
The formation of an 
association between 
two or more 
problems or 
situations. 

Connecting back: The formation of a connection between a 
current situation and a previously-encountered situation. 
(Example: Realizing that “this gear problem is just like the 
swimming laps problem we did in class!”)  
Creating new: The invention of a new situation viewed as 
similar to an existing situation. 

2. Relating objects: 
The formation of an 
association between 
two or more present 
objects. 

Property: The association of objects by focusing on a 
property similar to both. (Example: Noticing that two 
equations in different forms both show a multiplicative 
relationship between x and y).  
Form:  The association of objects by focusing on their 
similar form. (Example: Noticing that “those two equations 
both have one thing divided by another”)  

Type II: 
Searching 

1. Searching for the same relationship: The performance of a repeated action in order 
to detect a stable relationship between two or more objects. 
2. Searching for the same procedure: The repeated performance of a procedure in 
order to test whether it remains valid for all cases. 
3. Searching for the same pattern: The repeated action to check whether a detected 
pattern remains stable across all cases. 
4. Searching for the same solution or result: The performance of a repeated action in 
order to determine if the outcome of the action is identical every time.  
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Type III: 
Extending 

1. Expanding the range of applicability: The application of a phenomenon to a larger 
range of cases than that from which it originated. (Example: Having found that the 
difference between successive y-values is constant for y = mx equations, applying the 
same rule to y = mx + b equations)  
2. Removing particulars: The removal of some contextual details in order to develop 
a global case. 
3. Operating: The act of operating upon an object in order to generate new cases.  
4. Continuing: The act of repeating an existing pattern in order to generate new cases. 

 

Results 
I found that students primarily thought about the average rate of change as a ratio of changes (the 

measurement process or quantification), which measured some aspect of an object (either the graph 
or the growing rectangle). The students made sense of the average rate of a multivariable function by 
connecting back to prior situations; expanding the range of applicability of average rate of change as 
the ratio of the change in the independent quantity with respect to the change in the dependent 
quantity; and relating objects based on their form and property. For example, V6 tried to create an 
expression to represent her understanding of the average rate of change as meaning “how much is the 
area growing in regards to the changes in the length and the width”. V6 struggled with what to put in 
the denominator of the expression, and concluded that 3 (the sum of ΔL and ΔW) made sense (Figure 
1). The crossed-out part in V6’s work is [(L +1) – L] + [(W + 2) – W], which indicates that she sought 
to make an expression of the form ΔA/[an expression she believed combined ΔL and ΔW]. After 
telling the interviewer that having two different variables was confusing her, V6 crossed out her first 
expression and wrote 3 because “the total change you’re adding one to the length and two to the 
width and so the total change is three”. It was unclear whether she recognized that her original 
denominator simplified to 3, or if she were not paying attention to that expression and instead 
thinking about a way to combine ΔL and ΔW.  

 

 

Figure 1: V6’s Average Rate of Change of A(L,W) 
 

V10 also constructed an expression of the form ΔA/[an expression she believed combined ΔL and 
ΔW], choosing to put coordinate pairs in the denominator (Figure 2).  She began by writing what she 
believed to be the expression for the average rate of change of f(x) [see top left of Figure 3] and then 
tried to construct a version for the average rate of change of f(L,W) [top right of Figure 3], saying “I 
guess it would just translate over into two variables like that.” This statement indicates that she 
related average rate of change in 2D and average rate of change in 3D as similar situations, and the 
arrow between the expressions indicates generalization based on the expressions’ form (relating 
objects: form; see Table 1). The lower half of Figure 3 shows V10’s attempt to determine an average 
rate of change for some actual length and width measures (it was unclear why she switched from 
multiplying the length and width in the crossed-out [(9)(5)] – [(8)(4)] to adding the dimensions in [(9 
+ 5)] – [(8 + 4)]). It is also unclear why V10 wrote f’(x1), f’(x0), f’(L1,W1), and f’(L0,W0), but used 
f(L1,W1) and f(L0,W0) in her computation. Other students also thought that average rate of change 
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involved derivative values rather than function values. One student (V11) explained, “I envision 
derivatives when anything involving change occurs.”  

 

 

Figure 2: V10’s Average Rate of Change for the Area of the Rectangle  
 
While most students identified the average rate of change as meaning the change in area with 

respect to the change in the length and the width, V10 was the only student who came close to 
explaining that average rate of change is a constant rate. She said  

V10: A rate of change would be like at, like at any point it could be a different rate of   
change, I guess, and then the average rate of change would be more just like the mean rate of 
change. So like even if they, there might be some different, like some difference, some small 
difference between every point, you could take the average to try to predict a certain amount 
to add every time. 

I interpret V10’s comment about finding ‘a certain amount to add every time’ as evidence of 
thinking of average rate of change as a constant rate.  

Discussion 
Recall that I sought to answer the following question: How do students think about the average 

rate of change of a multivariable function and how is this generalized from their understanding of the 
average rate of change of a single-variable function? I found that students think of the average rate of 
change of a multivariable function as involving changes in three different quantities, and that they 
attempt to find a single expression to represent it. They generalize the form Δy/Δx to Δz/[a 
combination of Δx and Δy]. Weber (2015) also found that students’ first inclination for the rate of 
change of a multivariable function is to combine the rates of change of the independent variables.  

There is not sufficient evidence to claim that the students think about the average rate of change 
of a function (multivariable or not) or as a quantification of how variables vary. Indeed, they 
primarily focused on the structural aspects of calculating the rate of change. Very few students hinted 
at any notion of many variables varying simultaneously, or that the average rate of change is a 
constant rate of change. This finding further suggests that rate of change, average or instantaneous, is 
not about the variation in quantities for students, which led to some of the surprising approaches they 
used to “find” the average rate of change. In many cases, the students did not have a robust enough 
image average rate of change as a measure of covarying quantities to support the important 
conceptual issues one encounters in measuring rate of change in three dimensions.  

My finding that students attempted to find the average rate of change of A(L,W) by creating a 
three-space version of Δy/Δx is similar to McGee and Russo’s (2014) finding that students initially 
try to find the slope between (x1, y1, z1) and (x2, y2, z2) by computing m = Δy/Δx. A difference is that 
McGee and Russo’s students ignored the z coordinate entirely, while our students created expressions 
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of the form Δz/[some combination of Δx and Δy]. In both cases, however, students tried to leverage 
their understanding of the 3D scenario by connecting back to their knowledge of slope in 2D. They 
paid particular attention to the structure of slope as a change in one variable divided by the change in 
a second variable, and tried to create an expression analogous to Δy/Δx. While this study only reports 
on the behavior of eleven students, that my finding is similar to what McGee and Moore-Russo 
(2014) observe supports that the way the students in this study thought and acted with respect to 
multivariable functions may be representative of students in general.  

Students’ search for a single expression was largely generalizing by relating objects (see Table 
1). Generalization by focusing on objects seems to play an important role in students’ thinking not 
only in this setting, but in other cases in which students try to generalize an idea from a familiar f(x) 
context to the unfamiliar f(x,y) context (e.g., Dorko & Weber, 2014).  I hypothesize two reasons for 
students’ attempts to create a single expression. One is that before multivariable calculus most of the 
concepts students deal with can be represented by a single expression or formula (piecewise defined 
functions being one exception). I hypothesize that students thus come to expect that there exists one 
expression for everything. A second reason is that students may not have considered the implications 
of being in three-space, namely that having two independent variables often necessitates holding one 
variable constant so that one can talk about the change in the other variable. Supporting this 
hypothesis, Kabael (2011) found that students’ schema for R3 is critical for their construction of 
multivariable functions. I think that students’ experience in trying to determine what went in the 
denominator of their expressions could be pedagogically useful as motivating the need to hold a 
variable fixed. That is, instructors could begin instruction about rates of change of multivariable 
functions by giving students tasks such as the ones used in this study, letting students discover that it 
is difficult to talk about two changes at once, and then introduce the idea of talking about a rate of 
change in a direction. An additional pedagogical implication for precalculus courses and lower-
division mathematics is to find other situations in which a single expression is inadequate. This might 
prevent students from coming to believe that there exists a single equation that describes any given 
situation.  

Regardless of students’ difficulty determining what to put in the denominator, it is notable that 
students tried to compute such an expression in the first place. That is, thinking of the average rate of 
change as the change in the function values over the changes in the independent variables indicates 
that multivariable calculus students conceive of average rate of change as a ratio, an understanding 
that is not always present in single-variable calculus students (Orton, 1983; Thompson, 1994; 
Zandieh, 2000). In particular, students in this study did not talk about rates of change as “steepness”. 
That students in this study largely generalized their understanding of average rate of change based on 
the notion of rate-as-ratio reinforces the importance of students developing a robust understanding of 
slope as a ratio in algebra.  
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The multiplication principle is a fundamental principle in enumerative combinatorics. It underpins 
many of the counting formulas students learn, and it provides much-needed justification for why 
counting works as it does. However, given its importance, the way in which it is presented in 
textbooks is surprisingly varied. In this paper, we document this variation by presenting a 
categorization of statement types we found in a textbook analysis. We also highlight mathematical 
and pedagogical implications of the categorization.  

Keywords: Advanced Mathematical Thinking; Curriculum Analysis; Post-Secondary Education 

Introduction and Motivation 
Consider the following three statements of the multiplication principle1(MP), seen in Figures 1, 

2, and 3. Given that these statements are all meant to describe the same fundamental issue in 
counting, a number of questions naturally arise. Does Mazur’s statement include anything that 
Roberts and Tesman’s does not? Is Bona’s set-theoretic statement equivalent to the others? If so, 
what are pedagogical consequences of such variation? These questions serve as motivation for better 
understanding how the MP is presented in the current generation of textbooks and what implications 
such varying formulations might respectively entail. In this paper, we report on a textbook analysis in 
which we examined statements of the MP, providing a categorization of statement types intended to 
illuminate mathematical and pedagogical issues related to the MP. 

 
Product Rule: If something can happen in n1 ways, and no matter how the first thing happens, a 

second thing can happen in n2 ways, and no matter how the first two things happen, a third thing can 
happen in n1 ways, and …, then all the things together can happen in n1 ×n2 ×n3 ×... ways. 

Figure 1: Roberts & Tesman’s (2003) statement of the MP 

The Product Principle: In counting k-lists of the form (l1, l2, …,lk), if  
1. there are c1 ways to specify element l1 of the list, and each such specification ultimately leads 

to a different k-list; and 
2. for every other list element li, there are ci ways to specify that element no matter the 

specification of the previous elements l1,…,li-1, and that each such specification of li ultimately 
leads to a different k-list, 

then there are c1c2…ck such lists. 
Figure 2: Mazur’s (2009) statement of the MP 

Generalized Product Principle: Let X1,X2,...,Xk  be finite sets. Then the number of k-tuples (x1, 

x2,…,xk) satisfying xi ∈ Xi  is X1 × X2 ×...× Xk . 

Figure 3:Bona’s (2007) statement of the MP 

TheMP is a fundamental aspect of combinatorial enumeration. It is generally considered to be 
foundational to many of the major counting formulas students learn and is called by some “The 
Fundamental Principle of Counting” (e.g., Richmond & Richmond, 2009). Mazur (2009) notes that 
the MP is “quite flexible and perhaps the most widely used basic rule in combinatorics” (p. 5). Even 
more, the MP can provide a much-needed source of justification for why many common counting 
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formulas work as they do. For key concepts in other domains (such as limit, derivative, the 
fundamental theorem of arithmetic, etc.), there tend to be clear, agreed upon, consistent definitions 
provided in textbooks. However, we have found in our experiencethat textbooks vary widely in how 
they present the MP. Given the importance and the prevalence of the principle, and given the 
apparent lack of consistency with which it is presented, we decided to study how the MP is treated in 
a sample of postsecondary Combinatorics, Discrete Mathematics, and Finite Mathematics textbooks. 
We answer the following research questions: 

1. How is thestatement of the multiplication principle presented in postsecondary 
Combinatorics, Discrete Mathematics, and Finite Mathematics textbooks? 

2. What mathematical issues arise in comparing and contrasting different statements of the 
multiplication principle? 

Literature Review 

Counting Problems are Important but are Difficult to Solve 
Counting problems foster rich mathematical thinking, and they have a number of important 

applications. However, correctly solving counting problems is challenging, and there are many 
studies that report on students’ difficulties with counting (e.g., Batanero, Navarro-Pelayo, & Godino, 
1997; Eizenberg & Zaslavsky, 2004; Hadar & Hadass, 1981). Brualdi (2004) says, “The solutions of 
combinatorial problems often require ad hoc arguments sometimes coupled with use of general 
theory. One cannot always fall back onto application of formulas or known results” (p. 3). Within the 
last couple of decades, a number of researchers have investigated reasons for students’ difficulties 
and have made progress toward better understanding students’ combinatorial reasoning and activity 
(e.g., Eizenberg & Zaslavsky, 2004; English, 1991; 1993; Maher, Powell, & Uptegrove, 2011; 
Tillema, 2013). In spite of such work, however, student difficulties with counting persist.  

There is a growing body of research suggesting that students may benefit from explicitly thinking 
about the outcomes they are trying to count. Lockwood (2014) has proposed a set-oriented 
perspective toward counting, which entails viewing the activity of solving counting problems as 
inherently involving structuring and enumerating a set of outcomes. The work herein contributes to 
current literature that frames sets of outcomes as an indispensable aspect of students’ counting. In 
addition, previous work (Lockwood, Swinyard, & Caughman, 2015) has demonstrated the 
importance of the MP in counting, and the lack of a well-developed understanding of the MP 
appeared to be a significant problem and hurdle for the students. It is important to note that the MP as 
a principle of counting is different than the operation of multiplication. We have found in our 
experience that students can easily assume that they completely understand the MP in counting 
because multiplication is a familiar operation for them. As a result, they use the operation frequently 
but without careful analysis, and they tend not to realize when simple applications of multiplication 
are problematic. We are concerned by the lack of attention students give to the MP, and we argue 
that the MP is worthy of further investigation. While some researchers have discussed multiplication 
within combinatorial contexts (Tillema, 2013), there have not yet been studies that explicitly target 
the MP, and more attention must be paid to the role of multiplication in counting.  

Textbook Analyses as Insight into How Concepts are Presented 
According to Thompson, Senk, and Johnson (2012), “Begle (1973) found that the textbook is 

‘the only variable that on the one hand we can manipulate and on the other hand does affect student 
learning’ (p. 209)” (p. 254). Thompson et al., go on to point out that textbooks “help teachers identify 
content to be taught, instructional strategies appropriate for a particular age level, and possible 
assignments to be made for reinforcing classroom activities” (p. 254). In light of this, a number of 
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researchers have examined textbooks in order to get a better sense of how ideas are presented to 
students (e.g., Mesa, 2004). At the post-secondary level, this has been seen in the domain of linear 
algebra (Cook & Stewart, 2014; Harel, 1987), trigonometry (Mesa & Goldstein, 2014), and abstract 
algebra (Capaldi, 2013). We follow such researchers in using textbooks to gain insight into how 
mathematical ideas are presented. A potential limitation of this study is that we are simply looking at 
textbooks, and we cannot make claims about how ideas in textbooks are actually taught to students 
by an instructor or are understood by students. Nonetheless, a textbook analysis provides an efficient 
snapshot of how experts in the field of combinatorics define and frame a foundational concept like 
the MP. 

Theoretical Perspective 

Structural vs. Operational Conceptions 
In Sfard’s (1991) presentation of the dual nature of mathematical conceptions, she highlights a 

relationship between structural and operational conceptions. This dual nature is reflected in the idea 
that mathematical conceptions can, on the one hand, be considered as objects (a structural 
conception), but that those same conceptions might also be able to be thought of as processes (an 
operational conception). It is interesting that, in her original descriptions of these ideas, Sfard 
mentions an analysis of textbook definitions:  

The careful analysis of textbook definitions will show that treating mathematical notions as if 
they referred to some abstract objects is often not the only possibility. Although this kind of 
conception, which from now on will be called structural, seems to prevail in the modern 
mathematics, there are accepted mathematical definitions which reveal quite a different approach. 
(p. 4, emphasis in original) 

Sfard goes on to say that “The latter type of description speaks about processes, algorithms, and 
actions rather than being about objects. We shall say therefore, that it reflects an operational 
conception of a notion” (p. 4, emphasis in original). Sfard (1991) also emphasizes the complementary 
relationship between the structural and operational conceptions, noting that, “the ability of seeing a 
function or a number both as a process and as an object is indispensable for a deep understanding of 
mathematics, whatever the definition of ‘understanding’ is” (p. 5). This suggests that there could be 
benefits to having both structural and operational notions of a concept like the MP, something we 
address in our results and discussion. 

Methods 
In order to create a broad list of textbooks that were used in postsecondary Finite Mathematics, 

Discrete Mathematics, and Combinatorics courses, we compiled a list of universities in the union the 
top 25 ranked universities, the top 25 ranked graduate mathematics programs, the top 10 ranked 
liberal arts colleges, and the universities with the 10 largest undergraduate populations (National 
Universities Rankings, n.d., Math, n.d., and National Liberal Arts Colleges Rankings, n.d., 
respectively). This represented 52 schools in 26 states. We then identified and added to the list the 
largest university in the remaining 24 states. In total, we surveyed 76 universities representing all 50 
states and including some of the top universities in the country.2 

For each of these 76 universities, we identified courses from the university catalogs and found 
titles of the required texts from the department’s website, the university bookstore, or online course 
pages. We found textbooks from 70 of these universities. In total, we found three textbooks from one 
university, two textbooks from 22 universities, and one textbook from 47 universities. We thus 
identified textbooks for a total of 94 courses at these 70 universities. Multiple universities used many 
of the textbooks, and so this search yielded a total of 32 textbooks. We also examined relevant 
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textbooks within our own personal and university libraries, and this added 32 textbooks not yet on 
the list. Therefore, in total we had a set of 64 textbooks, which both provides a sense of how students 
are being exposed to the MP and also gives a relatively comprehensive picture of ways in which the 
MP is presented in textbooks. Our analysis and results are based on all 64 of these textbooks. Six 
textbooks did not include a statement of the MP, and some textbooks included multiple statements, 
and thus we analyzed a total of 73 statements of the MP in these 64 texts.  

Analyzing the Textbooks. Once the list of textbooks was compiled, we digitally scanned the 
sections of each text that introduced the multiplication principle, including any worked examples and 
narratives (the text surrounding the principle, see Thompson, et al., 2012) that accompanied the 
statement itself. The authors each independently examined the narrative portion of the texts, 
including the statements of the MP and any worked examples, recording phenomena and developing 
categories for what we observed. This is in line with Strauss and Corbin’s (1998) constant 
comparative method of qualitative analysis, where our data consist of the textbook sections. 
Following the creation of codes, for the sake of reliability, each author analyzed the entire set of texts 
separately, and we then met and discussed all of the codes until consensus was reached. We also 
addressed our second research question by more deeply examining mathematical properties of the 
statements via carefully reviewing and discussing the statements. 

Results 
Due to space, we share only two aspects of our findings. In this section, we first provide a 

categorization of statements of the MP (which resulted from investigating the extent to which 
statements themselves reflect structural versus operational conceptions) and report on the frequencies 
of statement types. Then, we demonstrate the value of this categorization by highlighting a 
mathematical implication that emerged from an articulation of the statement types.  

Structural versus Operational Conceptions Reflected in the Overall Statements of the MP 
Drawing heavily on Sfard (1991), we found that the statements of the MP could be 

categorizedinto three types: structural statements, operational statements, and bridge statements. 
Broadly, these three statement types differ in terms of what they state the MP is counting. Structural 
statements characterize the MP as counting objects (without specifying a process to construct those 
objects), while operational statements characterize the MP as counting ways to complete a process 
(without specifying the outcomes of that process). Bridge statements provide a link between the two 
– they frame the MP as counting objects, but they also specify the counting process that would 
generate the objects. Thus, in order to code the statements, we looked to see how the statement 
frames what the MP is counting. Table 2 provides the codes, what we took to be criteria for a 
statement to receive that code, and an example of a textbook whose statement reflects that code.  

Table 2: Criteria for Statement Types 
Code Criteria 

Structural 
 

The statement characterizes the MP as involving counting objects (such as lists or k-
tuples) 

Operational The statement characterized the MP as determining the number of ways of completing a 
counting process  

Bridge The statement simultaneously characterizes the MP as counting objects and specifies a 
process by which those objects are counted 

 
Structural Statements.To be coded as a structural statement, a statement had to describe 

counting a set of objects, without any mention of a process that would generate that set. For example, 
notice that Bona’s structural statement (Figure 3) has characterized the MP as a statement about k-
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tuples (ordered sequences of length k), which are objects with an inherent structure. The MP 
describes the total number of k-tuples from k sets, and it is simply expressed by product of 
cardinalities of k sets. There is no connection made between those k-tuples and a process that would 
generate them; the statement is simply presented set-theoretically.  

Operational Statements. In contrast to Bona’s structural statements, the operational statements 
frame the MP not as counting structural outcomes, but rather as counting ways of completing a 
process (and a process is clearly articulated in the statement). Roberts and Tesman (2003) provide a 
statement (Figure 1) that we coded as operational, describing the MP in terms performing a task with 
t successive operations, and the MP provides the number of ways of completing a task. Notice that 
the nature of what is being counted – the result of the MP is not the number of objects, but rather it is 
the number of ways of completing a process. Note these two types of statements naturally reflect the 
duality between structural and operational conceptions that Sfard (1991) proposes. We also note that 
some textbooks provided both structural and operational in their narratives.  

Bridge Statements. A statement like Mazur (Figure 2) on the one hand reflects a structural 
framing of the MP (the objects being counted are k-lists), but the statement also explicitly describes 
an operation for how to construct those objects. Such statements, which we call bridge statements, 
simultaneously both count objects and describe a process by which to count or construct those 
objects. In Mazur’s case, the k-listshe describes are the same object as Bona’s (2007) k-tuples. 
However, unlike Bona, notice that Mazur (Figure 2) describes an operational process that explains 
how to generate the objects (k-lists) that are being counted – specifically, he describes, “there are c1 
ways to specify element l1 of the list.” The presence of this explicit connection between the structural 
and operational framings of the statement led us to code this statement by Mazur as a bridge 
statement. 

 
Table 3: Frequencies of structural, operational, and bridge statements (n = 73) 

Frequencies. For coding statements at this level, the unit of analysis was a statement of the MP. 
For any given formulation of a statement, the codes of structural, operational, and bridge are 
mutually exclusive, so a statement was coded with exactly one of these codes. Because some 
textbooks had multiple statements (while some did not include statements), we coded a total of 73 
statements across the 64 textbooks. Table 3 shows the respective frequencies of structural, 
operational, and bridge statements, using the total number of statements as the total frequency.  

From Table 3, we observe that operational statements were the most frequent, comprising 45% of 
the total statements, but each type of statement was represented. These findings convey the variation 
among statements, supporting the notion that this fundamental counting idea is not presented 
consistently across textbooks. Through our analysis we also found wide variation in the language 
used among statements and the representations that accompanied statements, although we do not 
share those findings here due to space. 

Mathematical Implications of Different Statement Types 
In this section we address one mathematical implication of different statement types, making a 

case for what we might gain from a categorization of statement types. As we have noted, the majority 
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of the statements in textbooks are operational, framing the MP in terms of counting the number of 
ways of completing counting processes that have some number of successive stages. A significant 
issue with these statements is that they make no claim about whether that total number of ways to 
complete the process are in a one-to-one correspondence with the desirable set of outcomes, and in 
fact they make no explicit connection to the overall outcomes of the procedure at all. Given our prior 
focus on sets of outcomes and their importance (e.g., Lockwood, 2013; 2014), the lack of explicit 
attention to outcomes is concerning.  

For example, Roberts and Tesman’s (2003) statement (Figure 1) is strictly operational, and we 
see that the MP yields the number of ways for “all the things together” to happen, but the statement 
says nothing about the total number of outcomes. We contrast this with Tucker’s bridge statement 
(Figure 4), which describes a process by which to generate outcomes, not the number of ways to 
complete the process. In fact, Tucker goes so far as to state that, as a condition of implementing the 
MP, the “distinct composite outcomes must all be distinct.” 

 
The Multiplication Principle: Suppose a procedure can be broken down into m successive 

(ordered) stages, with r1 different outcomes in the first stage, r2 different outcomes in the second stage, 
…, and rm different outcomes in the mth stage. If the number of outcomes at each stage is independent 
of the choices in the previous  stages, and if the composite outcomes are all distinct, then the total 
procedure has r1 × r2 ×...× rm different composite outcomes. 

Figure 4 – Tucker’s (2002) statement of the MP 

In many simple problems, using a strictly operational statement type is not problematic, and any 
differences between the operational and bridge statements may seem immaterial. For instance, 
consider the question “Suppose we flip a coin 10 times in a row. How many possible ways are there 
to do this?” Here, we can solve the problem by thinking of ten successive, ordered stages, and each 
stage has two different possibilities (heads or tails). For both statements, the product that yields the 
total number of ways for “all the things to happen together” (Roberts and Tesman) is the same as the 
number of the total “different composite outcomes of the procedure” (Tucker). This “Coin Flips” 
problem is one in which both types of statements can be applied and yield the correct answer to the 
counting problem. The number of ways to complete the procedure is in a one-to-one correspondence 
with the number of desirable outcomes. 

However, not all counting problems can be solved in such a straightforward manner. To detail 
our discussion of this issue, we turn to a “Words” problem presented by Tucker (2002, p. 172): How 
many ways are there to form a 3-letter word using the letters a, b, c, d, e, and f, if the word must 
contain e and repetition of letters is allowed? In applying an operational statement, we note that the 
first “thing” that will happen is to decide where to put the e that must be in the password, and there 
are 3 choices for this (the first, second, or third position of our word). The second “thing” is to 
choose a letter for the leftmost available position, and there are 6 choices, because repetition of 
letters is allowed. Then, the third thing to do is to choose a letter for the last remaining position, and 
again there are 6 choices. By an operational statement of the MP, then there are 3*6*6 = 108 ways of 
completing the process. This is, in fact, true, and there is no claim being made about what this means 
in terms of distinguishable desirable outcomes.  

However, a key aspect of counting is that there is a relationship between a counting process and 
outcomes associated with that process (Lockwood, 2013). In this “Words” problem, it is true that 
there are 108 possible ways to complete the three-stage counting process. However, the outcomes of 
that process are not all distinct: notice that many of the outcomes – those involving 2 or 3 es – would 
appear more than once in the list of 108 ways to complete the process. Our counting process 
generated some of the same outcomes more than once. If we simply wanted to count possible ways to 
complete a procedure, this would not be an issue. However, counting involves specifying the 
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cardinality of the set of outcomes – determining exactly how many of something satisfies certain 
constraints. Therefore, the fact that in using an operational statement, we are counting ways to 
complete the procedure, and not actually determining the number of distinct outcomes, is 
problematic. By only counting ways of completing a counting process, without tying that to 
outcomes, there is a danger of overcounting when the ways of completing that process are not in one-
to-one correspondence with the desirable set of outcomes. 

Discussion and Conclusion 
By drawing on Sfard’s (1991) work in identifying and describing structural, operational, and 

bridge statements of the MP, we have demonstrated the different ways that the MP may be presented. 
Operational statements frame the MP as counting the number of ways to complete some process, 
procedure, or sequence of tasks. To us, this reflects viewing the act of counting as involving 
completing counting processes, but not necessarily about determining the total size of a set of 
outcomes. Lockwood (2014) has previously demonstrated the value of what is called a set-oriented 
perspective, which frames counting as being about determining the cardinality of a set of outcomes. 
This stands in contrast to how many of the operational statements of the MP situate the activity of 
counting. We feel that our findings suggest that, in fact, counting is not always framed as inherently 
involving counting sets of things, and structural and bridge statements might more naturally align 
with a set-oriented perspective.  

Finally, a major pedagogical implication of our study is that the MP is much more nuanced than 
instructors and students give it credit for. Given its foundational place in counting, we need to help 
students focus more on understanding the details of the MP. Because there are clearly a variety of 
ways to present and talk about the MP, we feel that teachers of counting need to be very explicit with 
students about what exactly the MP is saying. Instructors could offer multiple statements of the 
principle and have a clear discussion of what a given statement in terms of ways of completing a 
counting process versus determining number of distinct outcomes of that process, as we discussed. In 
addition, instructors should very clearly explain how overcounting can occur in counting situations 
that involve multiplication. Regardless of which type of statement a student (or an instructor) prefers 
or which statement their particular book uses, students must be faced with the potential to overcount, 
and it may be up to the instructor to share this, especially if the book does not address it explicitly.  

Endnotes 
1We follow a number of authors by referring to the principle as the “multiplication principle” 

throughout the paper, even though the textbooks we surveyed had many different names for it. 
2There are two ways in which we limited our search. We did not include universities outside of 

the United States to limit the scope and because we did not feel equipped to linguistically analyze 
textbooks in other languages. We also did not examine probability textbooks, again to limit the scope 
of the study, primarily because we suspect that reasoning about multiplication in probability contexts 
may fundamentally differ from strictly combinatorial contexts. 
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This paper explores the construct of curricular noticing, defined as the act of  teachers making sense 
of the complexity of content and pedagogical opportunities in written or digital curricular materials 
(Dietiker, Amador, Earnest, Males, & Stohlmann, 2014), and reports the results of four exploratory 
studies aimed to examine the Curricular Noticing framework. Taken together, these studies capture 
work done with 62 PSTs in elementary and secondary mathematics methods courses at four 
universities. Findings illuminate what PSTs attend to in curriculum materials and how they interpret 
and respond to these materials. Irrespective of level (i.e., elementary, secondary) and materials, 
PSTs can learn to notice aspects of curriculum materials in order to make decisions about what to do 
and how to do it, and activities within methods courses can facilitate this development. 

Keywords: Curriculum; Teacher Education-Preservice; Teacher Knowledge; Instructional Activities 
and Practices 

Curriculum materials are integral to mathematics instruction. In fact, more than 80% of K- 12 
teachers use a textbook or curricular program for mathematics instruction (Banilower, Smith, Weiss, 
Malzahn, Campbell, & Weis, 2013), though such materials greatly vary in design and philosophy. 
According to Brown and Edelson (2003), curriculum materials have the most direct influence on 
what teachers actually plan for and enact in their classrooms and, although research does describe 
what teachers do with materials, we do not necessarily know the process of how teachers make 
decisions about what to do and how to do it (Stein, Remillard, & Smith, 2007), and we know even 
less about how prospective teachers make sense of curriculum materials or use them when enacting 
instruction. 

In this paper, we consider how to make such work explicit through curricular noticing. We define 
curricular noticing as the process through which teachers make sense of the complexity of content 
and pedagogical opportunities in written or digital curricular materials. In the following sections we 
briefly present what researchers have learned thus far about teachers’ interactions with curriculum 
materials, describe our framework and how this contributes to this literature, and present a snapshot 
of this framework in use by describing four individual studies. We conclude with implications. 

Teachers’ Use of Curriculum Materials 
Research on teachers’ use of curriculum materials has presented us with a foundation for 

describing what teachers do with materials. In the midst of planning and enacting instruction, teachers 
engage in a variety of activities with curriculum. Remillard (2005) describes the teacher-curriculum 
relationship as a dynamic transaction in which teachers “participate with” the materials. The socio-
cultural conception of this relationship emphasizes the fact that both the teacher and the curriculum 
influences what and how curriculum materials are used. Using this conception, researchers have 
outlined ways in which teachers participate with curriculum. This includes the activities teachers 
engage in such as “reading, evaluating, and adapting” (Drake & Sherin, 2009) and what Brown (2009) 
describes as “offloading, adapting, and improvising.” This research has provided us with a sense of 
what teachers do with curriculum materials, but we still know little about the process of how teachers 
make decisions about what to do. To understand how teachers make these decisions we turn to 
describe the Curricular Noticing Framework. 
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Theoretical Framing of Curricular Noticing for Mathematics Teaching 
Curricular noticing (CN) draws upon the extensive work in professional noticing of children’s 

mathematical thinking (PNCMT), a core instructional activity that is integral to ambitious teaching 
(Philipp, 2014). PNCMT describes a three-part process of making decisions based on student 
thinking: attending to, interpreting, and responding to children’s mathematical thinking (Jacobs, 
Lamb, & Philipp, 2010). This process illuminates the phases of work involved in how teachers may 
leverage children’s mathematical thinking. Unless teachers can recognize the complexity of 
students’ mathematical thinking (which includes the diverse strategies and rationales of student 
ideas), they cannot use this information to inform their decisions. 

We argue that this noticing framework may be productively applied to yet another dimension of 
classroom instruction, the use of curriculum materials. Unlike PNCMT, which focuses on student 
thinking, CN focuses on curriculum materials. Like PNCMT, we draw upon constructs that 
illuminate aspects of the work of teaching with curriculum materials: attending, interpreting, and 
responding.  We define each of these aspects in the context of curriculum below. 

Attending. Looking at, reading, and recognizing aspects of curricular materials 
Interpreting. Making sense of that to which the teacher attended 
Responding. Making curricular decisions based on the interpretation (e.g., generating a lesson 

plan, a visualization, or enactment) 
Figure 1 further depicts some of the activities in which teachers might engage in each of the 

phases of CN. 

 
Figure 1. Activities embedded within each of the dimensions of Curricular Noticing. 

CN and PNCMT have important commonalities, two of which we highlight here related to (1) the 
role of tasks and (2) supporting PSTs. First, both CN and PNCMT treat task selection as a necessary 
and critical component of ambitious teaching. While there have been varied empirical techniques in 
research on PNCMT, much of this underscores the role of teachers’ attending to the mathematics of 
the present task and interpreting how students interact with the mathematics of that task, and in some 
cases how to then strategically respond with a new problem, task, or lesson. We see tasks as a critical 
component of CN as well. Second, both constructs allow the field to consider methods to support 
PSTs. Cultivating PNCMT practices has been identified as a mechanism to provide PSTs with 
opportunities to understand student-centered teaching and develop the pedagogical content 
knowledge necessary for effective and high-leverage instruction (Hill, Ball, & Schilling, 2008; 
Jacobs et al., 2010). Similarly, we see CN as inextricably linked to these efforts to support PSTs. As 
teachers make decisions in order to support children’s mathematical thinking, curricular materials – 
specifically teachers’ interaction and understanding of the complexity and opportunities reflected in 
such materials – influence their decisions. In practice, teachers participate or collaborate with 
curricular materials (Remillard, 2005). Noticing, therefore, is related to both the teacher-student 
dimension and teacher-curriculum dimension of instructional practices. 
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We see the CN framework providing a lens for examining not only what teachers do with 
curriculum materials, but how they do it. Specifically, how may we describe the mechanisms that 
determine how teachers make particular decisions in their practice?  For example, we know some 
teachers adapt curriculum materials (Brown, 2009; Drake & Sherin, 2011); at the same time, we do 
not yet know how teachers come to such decisions to adapt. The CN framework allows us describe 
how teachers make the decision to adapt by considering how teachers’ attention and interpretation 
may lead to such adaptations. We see these actions instead highlighting, more specifically, how 
teachers are interacting with the text when engaging in the reading and evaluating process, which in 
turn impacts the responses they make. As described below in our work with PSTs, we argue the 
phases of CN provide a useful framework for empowering teachers’ decision-making, as each phase 
can be an explicit object of inquiry and development and productive engagement in the phases can 
help teachers make more informed decisions about how to use their curriculum materials. 

Four Studies Aimed at Examining PSTs’ Curricular Noticing 
Here we present the methods and findings from four independent and exploratory studies, each of 

which examined CN. The first two studies focused on mathematical tasks and what PSTs can attend 
to in the tasks in order to grapple with identifying affordances and constraints based on the 
characteristics of these tasks. The second two studies focus on PSTs’ attention to and interpretation 
of multiple sets of curriculum materials in order to make decisions (or, respond) about adoption and 
lesson planning. Each methods course supported PSTs in inquiry-oriented and student centered 
mathematics instruction. Studies explored the character of the three phases of noticing, and how 
these manifest in the context of curricular materials. 

Study 1: Noticing Curricular Task Design Features 
In Study 1 the task design features to which secondary mathematics PSTs attend to was explored. 

PSTs (n = 8) in two groups were given one of two versions of the same challenging optimization task, 
with each version reflecting common presentations in textbooks. One version was open-strategy, 
prompting students to make a prediction, work together as a group to find a solution, and justify that the 
result was indeed the optimal solution.  The other version was closed-strategy, prompting students to 
test two possible solutions and use the results of those tests to choose new possible values to test. After 
each group worked together for 10 minutes on their version of the task, the whole class discussed what 
mathematical challenges they encountered and what strategies they had used.  When the different 
versions were revealed, they had another five minutes with their group to read through the other version 
and consider the differences it would have had on their experience solving the tasks. 

The comparison of tasks afforded reflections on the interpretation of task design. The whole class 
held a discussion about what differences they noticed between the two versions of the task. While the 
mathematical goal of the task (solving for an optimal value) and the context (locating a stereo on a 
cabinet) were the same, the way the task prompted students to engage resulted in different 
experiences.  Overall, five themes of task design were noticed and mentioned: (1) students pointed 
out the way in which the design enables or prevents students from following “gut reactions,” 
affecting how the students may engage with the mathematical content of the task. The open-strategy 
prompt enabled these gut reactions to be followed-up while the given-strategy version encouraged 
abandonment of potentially fruitful reactions. A teacher with the closed-strategy task commented: 
“Something interesting was when we were first starting the task, I felt like my gut reaction was to 
write an equation and graph it to find a minimum, but we were like, ‘that’s not what we were 
supposed to do.’” (2) The PSTs pointed to what they called the “heart of the problem,” which was 
taken as the core mathematical point of the task.  Fundamentally, the two versions provided different 
glimpses of what mathematical ideas were in play. Several prospective teachers were disturbed how 
the design of the task could “obscure” important mathematical ideas. (3) The PSTs explained how 
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the purpose of their work depended on the version they used.  The groups that started with the open-
strategy task reported testing a point to see what it would tell them, while the closed-strategy group 
limited to a purpose of following directions. (4) The PSTs noticed the degree to which the task held 
students accountable for the mathematics.  For example, one task explicitly asked “how can you be 
sure you found the best answer?” while the other just asked for the answer. (5) Several PSTs noted 
the design constrains what mathematical ideas there is to talk about.  They noted that when a strategy 
is given, the group works in parallel and limited discussion to the verification of answers or how to 
perform a procedure. They also noted that the opportunity for discussion as a whole class was greatly 
enhanced when multiple strategies were supported. Findings indicate that such a comparison of tasks 
afforded interpretations of task design. Next steps will explore how to leverage such interpretations 
to support teacher decision-making. 

Study 2: Noticing Mathematical and Pedagogical Opportunities in Curricular Tasks 
The focus of Study 2 was on elementary PSTs’ noticing in the context of fractions, an area of 

mathematics that is notoriously hard-to-learn and hard-to-teach (Lamon, 1996; Saxe, et al., 2005). In 
order to empower a teacher to make productive choices in implementing a fractions task, that teacher 
needs to know something about mathematical properties embedded in—and often hidden in—
traditional task design. For example, consider an area model for ¼. The canonical representation 
features a rectangle or circle divided into four equal sections with one of the four equal parts shaded. 
Such routine design may obscure two important properties in determining fractional quantities: the 
role of equal parts and the role of defining the unit (or whole). Study 2 explored how to support 
PSTs’ interpretations of such mathematical properties in routine tasks through the use of nonroutine 
tasks in the methods course.  A premise was that sustained discussion involving a nonroutine task 
may thereby support teachers’ noticing of—in particular, interpreting—a routine task in terms of core 
mathematical properties that typically remain hidden. 

PSTs (n = 18) were administered a pretest one month prior to and a posttest one month after 
intervention, each featuring routine and nonroutine fractions representations. In the intervention, all 
PSTs were asked to identify mathematical properties of two tasks with area models. Task A featured 
a routine, equally partitioned model with 1/6 shaded. Task B featured a nonroutine, unequally 
partitioned model with ⅛ shaded.  In class, PSTs were asked to analyze each task and anticipate 
student responses. Results of activities using both routine and nonroutine tasks indicated the vast 
majority of PSTs did not originally identify equal parts or defining the unit as mathematical properties 
of the routine task, yet the majority did so with the nonroutine task. 

While a pre-test showed PSTs did not identify equal parts or defining the whole as important 
mathematical components, a pre-post comparison confirmed PSTs interpreted both routine and 
nonroutine routine tasks according to these mathematical ideas after intervention. Results of this 
exploratory study suggest that nonroutine tasks may support PSTs’ interpretations of important 
underlying mathematical properties of tasks they are likely to encounter in curricular materials. 

Study 3: Using a Tool to Examine PSTs Attention to and Interpretation of Curriculum 
Materials 

Within the context of the second of two secondary mathematics methods course, Study 3 
examined how PSTs (n=17) evaluated content related to quadratics in three different textbooks. In 
the first few weeks of a 15-week semester, PSTs were asked to examine the teachers’ guides from 
Algebra I textbooks in three curricular series: Prentice Hall (PH), The CME Project (CME), and The 
College Preparatory Mathematics Program (CPM). PSTs were asked first to determine what was 
similar and different between the three sets of curriculum materials and then to determine which 
text, if given the option, they would choose to use in their classroom and why. Each PST turned in a 
written response to these questions.  For the next eight weeks PSTs used the CCSSM Curriculum 
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Analysis Tool (CCCAT, Bush, 2011) to analyze the materials with respect to 1) content, 2) 
practices, and 3) equity, special needs, and technology. The tool required PSTs to use a rubric to rate 
each text and to provide qualitative descriptions. Following this analysis, PSTs responded to the 
same questions from the beginning of the semester. Each pre- and post-tool response was read 
multiple times to generate initial codes. Each response was then read again and codes were assigned 
to these responses. 

The post-tool responses indicated that, if given the chance, 76% would choose to adopt CPM 
(compared to 72% before using the CCCAT), 6% would choose CME (no change), and 18% would 
choose PH (compared to 22%). One important note is that students engaged in this assignment in the 
second methods course and in the first methods course had engaged in cursory examinations of 
curriculum materials (without attention to particular content) and also taught from reform-oriented 
materials in a micro-teaching setting. It is likely that these previous experiences impacted students’ 
choices of materials. 

Although there was not much of a difference regarding which text PSTs chose to adopt after 
engaging with the CCCAT, there was a shift in the reasoning used by PSTs when discussing their 
choice.  In their pre-tool responses, PSTs’ responses were quite general in nature and included the 
general approach of the materials, whether the materials had good or bad teacher resources, the tools 
included in the materials such as calculator and manipulatives, and the clarity of layout for students. 
After using the CCCAT, their evaluations were more detailed and they described different aspects of 
the materials. On average, PSTs wrote 32% more (as measured by number of sentences) in their post-
tool response and included more examples from the materials (mostly to illustrate features that they 
liked). Six out of the 10 most frequent reasons were explicitly aligned to aspects that PSTs were asked 
to use when evaluating texts using the CCCAT. PSTs made reference to the CCSS Mathematical 
Practices and the balance between procedural and conceptual opportunities and when referring to the 
teacher resources described in detail the supports for assessment, differentiated instruction and 
working with ELL students. 

They also commented more on the ways in which technology was integrated, meaning whether it 
seemed to be an integral part of the text rather than just naming what tools were used in the text. All 
of these aspects were explicitly addressed by the CCCAT. In addition, however, PSTs also discussed 
aspects that were not an explicit object of analysis in the CCCAT. PSTs discussed the types of 
participation structures that were emphasized in the materials, whether detailed lesson plans or 
suggestions were provided to teachers, the cognitive demand or richness of the tasks, the flexibility 
(or often lack of flexibility) of the text and the level of planning needed in order to be successful in 
using the textbook. Although potentially helpful in being able to apply the CCCAT, these aspects 
were not explicitly addressed, meaning that PSTs were not asked to attend to these aspects in the 
same ways they were the others. Results indicate that the CCCAT may have aided in shifting what 
curricular features PSTs attended to and how they then interpreted those features. 

Study 4: Responding with Curricular Materials 
This study focused on understanding how elementary PSTs made decisions about intended lesson 

plans as they interacted with multiple curricular resources to further understand the reasons behind 
their instructional decisions. In this process, close attention was given to what (i.e., the content) the 
PSTs attended to, how they attended to this content (e.g., the degree to which they selected to include 
in the content in their lesson design), and how they interpreted this content with respect to teaching 
the intended learning outcomes. Finally, there was a focus on how the PSTs responded to the 
selected curricular components to create a plan for teaching with an emphasis on PSTs’ decision-
making process. 

PSTs (n=19) were provided with Grade 6 teacher materials for a lesson on the division of 
fractions from four curricular programs. PSTs were tasked with using components of any of the 
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resources to write out a detailed lesson plan that would address the following standard: “Apply and 
extend previous understanding of multiplication and division to divide fractions by fractions” 
(CCSSM, 2010, p. 42). PSTs were required to provide rationale for their decisions regarding 
including or excluding particular curricular resources. Following the design of their lesson plan, 
PSTs were prompted to respond to questions about their use of the resources, motivation for using 
particular materials, reasons for not including particular materials, and an overall rationale for their 
decision-making with respect to curricular materials. Often, the PSTs cited their own experiences, 
belief, and knowledge for their rationale. 

Findings indicated that the PSTs noticed curricular components that aligned with their personal 
conceptualizations about effective mathematics teaching. PSTs considered problems with authentic 
contexts and problems that involved students through some tangible manipulative to be exemplary 
components that aligned with effective pedagogical practices. In addition, PSTs based their 
selections on preconceived notions of what a lesson on the division of fractions should include. For 
many, they considered how they personally learned the division of fractions and then searched 
through the materials until they found something closely aligned with their preconceived method of 
how a lesson on this topic would be taught. In this case, the Curricular Noticing Framework afforded 
opportunities for understanding how PSTs conceptualized division of fractions after reading multiple 
curricular resources. Following this, the decisions the PSTs made about how they would respond, or 
teach the lesson, became transparent. Consequently, past prior experience with the specific content 
influenced their decision-making process. In contrast, many PSTs documented that the mathematics 
content was advanced and they had to grapple with the concept of division of fractions before they 
were able to consider how they would plan a lesson on the topic for sixth grade students. 

Implications 
Use of the CN Framework identifies the conceptual work involved in translating curricular 

materials to classroom practice.  Our studies offered glimpses of the character of the phases of 
curricular noticing. We reflect here on both the individual studies described above and what looking 
across the set of studies as a whole helps us understand about CN. 

First, in Study 1, the analysis of different versions of the same mathematical task enabled PSTs to 
recognize design features of mathematical tasks and connect them to the potential affordances and 
constraints of teaching with the tasks. PSTs developed a potential lens to critique the tasks of their 
mathematical curriculum materials.  That is, by attending to one aspect of a mathematical task (e.g., 
how students are held accountable for reasoning), teachers can scrutinize that dimension of the task 
design (i.e., define how and to what degree students are accountable for mathematical reasoning) and 
can decide to adapt their task to enhance this quality (i.e., add “Explain how you know” to a task 
statement). 

Second, involving the use of routine and nonroutine problems to support noticing of 
mathematical and pedagogical opportunities, Study 2 indicated that PSTs may benefit from task 
exploration that problematizes the big mathematical ideas (in this case involving fractions) embedded 
in the routine tasks they are likely to encounter in curricular materials. Furthermore, exploration of 
such tasks may highlight (Goodwin, 1994) the mathematical aspects that are indeed critical to notice 
in order to choose tasks that anticipate and respond to student thinking. 

Third, in Study 3, there was a shift in the reasoning used by PSTs when discussing their choice. 
This shift suggests that the tool supported PSTs in being able to attend to and interpret curricular 
features in order to articulate reasons for curriculum evaluations. 

Finally, Study 4 indicated that PSTs noticed opportunities that aligned with their concepts about 
effective mathematics teaching. Many PSTs had some idea of what the target lesson should include 
and then wrote a lesson plan irrespective of the relation to materials. Findings suggest that PSTs may 
benefit from further instruction on how to use curricular materials. 
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These studies are not without limitations. First, the studies were humble in scope, both in terms of 
working with a single mathematics methods course and without consideration the multiple dimensions 
involved with CN. As a result, we do not yet fully understand how to support each element of noticing 
- attending to, interpreting, responding- for PSTs. Second, the contexts for each of the methods 
courses is varied in terms of level (i.e., elementary, secondary), number of PSTs, and grain-size of 
materials (i.e., tasks, lessons, units), thereby limiting our capacity to compare across studies. 

Despite these limitations, however, the four studies offer a glimpse into the work involved in CN 
and identify an exciting and important arena in the work of teaching.  As mentioned, we do not and 
cannot know the materials to which PSTs will have access once they have jobs. Yet, we can be 
confident that most will have some form of curricular materials. Our goal is to understand how to 
enable PSTs to become strategic and productive users of curricular materials regardless of what those 
materials are, thereby supporting them to make informed curricular decisions as they teach their 
students. The first two studies show that by focusing on aspects of tasks that PSTs learned to attend to 
the mathematics and pedagogical opportunities afforded by or constrained by the tasks. The second 
two studies indicated that providing PSTs with different curriculum materials and focusing either on 
lessons or units not only provided PSTs with the opportunity to attend to various mathematical and 
pedagogical opportunities within the materials, but also required them to interpret the materials in 
order to respond in some way to a particular question (i.e., What materials would you adopt?) or take a 
particular action (i.e., plan a lesson). 

Taken together these studies indicate that, irrespective of level (i.e., elementary, secondary) and 
materials, that PSTs can learn to notice aspects of curriculum materials in order to make decisions 
about what to do and how to do it and that activities within methods courses can facilitate this 
development. In future research, we hope to further reveal how our framework may be strategically 
implemented in methods coursework or professional development to support teacher decision-
making. 
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This paper investigates how the selected three East Asian countries—Japan, Korea, and Taiwan—
introduce and develop ideas related to fractions and fraction addition and subtraction compared to 
the Common Core State Standards of Mathematics and EngageNY.  Looking at curricular 
approaches used across countries can provide a better picture of what is of importance in instruction 
aimed at developing students’ mathematical proficiency. Understanding how the aforementioned 
three Eastern Asian materials treat fractions will offer both mathematics teachers and teacher 
educators some concrete images of the visions of the Common Core State Standards of Mathematics 
and specific ideas on teaching and learning of fractions. 

Keywords: Curriculum Analysis; Elementary School Education; Number Concepts and Operations 

Introduction 
Teaching and learning of fractions in middle grades remain a major challenge for many teachers 

and students. Developing deep understanding of fractions, which has been identified as a foundation 
for algebra (Math commission), is a major focus of the Common Core State Standards: Mathematics 
(CCSSM, Common Core State Standards Initiatives, 2010). The authors of the CCSSM examined the 
mathematics standards from the high-achieving countries including Asian countries because one 
finding from the previous cross-national studies is that, in general, United States students do not 
perform as well as the Asian students in mathematics especially Hong Kong, Japan, Korea, 
Singapore, and Chinese Taipei (Taiwan) (Mullis, et al., 2008). 

The observed performance differences among students in different countries might be attributed 
to variations in mathematical curricula (Reys, Reys, & Chavez, 2004). A growing body of research 
has begun to investigate the content of mathematics textbooks as a possible factor for the 
achievement gaps as reflected in the large international assessments such as Trends in International 
Mathematics and Science Study (TIMSS) and the Programme for International Student Assessment 
(PISA). As Kilpatrick, Swafford and Findell (2001) pointed out, “what is actually taught in 
classrooms is strongly influenced by the available textbooks” (p. 36).  

The purpose of this study is to examine how curriculum materials from the selected three East 
Asian countries—Japan, Korea, and Taiwan--introduce and develop ideas related to fractions and 
fraction addition and subtraction compared to the recommendations from the CCSSM. In this study, 
we seeks to understand intended students’ learning opportunities in three Asian countries by 
analyzing how textbooks from these three countries develop a mathematics topic known to be 
challenging to school children. In particular, we compare and contrast the treatment of fraction 
concepts and fraction addition and subtractions in the three Asian textbooks compared to that in 
EngageNY. EngageNY is curriculum modules and resources in preK-12 developed by New York 
State Education Department to support teachers implement key aspects of the CCSSM 
(https://www.engageny.org/). The research questions that guide this study are: 1) What are the 
similarities and differences of the intended learning progressions of fraction concepts development 
among the three Asian curricula and those recommended by CCSSM? and 2) What are the 
similarities and differences in the development of fraction addition and subtraction fluency among 
the three Asian curricula and those presented in EngageNY? 
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Cross-national comparative studies in the teaching and learning of mathematics provide unique 
opportunities to understand the current state of students’ learning and to explore how students’ 
learning can be improved (Stigler & Hiebert, 1999; Son & Senk, 2010).  

Theoretical Background 
Teaching and learning fractions has traditionally been problematic. Prior research identified one 

of the predominant factors contributing to the complexities of teaching and learning fractions lies in 
the fact that fractions comprise a multifaceted construct (Lamon, 2007). Kieran(1976)articulated that 
fractions consist of five subconstructs — part-whole, measure, quotient, operator, and ratio. Behr, 
Lesh, Post and Silver (1983) further developed Kieren’s ideas and proposed a theoretical model 
linking the different interpretations of fractions to the basic operations of fractions as shown in 
Figure 1.  

 

 

Figure 1. Five subconstructs of fractions and their relationships (Behr, et al., 1983) 

According to Behr, et al., the part-whole subconstruct of rational numbers is fundamental for 
developing understanding of the four subordinate constructs of fractions. Moreover, the operator and 
measure subconstructs are helpful for developing understanding of the multiplication and addition of 
fractions, respectively. Although there is a consensus that fraction instruction that focuses solely on 
the part-whole subconstruct is limiting, there are many unanswered questions about how to 
incorporate these subconstructs in a mathematics curriculum (Lamon, 2007). 

Research on Fractions and Fraction Addition and Subtraction 
As mentioned before, over the last three decades researchers and scholars have identified several 

factors contributing to students’ difficulties in learning fractions. The NCTM (2000) provides the 
following instructional guidelines in developing deep understanding of fractions: (1) begin with a 
simple contextual task and (2) have students explore each of the operations using a variety of 
representations and models. We took account of them in our analytical framework. In particular, as 
word problems serve as a way to contextualize mathematical operations (Carpenter et al., 1999), this 
study investigated how the meanings of fraction addition and subtraction are addressed and 
developed through the word problems in each curriculum. The Cognitively Guided Instruction 
framework (CGI) and CCSSM’s problem types, which categorizes addition and subtraction word 
problems based on the semantic structure of problems shown in Table 1, was utilized for the analysis.  
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Table 1: Four problem types for addition and subtraction (from Carpenter, et al., 1992) 
Problem Type Unknown Factors 
Join (Add to)  (Result Unknown) 

Connie had 5 marbles. 
Juan gave her 8 more 
marbles. How many 
marbles does Connie 
have altogether? 

(Change Unknown) 
Connie had 5 

marbles. How many 
marbles does she need to 
have 13 marbles 
altogether? 

(Start Unknown) 
Connie had some marbles. 
Juan gave her 5 more. Now 
she has 13 marbles. How 
many marbles did Connie 
have to start with?  

Separate (Take 
from) 

(Result Unknown) 
Connie had 13 marbles. 
She gave 5 to Juan. How 
many marbles does 
Connie have left?  
 

(Change Unknown) 
Connie had 13 marbles. 
She gave some to Juan. 
Now she has 5 marbles 
left. How many marbles 
did Connie give to Juan?  

(Start Unknown) 
Connie had some marbles. 
She gave 5 to Juan. Now she 
has 8 marbles left. How 
many marbles did Connie 
have to start with? 

Part-Part-
Whole  
(puttogether/ta
ke apart) 

(Whole Unknown) 
Connie has 5 red marbles 
and 8 blue marbles. How 
many marbles does she 
have altogether? 

 
 
 
 

(Part Unknown) 
Connie has 13 marbles: 5 are 
red, and the rest are blue. 
How many blue marbles 
does Connie have? 

Compare (Difference Unknown) 
Connie has 13 marbles. 
Juan has 5 marbles. How 
many more marbles does 
Connie have than Juan? 
 

(Bigger Unknown) 
Juan has 5 marbles. 
Connie has 8 more than 
Juan. How many 
marbles does Connie 
have? 

(Small Unknown) 
Connie has 13 marbles. She 
has 5 more marbles than 
Juan. How many marbles 
does Juan have? 

 Method 
The primary data source of this study includes the national curriculum guidelines and selected 

textbook from the three Asian countries. CCSSM and fraction modules from EngageNY were 
analyzed. This study applied the content analysis method to analyze the problems presented in the 
mathematics textbooks (Confrey & Stohl, 2004). The data analysis of this study went through several 
iterations with respect to the following aspects: 

• Examine the overall curricular flow on fractions – what topics are introduced in which grade  
• Analyze in details how textbooks develop the concept of fractions, paying specific attention 

on fraction subconstructs 
• Analyze in details how textbooks develop addition/subtraction of fractions: 
• Word problem types, e.g., add to, take from, put together/take apart, compare. 
• Types of representations 

Note that the textbook series from each country were analyzed in their respective languages by 
the three authors who are native speakers of the respective languages. Because problem contexts and 
fraction subconstructs are not always visually verifiable, we needed to calibrate our coding of these 
two factors. We used the English translation of the Japanese series (Fujii & Iitaka, 2012) and 
analyzed them independently.  We then compared our analysis, and whenever there was a 
discrepancy in our analyses, we discussed the particular instance until a consensus was reached.  
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Summary of Findings 

Overall Curricular Flow on Fractions 
Table 2 shows the overall curricular flow on fractions across the three Asian countries as well as 

the CCSSM. All Asian curricula shared similar overall flows with some embedded variations. 
Japanese curriculum introduces the initial concept of fractions in grade two with a brief introduction 
of the concepts of 1/2 and 1/4. In third grade, the focus is on the continued development of fraction 
concepts along with the introduction of the addition and subtraction of fractions with the same 
denominator. Fraction concepts are further extended in grade four to the improper fractions and 
mixed fractions. The quotient meaning of fractions is introduced in Grade 4 in the Korean and the 
Taiwanese curriculum, while the idea is introduced in Grade 5 in the Japanese curriculum. 

In the Japanese and the Korean curricula, simple cases of equivalent fractions are discussed in 
Grade 4 even though the formula for creating equivalent fractions is not discussed until Grade 5, 
while the Taiwanese curriculum addresses this topic in Grade 4. All three curricula took time develop 
fraction addition and subtraction over three grades:  first with proper fractions with the same 
denominators, then with improper fractions or mixed numbers with the same denominators. Fraction 
addition and subtraction with unlike denominators follows the discussion of equivalent fractions in 
the fifth grade curricula. In all three curricula, multiplication of fractions are also discussed in 
multiple grades. Both the Japanese and the Korean curricula formally discuss multiplication of 
fractions by whole numbers in Grade 5 and multiplication by fractions in Grade 6. The Taiwanese 
curriculum follows the same sequence but one grade level earlier. The Japanese and the Korean 
curricula follow the similar sequence with division while the Taiwanese curriculum discuss division 
of fractions only in Grade 6. 

Table 2:Curricula Flow on Fractions in curriculum in three countries 
 Japan Korea Taiwan CCSSM 

Fractions as equal shares 2 3 3 1/2/3 
Fraction as number 3/4 ¾ 3/4 3/4 

Comparison 3/4/5 3/4/5 3/4 3/4 
Equivalent fractions 4/5 4/5 4 3/4 

Fractions as quotients 5 4 4 5 
Addition/subtraction 3/4/5 3/4/5 3/4/5 4/5 

Multiplication 5/6 3/5 4/5 4/5 
Division 5/6 5/6 6 5/6 

 
The overall flow in the three Asian curricula is fairly similar to the overall flow in the CCSSM. 

In the CCSSM, simple fraction ideas are introduced in Grades 1 and 2 through equal partitioning of 
geometric shape like circles and rectangles. This approach is similar to the Japanese curriculum in 
Grade 2. The formal introduction of fraction as numbers occurs at Grade 3 for all curricula and 
CCSSM. However, while the three Asian curricula discuss addition and subtraction soon after they 
start the formal instruction of fractions in Grade 3, the CCSSM delays the discussion of addition and 
subtraction until Grade 4. Although the timing of addition/subtraction instruction is different, the 
three Asian curricula and the CCSSM all rely heavily on the measure subconstruct of fractions, that 
is, fractions are collections of unit fractions. While multiplication of fractions in the CCSSM follows 
the same sequence as the three Asian curricula, that is, multiplication of fractions by whole numbers 
first, then multiplication by fractions, the way division of fractions is developed in the CCSSM is 
different. Unlike the Asian curricula which first discusses the division of fractions by whole numbers 
then division by fractions, the CCSSM discusses division of unit fractions by whole numbers and 
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whole numbers by unit fractions in Grade 5 before discussing division of fractions in general in 
Grade 6.  

The Development of Fraction Subconstructs and Contexts/Models Used 
Table 3 summarizes which of the five subconstructs offractions are present in different grade 

levels of themathematics curricula from the three Asian countries and from EngageNY.It is clear 
from this table that there are variations in the ways different fraction subconstructs are used in the 
three Asian curricula. However, one commonality is that the foundational role the part-whole 
subconstruct appears to play in the three curricula. Moreover, the part-whole and the measure 
subconstructs are the two primary subconstructs undergirding the initial instruction of fractions, 
including addition and subtraction of fractions, in the three curricula. This approach is similar to the 
way the EngageNY (and the CCSSM) introduces fractions, starting with the partitioning of wholes in 
Grades 1 and 2, and then in Grade 3, developing the understanding of non-unit fractions as 
collections of unit fractions. Students in EngageNY are then expected to use that knowledge to think 
about fraction equivalence, ordering, and addition and subtraction of fractions in Grades 4 and 5.  

Table 3: Fraction subconstructs that appeared in the Asian curricula and in EngageNY 
Grades Japanese  Korean  Taiwanese  EngageNY (US) 

2 Part-whole   Part-whole 
3 Part-whole  

Measure  
Part-whole 
Measure  
Operator 

Part-whole  
Measure 

Part-whole  
Measure 

4 Part-Whole 
Measure 

Part-whole 
Measure 
Quotient 

Part-whole 
Measure 
Quotient 

Part-Whole 
Measure 
Operator 

5 Part-Whole 
Quotient 
Measure 

 

Part-whole 
Measure 
Quotient 
Operator 

Part-whole 
Measure 
Quotient  
Operator 

Part-Whole 
Measure 
Quotient  
Operator 

6 Part-Whole 
Operator 
Ratio 

Part-whole 
Measure 
Operator 
Ratio 

Part-Whole 
Measure 
Quotient  
Ratio 

Part-Whole 
Measure 
Operator 
Ratio 

Note: A sub-construct that is newly addressed in each grade is bolded in Table 3.  

While all five subconstructs of fractions are present in each curriculum, there exist different 
emphases on the operator and ratiosubconstructsamong the four curricula. The Japanese curriculum 
emphasizes a unitary view of fractions thus putting more emphasis on the measure subcontstruct than 
the othersubconstructs. The primary representation is linear (either tape or number line) (see example 
below). 
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Figure 2. Typical representations used in the Japanese textbooks 

One unique feature of Korean curriculum is to introduce operator construct much earlier than 
Japanese and Korean curricula. Below is an example from the 3rd Grade Korean textbook asking 
students to find what is ¾ of 8. A fraction as operator typically implies partitioning followed by 
iterating: for example, 3/4 as operator (3/4 of 8) implies first partitioning the object into four equal 
parts and then making three copies of (iterating) one of those parts as shown below. In addition, the 
Korean curriculum addresses the meaning of fractions as operator first in grade 3 and then in grade 5 
and 6 as multiplication of fractions is introduced and developed. Furthermore, the ratio subconstruct 
is used to promote the concept of equivalence and, subsequently, the process of finding equivalent 
fractions.  Thus the Korean curriculum appears to intentionally introduce students to the variety of 
subconstructs sooner than the other two curricula. 

 
Figure 3. An example problem introducing operator construct in the Korean curriculum 

How are addition and subtraction of fractions introduced and developed? 
Table 4 describes the types of word problems presented in the mathematics curricula from the 

four countries. We found that all three Asian curricula included relatively small number of word 
problems as they discussed addition and subtraction of fractions.  Moreover, the problem types found 
are generally simpler types such as Join/Separate-Result-Unknown and Part-Part-Whole-Whole-
Unknown. However, EngageNY and Taiwanese textbooks include other types of word problems such 
as Separate-Initial\Change-Unknown and Part-Part-Whole Part Unknown, which emphasize the 
relationship between fraction addition and subtraction. Note that the Compare-Smaller-Unknown 
type was only found in the EngageNY 

In addition, we found that a significant percentage of pure computation exercises of fraction 
additions and subtractions with different denominators are included in each curriculum with the 
following number and percentage: Korean 76 (76%), Japan 29 (74%), Taiwan 24 (75%), and 
EngageNY (66%). 
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Table 4:Types of addition and subtraction word problems in four curricula 
Join Result Unknown 

JKTUS 
Join Change Unknown 

TUS 
Join Initial Unknown 

Separate Result Unknown 
JKTUS 

Separate Change Unknown 
TUS 

Separate Initial Unknown 
TUS 

Part-Part-Whole Whole Unknown 
JKTUS 

Part-Part-Whole Part Unknown 
TUS 

Compare Difference Unknown 
JKT US 

Compare Smaller Unknown 
US 

Compare Larger Unknown 
T 

Note: J stands for Japanese textbooks with K for the Korean texts, T for the Taiwanese texts, and US for EngageNY. 

While discussing addition and subtraction, all three curricula incorporated various models including 
linear, area, and discrete.  Below is an example from the 3rd Grade Taiwanese textbook using linear 
model.  The question asked how much would left if Wei-Ting had a 7/10 meter rope and used 3/10 
meters for her art project.  The students are encouraged to think “7/10 meter is 7 units of 1/10 meter, 
used 3 units of 1/10 meter.  So left will 4 units of 1/10 meter, which is….”   

. 
Figure 4. Typical representations used in the Taiwanese textbooks 

Similar to the three Asian textbooks, modules from EngageNY incorporated various models. The 
most frequently model is a tape diagram, followed by a number line and area model. One unique 
model (or an approach) used in EngageNY is using a number bond to find the sum or the difference 
as shown below.  

 

Discussion 
The findings of this study showed more similarities than differences among the three Eastern 

Asian curricula in terms of overall flow, approach, and grade level expectations. Moreover, as far as 
the early discussion of basic fraction concepts, there is a significant alignment between the three 
Asian curricula and the CCSSM. However, some of the differences may have significant 
implications. For example, we noted that how the Korean curriculum incorporates all five fraction 
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subconstructs from early grades while the Japanese curriculum takes a much more deliberate pace to 
introduce the subconstructs beyond part-whole and measure. Further research in the way students in 
these countries understand fractions may tell us how their learning may be impacted by the curricular 
decision. Research has long reported that many students and even teachers have difficulty 
understanding fractions (Ball, 1990; Behr et al. 1992; Ma, 1999).An increased understanding how 
fractions and fraction addition and subtraction are introduced and developed in other countries 
provides us with a tool to critically reflect on our current practices and that can help us to improve 
the quality of both curriculum materials and fraction instruction.  
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Researchers and policy writers have advocated for the importance of curricular coherence. The 
purpose of this study is to move beyond surface-level features of coherence by attending to the 
mathematics embedded within problems and investigating how key mathematical concepts are 
developed across sequences of problems into mathematical storylines. 

Keywords: Curriculum; Curriculum Analysis; Learning Trajectories; Middle School Education 

Introduction 
The importance of coherence in mathematics curriculum policy has been well documented in the 

literature. For example, in 2000, the Principles and Standards for School Mathematics (National 
Council of Teachers of Mathematics [NCTM], 2000) emphasized that curriculum is “more than a 
collection of activities: it must be coherent, focused on important mathematics, and well articulated 
across the grades” (p. 14). In the development of the Common Core State Standards (The National 
Governors Association Center for Best Practices and The Council of Chief State School Officers, 
2010), attending to coherence was key in the development of standards through “research-based 
learning progressions detailing what is known today about how students’ mathematical knowledge, 
skill, and understanding develop over time” (p. 4). According to Trafton, Reys, and Wasman (2001), 
“If students are to think mathematically and use mathematics as a tool for solving problems, 
coherence [in curriculum materials] is crucial, and establishing connections among the big ideas of 
mathematics fosters coherence” (p. 260).  

The purpose of this study is to understand how mathematical understanding embedded in 
problems is connected and how each problem contributes to the coherence of a mathematical 
storyline. This is important to mathematics educators because it can inform (a) how teachers 
understand the development of long-term mathematical goals as supported by the daily lessons, (b) 
how student thinking and learning is targeted and how that thinking and learning might unfold within 
and across mathematics units, and (c) the mathematical, pedagogical, and assessment decisions 
teachers make when planning or enacting lessons that respond to students’ mathematical conceptions. 
This study addresses the major PME-NA 2015 conference theme. 

Theoretical Framework and Related Research 
To make explicit the mathematical storylines embedded within curriculum materials, we use the 

Arc of Learning framework to describe the implicit learning progressions in the sequence of 
mathematics problems (Phillips, Gilbertson, Grant, & Stewart, 2014). According to the National 
Research Council (2007), learning progressions are defined as “descriptions of the successively more 
sophisticated ways of thinking about a topic that can follow one another as children learn about and 
investigate a topic” (p. 214). Encompassing learning progressions, the Arc of Learning framework 
and its phases embody Freudenthal’s view that “students should be given the opportunity to reinvent 
mathematics by organizing or mathematizing either real world situations or mathematical 
relationships and processes that have substance for them” (Cobb, 2008, p. 105). This is a central tenet 
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in the Realistic Mathematics Education (RME) instructional theory, where mathematics is interpreted 
as a human activity. From this perspective, realistic “refers more to the intention that students should 
be offered problem situations which they can imagine” (Van den Heuvel-Panhuizen, 2003, p. 10). 
From this perspective, contextual problems are defined as situations that are experientially real to the 
student, which can include pure mathematical problems (Gravemeijer & Doorman, 1999). In RME, 
“context problems are intended for supporting a reinvention process that enables students to come to 
grips with formal mathematics” (Gravemeijer & Doorman, 1999).   

In our work, the Arc of Learning framework expands on the work in RME and consists of five 
phases or stages, moving from informal to formal mathematics. These phases describe a process for 
students to develop their mathematical understandings as they explore problems over time. In the 
Introduction (Setting the Scene) phase, students explore problems that reveal mathematical theme 
and where the problems informally highlight the key mathematical concepts. The problems also 
provide an opportunity to assess what students bring to the lesson in terms of the goals of the unit. In 
the Exploration(Mucking About) phase, students explore problems that establish a platform for 
developing key aspects of concepts and strategies. Students consider and explore a context that 
students can use to build, connect, and retrieve mathematical understandings. In the Analysis(Going 
Deeper) phase, students explore problems often with a variety of contextual situations and examine 
nuances in key aspects of the core mathematical ideas. Students make connections between concepts 
and representations. In the Synthesis (Looking Across) phase, students explore problems and 
consolidate and refine their emerging mathematical understanding(s) into a coherent structure. They 
recognize core ideas across multiple contextual or problem situations. Students begin to generalize 
their mathematical ideas and strategies. In the Abstraction (Going Beyond) phase, students explore 
problems in which they make judgments about which representations, operations, rules, or 
relationships are useful across various contexts. Students look back on prior learning to generalize, 
extend, and abstract the underlying mathematical structure. The tasks provide opportunities for 
assessing student understandings at a more general level. 

Methodology 
 Since little is known regarding how to deeply characterize coherence for particular topics in 
curriculum materials, the purpose of this study is to examine the mathematics embedded within 
sequences of problems and to make explicit the mathematical storyline of curriculum materials. The 
research question that guides our study investigates how the key mathematical concepts and methods 
(i.e., unit/chapter objectives)in middle school curriculum materials were developed within sequences 
of problems. For each curriculum, Grade 7 units or chapters that shared similar big mathematical 
ideas in probability, proportionality, and linearity are selected. The unit of observation is the 
mathematical unit/chapter of the curriculum materials. Homework tasks are not examined in this 
study. Four middle school CCSS-oriented curriculum programs chosen for the study are Connected 
Mathematics, Mathematics in Context, College Preparatory Mathematics, and Big Ideas MATH. This 
represents a range of materials of middle school programs including commercially developed and 
NSF-funded materials.  

In our analysis, we use the Arc of Learning framework to code each mathematics problem or 
lesson activity located within the selected units/chapters. The researchers, using the phase description 
of the Arc of Learning described earlier, code each mathematics problem or lesson activity located in 
the student text. Codes include the Arc of Learning phases of Introduction, Exploration, Analysis, 
Synthesis, or Abstraction. Coding is based on information from the student text and accompanying 
teacher’s guide notes that pertain only to the unit of analysis. Independent codes conducted by the 
researchers are aggregated together to form final code(s) decisions for each mathematics problem. If 
agreement in codes is not immediate, the research group discusses the accompanying evidence for 
the code and determine final consensus. 
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Findings 
The analysis of the research study is currently ongoing. Findings of the study will report on the 

overall development of the mathematical ideas embedded across a sequence of problems for each 
curriculum unit. For example, Table 1 presents preliminary findings that describe the development of 
understanding similarity from the Stretching and Shrinking unit of Connected Mathematics 3. Figure 
1 shows how each problem contributes to the development of similarity. 

Table 1: The development of understanding similarity for Stretching and Shrinking 
Introduction  
(Setting the 
Scene) 

Emergence of initial ideas for the meaning of similarity, including informal ideas from everyday life 
Emergence of initial ideas of mathematical similarity and tools for creating similar shapes. Some 

beginning ideas of similarity such as angle, lengths, and area relationships may emerge 
Assessment of students’ understanding of ratio and rates as in “for every” and corresponding angles, 

and sides 
Exploration  
(Mucking 
About) 

Continue building a working definition for similarity using contexts 
Emergence of more details of similar and non-similar shapes (e.g., what stays the same, what changes) 

with attention to measurements using tools such as angle rules, rules, and lengths on a grid 
Begin a formal description of similar and non-similar shapes using features of side lengths, angle 

measures, perimeters, or areas 
Analysis  
(Going 
Deeper) 

Refinement of similarity definition regarding lengths and angle relations between similar and non-
similar shapes 

Scale factor and its relationship to side lengths are refined 
Scale factor and its relationship to areas is strengthened 
The ratio of two lengths within a shape is equivalent to the ratio of the corresponding lengths in a 

similar shape 
Synthesis  
(Looking 
Across) 

Build on prior knowledge, experiences, and dispositions of learning from earlier problems to determine 
scale factors and ratios of adjacent side lengths. Find missing measurements of different situations 

Discuss similarity in which direct measurement is difficult and collect data. Discuss accuracy of that 
approximate data 

Abstraction  
(Going 
Beyond) 

Generalize understandings of similar shapes and strategies beyond contextual situations 

Implications and Future Work 
Unpacking the mathematical storylines over sequence of problems as arcs of learning provide 

teachers, teacher educators, mathematics education researchers,curriculum developers and 
administrators effective tools to characterize deeply grounded and connected learning. Attention to 
mathematical storylines is important because the development of ideas over time istypically not 
transparent (Davis and Krajcik, 2005; Remillard & Bryans, 2004). This work suggests that the Arc of 
Learning can be a potentially useful tool as it provides (a) an overall and detailed view of 
development of mathematical ideas will become more transparent and (b) support in describing 
student learning goals both at a lesson level at a unit level. Such a curriculumawareness will provide 
a knowledge space and support mechanism to make curricular decisions thatare more deliberate with 
their actions (Remillard, 2000). Future research is needed that explores how the Arc of Learning can 
be utilized in teacher planning and enactment, as a context for developing teacher knowledge in 
professional learning situations, and to impact student learning. 
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Figure 1: The role of each problem in the mathematical storyline of similarity 
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This study compared the effects of two teaching strategies on learning opportunities and learning 
outcomes for students enrolled in different sections of a community college precalculus course taught 
by the same instructor. Features from Chval, Chavez, Reys, and Tarr (2009) were used to guide the 
instructional strategies used in one section while lectures were used in the other section. Results 
show that reform-based teaching methods can provide richer learning opportunities if exploration is 
supplemented with high-level tasks (Stein, Grover, & Henningsen, 1996). We determined that all 
students benefit from experience with all types of tasks, but focus should be given to high-level tasks. 

Keywords: Curriculum; Post-Secondary Education 

There exists a plethora of research centered on curriculum evaluation at the K-12 level (National 
Research Council [NRC], 2004; Tarr, et al., 2008). However, curriculum research at the 
postsecondary level is few and far between. This paper is a comparative study that analyzes two 
sections of precalculus at a Southeastern community college being taught by the same instructor. One 
section was taught using lecture-based methods and the other section using reform-based methods. 
The purpose of this study is to delve into how learning opportunities are impacted by inherent 
differences between teaching methods at the postsecondary level, and to provide a foundation for 
curriculum enactment research in that setting. 

Framework 
The premise of our study hinges upon the fact that teaching methods used in each group are in 

fact different. Accordingly, a crucial component for this study is presentation fidelity (Holstein & 
Keene, 2013). Presentation fidelity describes the level of faithfulness that a teacher maintains to the 
pedagogical approach suggested by developers of curricular materials. For the present report, we 
modify this definition and use presentation fidelity as a means to measure how strict the teacher 
follows the teaching methods prescribed for each group. Features of standards-based instruction 
(Chval, Chavez, Reys, & Tarr, 2009) guided the reform-based methods. The lecture-based methods 
are based on an unpublished set of expectations of a college lecture created by the community 
college where the study took place. 

The purpose of this study is to examine how learning opportunities are impacted by inherent 
differences between teaching methods at the postsecondary level. Therefore, once we laid the 
foundation for the two different teaching methods we needed to choose a framework to analyze 
learning opportunities. We chose the mathematical tasks framework (Stein, Grover, & Henningsen, 
1996) to code learning opportunities. The authors identify four types of mathematical tasks within 
two levels of cognitive demand, high and low. Tasks involving memorization (MEM) of 
mathematical facts and completing procedures without connections (PNC) to deeper concepts are 
considered to be low-level. On the other hand, tasks that include completing procedures with 
connections (PWC) to deeper concepts or doing mathematics (DM) are high-level. This framework 
has been used by its developers to assess the learning opportunities afforded to students based on the 
level of mathematical tasks in which they engage.  

In the present study we aim to address two research questions: 1) what effects do reform- and 
lecture-based teaching have on students’ performance?, and 2) how do learning opportunities differ 
based on teaching method when the teacher and course are the same?  
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Methods 
This quasi-experimental comparative study examines two sections of precalculus at a large 

community college in Southeastern United States. This study took place at the beginning of the 
fourth unit of instruction, approximately 75 percent of the way through the semester. Students were 
studying rational functions at the time. For students within this course, emphasis is placed on 
intercepts, asymptotes, and points of discontinuity. All observations were video recorded. 

Participants 
Each section was taught using a different teaching method, which we used to make distinctions 

between the two groups. One section was taught using lecture-based teaching methods (LG, N=24), 
primarily consisting of lecture and whole class discussion. The second section was taught using 
reform-based teaching methods (RG, N=29), where students worked in small groups using discovery 
and inquiry to investigate topics. The same instructor, who is one of the authors, taught each section.  

To compare the two groups we considered several factors. First, we considered the average test 
scores on three unit assessments that took place prior to the study. These three scores were consistent 
between the two groups (p-values=0.15; 0.50; 0.93). Second, we found the proportion of students in 
each group who needed to take remedial mathematics courses prior to enrolling in the course (RG: 13 
of 29; LG: 14 of 24; p-value = 0.33). Thus, we concluded the groups were academically comparable.  

Materials 
Students in RG were given a handout that included exploration tasks, and used pre-constructed 

GeoGebra files during each class. These files utilized sliders that were dynamically linked to 
functions, tables, and graphs being explored. In RG, students were encouraged to take their own 
notes based on conjectures they made as they explored. On the other hand, students of LG were not 
given the handout but instead the teacher wrote many notes on the board that students could 
transcribe while the whole class discussed mathematical concepts involved. 

Data Collection and Analysis 
Lesson plans for each group were developed to comply with the pre-selected teaching methods. 

Following each class, we met to discuss how faithful the teacher was to the method designated for 
that group. To assess the level of presentation fidelity achieved during each class we created a 
qualitative scale consisting of four levels: almost always, frequently, rarely, and never. 

To respond to our first research focus, we evaluated student scores on a post-assessment. To do 
so, a two-sample t-test was used to determine if there was a significant difference of average score 
between the two groups. To address our second research question, we analyzed video recordings of 
instructional time and considered students’ engagement with the types of tasks.Further, on the post-
assessment we categorized each question as, MEM, PNC, PWC, or DM so that an item-by-item 
analysis could be connected to learning opportunities. Additionally, some questions on the post-
assessment required that students provide explanations, coded as either full (F), partial (P), or no 
explanation (N), which were used to enhance our discussion on learning opportunities. 

Results 
When determining presentation fidelity, we coded the teacher at ‘almost always’ for all criteria 

for each class in both groups, thus the two sections were in fact unique. 

Post-assessment 
The post-assessment was given in the class following the three classes that were videotaped. 

Items 2, 4, 6, 7, 8c, and 8d were items that contained an explanation component. We independently 
coded post-assessments for correctness and explanation, and then discussed. There was a maximum 
score of 14; results between the two groups were not significantly different (RG: 7.59 [3.08]; LG: 
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8.21 [3.02]; p-value = 0.28). Therefore based on overall scores of the post-assessment we conclude 
that teaching method did not have an effect on student performance. However, an item-by-item 
analysis follows. 

In table 1 we report on the mean (and standard deviation) disaggregated by item within each 
group (only items that were significantly different are reported). Items reported in table 1 were 
scored with a 0 (incorrect) or 1 (correct). Next to each item number is the type of task (Stein et al., 
1996) coded for that specific item. Table 2 describes the proportion of questions answered with full 
(F), partial (P), or no explanation (N) on the post-assessment. 

Table 1: Post-assessment scores disaggregated by item 
 Question – Type 
Group 2 – MEM* 6 – MEM*** 7 – DM* 8c – PWC*** 
RG 0.45 (0.51) 0.31(0.47) 0.28 (0.45) 0.69 (0.47) 
LG 0.71 (0.45) 0.67 (0.48) 0.08 (0.28) 0.33 (0.48) 

Table 2: Proportions of F, P and N for each item by group 
 Question – Type 
 2 – MEM 6 – MEM 7 – DM 8c – PWC 

Group F P N F*** P*** N F*** P*** N** F*** P N*** 
RG 0.38 0.34 0.28 0.17 0.59 0.24 0.31 0.00 0.69 0.66 0.07 0.27 
LG 0.58 0.17 0.25 0.58 0.04 0.38 0.04 0.54 0.42 0.21 0.08 0.71 

*p< 0.10; **p < 0.05; ***p < 0.01 

Learning Opportunities 
Items 2 and 6 were coded as MEM, and in both cases LG did significantly better than RG. Items 

7 and 8c were coded as DM and PWC items, respectively. In both cases RG did significantly better. 
It is clear from these results that because LG was instructed on “rules” of rational functions and 
engaged primarily in low-level tasks (PNC) throughout the classes they did stronger on items of 
comparable caliber. Likewise, RG engaged primarily in high-level tasks (DM) throughout the classes 
and therefore, did stronger on DM or PWC items. 

Reform-based. Students were doing mathematics almost exclusively because all classes were 
student-lead and exploration-based. Small groups explored with the software and modified their 
conjectures about when holes occur versus vertical asymptotes. Similar activity transpired in groups 
during each class throughout the study; hence, students of RG were doing mathematics. 

Students periodically engaged in PWC, the secondary type of task, because of their use of 
multiple representations to engage with rational functions (Stein et al., 1996). It is worth noting that 
there was no occasion where we coded tasks as PNC or MEM in RG. We therefore were able to 
conclude the most common types of tasks for the unit in RG were high-level, primarily DM tasks. 

Lecture-based. Alternatively, all lecture-based classes were unique in their structure and the 
types of tasks in which students actually engaged. The teacher began class one by defining rational 
functions and outlining procedures to follow to gather information about characteristics of rational 
functions. These procedures were algorithmic and were focused on the correct answer instead of 
deepening mathematical understanding; hence deserving a code of PNC (Stein et al., 1996). This 
style was prominent in class one. However, since students engaged with technology to view 
graphical and algebraic representations, the secondary level of tasks was coded as PWC. Class three 
had a comparable lesson to class one so it was coded similarly. It should be noted that some tasks 
were coded as MEMin class three because students were asked to provide information based on 
“rules” learned in one of the previous classes (e.g., students’ hearing and subsequently memorizing 
phrases such as “vertical asymptotes trump holes”). 
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Class two was slightly different. The primary task was still PNC yet the secondary task was 
coded as MEM and the tertiary task was coded as DM. Students were instructed on rules to 
determine if a discontinuity was a hole or a vertical asymptote (MEM); however, students were also 
given an introductory task where they were given certain criteria and asked to create a rational 
function to meet those criteria (DM). Consequently, even though all four types of tasks appeared in 
LG every class, we concluded low-level tasks, primarily PNC were the most common types of tasks. 

Discussion 
In this section we provide an elaboration on the results presented in the previous section. To 

begin, there was no significant difference in mean scores on the post-assessment between the two 
groups. This is consistent with the students’ prior unit assessments, so it is not very surprising, and 
indicates that a reform-based teaching method did not have an effect (at least in this case) on 
community college students’ performance. However, when an item-by-item analysis of the post-
assessment was conducted we see that there were many significant differences between the two 
groups. We will focus this section on those differences and then suggest areas for future research. 

Recall that the most common level of tasks in which students engaged in the two groups was 
low-level in LG and high-level in RG. Students in RG did not experience low-level tasks during any 
of their classes. On the other hand, students in LG were able to experience all four types of tasks 
during every class. Students in LG outperformed RG students on memorization tasks, such as item 6. 
This implies that all students benefited from both low- and high-level tasks, but low-level tasks 
should not be prevalent during instructional time. Students in RG did significantly better than 
students in LG on item 8c in terms of both performance and explanation. In RG the teacher and the 
group never specifically went through finding y-intercepts of rational functions, indicating that 
students in RG were able to realize that y-intercepts cannot exist when there is a vertical asymptote of 
x=0. On the other hand, LG students were not able to explain that there was no y-intercept for the 
given function. These results further justify that all students should be exposed to all types of tasks, 
but high-level tasks should prevail during instruction. This answers our second research question. 

In conclusion, curriculum research at the postsecondary level is lacking in the literature. Our 
findings can act as a basis for future research endeavors. However, some limitations of our study are 
we only studied one teacher working with 53 students and our assessment may not have been 
reliable. Nevertheless, during our investigation of the effects on learning opportunities, we see that 
reform-based teaching methods can provide students with richer learning opportunities if student 
exploration is supplemented with high-level tasks. However, all students benefit from experience 
with all types of tasks, but focus should be given to tasks that require doing mathematics and 
procedures with connections. 
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In order to evaluate a curriculum, it must be known how students are using it. However, the 
opportunities for use afforded to students by curriculum are changing with technology. The purpose 
of this study was to discover how undergraduate students in applied calculus use the written 
curriculum in their course which included an online homework system. The study drew on three data 
sources: (a) online survey, (b) observations, and (c) interviews. Students’ survey responses indicated 
that, while not many students referenced the textbook, those that did preferred to use textbooks for 
finding worked problems, finding formula or definitions, and doing homework problems. The 
observations and interviews revealed that students responded to negative feedback by checking 
computations and for formatting errors.  

Keywords: Curriculum; Post-Secondary Education; Technology 

Use of Curriculum 
Researchers across disciplines have recognized the importance of curricular use. Lee, McNeill, 

Douglas, Koro-Ljungberg, and Therriault (2013) studied undergraduate engineering students’ use of 
textbooks during problem solving, and Peng (2009) studied accounting students required to use an 
online homework system. In mathematics education research, Williams and Clark (2012) looked at 
student actions broadly, including “what resources they used such as tutors, textbooks, online notes, 
and study groups” (p. 184), also considering the use of an online homework system and textbooks. 
The only resource which received significant use was the online homework, and that only for the 
completion of homework; students did not read the online textbook.  

Over the last two decades, many mathematics departments implemented online homework 
systems as part of their curricula (Hirsch & Weibel, 2003). Beginning in the 1990s, colleges and 
universities posited that online homework system in mathematics classes enhanced students’ learning 
in their first-year courses (Kehoe, 2010; Hauk & Segalla, 2005; Zerr, 2007). In these studies learning 
was measured by students’ self-reporting on surveys and performance on standardized assessments. 
Studies on the effectiveness of online homework determined either that there is no significant 
difference in standardized-assessment performance between online homework system and traditional 
paper homework (e.g., Hauk & Segalla, 2005), or that the use of online homework system has a 
small positive effect on performance compared to traditional paper homework (e.g., Burch & Kuo, 
2010). Until we know how students are using the online homework systems, we cannot be certain 
how the features support student performance or learning.  

Methods 
 In order to build on this research, we investigated the question: How do undergraduate students 

in an applied calculus course at a large Midwestern university use the written curriculum in their 
course?We define the written curriculum as the collection of instructional materials endorsed by the 
course coordinator to be used by students. It may include textbooks, documents, and online 
homework systems. By use of curriculum we mean any action involving the written curriculum with 
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the intention of accomplishing a goal (e.g., using the textbook to find a similar problem on which to 
model a solution or using the online homework system to satisfy a course requirement).  

Setting 
This study took place in an applied calculus course at a large Midwestern university. The 

syllabus listed the textbook and described the required online homework system (WebAssign). This 
particular instance of WebAssign allowed students three tries before deducting points for each 
question, required answers to be in one of a few acceptable formats, and included resources called 
Read It and Watch It for some problems in which students could reference a relevant section of the 
textbook or watch a short instructional video, respectively.  

Procedure 
When recruiting participants, we randomly selected instructors and then recruited in each of the 

two sections they taught. In this way all the students taking the applied calculus course were potential 
participants. Students were invited to volunteer to complete the online survey and participate in the 
observation and interview portion of the project. Thirty-five students completed the online survey 
and eight students were additionally observed and interviewed. Participants will be referred to by 
gender-preserving pseudonyms. 

Survey 
The survey was designed and distributed using Qualtrics software. Responses served as a 

baseline for descriptions of students’ access to and use of curriculum. Questions were designed to 
explore three different curricular materials: online homework systems, textbook (electronic or 
printed), and exams from a previous semester. For each of these materials, questions focused on 
exploring students’ use and/or goals for use.  

Observation/Interview 
Observations of the students using the written curriculum and an interview of those students 

provided the main sources of data. We observed eight participants working on their homework 
assignment or studying for an exam for 30 minutes. Immediately after finishing the observation, each 
student was interviewed for up to 30 minutes. We implemented a guided interview (Patton, 2002). 
There were some questions which were created before the interview and others were informed by the 
observation.  

Findings 

Use of Textbooks  
Of the 35 participants who responded to our survey, 34 (97%) had access to the textbook with 

either a physical copy, digital copy, or both. Of these 34, only 15 (44%) participants reported 
referencing the textbook at least once per week (see Table 1). No participants reported referencing 
the textbook more than 5-6 times per week.  

Of the eight participants we observed and interviewed, three had only a physical copy of the 
textbook, two had only the e-book, two had access to both, and one had no access to the textbook at 
all. Two of the participants who did have access never used it (from Brendan: “It’s been sitting in my 
room collecting dust”), and the remaining participants reported rarely using it. Brendan initially tried 
to use the textbook to find similar problems to those on the homework, but found, “It never 
corresponded with the problems I was having.” Another participant reported that, “When we were 
told we had to get it, I thought we would be assigned problems out of it, but we’re not.” 
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Table 1: Students’ Frequency of Use of Textbooks 
Frequency Responses Percentage (out of 34 students) 
0 times 19 56% 
1-2 times 10 29% 
3-4 times 4 12% 
5-6 times 1 3% 
7 or more times 0 0% 

Use of Online Homework System 
Each of the 35 participants reported having access to WebAssign. Most students reported using 

WebAssign for working on current homework (97%). A majority of students use WebAssign for 
looking ahead to future homework assignments (68%). Students also reported consulting WebAssign 
when studying for exams (65%), learning new material (94%), and studying for quizzes (88%). 
Kristen reported that when using WebAssign to study for exams, she would “try to think of problems 
I had difficulty with and maybe go back through them.” Cathy reported: “Just before the exam I will 
do the WebAssign again, go through all of them.” 

We also asked students to rank the strategies they were likely to employ when WebAssign 
marked an answer incorrect. Students reported being most likely to look for mistakes in their work, 
closely followed by trying the same answer in a different format. Students were much less likely to 
reference their textbooks or give up.Of the eight participants we interviewed, seven reported 
checking their own computations, four reported seeking the advice of peers (be it through personal 
communication or WebAssign’s online forum) or seeking the help of their instructor. Two reported 
consulting extracurricular online resources (e.g., Khan Academy) before resorting to the textbook.  

Use of Previous Exams 
Another curricular resource available to students was the exams used during the previous 

semester the course was offered. Perhaps not surprisingly, 82% of the participants in our study 
reported using these previous exams primarily to study for exams, with no other reason being 
reported by more than 18% of participants. Each of the eight participants we interviewed reported 
using the previous exams only to study for midterms and the final exam. Manny reported using the 
previous exams to gauge how many of each type there would be. Ben reported that he wanted to “see 
what kind of questions would come up on the exam.” Brendan wanted to use the previous exams to 
gauge the difficulty of upcoming exam problems and how many of each type would be used, but felt 
that they did not do this sufficiently well.  

We observed Brendan when he was using the previous exams to study for the final exam. He 
would highlight questions he wanted to review again later. Manny reported that he would take the 
practice exam under exam-like settings: “I keep a clock with me, I remove everything out, I just keep 
calculator, I do have a pencil with eraser.” After working through the entire exam, he would check 
the answers. Esther also reported taking the practice exam “like I was taking the exam.” Ben and 
Cathy would treat the previous exam as a set of sample problems and checked the answers after each 
question.  

Discussion and Conclusion 
Once a major pillar of written curriculum, our study shows that the textbook no longer holds a 

place of privilege (cf. Lee et al., 2013). Less than half of the participants surveyed reported accessing 
the textbook weekly. With few exceptions, the class met three times a week and there were six 
homework assignments due per week. Thus, for most students, neither lectures nor homework 
consistently prompted use of the textbook, a finding consistent with Williams and Clark (2012). 
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Nevertheless, it may be that the textbook was used irregularly by the majority of students; the lone 
participant interviewed without it revealed that there were a few times he wished he had purchased it.  

The lack of textbook use may be partially attributable to its integration into this particular course. 
The interviews uncovered a student who tried to use the textbook, but found it unhelpful. In another 
interview, a student attributed the lack of use to the fact that problems were not assigned directly 
from the book. In fact, none of the assessments for the course were directly related to the textbook. 
Those students who were using the textbook were using it merely as a reference for worked 
examples, formulas, and definitions, rather than as a way to learn material, a finding consistent with 
those by Lee et al. (2010), Williams and Clark (2012), and Lithner (2003).  

We conclude that course coordinators should look for more connections between parts of 
curriculum, including the features of the online homework system and use of the textbook. In this 
study we found that students did not use the textbook often, and, if they did use it, it was to look for 
worked examples, formulas, or definitions. The most prominent motivating factor seemed to be the 
bonus points they get for completing assignments early. Also troubling, students’ expressed a 
persistent concern about being able to correctly format of the online homework answers. If students 
do not trust the feedback from the online homework systems, its value as a learning tool, that is, its 
status as curriculum must be critically examined.  
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It has long been established that there is a difference between written curriculum and enacted 
curriculum. Teachers play an intermediary role between written curriculum and enacted. This 
suggests curriculum developers’ intentions do not directly determining what occurs in the classroom 
and therefore what students learn (Tarr, et al., 2008). This poster is focused on one aspect of how 
written curriculum is turned into enacted curriculum, teachers’ planning process.   

This study is a part of a larger NSF funded study (grants DRL-746573 and DRL-1222359) that 
utilized discourse analysis in the tradition of Gee (2014) by analyzing contextual/situated meaning to 
examine the relationship between teachers’ conceptualization of curriculum during the planning 
process and features of the curriculum resources used. The primary data source included interview 
data from 14 middle school teachers from the same state. Teachers participated in a staged lesson 
plan (SLP), a semi-structured interview where teachers were provided with materials from a 
curriculum that was philosophically different from the curriculum they currently enact and asked to 
plan a hypothetical lesson. For example teachers who used a traditional curriculum were given 
reform-based materials to plan from and vice-versa.  

Analysis of data included open coding of interview transcripts and provided resource materials. 
Remillard’s (2005) work was used as a framework to categorize how teachers conceptualized 
curricula. The framework was based on ways researchers have conceptualized mathematics curricula, 
namely as a resource to be: followed with fidelity/subverted, drawn from as one of multiple 
resources, treated as a text subject to interpretation, or utilized as a tool whose use is determined 
dialogically between the materials, teacher, and students. 

Findings included that when deciding how to use “new” curricular materials three features served 
as catalyst points for teachers’ decision making. The curricular features included teachers’ 
interpretation of how activities in the lesson related back to the stated goal/standard, physical layout 
of the materials including sequencing, and teachers’ anticipated student reactions to the 
materials/instructional activities. Analysis also indicated that the most difficult decisions for teachers 
focused on relating the standard/objective of the lesson to the lesson activities. The confusion 
teachers evidenced was attributed to differences in curricular materials. Most notably, reform-based 
materials provided discussions in teacher resources that tied objectives and guiding questions to the 
problem contexts students engaged with, whereas traditional resources did not. The lack of 
connections between objectives and activities made envisioning how materials could be used in the 
classroom more difficult and confusing for teachers. 
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Efforts to analyze the enactment of curricular materials have largely used tasks as their unit of 
curricular analysis (e.g., Henningsen & Stein, 1997). While the quality of tasks is clearly central to 
student learning, this level of analysis ignores the role that the sequencing of tasks plays in the way 
that students experience the lesson.  Examining the sequence of tasks enables the examiner to see 
how the posing and resolution of questions over time shapes the experience of the learner. 
Interpreting a math lesson as a story (Dietiker, 2013) allows for this type of analysis.  This poster 
uses Author’s mathematical story framework to address the research question: When enacted lessons 
based on the same written materials are interpreted as mathematical stories, what are the variations in 
how the content unfolds and how do these variations potentially impact students’ mathematical 
experiences? For this study, student mathematical experiences can include emotional responses to the 
story, opportunities for continued investigations, the closure of explorations, engagement with new 
content, etc. 

As part of a larger, ongoing study, this poster presents contrasting case studies of two different 
enactments of content that are based on the same textbook lesson. Two teachers were recorded 
teaching a lesson on using substitution to solve systems of linear equations from the same curriculum 
materials (blinded here, as an author of the materials is also an author on this proposal). These were 
veteran teachers with three or more years of experience teaching with the selected textbook and were 
chosen to represent a range of geographic and demographic sites. The recorded videos and interviews 
with the teachers were analyzed by the research team for the mathematical plot of the lesson 
(Dietiker, 2013). The questions found in these enactments, though often similar in form, emerged in 
different orders and are addressed in different ways. This poster presents an analysis that helps us 
understand and describe how the unfolding of content may result in different mathematical 
experiences for the students.  

Note: An author of this poster receives research funding from College Preparatory Mathematics 
(CPM), which is developing products related to research described in this poster. This author also 
receives book royalties from CPM for the textbooks used in the study. The terms of this arrangement 
have been reviewed and approved by Boston University in accordance with its conflict of interest 
policies. 
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The Common Core State Standards of Mathematics (CCSS) highlight the importance of gaining 
a conceptual understanding of key ideas by students (CCSS0, 2010, Key Shifts in Mathematics). One 
key idea in the CCSS for secondary mathematics is the knowledge of solving quadratic equations. 
The New York State Education Department (NYSED) developed EngageNY, which is a collection of 
curriculum modules and resources in PreK-12 aligned with the CCSS, to support teachers 
implementing key aspects of the CCSS. What is not known, however, is how well the EngageNY 
modules address the key shifts in Mathematics stated by the Common Core Initiative. In this study, 
we seek to answer the following research question: How many and what types of problems in solving 
quadratic equations are presented in the Algebra 1 and Algebra II modules on EngageNY.  
The analysis in this paper compiled information on: the number of lessons (horizontal analysis) and 
location of lessons (vertical analysis) in the Algebra I and Algebra II modules on EngageNY that 
involved the knowledge of solving quadratic equations. Individual lesson content, cognitive demand 
and response type of each task relating to the solving of quadratic equations were also compiled. 
Individual lesson tasks were coded using the framework drawn from Stein, Grover and Henningsen 
(1996) and Son and Senk (2010).  Of the five Algebra I modules on EngageNY, three modules 
contained lessons involving the solving of quadratic equations for a total of 14 lessons and 141 tasks. 
Of the four Algebra II modules on EngageNY, only 1 module contained lessons involving the 
knowledge of solving quadratic equations for a total of eight lessons and 70 tasks. With regard to 
lesson context, 110 of the lessons were purely mathematical (78%) while only 31 were coded as real-
world examples (22%) for Algebra I. In Algebra II, 67 of the tasks were purely mathematical (96%). 
In terms of the cognitive demand of mathematical tasks, we found that 26 of the tasks were coded as 
memorization (18%) and 79 were coded as procedure without connections (56%) for Algebra I. 
Thirty-three of the tasks were coded as procedure with connections (23%), while only 3 were coded 
as doing mathematics (2%). For Algebra II, none of the tasks were coded as memorization and 47 
were coded as procedure without connections (67%). Response type was another area of weakness 
for the tasks in the EngageNY Algebra I modules. One hundred twenty one tasks required students to 
give an answer only (86%) while only 20 tasks required an explanation (14%) for Algebra I. In 
Algebra II, 59 of the tasks required an answer only (84%) and 11 tasks required an explanation 
(16%). Although New York State has touted the EngageNY modules as having a level of difficulty 
equal to the Common Core expectations, our study shows that the intended curriculum of the CCSS 
is not being fully met by the module lessons provided on EngageNY for solving quadratic equations.  

References 
National Governors Association Center for Best Practices, & Council of Chief State School Officers. 

(2010). Common Core State Standards for mathematics. Retrieved from http://www.corestandards.org/Math/ 
New York State Education Department. (2011). About EngageNY. Retrieved from https://www.engageny.org/about 
Son, J. & Senk, S (2010). How reform curricula in the USA and Korea present multiplication and division of 

fractions, Educational Studies in Mathematics, 74(2), 117-142. 
Stein, M.K., Grover, B.W., & Henningsen, M. (1996). Building student capacity for mathematical thinking and 

reasoning: An analysis of mathematical tasks using in standards classrooms. American Education Research 
Journal, 33, 455-488.



Curriculm!and!Related!Factors:!Poster!Presentations! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

119!

RIGOR, RELEVANCE, AND RELATIONSHIPS: PRESERVICE TEACHERS’ 
PREPARATION ON PROJECT BASED LEARNING 

Jean Sangmin Lee 
University of Indianapolis 

jslee@uindy.edu  

Keywords: Curriculum; Instructional Activities and Practices; Teacher Education-Preservice 

Several national initiatives have sought to reform mathematics teaching to prioritize critical 
thinking and reasoning in order to address concerns about the mathematical underachievement of US 
students (NMAP, 2008). One inquiry-based instructional approach that has become increasingly 
popular is PBL. Unlike units in which a project is used as a culminating experience, PBL poses a 
realistic situation at the beginning of a unit and uses the need to create a deliverable product to drive 
the course content through an extended inquiry process. Students who learn in PBL environments 
learn rigorous mathematics, address relevant problems or topics, and build relationships with one 
another. The question that motivates this study is: What are the successes and challenges PSTs 
encounter as they design and implement math PBL units? 

Theoretical Framework 
The framework used to evaluate the rigor and relevance of PBL units is the Six A’s: Authenticity, 

Academic Rigor, Applied Learning, Active Exploration, Adult Connections, and Assessment 
Practices (Markham, Larmer, & Ravitz, 2003). This framework guided the analysis of the units and 
how they were implemented. 

Methods & Data Sources 
This exploratory study involved ten math PSTs in an accelerated, teacher residency program, 

earning a Masters of Arts in Teaching and a teaching licensure in 12 months. This study employed 
axial coding techniques (Strauss & Corbin, 1990). Data sources included before- and after-
implementation reflections, student-generated artifacts, and original and revised unit plans.  

Results 
PBL is an innovative instructional method designed to provide an authentic purpose for students 

to learn and engage with mathematics. However, implementing PBL instruction is no easy feat. The 
implementation of project based instruction in mathematics classrooms requires a shift from more 
traditional teaching practices to create classroom cultures that focus on flexible and robust 
understandings of math. This departure from conventional modes of teaching involves more than just 
a change in teachers’ knowledge; it requires teachers (and students) to reconceptualize what it means 
to teach and learn, and that they create new and different opportunities for learning in and out of 
classrooms.  
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The Common Core State Standards for Mathematics (National Governors Association Center for 
Best Practices & Council of Chief State School Officers [NGA & CCSSO], 2010) and separate 
individual state standards position algebra as a critical component of the secondary curriculum. The 
issue of access to algebra has also garnered much attention, as it is a gatekeeper for future success in 
mathematics and post-secondary schooling (Adelman, 1999), as well as access to it having been 
identified as a civil right (Moses, Kamii, Swap, & Howard, 1989).  

The current accountability culture (e.g., No Child Left Behind, 2001) and attempted national 
coherence of Algebra I standards (e.g., NGA & CCSSO, 2010) present persistent challenges in 
mathematics education. It is important to investigate policy changes made in response to the high-
stakes accountability measures within this culture as well as the state of curricular flux in this course 
that is required by numerous states for graduation. 

Our driving question is: “What policies shape Algebra I programs at the state level?” To answer 
this, we consider Indiana as a case study, investigating: How do schools determine when students 
take and who is teaching Algebra I? Who has influence in making these decisions? To answer our 
research questions, we gained a broad picture of programs across the state through surveying the 292 
public non-charter school districts in Indiana, asking quantitative and qualitative questions. The 
survey was emailed to the superintendent of each district, who then answered or distributed the 
survey to someone with a stronger knowledge base of the Algebra I program structures.  

With a response rate over 40%, our survey suggests school personnel are ready and willing to 
participate in a discussion on algebra policy. On average, 57% of respondents’ Algebra I students 
were 9th graders, with 8th graders making up 22% of respondents’ Algebra I students, as expected. 
The most common criteria that influence when students take Algebra I were found to be age/grade 
level (79% of respondents), grades in previous math classes (75%), current math teacher 
recommendations (68%), and test scores (60%). Our survey revealed that roughly half of high school 
mathematics teachers and roughly one third of middle school teachers in Indiana teach Algebra I, 
with respondents indicating the most powerful voices in deciding who teaches Algebra I as being 
administrators (95% of respondents), department head (64%), and individual teachers (59%). These 
survey results are being used to construct interview protocols aimed at discovering the individual 
features of representative Algebra I programs.   

This study seeks to add to the current conversation about Algebra I across the state and nation by 
reporting trends and patterns found throughout an entire state. We posit that being familiar with the 
policies that are in place will aid in understanding Algebra I programs across different schools, 
districts, and states.  
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My son in Grade 5 still doesn’t know the answer to 6 x 8. Why aren’t kids today memorizing 
their times tables? 

As mathematics educators, we’ve been asked this question dozens of times. Put on the defensive, 
we try to justify current strategy-based approaches and explain the importance of sense-making over 
memorizing supported by research (e.g., Boaler, 2002; Thompson, et al., 2013). Unfortunately, our 
efforts often inflame parents further. Despite 80 years of research that consistently demonstrates the 
detrimental effects of memorization and rule-based approaches to mathematics learning, the tug-of-
war between “new math” and “back to the basics” continues to be waged. In Canada, efforts to 
communicate advantages of current curriculum reforms to parents have largely failed. This failure 
leads to conflicting pedagogical agendas at school and at home or simply the disengagement of 
parents in supporting their children’s learning. 

The reported research was framed by the questions: What are parents’ experiences with and 
perceptions of curriculum change? What is the nature of their concerns? With our long term goal to 
identify fruitful ways to communicate reform to parents and help them re-engage in their children’s 
learning, the aim of the study was to establish theoretically and methodologically parents’ 
experiences in their own histories of learning mathematics, their perceptions of current approaches, 
and concerns or conflicts between their past experiences and current perceptions. 

Phenomenography (Marton & Booth, 1997) provided a theoretical grounding and methodological 
approach, where researchers develop a framework of related categories empirically to illustrate the 
range of participants’ perceptions of their experiences. Located in a large Canadian city and in rural 
communities, 96 parents across socioeconomic levels volunteered to participate. Qualitative data 
included 12 focus group sessions and follow up interviews with 36 of the parents, selected for the 
diversity and intensity of their perspectives. Categories of collective experience were generated and 
further substantiated through rich description of data exceprts.  

The results reveal two categories of collective concerns held by parents and educators: (1) the 
opportunity for students to reach expected learning goals, such as mastering computational skills, 
developing problem solving ability, and becoming functionally numerate citizens; and (2) ensuring 
adequate supports are in place so that learning goals are accessible and attainable, such as teaching 
expertise matched to learning expectations and clear, sequential resources accessible to teachers and 
parents. 

Our findings allow us to lay aside the rhetoric of oppositional stances in approaches to learning 
mathematics to identify and describe commonalities. Doing so helps us establish effective avenues of 
communication with educational stakeholders and empower parents to re-engage in supporting their 
children’s learning of mathematics.  
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Extensive research (e.g., Silver & Su, 2010) has attended to the affordances of professional 
learning experiences in which teachers collaboratively examine artifacts of students’ mathematical 
work to develop mathematical and pedagogical knowledge and to reflect on classroom practice. Less 
attention has been placed on the student practice of examining student work and how this impacts 
their mathematical understanding and reasoning (Rittle-Johnson & Star, 2011). The purpose of this 
study is to focus on the use of student work as a context for student learning. This is relevant to the 
PME-NA conference audience as student work can provide students with potentially different 
opportunities to examine varied mathematical conceptions by focusing on the reasoning, strategies, 
methods, and understandings of others. 

Our research study is framed by student, teacher, and curriculum generated student work. First, 
many teachers collect and use work generated by students to develop mathematical ideas. Second, 
the teacher anticipates a strategy that highlights an important insight or misconception. If students do 
not produce this strategy themselves, the teacher implants the strategy in the class discussion. Third, 
student work may be embedded in mathematics curriculum materials. Our research is guided by the 
question: What are the intended purposes of the student work embedded within the written 
curriculum materials for learning mathematics? 

To address this goal, we analyzed three middle school mathematics curricula: Connected 
Mathematics, College Preparatory Mathematics, and Big Ideas. The unit of analysis is each 
mathematics problem containing embedded student work. Curriculum-embedded student work 
includes references within the student text to how a person thought about a mathematical context or 
problem and requires that students analyze, evaluate, generalize, critique, and/or reflect on another’s 
mathematical thinking. Analysis of the student work focuses on the existence, nature (e.g., location, 
frequency, problem type such as error analysis), and intended purpose. 

Results of this study explicate existing curriculum-embedded opportunities for students to engage 
in the analysis, evaluation, generalization, critique, and/or reflection on another’s mathematical 
thinking. This work has implications for classroom practice because it serves as a mechanism to 
ensure students have access to opportunities for learning key concepts and strategies. Future work 
includes examining how teachers use curriculum-embedded student work and its impact on student 
learning outcomes. In addition, future research includes examining the impact of curriculum-
embedded student work on teacher pedagogical content knowledge. 
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Assessment and evaluation remain an enduring challenge in mathematics education. Paralleling 
the advent of standards-based curricula that advocates for reform-based mathematics instruction, 
formative assessment challenges conventional notions of assessments as paper-and-pencil tests used 
to measure student achievement at the end of instruction. Black and Wiliam (1998) used the term, 
assessment, to refer to “all those activities undertaken by teachers – and by their students in assessing 
themselves – that provide information to be used as feedback to modify teaching and learning 
activities. Such assessments becomes formative when the evidence is actually used to adapt the 
teaching to meet students’ needs” (p. 140). In this study, formative assessment is characterized as an 
ongoing process that occurs before, during, and after instruction by which teachers anticipate student 
strategies and solutions, gather and analyze evidence of student learning, and adapt their teaching to 
meet students’ needs and to help students develop their own reflective habits of mind.   

To provide attention to the complexities of daily formative assessment that occurs in mathematics 
classrooms, a group of curriculum developers, teachers, and mathematics education researchers have 
created a framework for formative assessment. The following research question guided our study: 
What is a framework that describes formative assessment opportunities and related teacher practices 
during planning, teaching, and reflecting? 

Based on the research literature and best practices, a framework was developed that includes 
suggested questions, examples, and strategies for formative assessment practices. The resulting 
framework is organized around two dimensions. One dimension captures key practices of 
anticipating student strategies and solutions, gathering and analyzing evidence, and adapting 
teaching. The other dimension is the Launch–Explore–Summarize instructional model. For example, 
the teacher’s role in the Launch is to assess students’ prior knowledge and its relationship to the 
challenge of the problem. This contrasts with the teacher’s role in the Explore where she attends to 
the needs of individual or groups of students as they work on the problem. Building on the Launch 
and Explore, the teacher orchestrates discussions during the Summarize phase to develop students’ 
understandings as they relate to the mathematical goals of the lesson.  

The framework suggests that formative assessment is an integral part of daily teaching practice 
and can be used as a lens to broaden teachers’ interpretations of formative assessment. Future 
research studies may use this framework to investigate, characterize, and report on teachers’ 
formative assessment practices. In addition, professional learning experiences can be designed using 
the framework to make the ongoing daily practice of formative assessment more accessible to 
mathematics teachers so that they can improve their classroom instruction. 
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This study examined the mathematics items in two national assessments conducted in Turkey, 
namely the OKS 2007 (Assessment of Secondary Educational Institutions) and the SBS 2011 
(Secondary Education Placement Test), in terms of content and cognitive domains. The main focus 
was to interpret the gains in Turkish 8th graders’ mathematics scores on TIMSS between 2007 and 
2011 in terms of the OKS 2007 and SBS 2011 assessments.  

The data for this study was derived from the Turkish 8th graders’ mathematics scores in TIMSS 
2007 and 2011 (Martin, Fullis, & Foy, 2008; Mullis, Martin, Foy, & Arora, 2012) and the 
mathematics questions in OKS 2007 and SBS 2011 assessments. For this study, the questions in OKS 
2007 and SBS 2011 assessments were categorized into one of four content domains (numbers, 
algebra, data & chance, and geometry) and one of three cognitive domains (knowing, applying, and 
reasoning) according to the TIMSS 2011 framework. 

Although Turkish 8th graders’ overall average mathematics score increased from 432 to 452 from 
2007 to 2011 in TIMSS assessment, there was no significant difference between given years in 
numbers content (Mullis et al., 2012). On the other hand, performance improved on the other content 
domains, especially geometry (Mullis et al., 2012) where the score increased 43 points (Mullis et al., 
2012). 

One of the likely reasons for the lack of improvement on the numbers domain of TIMSS is that 
the percentage of content items in number decreased from 39% to 20% between OKS 2007 and SBS 
2011.  Along with this decrease, there is evidence that teachers decreased emphasis in the area.  In 
contrast, the percentage of geometry items increased from 35% in 2007 to 50% in 2011. Thus the 
change in focus of the Turkish assessments in relation to TIMSS, where the emphasis on each of the 
content domains was constant, is likely a major reason for the increase in geometry performance 
relative to number.  

With respect to the cognitive domains in the assessments, it was found that there was an increase 
in the percentage of items in the knowing domain (28% to 55%) and a decrease in the percentage of 
items in the other two domains between the OKS 2007 and SBS 2011.  Relative to PISA, TIMSS is 
more of a factual and knowing-based assessment (Kloosterman, Roach, & Pérez, in press) and thus 
emphasis on the knowing domain in the Turkish assessments could also have impacted the strong 
gains of Turkish students on TIMSS.   
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Background and Research Questions 
Through studies conducted in the latter half of the twentieth century across many different 

languages and cultural norms, the semantic structure of word problems has been found to influence 
problem difficulty for young children, and word problems have been organized into taxonomies 
based on semantic structure and difficulty (Fuson, 1992; Verschaffel, Greer, & DeCorte, 2007). In 
the current era, the Common Core State Standards for Mathematics (CCSSI, 2010) explicitly 
incorporate the full range of word problems found in the established taxonomies.  

This change in the standards presents an interesting opportunity to explore questions of whether 
there is a fundamental way that children think about word problem types that makes some problem 
types inherently more difficult than others, or whether the differences in difficulty are manufactured 
by relative amounts of exposure and opportunities to learn.  

Using data generated from interviews and written assessments involving more than 2,000 
students during the 2013–2014 school year, our investigation is driven by the following two research 
questions: 

• With respect to the semantic structure of word problems, do the textbooks used in classrooms 
of students in our sample afford different opportunities to learn than the textbooks used in 
classrooms of students in the samples of students in the 1970s and 1980s? 

• Do the previously identified patterns in relative problem difficulty based upon the semantic 
structure of word problems continue to be valid for first grade students? 

We consider this study to be an important preliminary investigation into a larger question 
concerning the influence of semantic structure and opportunities to learn on the relative difficulty of 
word problems for young learners of mathematics. 
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Introduction and Method 
In this study, we engaged middle grades mathematics teachers in a comparative study of national 

and quasi-national standards documents, the CCSSM and the National Council of Teachers of 
Mathematics Principles and Standards for School Mathematics (PSSM). Findings indicate tensions 
exist between what teachers’ desire in standards documents and what standards authors provide. Nine 
middle grades teachers who were part of an existing professional development community that 
focused on increasing mathematical knowledge for teaching, participated in a focus group that 
reviewed and compared the PSSM and CCSSM. The focus group was conducted near the end of the 
academic year in which CCSSM was adopted by the state. The teachers were randomly divided into 
two focus groups, and were presented with three blinded sets of parallel excerpts from each standards 
document that represented similar content and foci. The excerpts included a topic from the algebra 
and geometry content standards, and the Problem Solving Process Standard from PSSM and the 
Standard for Mathematical Practice (SMP)Make Sense of Problems and Persevere in Solving Them 
from CCSSM. During the focus groups, the teachers were asked to compare the relative clarity and 
usefulness of the blinded excerpts. The discussions were video recorded and transcribed for inductive 
analysis. Open coding (Ryan & Bernard, 2000) was used to identify themes. All discrepancies in 
coding were discussed until consensus was reached. The data were then analyzed for similarities and 
differences (Charmaz, 2006) using a constant comparative method.  

Findings and Implications 
Based on teacher responses, the following findings were organized by three broad themes: 1) 

formatting, 2) implementation of standards, and 3) characteristics of ideal standards. The documents 
examined by the teachers in this study represent the intended curriculum; however, teachers’ 
indicated expectations of support that are traditionally found in a written curriculum (Reys & Reys, 
2010). The ideas expressed by teachers in these groups suggest that practitioner consensus regarding 
features of standards has yet to be conceived which manifests as tension between desired 
characteristics that, at times, appear in conflict with one another. 
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This study examined how (1) visual representations including illustrations and diagrams and (2) 
personalization to students’ out-of-school interests, affects 7th grade students’ performance on and 
perceptions of math story problems. Considerable research shows that learners benefit from visual 
representations, and effectively using visual representations is one way in which to improve problem 
solving. Research also suggests that even shallow attempts to personalize problem contexts to student 
interests in areas like sports or shopping can promote learning and interest. In prior research we 
found no effect for personalization or decorative illustrations for 7th graders solving percent 
problems, but diagrams with mathematical information were associated with higher performance. 
Here, we seek to replicate the results for a new content area and examine student perceptions of 
easiness and interestingness for the problems they solve.  

Participants were 179 7th grade students attending a suburban middle school; they solved a 
worksheet containing 8 story problems on which diagrams, illustrations, or personalization were 
manipulated. Students were significantly more likely to get a problem correct if it had a diagram 
alone than if it had no visuals (Odds = 1.66, p = 0.014). Students were not more likely to get a 
problem correct if it contained an illustration (p = 0.225) or a diagram with an illustration (p = 0.378) 
compared to no visuals, and students were not more likely to correctly solve personalized problems 
than non-personalized problems (p = 0.526). In the models predicting students’ ratings of easiness (1-
5 scale), problems with a diagram alone were rated as significantly easier compared to: no visuals (B 
= 0.17, SE = 0.07, p = 0.013), illustration alone (B = 0.19, SE = 0.07, p = 0.006), and a diagram with 
an illustration (B = 0.20, SE = 0.07, p = 0.006). Problems with an illustration were rated as 
significantly harder than problems without an illustration (B = 0.11, SE = 0.05, p = 0.029). 
Personalization was not related to easiness (p = 0.53). In the models predicting students’ ratings of 
interestingness (1-5 scale), problems with a diagram alone were rated significantly less interesting 
compared to: no visuals (B = -0.16, SE = 0.07, p = 0.017), illustration alone (B = -0.20, SE = 0.07, p 
= 0.002), and a diagram with an illustration (B = -0.27, SE = 0.07, p < .001). Personalized problems 
were significantly more interesting than non-personalized problems (B = 0.46, SE = 0.05, p< .001). 
 In both this study and our prior study, performance was highest on problems that had 
personalization, a diagram, and no illustration. The combination of personalization and diagrams may 
be ideal to promote engagement while scaffolding performance for struggling learners. We found 
that diagrams improved performance and made problems seem easier but students found them 
boring. Personalization did not affect performance or easiness, but made problems more interesting. 
Illustrations did not impact performance, but students felt they made problems harder. This study 
provides guidance to inform curriculum design in math education. 
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This study examined the effectiveness of the curriculum materials for a series of grade 8 
mathematics teacher workshops. In recent decades, educational researchers have tried to find 
effective ways to improve teachers’ professional knowledge (Desimone, 2009). Educational “field 
has acknowledged a need for more empirically valid methods of studying professional development” 
(p. 181). The development of computer information communication technology (ICT) provides an 
informal and integral tool for teaching and learning.  

The objectives of the materials were to integrate technology, mathematics content, pedagogical 
content knowledge and teaching resources in a collaborative environment of learning. The core 
features in this grade 8 mathematics program concentrate on Ten Dimensions (McDougall, 2004) for 
teachers’ professional development. The Ten Dimensions are: (1) program scope and planning, (2) 
meeting individual needs, (3) learning environment, (4) student tasks, (5) constructing knowledge, 
(6) communicating with parents, (7) manipulatives and technology, (8) students’ mathematical 
communication, (9) assessment, and (10) teacher’s attitude towards and comfort with mathematics. 
The research questions are: (1) how do curriculum materials meet the needs of participants? And (2) 
how do workshops in mathematics content, use of technology and pedagogical strategies affect 
teacher’s attitudes and beliefs about mathematics teaching? 

The participants were 29 middle school teachers and 8 principals from an urban school district. 
The teachers took part in four full day workshops and were provided teaching materials through a 
two-way website. The participants selected five dimensions as core objectives for the workshops. 
The curricula materials and delivery for this teacher program identified a few key factors: teachers’ 
needs based on former research, their feedback after each workshop, curriculum content selection, 
style of content delivery, and when and how to distribute workshops. The participants were 
interviewed individually and completed two surveys at the beginning and end of project in the 
academic year. This survey is a Likert-like six scale with 20 questions (McDougall, 2004). A paired 
T-test was employed to test significance for each of 20 questions to see the effects. Finally, the 
quantitative results were confirmed by the qualitative study.  

The results showed that the tailored curriculum material designed by focusing on the Ten 
Dimensions framework is an effective approach for in-service teacher programs. The participants 
increased their knowledge in their targeted objectives of this program. The participants changed their 
beliefs about their scope and planning skills, their ability to design interesting students’ tasks, their 
ability to communicate with parents and peer teachers, and the effective use of manipulatives and 
technology in classes. The participants were satisfied with the materials of mathematics content, use 
of technology for teaching and communication, and assessment activities conducted in the program. 
The findings of this program for design of curriculum content can be used in the similar educational 
contexts.   
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When to introduce negative integers to children is an important issue in school mathematics; 
delaying their introduction can lead to lasting misconceptions such as one cannot subtract a larger 
whole number from a smaller. Yet understanding negatives involves a complex extension of whole-
number knowledge. It is not known whether this extension is only possible after whole-number 
concepts are learned or whether simultaneous acquisition of positive and negative integer concepts 
is possible. This study used an established whole-number intervention (playing linear board games), 
extended to include negatives, with kindergartners and first graders. Performance placing integers 
on empty number lines provided evidence of students’ understanding of integer concepts. 

Keywords: Number Concepts and Operations; Cognition; Elementary School Education 

Purpose of Study 
One of the enduring challenges students face when learning number concepts is determining how 

to revise and build on their whole number understanding to include new numbers.  In particular, 
incorporating negative integers into their number system is challenging, and many students will 
continue to assert that you cannot subtract a larger number from a smaller one, even if they can solve 
other problems with negative integers (Murray, 1985). At a basic level, when learning about negative 
integers, students must extend their backward counting sequence to below zero, using the positive 
number names with the word “negative” before them.   Likewise, they must reinterpret the meaning 
of the minus sign to mean “negative” when attached to a numeral and referring to the numbers less 
than zero (Vlassis, 2004).    

When given the opportunity to explore negative numbers, even first graders were able to talk 
about their values (Bofferding, 2014) and use them in arithmetic problems (Behrend & Mohs, 
2005/2006).  Other researchers have identified kindergarteners who were able reason about negative 
numbers (e.g., Bishop et al., 2010).  However, questions still remain about the extent of knowledge 
possible for young students, whether typical kindergarteners can learn about negative numbers, and 
what types of activities might support their understanding.  We explore these issues in this paper.  

Theoretical Framework 
According to Case’s (1996) theory of Central Conceptual Structure for Number, before the age of 

four, children have two cognitive structures for number.  The first allows them to count a set of 
objects, and the second allows them to make visual comparisons of sets of objects.  However, they 
cannot use counting to help determine which set has more or less; these cognitive structures remain 
separate.  Around the beginning of kindergarten, children begin to coordinate the two structures and 
can reason that adding one object to a set corresponds to moving up one number in the counting 
sequence.  They also learn to map the numerals to quantities and number words. By first grade, these 
structures are often fully integrated if students have had supportive numerical experiences (Griffin, 
Case, & Capodilupo, 1995).  This integration is referred to as a mental number line.  As mentioned 
previously, to extend their mental number line to include negative integers, students must accept that 
there are numbers less than zero and learn the new notation (i.e., the importance of the negative sign), 
number names, how they are ordered, and their values. 

One experience that helps students develop their whole-number mental number line is playing 
linear board games (Ramani & Siegler, 2008).  On a simple board game labeled with squares from 1 
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to 10, preschoolers counted on as they moved toward the finish.  The experience of seeing and saying 
the number sequence helped the children progress in their ability to identify the numerals and 
determine which number is bigger.  Further, they outperformed a control group on a series of number 
line estimation tasks, which were the main measures of interest.  When given a number line marked 
with 0 and 10 and asked to mark where numbers 1-9 go, the students who played the game were 
more likely to space the numbers evenly.  Therefore, a linear model more completely explained their 
plots (based on R2 values) and slope values of their lines were nearer to one. The results indicated 
that playing the board game helped the children develop a mental number line for whole numbers 
(Ramani & Siegler, 2008).  

Unlike with whole numbers, where students have experiences both counting and working with 
sets of objects, children cannot work with negative sets of objects (unless we artificially impose a 
negative value onto objects).  Therefore, playing a similar linear board game that includes negative 
integers may be a helpful way to give children experiences with the order and values of negative 
numbers.  On the one hand, this extension might only make sense to children after they have 
developed a whole-number mental number line (in first grade).  On the other hand, they may be able 
to learn about negatives while they are simultaneously developing the whole-number mental number 
line (in kindergarten).  Based on these possibilities, we explore the following research question: To 
what extent can playing a linear board game including negative integers help kindergarteners and 
first graders develop a linear representation of the integers? 

Methods 
This study took place over two years.  In the first year, we worked with first graders, and in the 

second year, we replicated the study with kindergarteners. 

Setting and Participants 
The participants came from an elementary school located in a low-income area in the Midwest 

with a large proportion of English Language Learners.  In the first year, we conducted the study 
during the first three months of the school year with 50 first graders (26 female; 24 male); however 
due to two students moving and one not completing the tests, we only present complete data from 47 
students.  In the second year, we conducted the study during the first three weeks of the school year 
with 45 kindergarteners (27 female; 18 male).   

General Design  
Each year, the study involved an experimental design, which included a pretest, stratified random 

assignment to control or experimental (“game”) group, intervention, posttest, and follow-up.  We 
only present data from the pre- and posttest portions of the study.  The design and materials 
replicated those used by Siegler and Ramani (2009) but included some modifications and additions to 
include a focus on negative integers.  For the intervention, each participant worked with a researcher 
(professor or one of two graduate students) for three, 15-minute sessions.  One of the graduate 
research assistants worked with four kindergarten students who benefitted from Spanish translation.  
During the first year there were 22 first graders in the game group and 25 first graders in the control 
group with complete data.  During the second year, there were 23 kindergarteners in the game group 
and 22 kindergarteners in the control group. 

Pre-test and Post-test Measures 
The pretest and posttest were identical and conducted as individual interviews with the students; 

we did not provide specific feedback on their performance.  Across the sections of the test, the 
problems used positive integers as well as negative integers with tasks involving counting, ordering 
integers, determining which integer was closer to or further from 10, and solving addition and 
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subtraction problems involving positive and negative values (for further descriptions see Bofferding 
& Hoffman, 2014).  We describe the two main measures of interest here.   

First, on the integer identification task, we presented numerals on isolated pages in random order 
and asked students to identify integers from -10 to 10.  Second, in the final section of the test, 
students were asked to place integers on number lines. Students completed a packet involving 
positive integers followed by one involving negative integers.  Each page of the packet contained an 
empty number line 25.5cm long with two integers marked.  On the first page of both packets, 
students were asked to put a pen mark where 0 would go, given the locations of -5 and 5.  For the 
positive packet, the remaining pages contained empty number lines marked with 0 and 10.  The 
placement of zero in the middle, i.e., leaving space for the negative numbers to the left, was an 
important feature.  Students were asked to make a mark where a given integer should go a total of 18 
times (1 through 9 in random order, twice).  The researchers gave instructions such as, “If here is 0 
[point to the middle] and here is 10 [point to the right], then make a mark on this line [motions to 
whole 25.5 cm line] where 6 should go.”  The negative number packet worked similarly, only with -
10 marked on the left and 0 marked in the middle.  Students were told to place the negative integers -
1 through -9 on the respective pages. 

Control Group 
 For their three sessions, the control group students rotated through three types of activities with 
the researcher.  The first activity involved counting a collection of 1-10 items and counting backward 
as far as they could.  No feedback was given on correctness.  On the second activity, students put a 
set of six integer cards in order from least to greatest.  For example, one set they ordered included the 
following integers: 2, 1, 0, -5, 10, and -8.  After the students ordered the set, they were asked to show 
the least and the greatest.  No feedback was given on the ordering or the identification of the cards. 
The last activity in the sequence was a game of memory where the goal was to match integers.  
Corrective feedback was given if students attempted to collect an incorrect match, but they were not 
told the names of the numbers.   

Treatment (Game) Group 
During each 15-minute intervention session, the experimental group played a board game against 

the researcher using a board labeled with the integers -10 to 10 (see Figure 1). 

 
Figure 1: An illustration of the linear, numbered game board. 

Players started by placing their tokens at zero, and the first player drew a card from a card deck.  
In the first version, all but one of the cards was labeled with a 1, 2, or 3.  The remaining card 
contained the text, “All players go back to -10.”  When this card was drawn, the student had to count 
backward while moving the tokens back to -10.  The researcher always stacked the deck so that this 
card would come up in the first few turns of the game, ensuring players would advance from -10 to 
10 in each round.  Players drew a 1, 2, or 3, moved their tokens that number of spaces, and named the 
numbers on the spaces they passed through.  For example, if a player on -7 drew a “2,” then she 
would move her token to -6 and say “negative six,” then move her piece to -5 and say “negative 
five.”  The game ended when a player crossed 10. 

During the third session, the card sending players back to -10 was replaced with a stack of cards 
marked with -2 or -4.  Players began the game by drawing from this stack and counting backwards as 
they moved to -10.  Once a player reached -10, on her next turn she would begin drawing with the 
deck containing positive numbers.  From this point, play continued as normal, with the game ending 
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once a player crossed over 10.Students played an average of 4 games in 15 minutes, and the 
researchers gave feedback (if needed) to correct the name of the integer that students landed on or 
correct the number of spaces they moved their game piece.  Students had to repeat the correct name 
or counting sequence before the game play continued. 

Analysis 

Measurement 
All items from the assessments were marked as correct/incorrect, except those in the number line 

estimation tasks.  For the latter, we measured how far away from zero the student made a mark on the 
empty number line (to the nearest half-millimeter).  We also gave the magnitude a sign, positive or 
negative (because zero was in the center of the line).  While students were instructed to make a 
single, vertical line segment as their mark, some made several segments (by moving the pen rapidly 
up and down) or drew the numeral instead of a line segment.  When measuring in these cases, we 
took the average of the left and right-most marks. 

After one researcher completed the initial measurements for a set (e.g., measured one student’s 
placements of positive numbers on the pretest), another researcher randomly checked five 
measurements.  If there was disagreement on even one measurement, the second researcher checked 
all the measurements for that set.  Lastly, a third researcher took measurements to resolve all 
disagreements. 

Coding 
To interpret the measurements, we created a four-tiered coding system.  When dealing with only 

whole numbers as Siegler and Ramani (2009) did, it was sufficient to use two quantitative 
measures.  The R2 values measured the degree to which the placements were linear, and the slope of 
the regression line measured whether increases in the numbers to be placed resulted in a proper 
increase in the placements.  When negatives were introduced, a complication was added.  Students 
not only had to space the numbers evenly (high R2value) and with equal spacing (slope near one), but 
they also had to know on which part of the number line to make the placements.  As an example, 
consider a student who counted from the left (at -10) when marking positive numbers.  The R2 and 
slope could be exactly one, but the student would have major errors as 1 would end up at -9, 2 at -8, 3 
at -7, and so on.  To capture errors such as this, we added a third quantitative measure: numbers 
placed on the wrong side of zero.  For students to show great understanding in their placements, they 
needed to have high R2 values, a slope near one, and few numbers on the wrong side of zero. 

To make this systematic, we created codes for four levels of understanding.  A student with Level 
3 understanding had an R2value ≥ 0.90, a slope of 1 ± 0.3, and at most one value placed on the wrong 
side of zero.  A student with Level 2 understanding did not show Level 3 understanding and had an 
R2value ≥ 0.80, a slope of 1 ± 0.8, and at most two values placed on the wrong side of zero.  Level 1 
understanding meant not fitting into the higher levels and an R2value ≥ 0.60, a positive slope, and at 
most four values placed on the wrong side of zero.  Finally, Level 0 understanding was for students 
who did not fall into any of the higher levels. The cutoffs for these levels evolved after familiarizing 
ourselves with the data, including looking at scatterplots, regression lines, and using qualitative 
codes. 

Comparing Groups 
Our primary hypothesis was that the game groups would make significantly more gains in their 

ability to place integers on an empty number line.  We operationalized this using the level-of-
understanding codes described above.  Specifically, we hypothesized that the mean increase in level 
of understanding would be significantly higher for the game group both in kindergarten and in first 
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grade, and both with positives and negatives.  We were most cautious in our hope with the 
kindergarteners’ performance with negatives, especially if they lacked the ability to correctly identify 
negatives.  In addition to using inferential statistics to test the above hypotheses, we also sought 
qualitative patterns in the data to motivate fuller explanations and future research. 

Results 

Identifying Negative Integers 
On the pretest none of the kindergarteners in either groups could identifying any of the negative 

integers; instead they ignored the negative signs and either identified the positive numeral or said 
random number names.  On the posttest, none of the kindergarteners in the control group were able to 
identify the negative integers.  However, six students (26%) in the game group could correctly 
identify the majority of them.  In first grade, three students (12%) in the control group and four 
students (18%) in the game group were able to identify negative integers on the pretest.  By the 
posttest, eight students in the control group (32%) and 21 (95%) students in the game group did so. 

Number Line Estimation 
Overall, the kindergarteners showed low levels of proficiency at placing integers on an empty 

number line.  Despite the fact that six students in the game group had success identifying negative 
integers on the posttest, none of the students showed Level 2 or 3 understanding according to our 
coding system (see Table 1).  Similarly, there was limited success with positives in the game group; 
only two students achieved Levels 2 or 3.  No students in the control group for kindergarten moved 
above Level 0 for positives or negatives.  While several kindergarteners’ R2 values improved, they 
often had a tendency of placing the numbers on the wrong side of zero (see Table 2 for an example). 

Table 1: Students’ Levels of Number Line Estimation on Pre- and Posttest 
 Kindergarten Kindergarten  1st Grade 1st Grade 
 Control (N=22)  Game (N=23)  Control (N=25)  Game (N=22) 

Level Pre Post  Pre Post  Pre Post  Pre Post 
Positive            

3 0 0  2 2  7 6  2 3 
2 0 0  0 0  6 4  6 6 
1 1 0  1 3  3 2  1 2 
0 21 22  20 18  9 13  13 11 

Negative            
3 0 0  1 0  4 3  3 7 
2 2 0  1 0  6 4  5 6 
1 1 0  0 2  2 3  3 1 
0 19 22  21 21  13 15  11 8 
 
The first graders performed better than the kindergarteners in every way.  There were seven 

students who achieved Level 3 with negatives on the posttest and six who achieved Level 2.  Thus, 
well over half (59%) showed high levels of proficiency.  With the positive integers, nine students 
achieved Levels 2 or 3 (41%).  Even the control group experienced success: ten students achieved 
Levels 2 or 3 with the positives (40%) and seven with the negatives (28%). 

To make the comparison between the groups more rigorous, tests of four a priori hypotheses 
were conducted using Bonferroni adjusted alpha levels of .0125 per test (.05/4).  The four hypotheses 
consisted of checking for significant differences between the mean change in level of understanding, 
pretest to posttest, for the positive and negative integers, crossed with the two grade levels.  Results  
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Table 2: A Kindergartener’s Number Line Estimation Data (Level 0) on Pre- and Posttest 
Student G02, Pretest Positive Values 

 
R2 = .01; Slope = -.02, all with wrong sign 

Student G02, Posttest Positive Values 

 
R2 = .28; Slope = -.50, all with wrong sign 

Student G02, Pretest Negative Values 

 
R2 = .02; Slope = -.10, all with wrong sign 

Student G02, Posttest Negative Values 

 
R2 = .62; Slope = -.68, all with wrong sign 

 
indicated that the mean change in level of understanding was not significantly different with the 
positives for the kindergarteners between the control group (M = -0.05, SD = 0.21) and the game 
group (M = 0.09, SD = 0.29).  Also for the kindergarteners, the mean change was not significantly 
different with the negatives between the control group (M = -0.23, SD = 0.61) and the game group 
(M = -0.13, SD = 0.46).  Likewise, there was no significant difference seen in the first graders with 
the positives between control (M = -0.32, SD = 0.95) and game (M = 0.18, SD = 1.01).  However, 
there was a significant difference seen the mean change with respect to the negatives in first grade 
between the control (M = -0.24, SD = 0.72) and the game group (M = 0.55, SD = 1.18), t(34) = -2.70, 
p = .011.  Therefore, the intervention, i.e., playing the linear board game significantly impacted 
participants’ ability to place negative integers on an empty number line. 

Students who were less successful on the number line estimate task fell into two major groups.  
One set of students spaced out the numbers along the entire line, ignoring that 0 fell in the middle of 
the line.  Therefore, these students had close to half of their points fall on the wrong side of zero (see 
Figure 2). 
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Figure 2: An illustration of data spanning the whole number line when placing -9 to -1. 

A second set of students placed numbers in two to three similar locations, regardless of the number 
shown, as if they split the number line into small and large or small, medium, and large.  Therefore, 
their points formed distinct clusters along the line (see Figure 3).  Sometimes, these students started 
at 0 and counted up to place numbers 1-5 or started at 10 and counted down to place numbers 6-10, 
which accounted for the clustering.   

 
Figure 3: Illustrations of data chunked along the number line when placing 1 to 9. 

Conclusions and Implications 
Based on the results, we conclude that playing the board game did not help kindergarteners 

develop a mental number line including negative numbers.  Although they started to space out their 
placement of the integers, they frequently placed numbers on the opposite side of zero.  More 
surprising, they did not improve on placing the positive values on the board as was found in previous 
studies with preschoolers (Ramani & Siegler, 2008; Siegler & Ramani, 2009).  A likely reason for 
this is that students were given space to mark positive numbers before 0 (as opposed to having zero 
at the edge of the page).  Therefore, they often chose to mark 0 and 1 near the left edge of the paper, 
to the left of zero, at the beginning of the line.  This suggests that as students learn about positive 
numbers, they need opportunities to see zero in other locations than just at the edge of the paper, and 
also suggests that Ramani and Siegler’s (2008) results may overestimate students’ abilities.  Because 
the kindergarteners here learned about positive numbers and negative numbers, it is also possible that 
the kindergarteners had too much to learn compared to children in Ramani and Siegler’s study 
(2008), and the time spent on negatives might have taken away from time needed with positive 
numbers.  Alternatively, providing a longer intervention may lead to a stronger effect for both 
positive and negative numbers.  

On the other hand, the first graders in the game group benefitted from playing the board game.  
Almost all of the students were able to identify negative numbers on the posttest and a significant 
number were able to estimate the placement of all integers on the number line fairly well.  These 
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results suggest that students are more likely to develop a mental number line that includes negative 
numbers if they already have a whole number mental number line.   

Finally, students’ placement of the numbers suggests a few areas to focus on in instruction.  
Students had an inclination to take up as much space as they were given, spacing out the positive 
numbers across both negative and positive parts of the number line (and similarly for negative 
numbers).  Further, they often started counting from the very left of the page, rather than attending to 
the given points.  When introducing and using visual aids such as the number line in the classroom, 
teachers should present numbers in multiple formats (not always starting at the left of the paper) and 
talk about numbers on either side of key reference points, such as zero.  Presenting number lines with 
different numbers marked and with different scales may help students attend to the relevant features 
of the number lines and placement of numbers. 
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Proportional reasoning is key to students’ acquisition and application of complex mathematics and 
science topics. Research is needed regarding how students’ progress towards and come to 
demonstrate key developmental understandings within proportional reasoning. To this end we 
created and administered assessment items to 297 middle grades students. We categorized student 
solution processes qualitatively, followed by Rasch analysis to examine item difficulty and strategy 
use in relation to an anticipated trajectory. Our findings indicate that different strategies manifest 
themselves in a hierarchical manner, providing initial confirmation of categories based on strategy 
efficiency and emphasizing the importance of teacher (and researcher) analysis of classroom 
assessments from a student cognition perspective. 

Keywords: Learning Trajectories; Measurement; Number Concepts and Operations 

Purpose 
Proportional reasoning is a lynchpin for future success in mathematics and science (Lesh, Post, & 

Behr, 1988). Based on a substantial body of proportional reasoning research (e.g., Lamon, 2005; 
Lobato, Ellis, & Charles, 2010; Tourniaire & Pulos, 1985), there have been several calls for shifting 
instruction from the typical focus on the cross-multiplication algorithm to students’ meaningful 
understanding and application of ratio related concepts (e.g., National Governors Association & 
Chief Council of State School Officers, 2011). However, implementing this shift in instruction is 
difficult. Schools and teachers need resources to support this change and more information is needed 
on how students’ proportional reasoning develops from less efficient to more efficient strategies. 

The overall purpose of our research is to develop measures to assess students’ flexibility and 
efficiency in proportional reasoning situations. Our work revolves around: (a) measuring and 
identifying qualitatively different categories or aspects of student reasoning, and (b) determining 
whether these categories manifest themselves along a hierarchical progression. The qualitative and 
quantitative confirmation of different categories or aspects of students’ proportional reasoning along 
a continuum would contribute to a better awareness of how students’ progress towards important 
understandings and assist in designing classroom instruction, curriculum, assessment, and teacher 
professional development. 

More specifically, the present research uses Simon’s (2006) KDUs as a theoretical framework for 
examining student work samples to identify qualitatively different categories or aspects of 
proportional reasoning in simple missing value contexts. From there we use the structure of 
Steinthorsdottir’s (2009) hypothetical trajectory to create assessment items which measure students’ 
proportional reasoning and enable us to analyze and categorize the resulting student thinking. Lastly, 
we use Rasch modeling to determine whether our identified categories for student thinking manifest 
themselves hierarchically, indicating the potential usefulness of the assessment items and qualitative 
rubric for teachers and researchers in their analysis of students’ thinking. 
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Theoretical Framework 
Simon’s (2006) articulation of key developmental understandings (KDUs) provides a framework 

for analyzing students’ flexibility and efficiency in proportional reasoning situations. Simon (2006) 
describes key developmental understandings by stating, 

…I am not claiming that these understandings exist in the student; rather, specifying understandings 
is a way that observers (researchers, teachers) can impose a coherent and potentially useful 
organization on their experience of students’ actions (including verbalizations) and make distinctions 
among students’ abilities to engage with particular mathematics (p. 360). 

We see KDUs as a potential framework for identifying important categories of students’ 
reasoning when analyzing work samples. The following section articulates a KDU important to 
students’ initial development of proportional reasoning. 

Research indicates that students’ demonstration of flexible and efficient use of the scalar and 
functional perspectives in proportional reasoning situations may be a KDU (Lobato, Ellis, and 
Charles 2010; Lamon 2005). A scalar perspective entails recognizing a ratio as a composed unit that 
can be scaled up or down by multiplying each quantity in the ratio by a constant factor. For example, 
given the problem “Callie bought 7 cookies for $3. How many cookies can Callie buy for $12?” a 
student recognizes the original 7 cookies to $3 ratio can be scaled up by multiplying each quantity in 
the ratio by 4 to generate the 28 cookies for $12 ratio (see figure 1a). A functional perspective entails 
recognizing and using the constant multiplicative relationship between the two quantities within the 
ratio and applying this relationship to create equivalent ratios. For example, given the similar context 
“Callie bought 6 cookies for $2. How many cookies can Callie buy for $13?” a student recognizes 
the number of cookies to be purchased is three (6 ÷ 2) times the number of dollars paid. This 
understanding allows the student to quickly realize Callie can purchase 3 x 13 or 39 cookies (see 
figure 1b). 

 
Figure 1. Scalar and functional assessment items and solution perspectives. 

In simple missing value problems, students demonstrate attainment of this initial proportional 
reasoning KDU by flexibly and efficiently demonstrating knowledge of either the scalar or functional 
strategies based on the situation or number relationship presented (Steinthorsdottir & Sriraman, 2009). 
For example, given the situation illustrated in Figure 1a, an efficient and flexible strategy is to scale up 
by a factor of four. A student who applies the functional multiplier of 2.33 is likely performing a 
standard procedure without reasoning through the proportional relationships, indicating a possible lack 
of flexibility in their proportional reasoning. 

In addition to examining a students’ work for application of the scalar or functional perspective, 
one must also examine scalar situations for the level of efficiency used in the scaling process (Authors, 
2015). For example, in missing value situations with an integral scalar relationship strategies can often 
be differentiated as additive or multiplicative (see figure 2). 

Additive strategies may indicate initial understanding of the scalar relationship but a multiplicative 
understanding is needed for eventual generalization of the scalar perspective to non-integral 
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relationships. Therefore, student work must also be examined for use of an additive versus 
multiplicative approach in addition to the scalar and functional perspectives. 

 

 
Figure 2. Additive and multiplicative solution strategies for a scalar problem. 

In sum, we observe students’ flexible and efficient application of the scalar or functional 
perspective in simple missing value situations as an initial KDU in a proportional reasoning learning 
trajectory. In students’ application of the scalar perspective, student solution strategies must be 
examined for an additive versus multiplicative approach to ensure students are able to eventually 
generalize their strategy to non-integral situations. The next section details a potential developmental 
trajectory for these ideas, followed by a description of the assessment items designed to capture 
students’ understanding of these concepts. 

Steinthorsdottir and Sriraman (2009) articulated a potential progression for students’ proportional 
reasoning. They identified four levels of increasingly sophisticated strategies students used to solve 
missing value problems. In level one, students incorrectly focus on the difference in quantities either 
within or between the ratios. In level two, students focus on either additively iterating or 
multiplicatively scaling the given ratio as a composed unit to reach the missing value in the 
equivalent ratio (scale-up). Level three involves scaling down a given ratio, and includes two sub-
levels, the ability to partition the given ratio as a composed unit to reach the missing value in the 
equivalent ratio (scale-down) and the ability to combine iteration and partitioning to reach the 
missing value (scale up and down). Level four involves the flexible use of either the scalar or 
functional relationship depending upon the ease of calculation with the numbers in the problem. 

Based in part on the progression outlined by Steinthorsdottir and Sriraman (2009) and the 
identified KDUs for scalar and functional perspectives, we developed an assessment with a focus on 
manipulation of number relationships to examine students’ types of reasoning and the level of 
efficiency in their solution process. For the sake of brevity we focus on presenting three exemplar 
problems from the assessment and their solution strategy analysis (Table 1). 

Table 1: Assessment framework and anticipated solution strategy analysis 

 

Methods 

Research Questions 

1. Can we identify qualitatively different categories of student thinking related to use of an 
additive or multiplicative solution strategy and/or fluent and flexible use of the scalar or 
functional relationship depending on the number relationship presented? 
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2. Do the items manifest themselves as anticipated in relation to a progression from easiest-
scale up, moderate-scale down, to functional-hardest? 

3. Do the strategy labels and associated scoring codes based on strategy efficiency manifest 
themselves as anticipated along a continuum? In other words, are less efficient strategies used 
by less able students and more efficient strategies associated with more able students? 

Participants 
The respondents represent a convenience sample of 297 students from fourth to ninth 

grade with the majority of the students coming from 6th and 7th grade (n=198). 

Measure 
As described in Table 1, we constructed a measure based on the Steinthorsdottir progression. We 

focus on presenting data from three of the assessment items: scale up, scale down, and functional. 
Table 1 provides the 3 items and the anticipated ‘efficient’ strategy based on the number relationship. 

Table 2: Assessment items included in analysis. 

 

Timeline and Setting 
In order to focus on initial cognitive understanding rather than procedural knowledge, assessment 

items were administered in the fall prior to formal proportional reasoning instruction. Older students 
in our sample should have received instruction around proportional reasoning and we would expect 
more efficient strategies from these students. However, contact with teachers in our study indicated 
instruction was based primarily on implementation of cross-multiplication, with little or no emphasis 
on scalar or functional perspectives. 

Results 

Qualitative analysis of the outcome space 
We analyzed the student strategies for each assessment item. We coded each for an additive or 

multiplicative solution strategy and/or fluent and flexible use of the scalar or functional relationship. 
Table 3 provides an overview of the coding framework with example student work for each 
efficiency level. In addition to the qualitative coding of strategy name, description and example, we 



Early!Algebra,!Algebra,!and!Number!Concepts:!Research!Reports! 145!

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

identified the following scoring categories with respect to strategy efficiency: 0 = incorrect, 1 = 
correct but inefficient strategy, and 2 = correct and efficient strategy.  

Rasch Analysis 
We selected Rasch modeling for our quantitative analysis due to its usefulness in (a) identifying 

the difficulty level of an item in relation to other items, and (b) evaluating the strategy thresholds of 
our efficiency-based scoring model (Van Wyke & Andrich, 2006). Assessments created to fit the 
Rasch model consists of items designed to assess a single (unidimensional) construct. Rasch analysis 
situates test takers’ understanding (person ability) and item difficulty along a common equal interval 
scale, often with a score range between -4 to 4 with 0 as the mean. Therefore, person ability and item 
difficulty scores can be interpreted in relation to one another through probabilistic language. In 
situations involving dichotomous scoring (0=incorrect, 1=correct), when person ability and item 
difficulty are the same, this indicates a 50% probability that the individual would respond correctly 
(or incorrectly). When a person ability score is higher (e.g., 1) than the item difficulty (e.g., -1) the 
person is more likely to solve the problem correctly and vice versa. Figure 3 provides an example of 
a Rasch 

Table 3: Strategy coding framework for assessment items with example student work. 

 
 

item scale map based on our analysis. Typically Rasch item maps display person ability on the left 
side of the scale and item ability on the right. However, for ease of interpretation, we focus on item 
difficulty and are not displaying person ability. 
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Analysis 1 
In the context of our present work, we first used Rasch analysis to examine item difficulty in 

relation to the number relationships being manipulated across problems. Our initial analysis examined 
whether the item difficulties manifested themselves as anticipated in relation to our hypothetical 
progression; easiest-scale up, moderate-scale down, and functional-hardest? 

Figure 3a presents the results of Rasch analysis using the Winsteps program with dichotomous 
item scoring (0=incorrect, 1=correct). The difficulty scores in the box represent the item difficulty 
(and standard error) and determine an item’s placement on the scale. For example in figure 3a, for the 
scale up item, -2.99 is the point on the continuum where students with an estimated ability below -
2.99 are more likely to get the problem incorrect. Students with an estimated ability score above -
2.99 are more likely to get the problem correct. If a student had an estimated ability score of 0, it is 
likely they would correctly solve the functional and scale up item but incorrectly solve the scale 
down item. 

Findings from Analysis 1 
The item order from easiest to most difficult was (1) scale up, (2) functional, and (3) scale down. 

Our empirical data indicated more students were likely to correctly solve the functional item than the 
scale down item. This was different than we anticipated. However, we recognized potential issues 
with this analysis. First, there was the issue with the scale down item not resulting in an integer 
answer (i.e., 2.5 cookies) and it is highly possible this non-integer result influenced the level of item 
difficulty. 

However, perhaps more importantly, there was also an issue with examining the data from a 
dichotomous or correct/incorrect perspective instead of investigating students’ strategy approach 
given our qualitative scoring rubric. We knew students used different strategies to correctly solve an 
item. Our dichotomous scoring model did not allow us to take student strategies into account, nor did 
it allow us to examine whether students had selected a flexible and efficient approach based on the 
number relationships presented in the problem. For example, on the scale up problem we wanted to 
determine whether students who were more likely to use an additive strategy (less efficient) versus a 
multiplicative strategy (more efficient) differed in ability score.  

Analysis 2 
Analysis 2 evaluated the qualitative rubric and associated scoring model of less and more 

efficient strategies. Our specific question was, did our strategy labels and associated scoring codes 
related to strategy efficiency manifest themselves as anticipated along the interval scale? In other 
words, are less efficient strategies associated with less difficult threshold scores and more efficient 
strategies associated with more difficult threshold scores. Thresholds are the point on the continuum 
where adjacent categories (or strategies) are equally probable. For example, the transition point 
between correct but inefficient (1) and correct and efficient (2) for the scale- up problem is .48 (see 
table 4). A student with an ability score of 1 would be more likely to use an efficient strategy, while a 
student with an ability score of 0 would be more likely to use a correct but inefficient strategy. To 
conduct this analysis we used a partial credit Rasch model in the Winsteps program. The strategy 
categories were scored as more efficient (2 pts), less efficient (1 pt), and incorrect (0 pts). 

Findings for Analysis 2 
Table 4 provides the Rasch item statistics for the three items and the associated category 

thresholds (other assessment items administered on the test are not included for ease of 
interpretation). The fit statistics indicate the items are ‘fitting’ the model. Figure 3b presents findings 
from analysis 1 and 2 in conjunction with each other. For example, the less efficient scale up additive 
strategy for the scale up item had a difficulty threshold of -3.85, and the more efficient scale up 
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strategy for the same item had a difficultly threshold of 0.48. This indicates that a student with an 
ability level below -3.85 would likely get the item incorrect. Those students with ability levels 
between -3.85 and .48 would likely get the item correct, but use an additive strategy. Those students 
with an ability level above .48 would be more likely to use a multiplicative strategy. 

Table 4: Rasch item statistics for proportional reasoning items 
 

Strategy Category 
Threshold 

Threshold 
Difficulty 

SE
 

Infit 
MNSQ 

Outfit 
MNSQ 

Scale Up 

Scale Down 

Functional 

0-1 -3.85 0.22 1.01 1.00 
 

1-2 0.48 0.21 1.06 1.12 
0-1 -0.38 0.18 0.89 0.80 

 

1-2 1.54 0.37 1.20 1.07 
0-1 -0.97 0.18 0.98 0.92 

 

1-2 1.57 0.37 1.07 1.00 

The threshold levels for additive versus multiplicative strategies also held true for the scale down 
item. While still preliminary, these findings support analysis of students’ use of additive or 
multiplicative strategies in classroom and assessment practices to determine their depth of 
understanding of the scalar perspectives. This will support later work on related topics, such as 
geometric scaling where students must be flexible and efficient in applying a scalar multiplicative 
strategy. In addition, threshold levels for the functional item strategy categories supported the 
progression articulated by Steinthorsdottir and Sriraman (2009). 

In conclusion, we recognize a continuum of ordered strategies related to students’ ability is not 
equivalent to a progression of how students’ develop understanding of a KDU. However, Rasch analysis 
has the potential to support our qualitative findings in ways that would assist in identification of 
hierarchical relationships between strategy approaches. This can provide important information to inform 
future research. In addition, the fact that the observed strategy thresholds match the scoring rubric 
indicate the usefulness of the qualitative rubric in analyzing student work through an efficiency 
perspective. 

Lastly, while not a focus on this investigation, comparison of the two scoring models highlights the 
importance of analyzing students’ strategies in the evaluation of students’ understanding of a topic. We 
cannot assume students have demonstrated knowledge of a key development understanding simply 
because they provide the correct answer. A student could (and did) correctly solve all three assessment 
items using a scalar additive or scale up and down strategy. However, these strategies do not 
demonstrate understanding of the scalar and functional perspectives and will not continue to work as 
number relationships increase in difficulty. 
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This proposal explores how the activity of subitizing – quickly apprehending the numerosity of a small 
set of items – changes with the development of number concepts. We describe how varying the 
orientations of items in teaching experiment sessions promoted one pre-schooler, Frank, to attend to 
subgroups of items and change his thinking about conjoining two numbers. The results illustrate how 
game-play oriented subitizing activities may support growth in number understandings. 

Keywords: Number Concepts and Operations; Pre-School Education; Learning Trajectories 

Introduction 
Subitizing is a quick apprehension of the numerosity of a small set of items (Sarama& Clements, 

2009). Sarama and Clements (2009) suggested that subitizing processes transition from a reliance upon 
orientations to a reliance upon number understandings. MacDonald (2013) conducted four concurrent 
teaching experiments to investigate how subitizing activity changed in relation to understanding of 
number and perceived space between items. In this study, we focus on how one student’s (Frank) 
understanding of number changed over time to rely on more conceptual processes.  

Literature Review 

Subitizing 
Sarama and Clements’s (2009) argue that children rely on either perceptual subitizing or 

conceptual subitizing when subitizing. Perceptual subitizing, an innate ability to discriminate different 
quantities, emerges in infants as young as three to five months of age and is limited to five items. 
Conceptual subitizing is grounded in a child’s number understanding due to a child’s ability to subitize 
groups and then compose the total number of items (Sarama & Clements, 2009). When children in 
kindergarten through grade two engaged in Building Blocks, a computer learning environment, their 
subitizing activity became more sophisticated and included conceptual processes (Clements & Sarama, 
2007).  

Number Understanding 
Number understandings will be grounded in theories stemming from number conservation (Piaget, 

1941/1965). This is characterized as a child’s simultaneous coordination of their serial (number 
follows a sequential order) and algebraic (number is composed by smaller subgroups) thinking 
structures (Piaget, 1968/1970). Number understanding in this study will be centered on the following 
four areas: (a) counting (Steffe, Cobb, & von Glasersfeld, 1988), (b) composition and decomposition of 
number (Fuson et al., 1997), (c) links between quantity and number words (Krajewski & Schneider, 
2009), and (d) perceived dimensionality (Piaget & Inhelder, 1948/1967).  

Counting. Counting is described as a child relying primarily on serial thinking structures, as items 
are empirically pointed to and coordinated with a sequence of words. (Steffe et al., 1988). Multiple sets 
of research findings emphasize the importance counting has in children’s mathematical development 
(Chan, Au, & Tang, 2014; Jones et al, 1994; Steffe et al., 1988). Steffe et al.’s (1988) research findings 
essentially describe how counting promotes children’s number development through a coordination of 
units. Van Nes & van Eerde (2010) found that relationships between spatial reasoning and counting 
exist, as children’s counting changed in relation to block arrangements. Thus, spatial orientations of 
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objects promote children to rely on different types of counting and construct sophisticated number 
understandings. 

Composition and decomposition of number. Fuson et al. (1997) found that children able to 
construct multi-digit number understandings had more sophisticated grouping techniques. Essentially 
when children compose and decompose number they progress through six stages of development. 
Jones, Thornton, and Putts’ (1997) also suggest that many aspects of number understanding, including 
composition and decomposition of number, are foundational for students’ development of number. 
Thus, these findings imply that young children build multi-digit number understandings through 
effective composition and decomposition of numbers less than ten. 

Link between quantity and number words. As number is understood in a more abstract manner, 
number words are said to link to quantities (quantity-number competencies [QNC]) (Krajewski & 
Schneider, 2009). Krajewski and Schneider found that kindergarten children’s QNC explained about 
25% of these children’s achievement scores four years later. Implications from this study suggested 
that future research consider how young children’s empirical activity with concrete material promotes 
children’s QNC ability prior to entering kindergarten. 

Dimensionality. Topological thinking structures involve a child’s attention towards the perceived 
topology of objects and sets of objects (Piaget, 1968/1970). One aspect of topological thinking 
structures, dimensionality, is described by Piaget and Inhelder (1948/1967) as directly promoting the 
flexible thinking necessary for children’s later conceptualizations of formal Euclidean Geometry. Four 
areas of development characterize dimensionality: (a) proximity (nearbyness), (b) separation 
(betweeness), (c) continuity (connecting objects in spatial fields), and (d) enclosure of shape 
(surrounding) (Piaget & Inhelder, 1948/1967).  

Purpose 
Parallels between children’s construction of number and subitizing activity have been suggested in 

the research literature (e.g. Freeman, 1912; Sarama & Clements, 2009), but a fine-grained analysis of 
this relationship is absent from the literature. To understand number, children need to engage with 
empirical items to group, partition, compose, decompose, and count. Linking number to number words 
would allow for number to be abstracted. Subitizing activity would essentially promote several of these 
empirical and mental activities to provide a child a vehicle in which to construct number 
understandings. The purpose for this study was to investigate how one child’s understanding of number 
changed as he engaged in subitizing activity.  

Methodology 

Teaching Experiment Methodology 
This study uses teaching experiment methodology (Steffe & Ulrich, 2014) and is grounded in the 

radical constructivist paradigm suggesting that mathematics understanding is actively constructed (von 
Glasersfeld, 1995). A teaching experiment includes a teacher-researcher, a witness for each teaching 
episode, at least one student, and a way to record student actions and words in each teaching session 
(Steffe & Ulrich, 2014). In this study, the first author was the teacher-researcher, and the second and 
third authors alternated as the witness. The teacher-researcher and witnesses initially met prior to the 
start of the experiment to establish a similar theoretical grounding and establish the functional aspects 
of each of our roles in this study. 

Participants 
Fifteen!students!between!the!ages!of!three!years,!11!months,!and!five!years,!five!months!were!

initially!recruited!to!participate!in!a!larger!study.!The!15!students!were!enrolled!in!a!preschool!
located!near!a!university!campus!located!in!the!southeastern!portion!of!the!United!States.!Four!
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students!spoke!a!second!language!at!home.!Eleven!students!were!male!and!four!students!were!
female.!Following!an!initial!screening,!six!of!these!preschool!students!were!selected!to!participate!
in!a!teaching!experiment.!The!selection!was!based!on!their!ability!or!lack!of!ability!to!conserve!
number,!count,!and!subitize!two!to!five!items.!An!inDdepth!analysis!of!one!student,!Frank,!is!the!
focus!of!this!study.  
 Frank. Frank is a male student whose family is from China. He was four years and five months 
old at the onset of this study. He spoke English, and in his home spoke Mandarin. Frank was 
interviewed two separate times on June 5th to determine if he was able to conserve number and to 
determine his counting and subitizing abilities. Throughout the interviews, Frank wanted to have the 
“correct” answer. This disposition promoted Frank to reflect more often on his activity. Frank engaged 
in 22 teaching experiment sessions.  

Procedures 
Interviews. Frank’s first two interviews were used to determine (a) whether he conserved number, 

(b) whether he could keep track of items when counting, and (c) whether he perceptually or 
conceptually subitized. Frank was found to not be able to conserve number, and used perceptual 
subitizing. When counting, it seemed as if Frank was able to initially “count on” from 12 items. 
Knowing that Frank was able to count on and not conserve number seemed atypical, as Steffe et al.’s 
(1988) findings indicated that “counting on” required a more comprehensive understanding of number. 

Teaching experiment session tasks. The teaching experiment was comprised of 22 sessions 
occurring two days per week no more than 20 minutes each. Tasks were designed to either assess or 
provoke change in Frank’s thinking. Item orientation, reliance upon empirical material, and QNC were 
considered in the formation of the tasks throughout analysis. Tasks required him to subitize a set of 
items, draw or use counters to show what he remembered, and use words or actions to justify his 
response. They were refined prior to the teaching experiment sessions, allowing for orientation, 
quantity, or color of items to change to test and expand the limits of Frank’s thinking. The five 
following tasks were used: (a) Draw what you saw, (b) Camera game, (c) Concentration, (d) Board 
games, and (e) Hidden Pictures. Below, we focus on the first two. 

Draw what you saw. The teacher asked Frank to subitize a set of dots or counters and then to draw 
or use counters to show what he “saw” or “remembered.”  This activity was also followed up with, 
“How do you know you saw _______?” Frank was given material to draw what he remembered or use 
counters to represent what he remembered.  

Camera game. The camera game was adapted from Clements and Sarama’s (2007) activities. 
Clements and Sarama’s (2007) camera game used a computer program, but in this study the activity 
had a series of camera pictures on a three-ring notebook. Frank was shown quickly an image of the 
viewfinder of a camera with dots arranged. He was asked how many dots were seen, and then he drew 
what the picture would look like when it came out of the camera.  

Analysis 
Two forms of analysis, conceptual and retrospective, were used to model and describe Frank’s 

thinking (Steffe & Ulrich, 2014). Conceptual analysis regards students’ responses between tasks and 
sessions, and retrospective analysis regards changes over a longer period of time. Each session was 
videotaped with two video cameras. Each session’s video footage was reviewed after each session 
(conceptual analysis) and sections of video footage from the entire study were reviewed six times 
throughout the study (retrospective analysis).  
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Results 

Conceptual Analysis 
Subitizing activity relative to the perceived symmetry of items. Initially, Frank subconsciously 

relied on symmetry when subitizing, as it seemed the symmetrical orientations of the items afforded 
Frank the opportunity to build towards four. In Frank’s first teaching experiment session he was shown 
four dots arranged in a square-like orientation. Frank stated that he saw “T…four,” but when asked 
about almost stating two, he responded that he did not remember seeing two. When asked to draw what 
he remembered, he drew two dots and wrote the numeral two beside them. After seeing the orientation 
a second time, he stated that he saw four and drew the four dots in the same square-like orientation and 
wrote the numeral four beside them. His response suggests a subconscious attention to the two by 
which to build towards four.  

Subitizing activity relative to the perceived space between items. In the middle of his fourth 
teaching experiment session Frank was playing the “Camera Game.” He was shown an image with five 
dots (see Figure 1). The space between the square and the one dot seemed to disrupt Frank’s ability to 
subitize the total group. This is evident when Frank draws four dots and one dot, and then writes the 
corresponding numerals beside his drawings (see Figure 1). After Frank describes seeing “four and 
one,” he is asked “how many is there altogether?” This question elicits his response of “fourteen.” This 
happened in subsequent sessions when Frank used counters, and it suggests that Frank’s QNC was 
grounded in a procedural understanding for two-digit numbers (Krajewski & Schneider, 2009). 

 
 
 
 
 
 
 
In Frank’s earlier sessions, it seemed as if Frank’s QNC was primarily procedural.  

This was evident when he used two-digit numbers to describe what he saw (i.e. “four and one…that 
makes fourteen”). Space between clustered items played a critical role in Frank’s subitizing activity, as 
it seemed to promote him to attend towards subgroups, but he lacked the ability to compose these two 
groups of number. Thus, Frank would rely on a procedural QNC by stating a two-digit number. 
Symmetrical orientations with a regular amount of space between items prompted Frank to build 
towards the total number of items with one subgroup. This was evident when Frank said, “T…four.” 
This activity does not require Frank to compose groups but to count up after subitizing two, eliciting a 
serial thinking structure. Thus, it seemed as if he was having difficulty coordinating his serial and 
algebraic thinking structures. 

Changes in Frank’s subitizing activity relative to changes in Frank’s understanding of 
number. Throughout the first three sessions, Frank was capable of subitizing four items, but when 
shown five items, he needed space between clustered groups of two or three to subitize the subgroups 
of two or three. Frank did not have a conceptual understanding of five at this point because he could 
not compose the subgroups to name the total group of five. When Frank was shown five items without 
a space between the clustered items, he either named this as “six,” “seven,” or rearranged the items to 
look like the “X” orientation shown on the face of a typical die before describing this total set of items 
as “five.”  

Frank continually described two-digit numbers (i.e. fourteen, twenty-three) when attempting to 
conjoin the two subgroups he subitized, which indicates that his number understanding remained 
procedural. He may have been taught to name and identify two-digit numbers before understanding 

Figure 1: The orientation shown to Frank and the drawing Frank made respectively. 
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single digit numbers. To perturb this notion, we asked Frank to count items and name the total number, 
or covered up portions of an orientation, incrementally building (+1) from a group of three to the total 
number of items. This task design utilized Frank’s counting and subitizing ability, to perturb what he 
understood number to entail. 

In the early portion of Frank’s seventh teaching experiment, Frank is describing “two” and “three” 
items as “twenty-three.” To perturb his thinking, the teacher asked him to count the counters he placed 
on his mat. He counts out three counters and then counts out two counters. After two more attempts, 
Frank’s counting responses remain the same, so the teacher counted the counters in front of her and had 
him “parrot” her counting. Immediately following this task, Frank is shown items clustered to represent 
“two,” “one,” and “two,” (see Figure 2) and Frank describes seeing “two plus one plus two makes 
five.” This is the first time Frank begins to construct five by composing groups of numbers, suggesting 
a change in how Frank understands five.  

 
 
 
 
 
 
 
Throughout the subsequent sessions, Frank’s responses reveal more conceptual understandings of 

number (i.e. “three and then one is four,” “two and two is four,” “three and one is what tells me four”). 
These responses seem to reflect how Frank is perceiving the space between clustered groups of items, 
as he simply subitizes the total groups of items when no space is evident. Also, it is important to note 
that each time Frank explains his thinking he needs to rely upon his description of the subgroups to 
describe the total group. This seems less abstract than if Frank were to state the total group and then 
reverse his thinking to then describe the subgroups. Thus, it seems as if his number understanding is 
still developing. 

Frank’s number understanding in session 17. Prior to session 17, Frank was capable of 
subitizing four with subgroups “three and one,” “two and two,” and “one and three,” and his QNC was 
more conceptually grounded with regard to four. However, Frank was not able to describe the total 
group and then reverse his thinking to describe the subgroups of four. For Frank to describe the total 
group and then the subgroups would suggest a cognitive reorganization of what Frank knew about four 
because he would have to compose four and then decompose four. Composing and decomposing a 
number would require Frank to reflect on his actions and be cognizant of the subgroups he used to 
compose four.  

Additionally, Frank’s understanding of five was still limited, and after his seventh session, he was 
not able to carry his description of five as “two plus one plus two” into subsequent tasks. Often when 
shown an orientation that promoted “two, two, and one” he would describe seeing four because he saw 
two and two or state that he saw, “four…five.” These responses suggested that Frank was still 
solidifying what he knew “four” to be and was not able to coordinate the composition of two subgroups 
to build towards four and then coordinate a third subgroup to build towards five. Thus, we planned to 
use symmetrical orientations to promote Frank’s subitizing of five in session 17. 

In the Data Excerpt below, Frank was in his 17th teaching experiment session and his teacher 
showed him the circular counters in an orientation (see Figure 3), and asked him how many he saw. 
Frank brought his stuffed mouse to this teaching experiment session, and at times he pretends the 
mouse is the one responding to the tasks. This task was near the end of the session, and just before this 
task Frank was shown five counters which he determined were four and one, which then made 
fourteen. Once Frank counted these five counters, he determined the group was five. So again, Frank 

Figure 2: This orientation was shown to Frank in the middle of his seventh session. 
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was having difficulty with composing five. As Frank described the subgroups which made up the 
composite groups, it seems evident that symmetry supported this activity, as only one two is 
mentioned. 
 

 
 
 
 
 

  
Data Excerpt. 

Teacher: Okay, set mousey aside. Okay, one, two, three. [Teacher-researcher lifts the top piece of 
cardstock revealing counters arranged so that two counters are on the left-hand portion of the 
mat, and two counters are on the right-hand portion of the mat. In the middle there is one 
counter (see Figure 3).] 

Frank: Five. [Frank talks in a squeaky “mouse-like” voice.] 
Teacher: Five?  How did you know that so fast? 
Frank: Mousey says that. 
Witness: How did mousey know it so fast? 
Teacher: Yeah, how did mousey know it that quickly? Do you agree with mousey? 
Frank: Yeah. 
Teacher: Yeah?  Why? 
Frank: Because mousey said five [says five again in a squeaky “mouse-like” voice.] But mousey 

wins. 
Teacher: He did win, but why did mousey know it was five? I don’t know why that’s 
five. 
Frank: But you put it…you put two and down [motions with both his hands to show two on his left 

hand and right-hand portion on the bottom portion of his mat] and one and up [motions in the 
middle top portion of his mat.] 

This data excerpt illustrates three cognitive changes in how Frank is understanding five. First, the 
symmetrical aspects of the orientation seemed to scaffold a change in Frank’s understanding of five, as 
he described “two and down and one and up.” Second, Frank composed subitized groups to quickly 
state that he saw five, but then “unpacked” or decomposed five to describe the actions and the groups 
he saw when subitizing five. This activity is more sophisticated than building up to five, and the 
symmetrical nature of the orientation seemed to promote this activity. Third, Frank no longer needed to 
“make” the orientation, but pointed to the imagined areas where the counters are located. This step 
away from the perceptual material was an important one; it seems as if Frank relied on more abstract 
actions when subitizing. 

Retrospective Analysis 
Frank’s subitizing activity initially relied on common images or patterns to describe four, and at 

times, five. Also, Frank’s initial QNC was grounded in procedural knowledge related to what he 
“knew” two-digit numbers “to be” which did not support a conceptual conjoining of number. To press 
Frank to attend to subgroups, Frank was shown orientations with large amounts of space between small 
clustered items that Frank was capable of subitizing. To connect what Frank knew about five to his 
subitizing activity, Frank reflected upon his counting activity and the relationship between subgroups 
when items were covered up. Frank developed more sophisticated number understandings as a result of 

Figure 3: This orientation was shown to Frank near the end of his 17th session. 
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subitizing symmetrical orientations. Frank was replacing the visual patterns with actions, as he was 
able to explain his thinking without having the perceptual material in front of him as evidenced in the 
Data Excerpt. Frank used prepositional phrases to explain what he saw (i.e. down, up) which suggests 
he may also be describing his eye movements. Thus, it seemed that Frank developed strategies that 
promoted changes in his number understanding (i.e. composition, decomposition, QNC). These 
strategies seemed to result from counting, subitizing, and the orientations (i.e. symmetry and space 
between items).  

Conclusions 
The purpose of this teaching experiment was to investigate how a child’s understanding of number 

changed as he engaged in subitizing activity. Item orientation, reliance upon empirical material, and 
QNC were considered throughout the analysis. The two main findings of the study were related to (a) 
how Frank composed number and (b) the nuances in his perceptual subitizing activity. 

Number Composition and Decomposition 
With such a societal push to promote early childhood instruction in mathematics, it is important to 

understand what is (in) appropriate to teach young children. Entering the teaching experiment, Frank’s 
understanding of conjoining two groups of items was a procedure resulting in a two-digit number word. 
This understanding of composition changed for situations in which the procedure was linked to a 
conceptual conjoining of groups to explain five. Though it seems that his procedure for naming two-
digit numbers distracted from his construction of five, perhaps developing the procedure helped him 
attend to subgroups. Future research that focuses on helping children make appropriate connections 
between procedures and conceptual number understandings would be important for developing early 
childhood curricula. Findings from this study brought new ideas to light about how subitizing activity 
can press students to engage in meaningful activities when beginning to understand number.  

Nuances in Perceptual Subitizing Activity 
Throughout the teaching experiment, Frank’s subitizing activity was described as perceptual 

instead of conceptual because he relied heavily upon perceptual material when discussing subgroups 
and total groups of items. The identification of sub-stages of perceptual subitizing are useful for further 
understanding topological, serial, and algebraic thinking prior to number conservation (Piaget, 
1941/1965). First, shapes and patterns were initially described when explaining how a number was 
understood. This reliance upon patterns seemed to provide Frank a template to work from when 
recreating the orientations. Second, attention to subgroups before describing the total group of items 
indicated a “building up” of number. Third, near the end of the study, it seemed that Frank could 
compose items quickly when subitizing and then decompose these groups to explain his thinking. 
Children making connections between early perceptual activities and conceptual processes gives 
purpose for particular curriculum choices. Thus, early childhood educators’ utilization of findings from 
this study could inform their pedagogical choices when designing subitizing tasks embedded in game 
play. 
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In this paper, we analyze individual semi-clinical interviews conducted with one kindergarten and 
one first-grade student. We build on prior research to offer evidence, via excerpts from these 
interviews, that children as young as kindergarten have a powerful, intuitive sense of generality and 
indeed naturally draw upon it to reason through mathematical scenarios. We identify within these 
children’s utterances four features of generalizing for which educators might attend. 

Keywords: Classroom Discourse; Algebra and Algebraic Thinking; Elementary School Education  

Introduction, Issues, Theoretical Framework 
Hyman Bass credits generality as “one of the most important and powerful characteristics of 

mathematics” (2003, p. 326); John Mason dubs it mathematics’ “heartbeat” (1996, p. 65). 
Concordant with these voices, both the Common Core State Standards for Mathematics 
Initiative (CCSSI) and the National Council of Teachers of Mathematics’ (NCTM) Principles and 
Standards for School Mathematics emphasize generalizing as a key mathematical practice throughout 
the grades, one that can and should be encouraged early and honed over time (CCSSI, 2010; NCTM, 
2000). To truly foster this practice beginning in the early grades, however, educators must first 
recognize young students’ generalizations, a task complicated by the extent to which the language 
children employ differs from that of adults. The risk of underestimating the robustness of children’s 
understandings or overlooking their insights altogether may be especially pronounced in the domain 
of mathematics, whose exactness can lend itself to particularly formalized conventions as to how 
generality should be expressed. For instance, universal qualifiers, be they explicit or implicit — “for 
all x > 0, |x| = x,” “multiples of four are even,” or “every integer greater than 1 has a unique prime 
factorization” — are the standard fare of generalizations in mature mathematical discourse. As 
students are inducted over time into communities of mathematical discourse, they gradually 
assimilate these conventions of communication. But there is no reason to believe that children in the 
earliest grades would have learned these communicative conventions, and there is no simple litmus 
test for whether children are thinking in generalized terms. These challenges call for further research 
into the range of ways in which very young children may express generality. By honing our own 
ability to recognize early inclinations to generalize, we can, in turn, better nurture their development.  

Identifying young children’s generalizations can be challenging, requiring “the skilled and 
attentive ear of a teacher who knows how to listen carefully to children” (Kaput, 2000, p. 6). Our 
goal in this paper is thus twofold: (1) to offer evidence, via excerpts from mathematical interviews 
with two case students, that children as young as kindergarten have a powerful, intuitive sense of 
generality and indeed naturally draw upon it to reason through mathematical scenarios, and (2) to 
identify within these children’s utterances several characteristics indicative of generalizing for which 
educators might, in Kaput’s phrase, “listen carefully.”   

Prior research has yielded numerous examples, largely from teacher documentation or classroom 
discussions, of young children’s generalizing about comparison of quantities (Schifter, Bastable, 
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Russell, Riddle, & Seyferth, 2008a) including non-specified quantities (Dougherty, 2008), 
commutativity (Schifter, Monk, Russell, & Bastable, 2008b), classes of numbers (Bastable & 
Schifter, 2008), additive and multiplicative identity properties (Carpenter & Levi, 2000), and use of 
the equal sign (Carpenter, Franke, & Levi, 2003). As a body, this research demonstrates that it is 
within the reach of young children to observe mathematical regularities and talk about their 
discoveries in a variety of ways. 

What does it mean, really, to generalize? Rowland (2000), Carraher, Martinez, and Schliemann 
(2008), and Kaput (2000) each propose perspectives. According to Rowland (2000), generalizations 
are statements of beliefs about properties of an entire class that have not and indeed cannot be 
inspected and tested. For Carraher et al. (2008), generalizations involve claims for an infinite number 
of cases, where “the scope of the claim is always larger than the set of individually verified cases” (p. 
3, italics in original). Finally, Kaput (2000) highlights that generalizations “deliberately extend … the 
range of communication beyond the case or cases considered, [to the] patterns, procedures, 
structures, and the relations across and among them” (p. 6). These three proposals share an emphasis 
on the generalizer’s conviction with respect to an inference that includes many cases simultaneously, 
a conviction that obtains in the absence of envisioning each of those individual cases.  

Mode of Inquiry, Data Sources 
In this paper, we analyze individual semi-clinical interviews conducted with one kindergarten 

and one first-grade student as part of a research project focused on exploring kindergarten through 
second-grade (K-2) children’s understandings of functions. The data are drawn from an eight-week 
classroom teaching experiment (CTE). Individual interviews with a subset of students in each of the 
three grades were carried out immediately prior to, halfway through, and at the end of the CTE. The 
students in the school in which the CTE was conducted are 98.6% minority (non-white), with 89.5% 
categorized as low SES and 33.9% as ESL. 

To facilitate the process of data reduction, a series of steps was taken. First, because the goals of 
the study were to explore young children’s intuitive sense of generality and to provide evidence for 
what generalizations look like among young students, we focused on the initial interviews (pre-
interviews), which took place before any lessons were implemented. By selecting for analysis data 
collected before the teaching experiment began, we ensured that each child’s productions, both 
verbal and written, would best approximate what might be described as “naturally” present. Second, 
we focused our selection on kindergarten and first-grade students to explore expressions of 
generalization among the youngest children in our study.  

In our pre-interview protocol, students were first asked how many noses a dog has. They were 
then asked how many noses there would be altogether among two dogs, three dogs, and so on. We 
did not doubt that students would answer correctly for all specific cases proposed. Rather, we were 
interested in students’ explanations of how they knew — that is, in how they spoke about their 
reasoning. Each student was asked at some point in the interview to organize the information in a 
function table, reason about far values (e.g., the case of one hundred dogs), and reverse the 
relationship (supply a number of dogs given a number of noses), as well as to respond to a proposed 
“mismatched” case (e.g., the suggestion of five dogs and six noses). 

Students were also asked how they might tell a friend how to know the number of noses for any 
number of dogs and whether there was a rule for making this determination. They were also invited 
to generate their own examples rather than simply responding to interviewer-generated values. These 
questions were intended to create an open-ended space for students to verbalize their understanding 
of the problem and the functional relationship that governed it. 

All interviews were transcribed verbatim from video, and all video and transcripts were 
reviewed. This review facilitated a progressive selection of the dataset for this paper. Our criterion 
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for selecting the students for this paper’s analysis was that they exhibit diverse verbalizations of 
mathematical ideas. Our aim was not to showcase the most sophisticated thinking in young students, 
but rather to highlight a range of ways young students’ mathematical thinking might find expression. 
In this way, we selected interviews with Kinetta and Ferdinand, a kindergartener and first-grade 
student respectively. 

In analyzing these interviews for generalizing, we appealed to the common thread among the 
perspectives on generalizing noted above: conviction in an inference about many simultaneous cases 
that is independent of envisioning of those individual cases. We reviewed the transcripts line-by-line 
using the constant comparative method (Glaser & Strauss, 1967). Our research goal was to identify 
features of this thread within these students’ interviews. 

Results 
Bills (2001) theorizes that qualitative differences in students’ language correspond to qualitative 

differences in their conceptual constructions and that these shifts in language may be markers of 
progress towards recognizing the generality of procedures. Adopting this premise, we highlight four 
prevalent features of the two case students’ verbal productions that emerged as a result of our 
analysis. Examples of each of these features will be provided below in Table 1. 

• Definite Articles, Indefinite Quantities: We observed that when students were asked questions 
that might easily have been construed as centering on a particular case, they often 
nonetheless replied with a generalized answer that could accommodate any case. In such 
instances, the student also indicated that a strict rule would uniquely determine the relevant 
numerical “output” based on the input, whatever the input might happen to be. We took these 
instances, referred to here as “definite articles, indefinite quantities,” to indicate that the 
student was spontaneously generalizing, displaying conviction about many simultaneous 
cases not individually envisioned. 

• Certain Denial: If a student was prepared to cry foul without hesitation in response to a 
mismatched (e.g., five dogs and six noses) scenario proposed by the interviewer and to justify 
and defend his or her position, we took this as an indication of the student’s conviction. 
(These impossible scenarios were akin to Carpenter and Levi’s [2000] and Davis’ [1964] 
false number sentences, leveraged as windows into young children’s ability to justify 
generalized properties of whole numbers.) Moreover, if the student justified his or her 
conviction by giving reasons that appealed to the general logical structure of the problem, as 
opposed to simply the particular case, we took this as evidence of generalized thinking about 
cases not individually envisioned. We refer to this feature as “certain denial.” 

• Generic Examples: We adopt this terminology from Balacheff (1988), who lists generic 
example as the third of four main forms in the cognitive development of proof. Balacheff 
makes much of the transition from the second form — termed “crucial experiment” — to its 
successor. While a crucial experiment offers only the outcome of a particular case to support 
a general conclusion, the case has been chosen deliberately for its perceived particular ability 
to carry that import.1 Balacheff maintains that one crosses a “fundamental divide,” or 
undergoes a “radical shift in ... reasoning” in stepping from crucial experiment to generic 
example, and that in the latter territory, one “establish[es] the necessary nature of [a] truth 
by giving reasons ... by means of operations or transformations on an object that is not there 
in its own right, but as a characteristic representative of its class” (pp. 218-19, emphasis 
added to correspond to conviction with respect to many simultaneous cases not individually 
envisioned). Accordingly, in our study, we took students’ generic examples to be evidence of 
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generalizing. Bills (2001) also regards generic examples as steps toward more formal 
generalizations.  

• Authoritative “You”: Rowland (1992, 1999, 2000) has paid considerable attention to 
children’s use of the pronoun “you.” One use is as a substitute for the more formal “one” and 
thus as an indicator that a generalized procedure is being described. Rowland notes that this 
procedural “you” is common even in non-mathematical situations, especially but not only 
among children — for instance, in explaining how to play a game. He has observed that a 
shift from “I” to “you” in children’s discourse seems to parallel a shift from explaining work 
done with specific cases towards describing a more generalized procedure. This procedural 
“you” also appears in excerpts from Schifter et al. (2008a), Bastable and Schifter (2008), and 
Carpenter and Levi’s (2000) research with young children (though these researchers do not 
highlight it as such in these studies): for instance, “you don’t have to pay attention to the 6s,” 
“each time you add a number to a group that can go, you get a group that can’t,” and “when 
you put zero with one other number, just one zero with the other number, it equals the other 
number,” respectively. A second use of “you,” distinct from the first, is as a pronoun of direct 
address. Rowland notes that it is considerably less common for students to use “you” in this 
fashion when speaking to teachers than vice versa, an imbalance he attributes to power 
relations. Thus we take students’ usages of direct-address “you”s to be indicative of their 
willingness to assume an authoritative position and their usages of procedural “you”s to be 
indicative of explaining generalized rules or procedures — which in turn we take as 
indicative of conviction with respect to many simultaneous cases not individually envisioned. 
We refer to this feature as “authoritative ‘you.’” 

Owing to space constraints, we give limited excerpts from each case student’s interview and 
highlight these four features within the transcript. We use boldface text to foreground particular 
phrases that, situated in context, exemplify these features. Following the transcripts, we organize 
these examples in a table (see Table 1) with some discussion.  

Excerpt from Initial Interview with Kinetta (Kindergarten) 

Interviewer: If there are three dogs? 
Kinetta: Three noses. 
Interviewer: How do you figure out? How do you know how many noses there are? 
Kinetta: You count. 
Interviewer: How do you count? 
Kinetta: One, two, three. 
Interviewer: Mm-hm. And how do you know how to stop — when to stop counting? 
Kinetta: When you get to the number. 
Interviewer: So [...] for instance, what if there were ten dogs? How many noses [...]? 
Kinetta: Ten. 
Interviewer: How do you know that?! I didn’t see you count! I didn’t see you do any counting. 
Kinetta: That’s because I counted in my head. 
Interviewer: Oh! You went all the way to ten that quickly?  
Kinetta: [Nods.] 
Interviewer: [...]2 What if there are one million dogs? How many noses are there? 
Kinetta: One million. 
Interviewer: You did not count that fast. How do you know what number to say? 
Kinetta: Because you just said it. 
Interviewer: Oh! What do you mean? 
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Kinetta: You said “one million.” 
[...] 
Interviewer: What if there were twenty-four noses? 
Kinetta: Twenty-four dogs. 
Interviewer: Was that easy? Yeah? How did you figure that out? 
Kinetta: Because you just said it. 
[...] 
Interviewer: Can I show you something that some people use? It’s called a table. [Draws function 

table setup.] They do this, and here they put th— how many dogs, and here they’ll put how 
many noses. So for instance, if it’s one dog [writes the numeral 1 in the left-hand column of 
the function table], how many noses? 

Kinetta: One. 
Interviewer: [Writes the numeral 1 in the right-hand column.] If it’s two dogs [writes 2 in the 

left-hand column]... 
Kinetta: Two noses. 
Interviewer: And can you put it? Can you show it right there [in the right-hand column]? 
Kinetta: [Writes 2 in the right-hand column of the table.] [...] 
Interviewer: What if there were three here [in the left-hand column]? How many noses? 
Kinetta: [Writes 3s in both columns.] 
Interviewer: Oh, great, and what if there were— let’s put another number here [in the left-hand 

column]. Whatever number you want.  
Kinetta: [Writes 100, 100.] 
Interviewer: Oh my goodness! What number is that? 
Kinetta: One hundred. 
[...] 
Interviewer: If we put a number here, whatever number here [in the left-hand column], what 

number do we have to put here [in the right-hand column]? 
Kinetta: The same one. 
[...] 
Interviewer: So, you know what someone told me? Someone told me that there were five dogs 

and there were six noses. What do you think of that? 
Kinetta: [Shakes head no.] [...] 
Interviewer: No? Why not? 
Kinetta: Because it needs to be the same. [...] Six noses and six dogs. Five noses and five dogs.

Excerpt from Initial Interview with Ferdinand (First Grade) 

Interviewer: So, if — what if we put here that there’s one dog, okay [writes the numeral 1 in the 
left-hand column]? How many noses are there gonna be? 

Ferdinand: One. 
Interviewer: One [writes the numeral 1 in the right-hand column]. What if there are two dogs 

[writes 2 in the left-hand column]? 
Ferdinand: It’s two. 
Interviewer: Okay, can you show me that?   
Ferdinand:[Writes 2 in the right-hand column.] 
Interviewer: What if there are three dogs? 
Ferdinand: Then three [writes a 3 in each of the two columns]. 
Interviewer: Do you want to show me some other numbers of dogs? 
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Ferdinand: We’re going like number?3 

Interviewer: Whatever you want. If you want to do it that way, we can do it that way. 
Ferdinand: I’m gonna do a five [writes 5 in the left-hand column of the table]. [...] 
Interviewer: What would you put on the other side? [...] 
Ferdinand: Oh, five [writes 5 in the right-hand column]. [...] 
Interviewer: How do you know it’s five noses? 
Ferdinand: ‘Cause fiv— it’s five ‘cause five noses has to be the same, like — they could play, if 

they didn’t have a lot of— like they’re playing hide and seek if they didn’t have a lot of 
people to play— 

Interviewer: Mm-hm. 
Ferdinand: So they have to have five and five. 
Interviewer: Mm, okay. 
Ferdinand: Like teams.4 

Interviewer: So, so if a friend asked you what number — how you know what number to put 
here, what would you tell them? 

Table 1: Examples of the Four Features 

Feature Key phrases (regarded in context) Discussion 
Definite Articles, 
Indefinite 
Pronouns 

“When you get to the number” (line 
8); “Because you just said it” 
(line 19, line 26); “The same 
one” (line 48). 

“It was the number that — that you 
said” (line 82). 

Lines 8, 19, 26, and 82: Rather than give answers specific to 
the particular cases the interviewer has just referenced — of 
three and five dogs, respectively — as they might reasonably 
do, both students instead respond in generalized terms even 
though they have not been “asked” to generalize. 

Line 48: Kinetta appears to have no trouble responding 
when posed a question in general terms. 

Certain Denial “[Shakes head no] [...] Because it 
needs to be the same. [...] Six 
noses and six dogs. Five noses 
and five dogs” (lines 52, 54-55). 

“You say, ‘You have to take one 
more out, ‘cause we have to 
have five and five, ‘cause [...] 
we have to play five-five, 
‘cause[...]’” (lines 86-88). 

Both children appeal to the logical necessity of sameness: it 
“needs to” or “has to” happen for a reason. Additionally, that 
Kinetta allows for both possible corrections of the mismatch 
(five-five and six-six) suggests an understanding that this 
sameness is not only necessary but also sufficient. She’s willing 
to vary the number of dogs or the number of noses, but she 
insists that those two counts have to match.  

Generic Example “[Writes 100, 100] [...] One 
hundred” (lines 42, 44). 

“I’m gonna do a five [writes 5 in 
the left-hand column of the 
table]” (line 69); “It’s five 
‘cause five noses has to be 
same, like — they could play, if 
they didn’t have a lot of— like 
they’re playing hide and seek if 
they didn’t have a lot of people 
to play [...] So they have to 
have five and five [...] Like 
teams” (lines 73-75, 77, 79). 

While the dogs-and-noses problem centers on an identity 
function, and thus in some sense masks the “transformations” 
enacted on objects, we maintain that these examples proposed 
by Kinetta and Ferdinand are nonetheless “characteristic 
representative[s] of [their] class,” “objects ... not there in [their] 
own right” (Balacheff, 1988, pp. 218-219).  

In Kinetta’s case, one hundred dogs is fundamentally a case 
not individually envisioned. While one might precisely visualize 
one, two, or three dogs, it’s reasonable to surmise that it’s fairly 
impossible to hold a quantitatively precise mental image of one 
hundred dogs. One hundred serves as a representative of the 
class of theoretically possible, potentially arbitrarily large 
quantities of dogs. 

Ferdinand’s usage of “if” and “like” (lines 73-75, 79) 
resonates with Bills’ (2001) findings that children often use “if 
it’s like” to introduce generic examples (where adults, Bills 
posits, might use “for example,” “consider for instance,” or 
“suppose”), as well as with the diction that accompanied the use 
of generic examples in Carpenter and Levi’s (2000) study. 
Furthermore, that Ferdinand says that “five noses has to be the 
same” (line 73) and concludes, “So they have to have five and 
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five” (line 77) suggests that, as Balacheff describes, what he’s 
arguing about is the “necessary nature of [the] truth.”5 

Authoritative 
“You” 

“When you get to the number” (line 
8); “Because you just said it” 
(line 19, line 26); “You said one 
million” (line 21). 

“It was the number that — that you 
said” (line 82). 

Line 8: “You” is used impersonally to convey a generalized 
procedure. 

Lines 19, 21, 26, 82: “You” is used as a pronoun of direct 
address. 

Ferdinand: “It was the number that—that you said.” 
Interviewer: Okay. [...]What if you had a friend who said that they counted that [...] with five 

dogs, there are six noses? [...] Five dogs and six noses [points to these places on function 
table]. What would you tell your friend? 

Ferdinand: You say, “You have to take one more out, ‘cause we have to have five and five, 
‘cause [...] we have to play five-five, ‘cause if we don’t have five-teams, we ha— we have 
more than five.” 

Interviewer: Okay.[...] If your friend says that there are ten dogs and he counted twelve noses? 
Ferdinand: It’ll be — twelve. 
Interviewer: Twelve what? 
Ferdinand: Dogs. 

Significance of the Research 
The examples we provide from interviews are far from exhaustive; nonetheless, they build a 

portion of a catalogue to which educators might look to identify instances in which students as young 
as kindergarteners are spontaneously generalizing, so that we might better capitalize on opportunities 
to foster this type of reasoning. Importantly, for our purposes, they contribute to an existence proof 
that young children do indeed bring natural intuitive powers of generalizing to formal schooling and 
that, as such, the power of generalizing is “natural, endemic, and ubiquitous” (Mason, 1996, p. 66). 

Endnotes 
1This contrasts with the first of the forms, naïve empiricism, which lacks the deliberate “this is 

my test case” element, in that it entails believing a proposition simply because one conceives of a 
case, or a handful of cases, that “works.” 

2Throughout the transcripts, the symbol [...] indicates dialogue removed for irrelevance. 
3We take Ferdinand to be asking here whether he was expected to increment the number of dogs 

consecutively. 
4We take the analogy to be to the necessity that two teams have equal numbers of players. 
5Kinetta also speaks to the logical necessity of sameness when she says (line 54) “it needs to be 

the same.” However, since this was an instance of her rejecting a proposed “impossible case” as 
opposed to proposing an example of her own, we have not considered it a generic example. 

Acknowledgments 
The research reported in this paper was supported by the National Science Foundation’s DRK-12 

Award #1154355. Any opinions, findings, and conclusions or recommendations expressed in this 
material are those of the authors and do not necessarily reflect the views of the National Science 
Foundation. 

References 
Balacheff, N. (1988).Aspects of proof in pupils’ practice of school mathematics. In D. Pimm (Ed.), Mathematics, 

teachers and children (pp. 216-235). London: Hodder and Stoughton. 



Early!Algebra,!Algebra,!and!Number!Concepts:!Research!Reports! 164!

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

Bass, H. (2003). Computational fluency, algorithms, and mathematical proficiency: One mathematician’s 
perspective. Teaching Children Mathematics, 9(6), 322-327. 

Bills, C. (2001).Metaphors and other linguistic pointers to children's mental representations. Research in 
Mathematics Education, 3(1), 141-154. 

Bastable, V., & Schifter, D. (2008). Classroom stories: Examples of elementary students engaged in early algebra. 
In J. Kaput, D. Carraher, & M. Blanton (Eds.), Algebra in the early grades (pp. 165-184). New York: 
Routledge. 

Carraher, D., Martinez, M., & Schliemann, A. (2008).Early algebra and mathematical generalization. ZDM, 40(1), 
3-22. 

Carpenter, T., Franke, M., & Levi, L. (2003). Thinking mathematically. Portsmouth, NH: Heinemann. 
Carpenter, T., & Levi, L. (2000). Developing conceptions of algebraic reasoning in the primary grades. Res. Rep. 

00-2. Madison, WI: National Center for Improving Student Learning and Achievement in Mathematics and 
Science. 

Common Core State Standards Initiative. (2010). Common Core State Standards for Mathematics. Common Core 
State Standards (College- and Career-Readiness Standards and K–12 Standards in English Language Arts and 
Math). Washington, D.C.: National Governors Association Center for Best Practices and the Council of Chief 
State School Officers, 2010. http://www.corestandards.org. 

Glaser, B., & Strauss, A. (1967). The discovery of grounded theory: Strategies for qualitative research. Chicago, IL: 
Aldine. 

Dougherty, B. (2008). Measure up: A quantitative view of early algebra. In J. Kaput, D. Carraher, & M. Blanton 
(Eds.), Algebra in the early grades (pp. 389-412). New York: Routledge. 

Kaput, J. (2000). Teaching and learning a new algebra with understanding. National Center for Improving Student 
Learning & Achievement in Mathematics & Science. 

Mason, John. (1996). Expressing generality and roots of algebra. In N. Bednarz, C. Kieran, & L. Lee (Eds.), 
Approaches to algebra: perspectives for research and teaching (pp. 65-86). Dordrecht, The Netherlands: 
Kluwer. 

National Council of Teachers of Mathematics.(2000). Principles and standards for school mathematics. Reston, 
VA: NCTM. 

Rowland, T. (1992). Pointing with pronouns. For the Learning of Mathematics, 12(2), 44-48. 
Rowland, T. (1999). Pronouns in mathematics talk: power, vagueness and generalisation. For the Learning of 

Mathematics, 19(2), 19-26. 
Rowland, T. (2000). The Pragmatics of mathematics education: vagueness and mathematical discourse. New York: 

Routledge. 
Schifter, D., Bastable, V., Russell, S.J., Riddle, M., & Seyferth, L. (2008a). Algebra in the K–5 classroom: Learning 

opportunities for students and teachers. In C. Greenes (Ed.), Algebra and algebraic thinking: NCTM yearbook 
(pp. 263-278). Reston, VA: NCTM. 

Schifter, D., Monk, S., Russell, S.J., & Bastable, V. (2008b). Early algebra: What does understanding the laws of 
arithmetic mean in the elementary grades? In J. Kaput, D. Carraher, & M. Blanton (Eds.), Algebra in the early 
grades (pp. 413-447). New York: Routledge. 



Early!Algebra,!Algebra,!and!Number!Concepts:!Research!Reports! 165!

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

HOW STUDENTS’ INTEGER ARITHMETIC LEARNING DEPENDS ON WHETHER 
THEY WALK A PATH OR COLLECT CHIPS 

Julie Nurnberger-Haag 
Kent State University  
jnurnber@kent.edu 

In light of conceptual metaphor theory, historical mathematicians’ and students’ difficulty with 
negative numbers reveals that the collecting objects metaphor may be a cognitive obstacle to those 
first learning about negative numbers. Moreover, consistency of physical motions with targeted ideas 
is a factor of cognition. Thus, this pre-post-delayed post study randomly assigned 8 classes of initial 
learners to a collecting objects integer model (chip model) or a moving-along-a-path metaphor-
based model (number line model) to learn integer arithmetic with the four primary operations during 
an eight-day mini-unit. The study investigated the questions: What do students demonstrate learning 
with each model and what, if any differences in learning are found between models? Findings did 
support theory that a motion-aligned model using a moving-along-a-path metaphor would likely 
support learning better than collecting objects. 

Keywords: Number Concepts and Operations; Cognition; Learning Theories 

In this paper I share results from a larger study designed to understand the effects of instructional 
models on students’ learning about integers. This study contributes to resolving two enduring 
challenges in mathematics education: one practical and one theoretical. The first concerns improving 
the way that classroom-based research can inform teachers’ practical decisions about teaching integer 
arithmetic. The second offers new insights into the theoretical and practical debate about whether and 
how physical experience supports learning mathematics. The study provides evidence about how 
students’ physical motions or model-movements can support or interfere with mathematics learning.  

Prior Research 
Integer arithmetic with negative numbers is counterintuitive, yet essential to most mathematics 

beyond middle school. It has been extensively studied (Gallardo, 2002; Küchermann, 1981; Liebeck, 
1990; Linchevski & Williams, 1999; Vlassis, 2008), yet recommendations are contradictory about 
how to help students adapt their arithmetic concepts to embrace negative numbers (Star & 
Nurnberger-Haag, 2011). Most integer research has assessed students’ learning during or 
immediately after instruction and focused on addition and subtraction only. Given that students need 
to understand negative number arithmetic to build on and use in complex ways in formal algebra 
(Vlassis, 2008), research that investigates a larger set of integer knowledge, including all operations, 
along with longer-term implications of instructional experiences is crucial.  

Küchermann (1981) categorized three types of integer instruction models as (a) cancellation 
models in which two opposites cancel, (b) number line, or (c) abstract models. Although integer 
thinking and learning has been extensively studied, investigations of integer learning with particular 
models, particularly those most accessible in classrooms, have yet to be conducted. In spite of this 
lack of research about student learning with different models and theoretical critiques of models 
offered (e.g. Star & Nurnberger-Haag, 2011; Freudenthal, 1973; Vig, Murray, & Star, 2014), 
multiple integer models are promoted in methods textbooks for prospective teachers as well as school 
textbooks, particularly cancellation and certain number line models. One study did compare a 
cancellation model and a number line model (Liebeck, 1990) but it did not involve parallel 
instruction and post-tests nor did it include a pretest. For educators to make effective instructional 
decisions, it is important to compare methods (Nunez, 2012) and to understand how different 
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methods might offer similar or different learning opportunities. Consequently, the present study 
experimentally compared students’ initial learning of negative number arithmetic using a cancellation 
model or a number line model.  

Theoretical Perspectives  
Documentation of historical mathematicians and of modern students has described cognitive 

obstacles for negative numbers (e.g., Fischbein, 1987; Pierson, et al., 2014). A reading of these works 
in terms of conceptual metaphor theory reveals that the object collection metaphor may be a 
cognitive obstacle to those first learning about negative numbers (hereafter called initial learners). 
The conceptual metaphors identified by Lakoff and Nunez (2000) applicable to integer arithmetic 
include the object collection, motion along a path, and measuring stick metaphors. Flexible use of 
more than one metaphor may be necessary for expert understanding of negative numbers (Chiu, 
2001). Yet, research of integer arithmetic via conceptual metaphors is in its infancy and has focused 
on what metaphors people used while thinking (Nurnberger-Haag, 2013; Chiu, 2001; Kilhamn, 
2011), rather than the impact of metaphor-based physical motions on initial learning.  

Conceptual metaphor theory offers educational researchers valuable insights to identify the ways 
that different models invite students to conceive of numbers. Cancellation models treat numbers as 
objects (using an object collection metaphor for negative number concepts). In schools, the 
cancellation model most commonly used is an integer model that uses chips of opposite colors to 
represent opposite numbers. In research additional models have also been promoted and studied that 
draw on an object collection metaphor (Nurnberger-Haag, 2013; Kilhamn, 2011). At first glance 
Küchermann’s (1981) characterization of cancellation versus number line models might offer a 
sufficient framework. Or one might suspect that Fischbein (1987) and Freudenthal’s (1973) 
explanations that thinking of numbers as objects renders use of conceptual metaphor theory moot, 
because this neatly aligns with the object collection metaphor. Using conceptual metaphor theory to 
investigate integer arithmetic learning, however, affords considering the differences between the 
mathematical representations and the ways we think about these representations. For example, 
number line models all use a commonly accepted representation of a number line, but there is not a 
single number line model. A number line representation can be thought of using a measuring stick 
metaphor as Descartes did historically (Berlinghoff, & Gouvêa, 2002; Lakoff & Nunez, 2000) in 
which numbers are found at the end of a positive length in a particular direction. Number line 
representations can also be thought of with a motion-along-a-path metaphor (Lakoff & Nunez, 2000; 
Nurnberger-Haag, 2007; Kilhamn, 2011), or as a combination of both of these metaphors to be 
discussed in later studies. Moreover, considering conceptual metaphor theory aides recognition that 
the differences of model metaphors might matter because of how these ways of thinking fit with the 
ways humans think more generally. In other words, conceptual metaphor theory assists with 
explaining and unifying mathematical thinking to show that and in what ways mathematical thinking 
is part of the varied abstract thinking humans do (Lakoff & Nunez, 2000).  

Lakoff and Nunez treat conceptual metaphor as an object of thought that results from physical 
experiences, which grounds how we think about abstract ideas. Whereas other research has referred 
to conceptual metaphors similarly using nouns (Chiu, 2001; Kilhamn, 2011), I use the verb forms 
(collecting objects, moving-along-a-path, and measuring) to emphasize and transform the original 
claims to consider the metaphorical mechanism as grounding the patterns of interacting with the 
world as part of an on-going dynamic system (Nurnberger-Haag, 2014). 

Furthermore, when promoting one metaphor with students, such as the moving-along-a-path 
metaphor on a number line, we must realize that this metaphor does not prescribe how students move 
on a number line. The typical number line model promoted in curricular resources directs students to 
move backwards or forwards depending on the sign of a number and to move in a particular direction 
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depending on the operation. In other words, these models inform students which direction to move. 
The walk-it-off model, in contrast, was designed to promote the opposite operator meaning of the 
negative sign necessary for algebra, but not afforded by other models (Nurnberger-Haag, 2007). 
Rather than written symbols indicating which direction students travel, the written symbols in the 
walk-it-off model emphasize to change direction by turning the opposite direction or not to change 
direction for addition or positive values. 

Purpose of Study 
Although broadly, hands-on learning or manipulatives have been extensively studied in 

mathematics education, this research has not attended to the ways the physical model-movements 
may represent or misrepresent the mathematics students learn. Yet, research from psychology has 
shown that consistency of physical motions with targeted ideas is a factor of metaphor 
comprehension (Glenberg & Kaschak, 2002). Thus, this study examined how two different 
conceptual metaphors and students’ physical motions and related explanations affect initial learning 
of integer arithmetic in classrooms. With a goal of practical impact, I chose to compare models with 
which students physically represent integer arithmetic that could be or are easily implemented in 
schools and what I thought would be the best case of each metaphor. In order to capture the 
complexity of students’ initial learning of integer arithmetic on all four basic operations and assess 
longer-term learning, this pre-post-delayed posttest study used multiple methods to address the 
questions: After using either a chip model, or a number line model that emphasizes opposites and 
magnitude, what do students demonstrate knowing about integers and what, if any, differences in 
learning are found between students who used each model?  

Method 
The most common collecting objects metaphor-based model (a chip model) or a moving-along-a-

path metaphor-based model (a number line model see Nurnberger-Haag, 2007) was randomly 
assigned to eight intact classes of initial learners (four classes per model). Here I report findings from 
written pre/post/delayed posttests. 

Settings, Participants, & Research Personnel 
A power analysis indicated that including at least 50 students per integer model should detect a 

medium effect. To study initial learning, district sites that met the following criteria were recruited: 
curriculum had not yet addressed integer operations in the recruited grade and all students in this 
grade attended the same school with the same mathematics teacher. Two public rural districts in a 
Midwest state participated. According to the grade level data on the state website, 45% of the 
students I instructed had free or reduced lunch and were primarily European American. After 
removing students from analysis due to absences, 78 chips and 76 walk-it-off students remained in 
the analysis. The study instruction occurred in the grade prior to when integer arithmetic is typically 
taught in the district (School A first semester sixth grade, School B second semester fifth grade). As 
the researcher-teacher, with approximately 20 years of experience teaching mathematics (including 
integer arithmetic to K-16+ students), I taught all students in the targeted grade. The classroom 
teacher remained in the classroom to ensure safety of students, but not to teach. Only those students 
who themselves assented and whose guardians consented participated in the research by giving their 
written work and assessments to the researcher-teacher for an incentive the equivalent of a university 
folder and pencil.  

Instruction and Measures 
Each class experienced parallel instruction with the same tasks and activities, differing only by 

the integer model used (two colors of chips or ten-foot long empty number lines, the language about 
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how to use those representations and model-movements). During each lesson students worked on 
tasks and played games in assigned trios or pairs and had the opportunity to participate in whole-
class discussions. I planned and implemented eight approximately 50-minute lessons about negative 
numbers, ordering numbers, and operations with negative integers (addition, subtraction, 
multiplication, and division) including sums of additive inverses, hereafter called opposite sums. The 
written measures assessed these constructs as well as opposite operators (transfer problems) that were 
not taught during the lessons (e.g., -(-4) and – (6-8)). The data reported here are from a 46-item open 
response skill-based test Integer Arithmetic Test (IAT) and one of the items from a seven-item 
Explain and Draw Test (EDT). These measures were developed through several phases of piloting 
and analysis including factor analysis to remove items that did not perform as expected. Students 
could only use pencils when completing these written tests (neither chips nor number lines were 
provided). 

Data Analysis 
The IAT data reported here included item accuracy and qualitative assessment of student 

reasoning on the EDT Opposite Sums Item. The IAT total test score was scaled to a 100-point test by 
weighting the subtotals of the following constructs: ordering numbers (20%), addition and 
subtraction (35%), multiplication and division (35%), and opposite operations (10%). 

Multiple methods were used to determine each student’s level of opposite sums knowledge at 
pre, post, and delayed posttest. Two types of IAT questions (calculation problems such as -19 + 19=  
and generative problems ___ + ___ = 0) , were each separately subtotaled for accuracy 0 to 2. An 
example of the EDT Opposite Sums Item follows: 

Trina and Jaleesa are students in your grade at another school.  
Trina said that -8 + (-7 + 7)  does not give the same answer as   -8 + (-5 + 5).  
Jaleesa said they will. Circle who is right: Trina or Jaleesa.  
Draw and write an explanation in words to convince a friend that this student is right. 

I coded student explanations with a qualitative coding scheme using a constant comparative approach 
(Glaser, 1965). A second trained coder assessed 20% of the randomly selected tests with 92.7% 
agreement. A K-cluster analysis informed determination of Leveled Opposite Sums knowledge 
profiles (no/low, moderate, or strong) using the three ways of demonstrating opposite sum 
knowledge (calculation problems, generative problems, and EDT Opposite Sums Item).  

Statistical controls were built in to the study design and analysis including a pretest, whole 
number fact test, gender, and preconceptions of negative number multiplication and division. No 
significant differences were found between the eight classes or between integer models at pretest. 
Although I planned to include district and class as statistical controls, the model would not run with 
both and a statistical model that accounted for either accounted for 48.4% of the variance, so district, 
which had significant differences at pretest was included in spite of it not being a significant 
predictor of the statistical model. Scaled data (overall test and subtest scores) were analyzed using 
multivariate analysis of covariance (MANCOVA). I used an ordinal regression to analyze leveled 
data.  

Results and Analysis 

Which, If Either, Model Supports Better Overall Learning?  
Multivariate analysis of covariance (MANCOVA) was conducted on the IAT post and delayed 

posttest total scores to compare student learning with the walk-it-off model to learning with a chip 
model controlling for pretest IAT, whole number fact test, gender, and preconceptions of integer 
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multiplication and division. Both integer models supported statistically significant integer learning 
from pre to posttest, indicating that both models were reasonable models for integer learning. 
Statistically significant integer model differences were found between the overall learning of students 
using walk-it-off compared to chip models: F(2, 146)=11.414, p<0.001, ηρ2=.14. On average in the 
short-term students using the walk-it-off integer model for initial instruction scored 11 points higher 
on this 100-point test than students using chips (posttest β=-10.8, 95% CI [-15.7, -5.9]) and 13 points 
higher in the longer-term (delayed posttest β=-12.7, 95% CI [-18.3, -7.0]). 

Does the Way Model-Movements Represent Mathematics Impact Learning?  
The IAT problems that I argue require chips students to move in ways that are inconsistent with 

the targeted integer operations, were grouped into Inconsistent Model-Movement Problems and those 
consistent into Consistent Model-Movement Problems. Inconsistent Model-Movements for example -

4 × -3 and -2 - -5 require students to put in enough chips to represent zero with sufficient numbers of 
chips to be able to remove 4 groups of 3 negatives or 5 negatives, respectively. Multivariate analysis 
of covariance (MANCOVA) was conducted on the IAT operation post and delayed post Consistent 
Model-Movement and Inconsistent Model-Movement problems (22 and 14 respectively) controlling 
for these scores at pretest and the rest of the controls used in the total test analysis. The differences 
were again statistically significant, but with more than twice the practical effect, (ηρ2 =.34): F(4, 
145)=18.358, p<0.001. When the chip model movements were consistent with the mathematics of 
integer arithmetic operations, no significant differences were found between the integer model 
groups’ test performance. Statistically significant differences were found, however, for those 
problems for which I argue that the chip model required inconsistent movements (p<.001).  

Opposite Sums Knowledge 
Ordinal regression analysis on the students’ levels of opposite sums knowledge showed that the 

chips group did demonstrate greater learning at posttest than the walk-it-off model (p=0.002), but this 
difference was not maintained five weeks later. No significant differences on opposite sums 
knowledge were found between students who learned with the chip model or walk-it-off model on 
the delayed posttest (p=0.090).  

To test if students who did not have strong opposite sums knowledge prior to instruction had 
more difficulty learning with this chip model than the walk-it-off model, multivariate analysis of 
covariance (MANCOVA) was conducted on the post and delayed post IAT scores only for the 118 
participants whose opposite sums knowledge was not strong at pretest. These students assigned to the 
chip model did significantly worse overall on the IAT than students assigned to the walk-it-off 
model: F(2, 110)= 13.35, p<0.001, (ηρ2=.20). Students using chips scored lower on the posttest -12.7, 
95% CI [-18.4, -7.0] and delayed posttest -15.8, 95% CI [ -22.1, -9.6]. 

Discussion & Conclusions 
These overall results fit the theoretical reasons drawn from cognitive science, analysis of 

mathematical processes, and practical classroom experience. These issues converge to predict that 
the walk-it-off model should better support student learning, which the data confirmed. Several 
reasons for these results were identified: the walk-it-off model uses model-movements consistent 
with mathematical ideas (whereas the chip model is often inconsistent) and the chip model visually 
violates the meaning of zero students would expect when thinking of numbers using a collecting 
objects metaphor. 
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Consistency with Mathematics Matters: Model-Movements 
Some theoretical work referred to the mathematical alignment of integer models as breaking or 

requiring model-rules that differ from the mathematics (Star & Nurnberger-Haag, 2011; Vig, Murray, 
& Star, 2014). This study offers evidence to support these theoretical arguments that incongruent 
mathematical alignment does impact students' learning outcomes. Moreover, this study offers reasons 
related to human cognition why these breaks are likely problematic. One predicted reason was that 
students move differently in order to interact with the representations with these models. If this 
difference and the consistency of the ways model-movements represent mathematics did not matter 
for student learning, then there should be no significant differences in performance on the Consistent 
and Inconsistent Model-Movement problems. This analysis, however, did show that when the chip 
model required model-movements that contradicted or were extraneous to the mathematical 
processes and ideas, this interfered with learning. In contrast, the walk-it-off model-movements 
consistently represent the mathematical ideas, so I classify this model as a Motion-Aligned-Model. 
When approaching integer arithmetic problems with model-movements consistent with the 
mathematics, the results demonstrated that either model could be equally effective. This lack of 
significant differences on Consistent Model-Movement problems further supports the claim that 
model-movement alignment with mathematics could be a factor in students’ learning with models. 

Consistency with Mathematics Matters: Conceptual Metaphor   
In order to calculate almost every integer problem with chips, students need to represent the idea 

of cancelling opposite values (e.g., -9 and 9). Thus, due to repetition of the underlying metaphor of 
cancelling opposite things, one might suspect that a benefit of the chip model might be to better 
support student learning opposite sums. The results did fit this prediction, but the benefits of using a 
cancellation model for this purpose were only in the short-term significantly different from the 
number line model used in this study. Longer-term on average students performed equally well after 
learning with either model. 

Opposite sums knowledge may actually be required in order to learn integer arithmetic with the 
chip model, because this model requires students to sum opposite values to calculate almost every 
integer problem. The findings seem to support this, because students without strong cancellation 
knowledge at pretest who used this collecting objects metaphor model, scored the equivalent of about 
1.5 grades lower than students who used this particular moving-along-a-path metaphor model. A 
more global reason for these initial learners’ challenges with the chip model may be because it 
visually violates a central feature of applying the collecting objects metaphor to numbers. Rotman 
(1993) articulated, that when thinking of numbers using a collecting objects metaphor, zero should be 
visually represented as nothing or “no thing.” Yet, chip models require students to use multiple 
things to represent no thing. 

Implications 
This study that tested several aspects of integer learning, including all four basic operations, 

suggests that the walk-it-off model may be a parsimonious model for initial integer instruction. It 
also reveals for which aspects of integer knowledge a collecting objects metaphor (in the form of a 
chip model) might add richness to student thinking. The delayed posttest results reflect longer-term 
learning, which although rare in educational experiments, is crucial to make claims about educational 
impact that matters in students’ lives.  

Practical Implications 
Given that the walk-it-off model was more effective overall and improved learning even more for 

those who have less integer knowledge prior to instruction, this model is likely the most 
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parsimonious model with which teachers might begin instruction that meets the diverse range of 
learning needs in real classrooms. The sample was economically diverse (45% free and reduced 
lunch), but were primarily European American fifth and sixth grade students in a rural district, so the 
study should also be replicated with other populations to ensure that these results appropriately 
inform instruction for all students. Anecdotal evidence suggests the walk-it-off model, which a 
teacher developed and has shared with hundreds of other teachers, is a feasible model for teachers to 
implement (Nurnberger-Haag, 2007). Nevertheless, this study was conducted by an experienced 
researcher-teacher, so future investigations should confirm that students using these models with 
typical classroom teachers experience similar results.  

Research could investigate beginning integer instruction with a moving-on-a-path metaphor in 
the form of the walk-it-off model, which works for every integer problem, and then integrating other 
conceptual metaphors in the real-life contexts in which these metaphors make sense (as well as have 
students assess in which contexts these metaphors make sense). The study reported here used a 
number line model designed to encourage students to move in ways that represent opposite operators, 
which differs from other approaches, so the findings of this study should not be generalized to other 
number line models. To further consider how learning with a model affords and constrains integer 
learning, other collecting objects, measuring, and moving-along-a-path metaphor-based models could 
be experimentally compared.  

Theoretical Implications 
Humans are always moving. Research in cognitive science shows that these movements influence 

what and how we think (Antle, 2013; Glenberg & Kaschak, 2002). Important work about moving to 
learn mathematics has begun (e.g., Gerofsky, 2012; Roth & Thom, 2009). Yet, more is needed, and it 
is crucial that mathematics education research attend to the ways that students move due to 
instructional models, instead of whether they move during instruction. This study contributed to this 
theoretical goal specific to integer arithmetic and findings suggest further investigating if motion-
aligned models are more parsimonious instructional models across mathematics topics. 
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MENTAL MATHEMATICS AND ENACTMENT OF SPECIFIC STRATEGIES: THE CASE 
OF SYSTEMS OF LINEAR EQUATIONS 
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This study on the mental solving of systems of linear equations is part of a larger research program, 
aimed to gain a better understanding of the potential of mental mathematics activities with 
topics/objects other than numbers. Through outlining the study details and the activities engaged 
with, the paper reports on the variety of strategies developed for mentally solving systems of linear 
equations. The analysis pays attention to specificities and particularities of these strategies, focusing 
on their economical, tailored, and spontaneous nature to solve the tasks. In reflecting on the context 
of mental mathematics, the paper closes with discussions of the potential and richness of these 
strategies for exploring systems of linear equations. 

Keywords: Algebra and Algebraic Thinking; Problem Solving; Instructional Activities and Practices 

Context of the Study 
To highlight the importance of teaching mental calculations, Thompson (1999) raises the following 

points: most calculations in adult life are made mentally; mental work develops insights into number 
system/number sense; mental work develops problem-solving skills; and mental work promotes success in 
later written calculations. These aspects stress the nonlocal character of doing mental mathematics with 
numbers, where the skills being developed extend to wider mathematical abilities and understandings. 
Indeed, diverse studies show the significant effect of mental mathematics practices with numbers: on 
students’ problem solving skills (Butlen & Pézard, 1992; Schoen & Zweng, 1986), on the development of 
their number sense (Murphy, 2004; Heirdsfield & Cooper, 2004), on their paper-and-pencil skills (Butlen & 
Pézard, 1992) and on their estimation strategies (Heirdsfield & Cooper, 2004; Schoen & Zweng, 1986). 
There is thus an overall agreement, and across contexts, that the practice of mental mathematics with 
numbers enriches students’ learning and mathematical written work about calculations and numbers: studies 
e.g. conducted in US (Schoen & Zweng, 1986), France (Butlen & Pézard, 1992), Japan (Reys & Nohda, 
1994), and UK (Murphy, 2004; Thompson, 1999). However, there is much more. For Butlen and Pézard 
(1992), the practice of mental calculations can enable students to develop new and economical ways of 
solving arithmetic problems that traditional paper-and-pencil contexts rarely affords because these are often 
focused on techniques that are too time-consuming in a mental mathematics context. In a similar vein, 
Poirier (1990), in reviewing historical curricular documents where the practice of mental calculations was 
salient, underlines the fact that mental calculations have their own processes, which differ from regular 
written calculations. Others, like Murphy (2004) or Threlfall (2002, 2009), focus on the aliveness and on-
the-spot nature of mental calculations, where strategies are developed and tailored for the problem at hand 
and often differ from the writing processes that are usually focused on in paper- and-pencil contexts: 
something I have also discussed at PME-NA-35 (see Proulx, 2013a). 

This being so, as Rezat (2011) explains, most if not all research studies on mental mathematics 
have focused on numbers/arithmetic. However, mathematics involve much more than numbers, and 
are predominantly studied through paper-and-pencil activities. This rouses interest in studying (1) 
what doing mental mathematics with mathematical topics/objects other than numbers (e.g., algebra, 
functions, trigonometry) might contribute to mathematical reasoning and understanding of these 
topics/objects, as well as studying (2) the kinds of strategies and solving processes engaged in to 
solve mental mathematics tasks related to other mathematical topics/objects than numbers. This 
paper focuses on this latter interest in relation to systems of linear equations, that is, studying the 
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nature and specificities of the strategies developed through solving systems of linear equations tasks 
in a mental mathematics environment. 

Defining Mental Mathematics 
Because most work on mental mathematics is on numbers (often referred to as mental arithmetic 

or calculations), no definition of mental mathematics appears in the literature. For Thompson (2009), 
mental calculations represent a subset of mental mathematics; however he does not offer any 
definition of mental mathematics. This said, even if thought of in terms of numbers and mental 
arithmetic, definitions about mental calculations can be adapted to other mathematical objects/topics 
to help define mental mathematics. Building on Hazekamp (1986), who offers a definition that 
summarizes what is generally considered by mental calculations, one tentative definition is: Mental 
mathematics is the solving of mathematical tasks through mental processes without paper and pencil 
or other computational (material) aids. 

In order to help develop a finer understanding of what is meant by mental mathematics, various 
dimensions about mental strategies with numbers are found in the literature (e.g. Butlen & Pézard, 
1992, 2000; Kahane, 2003) and are adaptable to other objects/topics than numbers. One of these 
dimensions concerns reasoned computations, implying the elaboration of personal strategies, often 
nonstandard and adapted to the problem, versus automatized computations, which implies access to 
an immediate result through the use of known facts or memorized procedures. An example of this 
could be, for area, between using the formula  !×!!   to find the area of the rhombus versus cutting the 
figure into triangles to find or compare the area. A second set of dimensions concerns approximate 
computations, based on estimation and approximation to gain an order of magnitude for the answer, 
versus the mental application of an algorithm or a fact to obtain an exact answer. An example for 
trigonometry could be between using the fact that  !"#30° = !

!  versus establishing a visual order of 
magnitude that the opposite side of a 30° angle enters approximately twice in the hypotenuse. A third 
dimension concerns rapid computations, which require quick execution to find the answer. Often 
criticized because it is perceived as a speed exercise detrimental to sense-making, it can also be seen 
as helping to develop new solving methods because it forces the solver, in trying to be economical, to 
abandon methods that may be slower (e.g. standard procedures) or less efficient for completing the 
task (e.g. one-on- one counting). In the case of algebra, an example could be the development of a 
global reading of an equation like  ! + !

! =
!
! + 6  giving  ! = 6, avoiding numerous algebraic 

manipulations in order to isolate x (Bednarz & Janvier, 1992). These dimensions illustrate possible 
entries for solving mental mathematics tasks. In the case of systems of linear equations, what these 
dimensions represent is something probed into in this paper. In addition to having value for refining 
what mental mathematics can mean, these dimensions have value for data analysis and are reinvested 
in the subsequent analysis of strategies developed by solvers for systems of linear equations. 

Methodological Considerations 
This study is part of a larger research program that focuses on studying the nature of the 

mathematical activity in which solvers engage with through working on mental mathematics with 
objects/topics other than numbers. This is probed through (multiple) case studies that take place in 
educative contexts designed for the study (classroom settings/in-service education activities), where 
participants are asked to solve a variety of tasks. The reported study is one of these case studies, from 
a day-long session with 12 secondary-level teachers (Grade 9 to 12). The general organization took 
the following structure: (1) a task is offered to the group in writing on the board; (2) participants 
have approximately 15 seconds to solve the task; (3) at the signal, participants are asked to write 
their answers; (4) strategies are shared in plenary. The data comes from the strategies orally 
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explained by participants, recorded in note form by two research assistants, who collected and 
compared their notes to produce more substantial information about the strategies developed. The 
session was also video-recorded, which allowed the research team to return to the tapes to enlarge on 
the notes and analyse the strategies in depth. 

In this study, teachers are regarded as problem solvers; as would any participant solving the 
given tasks in this project. The decision to work with teachers is methodologically important. Indeed, 
these teachers are not novice solvers of systems of linear equations and thus are not in a new solving 
context or familiarization with the topic. This enables them to “enter” into tasks and attempt to solve 
them, giving access to their strategies and mathematical activity. This could be otherwise with 
participants who are newcomers to the topic, as they could experience significant difficulties with 
systems of linear equations and possibly would not be able to “enter” into the tasks for solving them. 
In that sense, the intention in this study is not to offer prescriptions for practice or to show how an 
approach through mental mathematics is “better” for learning about systems of linear equations than 
another focused on paper and pencil. The intention is neither to trace parallels between what these 
teachers do and what could happen with secondary-level students in a regular classroom. The 
analysis is focused, along the lines explained by Douady (1994), on the nature, meaning and 
functionality of the strategies developed in this mental mathematics context in order to analyse the 
mathematical activity engaged with and study the specificities of the strategies deployed for solving 
systems of linear equations tasks. 

Findings 
The tasks focused on for this paper consisted mainly in finding the solution, the intersection 

point, of a system of two linear equations (given algebraically), and then drawing the coordinate 
point on a sheet of paper displaying a Cartesian graph (with ! = ! drawn as a reference line). 
Without being too caricatural, in a paper-and-pencil context the participants (as they explained 
during the session) would have resorted to algebraic manipulations and known algebraic strategies 
(comparison, elimination, substitution methods) to find these intersection points and then draw them 
on the graph. While solving the tasks, some participants opted for these algebraic methods, but in 
most cases they could not do this as the burden of algebraically manipulating without paper-and-
pencil support became too important, and they had to develop alternative ways of solving. Below, I 
report on these alternative strategies to give a sense of their nature and analyse the mathematical 
activity involved. I first focus on the strategies given for solving the system of linear equations: 
“! = ! and ! = !! + 2”. This is followed by other strategies developed for similar tasks, focusing 
again on their specificities for solving. 

Strategies developed for Task 1 (“! = ! and ! = !! + !”) 
Strategy 1: The role/influence of parameters. To solve this system, the participant focused on 

the fact that both lines would normally cross at (0,0). However, because the second equation was not 
“! = !! ” and had a y-intercept of 2, the answer was elevated by 2 on the y-axis, giving (0,2) as an 
answer. The focus on the parameter (y-intercept) played an important role in determining what and 
where the answer would be in the graph. This said, the answer (0,2) was not seen as the y-intercept, 
but mainly as an elevation of the point (0,0) toward (0,2); it ends up being the same, but at the time it 
was not thought of in these terms, as the participant expressed. 

Strategy 2: Finding a “line” of possible solutions. The participant drew a vertical line at x=1, 
explaining that he did not have enough time to find the exact value of y, but that the solution was on 
that line because x=1 gave the same answer for both equations. Of interest is that substituting x=1 
also gives the value for y. But in his algebraic manipulations for finding the value that gave the same 
answer for both equations, his focus was on finding a common x that gave the same answer for both 
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equations (! =!?  and !! + 2 =!? ) and not on finding the value of y, even if it is the same. Both 
ventures were seen as separate. The first venture (focus on x) gave an infinite number of solutions 
within a restricted domain of x=1. He did not have enough time to look for y. 

Strategy 3: Visualizing in the graph. The participant mentioned having found approximately 
where the point would be, in the 1st quadrant, by visualising the lines as one that crosses the first 
quadrant in the middle (y=x) and the other going through the 1st quadrant as well (! = !! + 2, with 
a negative slope and starting from 2 on the y-axis), both intersecting on ! = ! and in the 1st quadrant. 
Visualising the lines played an important role to position where the intersection point would be. 

Strategy 4: Visualizing the lines with objects. Having pencils and pens on her table (for 
drawing the solution afterwards), the participant imagined them as lines in the graph and saw, as did 
the participant in Strategy 3, that the intersection point was in the 1st quadrant. It is through “seeing” 
the graph that the solution was developed, as the participant explained. 

Strategy 5: Finding the right quadrant. For this participant, the first step was to realize that the 
solution would be in the 1st quadrant, because of the equations of the lines: one that splits the 1st 

quadrant in half and the other that goes through it (without being precise in exactly how). The point 
was not placed precisely in the graph (close to the x-axis, a little to the right of the origin), and the 
participant knew this, but the focus was on finding the right quadrant for the intersection. 

Strategy 6: The y-intercept as a focus. Similar to Strategy 1, the y-intercept played a role in 
determining the intersection point. This time, with the difference that the y-intercept did not influence 
a previously obtained answer (as in Strategy 1 where the point (0,0) was elevated by 2), but 
influenced the fact that the solution had to be “in that area” of the y-intercept because it played a role 
in the position of the line  ! = !! + 2  in the graph. Hence, the solution was placed at (0,2), mainly 
because of time constraints and because an answer had to be given. Here again, even if it is the same 
coordinate points, (0,2) is not thought of as the y-intercept for the participant (if it had been, it would 
have been discarded, because the participant knew that the other line did not have 2 as y-intercept). It 
was seen as a possible intersection point where both lines would cross each other. 

Strategy 7: Visualizing the lines with gestures. Similar to Strategy 4, a participant imagined 
placing and crossing hands to represent the slopes of the lines, which is a common teaching practice. 
This gave an idea of where the intersection point would be. He considered the point to be in the 1st 

quadrant and saw that the intersection point could be in the “middle” of the crossing hands (not 
necessarily realizing that the point was on y=x, with the same value for x and y). Here too, the 
participant explained that it is through seeing the lines that the solution was developed. 

Strategy 8: Trial and error. The participant attempted some numerical solutions (however not of 
the form x=y), but because it led nowhere he was unable to place any point of intersection (albeit 
knowing that there was one because both lines did not share the same slope). 

In the following section, the above strategies are grouped and discussed in relation to their 
similarities, drawing out their specificities related to the context of mental mathematics. Since a 
strategy’s attributes can be related to diverse groups, it can be placed in more than one group. 

Discussion of strategies developed for Task 1 (“! = ! and ! = !! + !”) 
Order of magnitude strategies: Strategies 2, 3, 4, 5 and 7. For these solutions, the focus is on 

having a good idea of where the solution is in the graph, of what is happening in the system of 
equations. These solutions can thus be related to the approximate calculation dimension. The focus is 
not on finding an exact answer, because time i s an issue in the mental mathematics context. This 
forces an analysis of the system to obtain an order of magnitude, an approximation, of where the 
solution would be: whether by focusing on the value of x as in Strategy 2, on the fact that the solution 
is on the line y=x as in Strategy 3, on gaining a visual idea of where the lines intersect as in Strategies 
4 and 7, or of knowing in which quadrant the solution is as in Strategy 5. The need to develop an 
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order of magnitude appears to derive from the mental mathematics context, a strategy quite removed 
from the algebraic manipulations that aim to find the exact solution to the system. The specificity of 
these solutions underlines important aspects, mainly visualizing the system and understanding what 
is happening. The focus on x=1 in Strategy 2 and on x=y in Strategy 3 are exam ples of how this 
focus on the order of magnitude offers significant information about the system, because, even if it 
may seem obvious, the value of x and the value of y need to be the same for finding a solution that 
satisfies both equations,  one of them requesting that x=y! The same is true for the more visual 
strategies where lines are positioned, because one can directly see that there is an intersection point 
(something important to know about) and that the links between both algebraic and graphical 
representations are salient. Hence, one gets an idea of the system, how it functions, and what its 
possibilities are. It is in this sense that these strategies appear as specific for mental mathematics: not 
that they are better or worse, but simply different, provoked by the context of solving and offering 
another way into solving the system that a paper-and-pencil context does not necessarily afford. 

Study of the equation: Strategies 1 and 6. Even if they give an answer that is mathematically 
inadequate, these strategies have something interesting to offer and can be related to the rapid 
computation dimension for a global reading of the equations. In particular, they are quite far removed 
from the usual algebraic manipulations that one would normally plunge into to solve the system. 
When solving algebraically in a paper-and-pencil context, the presence of the 2 in the second 
equation, the y-intercept, is not given much consideration or seen as important as it is simply a “2”, 
the number “2”, that is manipulated to find the value of x or y for solving the system. In algebraic 
manipulations, this “2” is not related to a “2” as the y-intercept, and the answer obtained is not 
considered as being influenced by this “2”; any more than would the negative sign affecting the x in 
the second equation (in algebraic manipulations, this negative sign affecting an x does not signify a 
“negative” slope). But, in Strategies 1 and 6, this “2” is the y-intercept and not simply a number to 
manipulate. Hence, consideration of the “2” is not related to the mechanics of manipulating 
algebraically, but for reflecting and thinking of the answer, the point of intersection of both lines. 
Thus, in these two strategies, one finds that the equation is studied, its attributes are considered and 
evaluated for finding something in it, for reading it so that it speaks differently than just algebraic 
symbols that need to be mingled. In this sense, these strategies call attention to the “-” sign affecting 
the x, to the “2” in the second equation, that makes the equation different from one that does not have 
the “2” (e.g. y=–x). These strategies offer a focus on differences in equations that make a difference 
for determining the solution. 

Because of time constraints, the effect of the “2” made the participants decide on an intersection 
that was about that “2”, but the specificity of these strategies is not about the answer obtained or the 
consideration of the “2”, but rather about the effect that this “2” had on the answer: the fact that it 
influenced and played a role in the answer (e.g. 2 more, 2 higher). The specificity of Strategies 1 and 
6 concerns the focus on the effect of the parameters, here the y-intercept, on the solution to the 
system: something of lesser interest in algebraic paper-and-pencil manipulations. 

Focus on numerical points: Strategies 2 and 8. These strategies focus on exact values for the 
solution by attempting to substitute possible answers to satisfy the system: being a hybrid between 
automatized and the opposite of approximate computations. It can be said that these strategies are 
elementary, as they are only an attempt to try out possible answers in a trial-and- error, unsystematic 
venture. However, their interest lies not in what they are not, but mainly in what they can be and can 
offer: that the solution needs to satisfy both equations simultaneously to be a solution to the system. 
Indeed, if there were only one equation to satisfy, the numbers attempted would have given a 
solution, and this would be it (e.g. x=2 in y=–x+2 would give y=0 and this would be satisfactory for an 
answer to this equation). But, in the case of a system of equations, the solution needs to satisfy both 
equations simultaneously to be its solution. Hence both x and y need to be solution of both equations. 
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The x=1 answer in Strategy 2 illustrates this, as x=1 is explained as a solution for both equations, 
meaning that it gives the same answer in each equation. (Again, here the focus of the participant was 
on finding x first, and time did not allow for finding y, even if the “answer” and the “y” were the 
same). The next step would have been to find the value of y that was the same for both equations, 
which would satisfy both simultaneously. The same is true for Strategy 8, as the solutions attempted 
(here coordinate points) was intended to test a value for x and for y at the same time in both equations 
and to see if both satisfied the equations. The specificity of these strategies lies in the fact that the mental 
mathematics context provoked a need to find an answer, an x and a y, that satisfied both equations. In 
an algebraic manipulation context, this intention to find values that satisfy both equations 
simultaneously is often hidden behind the mechanical manipulations, and if it emerges it does so at 
the end of the process when establishing the values of x and of y that are solution to the system. It is 
in this sense that the trial and error, focused on numerical points, appears as specific in this mental 
mathematics context. 

Discussion of a variety of other strategies developed for other tasks 
In what follows, I discuss two other strategies developed to solve similar tasks. In detailing these 

strategies, I explore their specificities and what they focus on for solving. 
Visualizing the lines in the graph through studying the equation. When solving the system 

“y=3x+1 and y=7x”, one strategy was to analyse where the lines would be in the graph and then 
consider their intersection; related to a global reading dimension of the system. Thus the participant 
explained that y=7x passed by (0,0) and is quite inclined, whereas y=3x+1 “starts at 1”, is less 
inclined, and thus crosses y=7x at a y greater than 1 and on the right of the y-axis (note that the 
analysis is made only in the 1st quadrant, as this participant knew where the lines would intersect from 
visualizing both lines, whereas an algebra-equation analysis would not offer the same information 
about the 1st quadrant). Another similar strategy was also related to the inclination of the lines, where 
the y=7x was seen much more inclined than the y=3x+1, leading to a value in x being between 0 and 
1. Also, the value of y was seen as greater than that in x because one of the two lines, the y=3x+1, had 
a y-intercept of 1 (and a positive slope). In both cases, the analysis of the line is precise, focusing on 
aspects of the equation that gives information about  the lines in order to visualize them for 
subsequently finding the solution. Understanding that the solution is in the 1st quadrant because of the 
inclinations of the lines, that the value of x is between 0 and 1, that the value of y is higher than 1, and 
so forth, is not a necessary part of the algebraic manipulating process, as these facts have little 
influence on the manipulations needed to obtain the solution. But in this case, in the mental 
mathematics context, these specific aspects are provoked in the strategies. And similar visualizations 
of the line in the graph, through studying and analyzing the equation, were made for other tasks. E.g., 
with the line “! = ! + 10”, one participant said that it was parallel to “! = !” but higher because of 
its y-intercept. Another example is with the system “! = 8! + 5  and  − 18! + 3! = 9”, where 
one participant approximated the value of the slope of 8 as being close to 9 and thus close to 3 
with 5 as the y-intercept. For the second one, a mistake was made in relation to the sign of the slope, 
which was seen as positive rather than negative, but the participant considered the y-intercept as 
being of 3 (from dividing 9 by 3), and thus the solution in y as being between 3 and 5 in the 2nd 
quadrant. This analysis is quite impressive. For this participant, the intersection could not be lower 
than 3 in y, because it would be in the 1st quadrant, which is impossible because in that quadrant the 
other equation “starts” at 5 in y (its y-intercept being at 5). Thus by being a negative slope that has a 
y-intercept of 3, it had to intersect in the 2nd quadrant and between 3 and 5. These strategies 
represent specific ways to manage solving the system, performing a fine analysis of the equation 
combined with a visualization of the lines for solving it. It offers a specific way into the system, 
visualizing it, but mostly understanding how it works and where and how the solution can be. The 
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specific analysis of the equation renders some “information” in the equation as significant to solve 
the system: something un-usual in a paper-and-pencil algebraic manipulations context. 

Approximate algebraic manipulations. When asked to solve the system “4! + ! = 10 and 
! − 2! = 6! ”, some participants opted for the elimination method by quadrupling the second 
equation, transforming it from ! − 2! = 6!  to 4! + 8! = 24! , and then subtracting it from the first 
(and obtaining9! = 24). Because of time constraints, the value obtained for y was said to be around 
5; which can be related to the approximate computation dimension. Then, substituting the value of y 
in the first equation led to a value for x of around 1, for a coordinate point being about (1,5). 
Obviously, the degree of errors in regard to the solution is significant, because there is a first 
approximation for y, and then one for x based on that y. But of interest in this strategy is the 
approximation of the values in an algebraic system. This offers an order of magnitude for both values 
even if they were obtained through what is often seen as a precise strategy, that is, the algebraic route 
of elimination. Whereas earlier solutions focused on gaining an order of magnitude for situating the 
coordinate points in the graph, here the order of magnitude is in relation to algebraic manipulations: 
quite different from what is usually seen in an algebraic manipulation paper-and-pencil context. 

Final remarks 
These strategies reported illustrate some specificities of ways of engaging with the task in this 

context of mental mathematics. They are no doubt provoked by time constraints and because notes 
cannot be taken in writing, but this is the context of mental mathematics and it promotes these kinds 
of specific entries. It creates a need to grab something, to draw out aspects of significance for solving 
the problem. In addition to their specificities, these strategies have important potential for 
understanding or developing meanings about solving systems of linear equations, away from 
mechanical treatment and in relation e.g. to considerations of what is going on in the equations 
themselves, and how they behave. The reported “analyses/studies of the equations” represent such 
possibilities/potential for understanding systems of linear equations.  Even if these strategies are not 
always optimal or do not render correct answers (precise or not), they offer ways of understanding 
what a system of equations is, ways that are different from what is usually done with algebraic 
manipulation strategies. These strategies are specific in the sense that they offer a way into the 
systems, an analysis of it, through drawing out particular aspects. Whether this is through analyzing 
the equations to gather significant information on the system, through having an order of magnitude 
of the solution or the system itself, through attempting to satisfy simultaneously both equations of the 
system, all this offers a specific way of engaging with solving systems of linear equations. 

These results are promising. What comes out of this current work, and that on solving algebra 
equations (e.g. Proulx, 2013b) and operations on functions (e.g. Proulx, 2013a) in mental 
mathematics contexts, is the emergence of unusual ways of tackling and working on these 
mathematical topics, bringing forth varieties of strategies that focus on aspects not usually engaged in 
or focused on (here e.g. the y-intercept, the order of magnitude, the boundaries where the value in x 
and y could be). These strategies are creative and exploratory, and in this sense   they suggest 
extending what can be done with these topics: not in terms of the tasks offered, but in terms of the 
meaning to be given to the topic itself. These strategies bring us elsewhere, focusing on different 
aspects and on other ways of solving. It is in this sense that they are specific, as is argued similarly 
for mental calculation on numbers, where they differ from the usual ways of solving and enable a 
focus on other aspects for solving. Clearly, more is to be studied and researched, but the focus on 
extending the scope of solving for these topics promise great value for mathematics teaching and 
learning. 
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This case study examined how a teacher’s choice of numbers used in tasks designed to foster 
students’ construction of a scheme for reasoning in multiplicative situations may afford or constrain 
their progression. This scheme, multiplicative double counting (mDC) is considered a significant 
conceptual leap from reasoning additively with units of one (1s) and composite units. A researcher-
teacher’s work with Jake allowed us to center on his gradual cognitive advance as different numbers 
chosen for the unit rate in problems (e.g., 5 cubes-per-tower) were used in the context of the Please 
Go and Bring for Me platform task. Our findings show that a child’s use of an evolving scheme may 
initially depend on the numbers used in the task. We discuss the key recognitions that (a) a new way 
of operating does not evolve in a “once-and-for-all” way for all numbers and (b) the support our 
study provides for Pirie and Kieren’s core notion of folding-back. 

Keywords: Number Concepts and Operations; Elementary School Education; Teacher Knowledge 

Introduction 
In recent years, a growing body of research has been focused on various aspects involved in 

children’s transition from additive to multiplicative reasoning (Empson& Turner, 2006; Hackenberg 
& Tillema, 2009; Sherin & Fuson, 2005; Tzur et al., 2013; Verschaffel, Greer, & DeCorte, 2007). 
However, unlike in other mathematical areas, such as numbers chosen for addition and subtraction 
tasks (Fuson, 1992), how a teacher may consider the use of numbers in tasks designed to help 
students overcome the conceptual leaps involved in progressing from additive to multiplicative 
reasoning has received little attention. To embark upon this lacuna, our study addressed the problem: 
How may specific numbers a teacher uses in tasks for promoting students’ advance from additive to 
multiplicative ways of operating with/on different types of units (1s, composite), afford or constrain a 
child’s conceptual progression when solving multiplicative problem situations? In particular, this 
paper examines such affordances and constraints as a child begins the transition from additive 
reasoning to the first scheme in which she or he coordinates operations on two types of composite 
units—the multiplicative double counting (mDC) scheme. 

Conceptual Framework 
A constructivist perspective on knowing and learning (Piaget, 1985) underlies this study. 

Specifically, we drew on von Glasersfeld’s (1995) construct of scheme as a three-part mental 
structure: (a) situation, a recognition template into which a learner assimilates a problem situation (or 
task), that triggers her or his goal; (b) a mental activity the mind carries out to accomplish that goal; 
and (c) a result the learner expects to follow from the activity. The situation part includes recognition 
of and bringing forth of objects, such as numbers, upon which the mental activity operates. 

Working within such a perspective, Steffe’s (1992) seminal work contributed to distinguishing 
between additive and multiplicative schemes. He proposed to focus on the units on which one is 
operating mentally (1s or composite units) and the operations a learner uses that underlie her or his 
performance when solving tasks. He thus distinguished additive from multiplicative reasoning not on 
the basis of observable behaviors (“strategies”) the child uses in and of themselves, but on the basis 
of inferences into what mental operations on units operations could give rise to those behaviors. 
Specifically, he asserted that multiplicative schemes involve a coordination of composite units in 
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which the child distributes the items of one composite unit (e.g., towers made of 5 cubes each) over 
items of another composite unit (e.g., a compilation of 3 towers). Such a coordination may be 
manifested in the use of some figural items in place of the objects alluded to in the task (e.g., a finger 
standing for one tower) and later in the abstract, double counting of two sequences of composite units 
(e.g., first tower is 5 cubes, second-is 10, third-is-15). Tzur et al. (2013) recently proposed a 
developmental pathway of six schemes through which children’s multiplicative reasoning may 
progress; this study focuses on the use of numbers to promote the transition from additive reasoning 
to the first scheme in the progression. 

This study also drew on Pirie & Kieren’s (1994) constructivist stance on the non-linear growth in 
learners’ mathematical understandings, particularly the key construct of folding-back. Rooted in 
studies of children in other areas (e.g., fractions), they showed that an ordinary path to higher-level 
understanding (outer layers in their model) might include frequent ‘regresses’ to the use of lower-
level, previously constructed understandings. Our tasks were designed to promote students’ transition 
to the first of six schemes, multiplicative double counting (mDC), while allowing the research team 
to analyze how numbers chosen for these tasks would possibly bring about folding-back and upward 
shifts in the units/operations a child may use. 

Methodology 
The case study reported in this paper was part of a larger constructivist teaching experiment 

(Cobb & Steffe, 1983) we have conducted with four 4th graders identified by their western US school 
as requiring intervention in mathematics based on state assessments and classroom teacher 
recommendations. The two first authors conducted the video recorded teaching episodes with each 
child individually. This paper analyzes data from their work with one student, Jake (pseudonym), 
twice a week, from October through December of 2014, around 30-45 minutes each episode. The 
second author (Nina, pseudonym) served as the researcher-teacher in those episodes, as Jake was 
accustomed to working with her as the school intervention teacher. 

All teaching episodes engaged students in playing the task-generating game of Please Go and 
Bring for Me (PGBM), which Tzur et al. (2013) described in detail. In a nutshell, PGBM is a turn-
taking game played in pairs, with one’s peers and/or the teacher. Each turn, a “Sender” asks a 
“Bringer” to build and bring back from a box containing individual cubes a compilation of same-size 
towers, one tower at a time (e.g., 3 towers, 5 cubes in each). Once all towers were brought to the 
Sender’s satisfaction, she or he asks the bringer four questions (in our work – those are written on a 
poster to promote students’ use of full sentences and explicit mention of units): (a) How many towers 
did you bring (emphasizes number of composite units)? (b) How many cubes are in each tower 
(emphasizes unit rate – number of 1s in each composite unit)? (c) How many cubes are in all the 
towers? (d) How did you figure this [total of 1s] out? (Last two questions emphasize operations child 
used to figure out number of 1s in the entire compilation of composite units.) Similarly, the poster 
included ‘answer-starters’ that enabled the bringer to express her or his answers as full sentences 
(e.g., “I brought __ towers”). Initially, the teacher constrains the game so children can only use 
particular numbers of cubes per tower (e.g., 2 or 5) and of towers in all (e.g., up to 6), while also 
asking children to use different numbers for each kind (e.g., a sender cannot ask to bring 5 towers of 
5 cubes each). 

Our line-by-line retrospective analysis of video records, transcripts, and researcher field notes 
taken during each episode focuses on the first two teaching episodes with Jake. Focusing on his 
initial transition to multiplicative reasoning serves the purpose of ‘zooming in’ on the interplay 
between his ways of operating and the numbers chosen in each task. The two first authors conducted 
ongoing analysis following each episode; the entire team of authors then conducted the line-by-line 
analysis of the four segments presented in the next section. 



Early!Algebra,!Algebra,!and!Number!Concepts:!Research!Reports! 183!

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

Results 
To study how numbers chosen for tasks may afford and constrain a child’s operations with 

different types of units as the teacher promotes Jake’s transition to the mDC scheme, this section 
includes analysis of four data Excerpts. In the first episode (Excerpts 1 & 2), Jake worked with a peer 
on PGBM tasks constrained to unit rate of 2 or 5 and a number of composite units up to 5. In the later 
episodes (Excerpts 3 & 4), Jake played a bringer role with Nina as sender, with tasks allowing both 
unit rates and number of composite units to be 2, 3, 4, 5, or 6. 

Starting Point: Less than Five Composite Units, Unit Rates of 2 or 5 
Excerpt 1 shows data from Jake’s first turn as a bringer, after he had produced (from single 

cubes), brought 4 towers of 5 cubes each, and properly responded to the first two questions (SS 
stands for Student-Sender). 

Excerpt 1 

SS:  How many cubes did you bring in all? 
Jake: (Glances at the towers for 1 second, then says) I brought … (uses his left hand to tap five 

times on the palm of his right hand); I brought 20 cubes altogether. 
SS:  How did you figure this out? 
Jake:  I figured this out by counting. 
Nina (Teacher):  How did you count? 
Jake: I counted by 5s1. 
Nina:  How did you know to stop counting? 
Jake: Cause if you don’t, cause if you can’t … (reaches with his left hand and brushes over the 

towers that the SS is holding) 
Nina:  I can count by 5s too: 5, 10,15, 20, 25,30 ... So how did you know to stop at 20?  
Jake: (Looks at the towers that the student sender is holding) It’s … because that … (turns his 

head away from the towers for five seconds, then turns his gaze back on the towers). It’s 
because I only brought 4 towers. 

Nina: So you knew to stop because ... ? How did you know you had counted the four towers, 
Jake?  I agree that you only brought 4 towers. How did you know that 20 was 4 towers. 

Jake: I counted on my fingers. 
Nina:  Can you show me? 
Jake:  (Holds up his right hand, then folds his index finger while stating) 5; (folds middle finger) 

10; (folds ring finger) 15; (folds pinkie finger) 20! (Body indicates, “I am done”). 

Excerpt 1 provides a glimpse into Jake’s mental operations while solving a problem with ‘easy 
number’ unit rate 5. Jake first reestablished the number of 1s that constituted each composite unit 
(five palm taps). That is, he seemed to have created a figural mental template of the size of every 
composite unit. Because counting by 5s was within his capacity, his count of the accrual—which he 
demonstrated to the teacher, indicated a purposeful method of keeping track of the number of 
composite units so he would know to stop at four towers. His ability to perform such a purposeful 
action did not yet seem to support expressing how he did it. Rather, when prompted to explain how 
he knew to stop at 20, he initiated a shift to a different figural re-presentation, by using the fingers of 
his right hand to represent the composite units in the situation (towers) and his number sequence (by 
five) to re-present the accruing 1s (cubes). This seemed to assist his growing anticipation of the link 
between coordinated actions taken to figure out a progressive total and the effect of stopping the 
count of 1s when reaching the number of composite units (which fits his statement, “I brought 4 
towers”).  Jake, when operating mentally on a unit rate that is a known counting sequence (5s), could 
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both initiate and complete the coordinated, goal-directed mental activity involved in multiplicative 
double counting. 

It is important to note the purpose of the teacher’s interventions (e.g., “how did you count”). A 
child may initiate and carry out goal-directed actions while not being aware of his own actions, let 
alone the steps he took to monitor those actions. By asking Jake to explain, she thus attempted to 
orient his reflection on and awareness of his own purposeful actions (e.g., he did keep track of the 
composite units). To explain his strategy, Jake used fingers, which the teacher intended as a means to 
promote two critical reflections in constructing the mDC scheme. First, she focused Jake’s attention 
on a specific aspect of his coordinated counting—monitoring accrual of the composite units. Second, 
she simultaneously focused his attention on the key in his stoppage monitoring.  

In the following PGBM task in which Jake played the bringer, he had to figure out and explain 
how many cubes are in 5 towers with 2 cubes each. Again, Nina pressed for his explanation of his 
solution, as his response (10) came after quietly nodding his head five times but not using his 
hands/fingers. Excerpt 2 shows he re-used the previous way of explaining. 

Excerpt 2: Finding the total number of cubes in 5 towers of 2 cubes each 

Nina: Can you show me? 
Jake:  Like this … (holds up right hand, folds down his index finger while saying) 2; (folds his 

middle finger) 4; (folds his ring finger) 6; (folds his pinkie) 8; (folds his thumb and 
concludes) 10. 

Nina: So, again, each one of your fingers … this [seems] similar to something else you did. Each 
one of your fingers, you put them down: 2, 4, 6, 8, 10 (paraphrases J’s motions and 
utterances); so you stopped here (wiggles her thumb); Why? 

Jake:  Its because I only brought 5 towers. 

Excerpt 2 provides further evidence to the evolving regularity in Jake’s ways of operating as well 
as the teacher’s involvement in that process. Freed from a mental focus on the accrual of 1s in the 
sequence of multiples of 2, he initiated and completed a coordinated count of figural composite 
units(5 towers) through nodding his head and later through using fingers. He seemed to anticipate the 
need to coordinate two accruing number sequences: composite units (towers) with unit rate (cubes 
distributed over each of the towers). Similarly, when prompted to explain his thinking, Jake used the 
fingers of his right hand to re-present each composite unit in the sequence of 5 towers while keeping 
track of accrual of 1s via his number sequence (by 2s) to ten.  Considering Excerpts 1 & 2 combined, 
Jake seemed to have established at least an enactive anticipation of multiplicative double counting as 
a means to accomplish his goal. 

Starting Point: Composite Units of Less Than 5, Unit Rates of 4 and 6 
Excerpts 3 & 4 present Jake’s work two days later, with Nina serving as the sender. Based on his 

facility with double counting in tasks with unit rates of 5 or 2, she chose to send him to bring 3 
towers of 4 cubes each—slightly harder numbers (for him) that he could still work out by using each 
hand separately.  Excerpt 3 starts after Nina asked Jake how many cubes he brought in all. 

Excerpt 3 

Jake: I brought 11 cubes altogether. 
Nina: (Lays the towers down on the table closer to Jake) Can you double check? 
Jake:  (Takes apart each tower into its individual cubes while counting them out loud but without 

keeping them as distinct groups) 1, 2, 3, 4,5,6,7,8,9,10,11,12! 
Nina: So how many [cubes] did you bring altogether? 
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Jake: 12. 
Nina:  I want to know how you figured that out (she takes 4 cubes and reassemble them into a 

tower. 
Jake: (Reassembles another tower, albeit from 5 cubes.) 
Nina: (Reassembles another tower from the remaining 3 cubes, and asks him to give her a cube 

so she can make a tower of 4.) Jake, when you counted the first time, I saw you use your 
fingers (she folds her left hand’s fingers to emulate his motions). Can you tell me what you 
were doing? 

Jake:  (Folds down 4 fingers on his left hand, then folds down a finger on his right hand; repeats 
the process for the second and third towers, while left-hand fingers seem to stand for 1s and 
right-hand fingers for composite units/towers.)  

Nina:  And why did you do this (replicates Jake’s motions)? 
Jake:  Each finger was a tower. 
Nina:  Each finger was a tower? So can you show me again? 
Jake: (Holds up his right hand with the palm face up) Each finger was a tower. (Folds down three 

fingers on his right hand, one at a time, while saying) That’s the first tower, that’s the second 
tower, and that’s the third tower.  (He then adjusts his hand motion and folds down four 
fingers on his left hand, one at a time, while saying)If we add them all up we go 1(folds down 
a finger),2 (folds down a second finger),3 (folds down a third finger), 4 (folds down a fourth 
finger),5 (looks at his hand as if having an ‘oops’ experience). (After 2 seconds, he opens his 
hand, says “No,” then raises three fingers again on his right hand and says)No; this is three 
towers and you [have to] count by fours. He uses his left hand to put down one of the fingers 
on his right hand and says “Four.” Then he raises his left hand, counts four fingers, and says 
“5-6-7-8.” He then uses his left hand to fold another finger down on his right hand, then 
opens his left hand again and says “9-10-11-12.”(Then, folds the third finger on his right 
hand.) 

Nina: And you knew to stop at 12 because these were like the towers (touches the fourth finger 
on his right hand and this was like the 12th … 

Jake:  (Completes her sentence) … Tower 
Nina: (Inquiring about the unit type) The 12th what? 
Jake: Tower 
Nina: (Places her hand on the real towers and says) How many towers do you have here? 
Jake: (Corrects himself in response to her prompt) That was the last, third tower. 
Nina: It was the last, third tower; but it was the 12th what? 
Jake: Cube 

Excerpt 3 provides further evidence of the role numbers in task played in his evolving way of 
operating, as well as the teacher’s involvement in that process. Challenging him to solve a problem 
with 4 as the unit rate, Jake’s mental system was no longer freed from focusing on the accrual of 1s. 
Thus, he folded back to a focus on 1s (single cubes) that composed each unit.  Taking apart all 3 
towers without any allusion to their grouping indicated his need to individualize units—no longer 
reasoning multiplicatively. Yet, when prompted to explain, Jake made several attempts to coordinate 
the use of his fingers to re-present, on each hand, a different type of unit (cubes on the left hand, 
towers on the right). In his first, unsuccessful attempt, he identified the right fingers as towers, but 
began counting them as cubes. In an “oops” moment, he realized that counting the figural tower re-
presentations on his right hand was not moving toward his goal and started over. On his second 
attempt, Jake was able to accurately use his fingers to keep track of the unit rate of 4. He began his 
count not from 1 (cube) but from the first multiple of 4, indicating the coordination of a first 



Early!Algebra,!Algebra,!and!Number!Concepts:!Research!Reports! 186!

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

composite unit with the numerical value of the unit rate. Due to lack of facility with the next two 
multiples of 4,heturned to using the left hand four counting accrual of 1s while keeping track of the 
composite units with fingers on the right hand. Indeed, Jake’s solutions to this more challenging (for 
him) task differed, and folded back, from his coordinated actions to solve the previous tasks (with 
unit rates of 5 and 2). This suggested that Jake’s goal-directed coordination of double counting 
operations on composite units was still evolving and thus dependent on the numbers used in the task 
(in the sense of his facility with the multiples of the unit rate).  

To further demonstrate the interplay between numbers chosen for a task and a child’s ways of 
operating, we present his solution to the task that followed (Excerpt 4). Here, the teacher decided to 
keep the number of towers at 3, but to increase the unit rate (6 cubes per tower) so it exceeds the 
number of fingers on one hand. This choice intended to explore how Jake would cope with the 
challenge of keeping track of composite units while using fingers on both hands to keep track of a 
sequence of multiples with which he was not facile. 

Excerpt 4 

Nina:  How many cubes did you bring altogether? 
Jake: (Silently touches each cube in the first tower, perhaps re-counting them all. He then holds 

up and stares at his two hands for 1 second, puts his hands down, reaches for a pen, looks 
back at the cubes, points to the cubes for 1 second, and writes on a small white board the 
number 6 first and then the letter “T” above it.) 

T 
6 

He looks back at the towers on the table and writes on his white board another set: 
T    T 
6    6 

He looks back a third time at the towers, and completes his writing to correspond with the 
numbers given in the task: 

TTT 
6    6    6 

Seemingly not knowing how to proceed, he turns back to the real towers; taps on each of 8 cubes 
individually (all cubes in the first tower and two from the second), stops, and erases the white 
board completely. At this point, he begins counting while pointing with his finger to each 
individual cube in the first tower, shifting to counting by 2s to expedite the process, finally 
saying): I brought 18 cubes altogether. 

Nina:  (Not indicating if he was correct or not) How did you figure it out? 
Jake: (Picks up all of the towers and then puts them back on the table) I figured it out a different 

way; I just counted it this time. I used the cubes (picks up one tower). I pretended I broke it 
up like … (breaks off individual cubes from each tower); like 1-2-3-4-5-6;that is a tower I 
counted. 

Nina (a little later): Did it get a bit harder today when the numbers got harder? 
Jake: It was hard for me because I wanted to use the way I did last time (holds up both hands and 

shows the hand motions that he made when using his fingers to re-present a coordinate, 
double-count with 4s); but I don’t have as much fingers. 
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Nina:  So you couldn’t, you couldn’t, you don’t have as much fingers so does that mean you 
couldn’t? What do you mean by that (shows holding up of both hands)? 

Jake:  I had to do it a different way. 
Nina:  What do you mean you don’t have as much fingers? 
Jake:  I only have 10 fingers and … (rebuilds the 3 towers of 6 using the cubes on the table) 

Since …So if there are towers of 6 (holds up both hands) and I went like that (begins to count 
out six on his right hand);So I wouldn’t have enough fingers. 

Excerpt 4 provided further evidence how the numbers Jake operates on make a difference in his 
goal-directed activity. When presented with a unit rate of 6, for which he had neither a mental 
number sequence nor enough fingers to re-present the items, he seemed unable to complete a 
coordinated count the way he did for unit rates of 2 or 5. Jake’s first, spontaneous attempt to re-
present the towers was to write a “T”(for tower) and the number“6” under each “T” to indicate how 
many 1s constituted that composite unit. While insightful and resourceful, this symbolized re-
presentation did not proceed to a double-counting activity. Seemingly having no other recourse, Jake 
abandoned this initiative (e.g., erasing the white board) and instead folded back to counting each of 
the tangible cubes (albeit shifting from counting by 1s to counting by 2s to expedite the process). 
Jake’s explicit utterance, about not having enough fingers, indicated he was acutely aware of the 
need to but unable to operate in a coordinated way when the number in one, unfamiliar composite 
unit precluded using each hand for a different component of the coordinated count. This was evident 
in his show of two hands, used to this end for 3 towers of only 4 cubes each, and the statements that 
followed (“I had to do it a different way”; I only have 10 fingers”). 

Discussion 
This paper focused on a key consideration for teaching specific mathematical ideas to students, 

namely, the choice of numbers used in tasks. Particularly, our study focused on this consideration 
when using tasks to foster students’ construction of the multiplicative double counting (mDC) 
scheme. Our study can contribute to the field in two important ways. First, it provides further support 
to the stance that construction of a particular scheme (e.g., mDC) is not a “once-and-for-all” event. 
Rather, when a shift in the child’s way of operating is to be promoted, such as the cognitive leap 
from additive to multiplicative reasoning (Steffe, 1992), initial emphasis in task design and 
implementation needs to be placed on orienting the child’s mental powers onto the novel 
coordination of operations on units. To this end, choosing ‘easy’ numbers seems highly productive, 
because the child can bring forth available knowledge of numerical calculations with which she or he 
seems facile (e.g., multiples of 2s and 5s). Initially solving tasks that involve ‘easy numbers’ enables 
the child to construct the intended goal-directed activities (a new scheme), which can then become an 
invariant way of operating she or he could apply to solving tasks with numbers that require engaging 
more complex mental capacities. (The scope of this paper did not allow us to provide data on how 
that change was successfully fostered in Jake after what we have seen in Excerpt 4.) 

Second, our findings provide further support to the core construct of folding-back in Pirie & 
Kieren’s (1994) model of growth in understanding. Specifically, we showed how Jake was able to 
use his newly constructed understanding of the coordinated count of composite units and begin 
operating in multiplicative situations when using ‘easy numbers’ (Excerpts 1 & 2). Nevertheless, he 
folded back to operating on 1s, while also conflating unit rate with the number of composite units 
(Excerpt 3), and was initially unable to solve similar (from an adult’s point of view) tasks presented 
with numbers for which he had no facility with the multiples. He further folded back, foregoing use 
of double counting when the unit rate (6) exceeded what he could signify with one hand’s fingers. As 
Tzur and Simon (2004) noted, folding-back may be a good behavioral indication for a stage in 
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constructing a new scheme at which the child’s evolving scheme (here, multiplicative 
coordination/distribution of composite units) is yet to become independent and spontaneous. This 
seemed to be Jake’s case, when anticipating he would not have enough fingers to account for all 1s in 
a tower of 6 cubes, and thus producing the abstract diagram to create a tool for keeping track that 
seemed not yet readily available for him conceptually. Folding-back can thus also be a good indicator 
of the need to pay close attention to the child’s conceptualization, in the following, threefold sense: 
(a) not simply attributing to the child too high a level of conceptual growth due to successful 
performance on ‘easy-number’ tasks; (b) not attributing to the child outright failure to conceptualize 
the intended math due to unsuccessful performance on ‘harder-number’ tasks; and (c) designing tasks 
and using tools that can gradually bring the intended mathematics to be within the child’s mental 
reach. 

Endnote 
1To improve readability, the authors have elected to use numerals in the transcriptions when 

speakers make number references. 
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The study reported on in this paper is an interview study conducted with 20 7th and 8th grade students 
whose purpose was to understand the generalizations they could make about non-linear meanings of 
multiplication (NLMM) and non-linear growth (NLG) in the context of solving combinatorics 
problems. The paper identifies productive challenges for the students, and thus fruitful areas where 
the students could generalize their reasoning about NLMM and NLG.  
Keywords: Cognition; Number Concepts and Operations; Middle School Education; Algebra and 
Algebraic Thinking 

As students progress into the middle grades they are expected to begin to understand situations 
that involve NLMM and NLG. Despite this curricular structure, studies in this area have highlighted 
the difficulties that students have in reasoning about a broad range of contexts that can involve 
NLMM and NLG (Van Dooren, De Bock, Janssens & Verschaffel, 2008). These difficulties include 
a tendency for students to generalize linear meanings of multiplication (LMM) and linear growth 
(LG) to situations that involve NLMM and NLG. For example, students frequently conclude that 
scaling the side lengths of a square by a factor of k produces a change in the area of the square by a 
factor of k rather than k2 (DeBock, Van Dooren, Jansenns, & Verschaffel, 2007; Vlahovic-Stetic, 
Pavlin-Bernardic, & Rajter, 2010), and treat non-linear functions, for example quadratic functions, as 
if they have similar properties as linear functions (Chazan, 2006; Ellis & Grinstead, 2008; Zaslavsky, 
1999). Thus, an important issue for researchers to investigate is how to support middle grades 
students to begin to establish NLMM and NLG, and further, to identify productive generalizations 
students can make in the context of establishing NLMM and NLG (Ellis, 2011). The purpose of this 
study, which is currently underway, was to address these two issues.  

We addressed these issues by presenting 20 7th and 8th grade students with combinatorics 
problems whose solution could be represented with a two-dimensional array. Thus students had the 
potential to establish NLMM and NLG, and generalizations about NLMM and NLG as a result of 
reasoning about relationships among one and two-dimensional quantities. Here we report results 
from the first of two interviews. The purpose of the first interview was twofold: (a) to establish 
which of three qualitatively distinct multiplicative concepts students were using (Author, 2009; 
Steffe, 1994); and (b) to identify productive challenges in the domain of NLMM and NLG for 
students that were using each multiplicative concept. Once productive challenges were identified for 
students using each of the three multiplicative concepts this information was used to design tasks for 
the second interview whose purpose was to examine the generalizations that students using the three 
different multiplicative concepts could make.  

Perspectives and Theoretical Framework 
A Quantitative Approach to Non-Linear Meanings of Multiplication and Growth 

We developed NLMM and NLG using combinatorics problems like the Digit Problem. 
Digit Problem: You have a deck of cards with the digits one through seven written in black on 
them. You draw a card, replace it, and draw a second card. How many possible coordinate points 
(e.g., (1,7) is one coordinate point) could you make using this process?  

We specifically selected combinatorics problems to investigate these issues because of their potential 
to support students to establish one and two-dimensional quantities, and relationships between them. 
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That is, combinatorics problems can involve ordering the digits in the deck of cards (a first digit, 
second digit, etc.), and ordering the draws from the deck of cards (a first draw, and a second draw) 
(Author, 2013). We considered this to be a potential basis for spatially structuring the units on the 
axes, and the axes themselves, which in turn could create a spatial structuring for the coordinate 
points in the array. Further, we considered that these problems could involve pairing a digit from the 
first draw with a digit from the second draw (Author, 2013), and thus give students an operative way 
to create what we considered two dimensional units (i.e., coordinate pairs) from one dimensional 
units (i.e., digits).  

We considered that the solution of the digit problem could involve students in establishing a 
meaning for 72, an NLMM (Figure 1a). Once students solved this initial problem we were interested 
in introducing NLG by having students consider how changing the number of digits would change 
the number of coordinate points, which we considered to involve whole number co-variation1. We 
wanted to investigate this issue through two types of problems: (a) having students consider how 
adding additional digits to the deck of cards (e.g., adding the digit 8, then adding the digit 9) would 
change the total number of coordinate points by considering how many new coordinate points there 
would be after a given change in digits; and (b) having students consider how doubling, tripling, etc. 
the number of digits would change the number of coordinate points. The goal of the first task was for 
students to have an experience of NLG by investigating how equal changes in the number of digits 
(e.g., changing the number of digits from 7 to 8, and then from 8 to 9) yielded growth in the number 
of coordinate points that was not constant (e.g., 15 new coordinate points when the number of digits 
increased from 7 to 8, and 17 new coordinate points when the number of digits increased from 8 to 9) 
(Figure 1b).  

 
 

Figure 1a (left) & 1b (right): Arrays for the Digit Problem 
The goal of the second task was for students to have an experience of NLG by investigating how 
multiplicatively increasing the number of digits (e.g., doubling) increased the number of coordinate 
points by the square of the increase in the number of digits (e.g., quadrupled) (Figure 2). Both of 
these problems we considered important to students’ initial understandings of NLG. 
Discussion of Students’ Multiplicative Concepts 

Prior research has identified three qualitatively distinct multiplicative concepts, all of which are 
rooted in students’ units-coordinating activity (Author, 2009; Steffe, 1992, 1994). We outline the 
second and third of these multiplicative concepts because we report on data related to students using 
each concept. We use the Candy Problem to outline the concepts: 

Candy Problem: Brandy has 3 packages of candy each containing 6 candies. How many candies 
does she have in all? 
A student using the second multiplicative concept (MC2) has interiorized two levels of units, 

which enables her to strategically reason with sixes in solving the Candy Problem. For example, to 
solve the candy problem a student might reason that six and four is ten, and that two more is twelve 
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Figure 2: Array for the Digit Problem 

and then finish the solution by reasoning that six more than twelve is eighteen. The ability to operate 
on each six by breaking it into, for example, four and two and strategically combining the parts is a 
hallmark of MC2 students because it is one indication that they are able to operate on a unit of six 
units. MC2 students are also able to produce three levels of units in activity. That is, once they have 
solved the Candy Problem they may regard the 18 candies as a unit of three units of six units, but 
they cannot use this three level of unit structure in further operating. For example, if these students 
were told that Brandy received 8 more packages, they could determine that this was 48 more candies, 
producing 48 as a unit of 8 units of 6 units. They could then unite 18 candies and 48 candies to 
determine there were 66 candies in all. However, determining that 66 candies was 11 packages would 
be a separate problem for an MC2 students because they would not retain the 18 candies as a unit of 
3 units of 6 units and the 48 candies as a unit of 8 units of 6 units. This means that MC2 students are 
able to create three levels of units in activity, but are not able to operate on this third level of unit. 

In contrast, students using the third multiplicative concept (MC3) have interiorized three levels 
of units. This means that an MC3 student would be able to determine that the 66 candies constituted 
11 packages because the 18 candies would retain there status as a unit of 3 units of 6 units, and the 48 
candies would retain there status as a unit of 8 units of 6 units. So when they united 18 and 48 they 
would establish the 66 candies as a unit of 11 units of 6 units.  

Methods 
The data for this research was drawn from clinical interviews (Clement, 2000) with 20 7th and 8th 

grade students who were attending an urban public school in a large Midwestern city during the 
2014-2015 academic year. The school population, of which the study population mirrored, is 
approximately 69% African American/Black, 16% Hispanic/Latino, 13% White, and 2% multiracial, 
with slightly over 85% of students qualifying for free or reduced lunch. The study consisted of three 
hour-long interviews. The first interview was a selection interview and helped identify the 
multiplicative concept students were using as well as identified potential productive challenges in the 
domain of NLMM and NLG. Using the information gathered in the first interview, the second and 
third interview explored generalizations that students using each of the three different multiplicative 
concepts made. There were seven tasks in the selection interview protocol, however, tasks were 
altered based on the interactions with individual students in order to gain authentic insight into 
students’ thinking processes (Clement, 2000). All interviews were video recorded and conducted in 
the presence of two researchers. Following the interviews, written notes were taken and discussion 
within the research team served as a form of data triangulation.  

Results 
We present two data excerpts from the first interview in order to illustrate how we identified 

what kind of generalizations would be productive for us to work on with MC2 and MC3 students 
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during the second interview of the study. The first data excerpt is from an MC2 student, Keon, who 
was presented with the digit problem, which he solved and then created a seven by seven array. He 
was then asked how many new coordinate points there would be if he was given an eighth digit. The 
interviewer asked Keon to determine a solution to this problem without initially drawing the 
coordinate points on the array. This condition was presented by the interviewer in order to test the 
extent to which Keon could monitor the number of new coordinate points he created as he created 
them, and to see how he structured his creation of the new coordinate points. Moreover, the goal was 
to avoid having him put the points on the array and then count the number of points he had put in the 
array because such a solution had the potential to significantly simplify the problem because it would 
be less clear in this case if the points retained there status as two-dimensional coordinate points or if 
they were simply enumerated as units of one.  

Excerpt 1: Keon’s Solution to Adding a Single Digit 
I: Would you say what all of them (new coordinate points) are so you can figure out how many 

there would be? 
K: Eight, one; eight, two; eight, three; eight, four; eight, five; eight, six; eight, seven. Yeah. It's 

eight times seven, right? 
…. 
I: Would there be any others? 
K: Oh, and eight, eight.  
I: Eight, eight. Yeah that is good. So how many total is that? 
K: Just the new ones? It would be eight, right? 
I: Okay. So you said eight, one; eight, two; eight, three...Are there any others you could get? 
K:  [sits in concentration for 5 seconds]: Oh, one, eight.  
I:  Mm-hmm.  
K: Two, eight; three, eight; four, eight; five, eight; six, eight; seven, eight; and eight, eight.  
I: Mm-hmm. So how many total new ones would there be? 
K: It'd be sixteen, right? No. It'd be sixteen, right? Cause it'd be eight, one; eight, two; eight, 

three; eight, four; eight, five; eight, six; eight, seven; eight, eight [puts up each finger on his 
right hand and his thumb, index finger, and middle finger on his left hand as he says the 
pairs]. One, eight; two, eight; three, eight; four, eight; five, eight; six, eight; seven, eight; 
eight, eight [puts up his ring finger and pinky on his left hand, and then reuses the fingers on 
his right hand and the thumb on his left hand as he says each pair]. So sixteen. 

I: Sixteen. Did you count any of them twice? 
K: Huh? 
I: Did you count any of them twice? Check and just see. 
K: Count any of them twice? 
I: Mm-hmm. Say them again, and just think about if you counted any of them twice.  
K: Eight, one; eight, two; eight, three; eight, four; eight, five; eight, six; eight, seven; eight, 

eight.  
I: Mm-hmm and what were the other ones you counted?  
K: One, eight; two, eight; three, eight; four, eight; five, eight; six, eight; seven, eight. Oh, and 

then eight, eight, I can't say that one no more cause I already said it.  
I: Yeah that is right.  
K: So it'd be fifteen. 
Keon’s initial response in which he said aloud seven new coordinate points (eight, one through 

eight, seven), and then said, “It's eight times seven, right?” indicated that he anticipated that the 
problem would involve linear growth. That is, he anticipated that if he added one new digit this 



Early!Algebra,!Algebra,!and!Number!Concepts:!Research!Reports! 193!

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

would produce seven new coordinate points because when he had created his seven by seven array 
each digit produced seven coordinate points. Upon questioning, he realized that eight could also go 
with itself, and that this meant he produced eight new coordinate points. Moreover, after he produced 
the coordinate point eight, eight, he had the insight (with the support of further questioning) that 
eight could also be the second digit in a coordinate point, and was able to state the rest of the 
coordinate points that he could create.  

After he had stated all of the coordinate points, he thought that there would be sixteen coordinate 
points although was not positive, “It'd be sixteen, right? No.”, and so restated all of them again 
counting each coordinate point using his fingers as he said them, and concluded there would be a 
total of sixteen coordinate points. This portion of the data excerpt is of interest for two interrelated 
reasons: first, Keon was not totally certain about how many new coordinate points he had created and 
so stated them again in order to count them; and second, he double counted the eight, eight 
coordinate point, an issue that has been reported frequently in prior research on students’ two-
dimensional reasoning (Battista, 2007). He was subsequently able to conclude that he had double 
counted the eight, eight coordinate point after questioning on the part of the interviewer, and re-
stating all of the coordinate points again, to check to see which, if any, of them he had counted twice.  

We account for these features of his solution by appealing to the levels of units coordination that 
are likely involved for a student to immediately conclude that, for example, he had created sixteen 
new pairs, and that this number of new pairs contained the coordinate point eight, eight twice. That 
is, our inference is that Keon created the first eight coordinate points as a unit of eight pairs in 
activity, and that the creation of such a unit structure is equivalent to establishing a three level of unit 
structure in activity because each of the coordinate points can be considered equivalent to a unit that 
contains two units (and so a unit of eight pairs is like a unit of eight units of two units). Keon could 
create a unit of eight pairs in activity but could not operate further with this unit structure; had he 
been able to operate further with this unit structure our inference is that he would have simply 
combined the first unit of eight pairs he created with the second unit of eight pairs he created to 
determine the total number of new coordinate points to be a unit of sixteen pairs without re-creating 
and counting each of the pairs. Additionally, our inference is that he would have identified, without 
re-creating all of the pairs, that each unit of eight pairs contained the coordinate point eight, eight.  

Nonetheless, this data excerpt suggested to us that for Keon, and students like him, an 
appropriate and productive challenge would be considering the relationship between a change in the 
number of digits and the number of coordinate points as a single digit was added. Moreover, we 
identified that a productive challenge would be structuring the new coordinate points as seven new 
coordinate points that contained eight as the first digit only, seven new coordinate points that 
contained eight as the second digit only, and one new coordinate point that contained eight as both 
the first and second digit.  

The second data excerpt is from an MC3 student, Armando, who was also presented with the 
digit problem, which he solved and then created a seven by seven array. He was then asked how 
many times the number of coordinate points he could make if he had twice as many digits. The goal 
of the interviewer was to have Armando use his array to quantitatively establish the relationship 
between the number of old and new coordinate points. Once Armando had accomplished this goal, 
then the interviewer wanted to determine whether Armando could symbolize the situation as 14 x 14 
= (7 x 2) x (7 x 2) = 72 x 22 so that he could also use his symbolic statement to see why there were 
four times as many coordinate points.  

Excerpt 2: Armando’s Solution for Doubling the Number of Digits 
I: [A extends the axes of the array, and puts in the digits eight through fourteen on each axes] 

How many times more numbers are you going to have if you fill those all in? 
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A: Um...can I just write it out? 
I: Well what are you going to do?  
A: Multiply fourteen times fourteen.  
I: Yeah okay so I want you to try to use your picture to figure it out.  
A: Hmm, okay. How can you use the picture? 
I: That is a good question. So like this would be like one time, right? [Points to the seven by 

seven array that is filled in]. 
A: Mm-hmm.  
I: And how many were in here [circles the 7 x 7 part of the array]? 
A: Forty-nine.  
I: Are there going to be any equivalent sections that are going to be this size in your picture? 
A: No ish. Wait yes.  
I: Okay so make another one that is going to be the same size as this.  
A: Hmm, I could do...hmm. I just got this small picture in my head in some way. So since there 

are seven xs over here [points to the digits eight through fourteen on the x-axis of the array] 
and going up is seven [points to the digits one through seven on the y-axis] all this area over 
here is actually also going to be forty-nine[draws the box in the lower right corner].   

I: Okay good. 
A: And the same thing with up here [puts a square in the upper right], and also over here [puts a 

square in the upper left]. So there is forty-nine four times. 
… 
I: What were you going to multiply when I said to use the picture? 
A: Oh, I was going to multiply fourteen by fourteen.  
I: Okay so will you write horizontally fourteen times fourteen. And that is equal to? How many 

times did you have seven in fourteen? 
A: Once, er, what do you mean? Oh! Twice.  
I: Twice here. So can you write fourteen as seven times. Fourteen is seven times what.  
A: Equals seven times two [writes 7 x 2]. 
I: And what about on this side.  
A: Um, same thing [writes 7 x 2 x 7 x 2, and then (7 x 2) x (7 x 2) so that he has written on his 

paper that 14 x 14 = (7 x 2) x (7 x 2)] 
I: Do you see any number squared in your picture? 
A: Ah, seven squared.  
I: And then do you see some other number squared in your picture? 
A: The other forty nines. Those would also be seven squared [writes 72 + 72 + 72 + 72, and now 

has written on his paper that 14 x 14 = (7 x 2) x (7 x 2) = 72 + 72 + 72 + 72]. 
… 
I: And how many seven squareds did you say you have? 
A: Four.  
I: So rather than adding them. What could you do? 
A: Seven squared times four [writes 4 x 72 and sets it equal to what he already has on his paper]. 
I: The four is that any number squared? 
A: Two.  
I: Do you see two squared somewhere in your picture, and if so where? 
A: Would it be that [points to the digits one through four on the horizontal axis]?  
I: Okay so say a little bit more.  
A: Like four is two squared. Oh, since, um, eh. Since this right here would be four squared, I 

mean two squared [circles the four coordinate points in the bottom left of his array].  
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Our interpretation of this excerpt is that Armando established multiple three level of unit 
structures in his solution of the problem: he established the fourteen digits on each side of the array 
as a unit of 2 units of 7 units, and each of the four regions contained in the array as a unit of 7 units 
of 7 pairs. We make this interpretation because of how he operated to determine that the 14 by 14 
array would contain forty-nine coordinate points four times, and the way he subsequently symbolized 
his reasoning. He first established that there would be a second region that would contain forty-nine 
coordinate points by identifying that the digits eight through fourteen on the x-axis could be paired 
with the digits one through seven on the y-axis, which he envisioned could create another region in 
the array that contained forty nine coordinate points. He then envisioned two other similar 7 by 7 
regions. The fact that he could establish these regions without actually having to create any of the 
coordinate points provided initial indication that he could take these regions as something to operate 
with, and so was treating the forty-nine coordinate points as a unit of 7 units of 7 pairs. 

The assertion that he was operating with three level of unit structures is also supported by how he 
symbolized the problem: he was able to see 14 x 14 as a product of 7 x 2 and 7 x 2. In particular, 
once the interviewer supported him to consider that 14 was equal to 7 times 2, he independently 
contributed writing 14 x 14 as equal to the product of 7 x 2 and 7 x 2. This way of symbolizing the 
problem provides indication that after he established fourteen as containing two sevens he could 
envision operating further with the two sevens by taking the product of two sevens and two sevens. It 
is important that he considered this to be a product, and not a sum, because considering it a product 
was essential for him to see that the product was equivalent to 72 + 72 + 72 + 72: each of seven digits 
could be paired with seven other digits to produce a region that contained 72 coordinate points. Our 
contention is that to see two sevens and two sevens as a product required maintaining 14 as a unit of 
2 units of 7 units because it entailed envisioning operating further with each seven, namely each of 
seven digits could be paired with another seven digits to make coordinate points without actually 
having to carry out these operations. 

An interesting feature of Armando’s solution is that he did not constitute the product as 22 x 72. 
The interviewer attempted to find out whether he saw the product in this way at first with an indirect 
question: “I: Do you see any number squared in your picture? A: Ah, seven squared. I: And then do 
you see some other number squared in your picture? A: The other forty nines. Those would also be 
seven squared.” The interviewer intended the second question to be about whether Armando saw 22 
in his picture, but Armando answered that what he saw were the other regions in the array that were 
72. The interviewer then tried to ask Armando more directly about this issue once Armando had 
written that the array was equal to 4 x 72: “I: The four is that any number squared? A: Two.” 
Computationally Armando was able to state that two squared was four, but when asked to identify 
where this would be in his picture he initially marked the digits from one to four on the x-axis, and 
then circled the four coordinate points in the lower left corner of his array—indicating that he did not 
see the four 72 sections of the array as 22. 

Discussion 
The initial interviews in the study have helped us to identify what kind of work is challenging for 

MC2 and MC3 students related to NLMM and NLG, and thus the kind of problems that are likely to 
produce interesting generalizations for these students. For MC2 students, the data suggests that 
problems in which students are asked to consider how the number of coordinate points changes as the 
number of digits is increased by one are likely to be challenging, but solvable. We think that the 
potential exists for these students to consider that, for example, 82 = 72 + 7 + 7 + 1, and 92 = 82 + 8 + 
8 + 1, to understand these symbolic statements show that the new number of coordinate points is 
equal to the old number of coordinate points plus the change in coordinate points where the change in 
coordinate points is structured as 7, 7, and 1 based on classifying them according to which position 
the new digit appears in the new coordinate point, and to generalize this understanding.  
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For MC3 students, the data suggests that problems in which they are asked to consider how 
multiplicatively changing the number of digits changes the number of coordinate points are likely to 
be challenging, but solvable. In particular, the challenge appears to lie in seeing that, for example, a 
14 by 14 array can be structured as 72 x 22. We conjecture that a problem like the following may 
support them to establish this way of seeing an array.  

Two Color Digit Problem: You have a set of cards where the numerals 1 through 7 are written in 
blue. You have a second set of cards where the numerals 1 through 7 are written in orange. You 
select a card, replace it, and select a second card. What different color combinations could you get? 
What coordinate points could you get in each color combination? 

We make this conjecture based on the fact that the problem includes two levels of pairing—
pairing colors and pairing digits within a particular color combination. We make this conjecture 
because pairing digits seemed integral to Armando establishing the 49 coordinate points as 72. We 
expect that from this type of problem students will be able to generalize that given n colors and x 
digits in each color that (nx)2 = n2x2. We will report on the generalizations that students made in these 
contexts as part of the presentation. 
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We present part of an investigation related to place value subject with first grade elementary school 
students (6 years old). Through this research, we look to analyze students' understanding of place 
value and difficulties evidenced during an experimental teaching that incorporates briefly other 
numerical bases and the use of manipulative material in a way that reflects the structure of our 
number system. For that purpose, we conducted individual interviews with students before and after 
experimental teaching. The results obtained in one of the tasks included in the interviews regarding 
numerical comparison show an improvement in understanding place value as a result of the 
experimental teaching. 

Keywords: Number Concepts and Operations; Elementary School Education; Instructional Activities 
and Practices 

Introduction 
Place value is a fundamental mathematical idea. Several studies have demonstrated that there is a 

relationship between understanding place value and the arithmetic performance of students (among 
others, Moeller, Pixner, Zuber, Kaufmann, and Nuerk, 2011). However, it "is a highly sophisticated 
concept that is not really understood by many children even at the end of their primary schooling” 
(Thompson, 2000, p.292). 

Based on the above, we are developing a research in which we approach the place value from the 
perspective of teaching and learning. In this article we focus on one of the objectives of this study: to 
describe what is the students' understanding of place value at the beginning and the end of an 
experimental teaching, for which we analyzed the results of one of the tasks of the interviews applied 
to students about numerical comparison. 

Theoretical Framework 
There are diverse factors associated to the difficulties of students of the place value 

understanding; one of them is the language. Miura, Okamoto, Kim, Steere and Fayol (1993) consider 
that understanding place value and mathematical performance of children may be influenced by the 
characteristics of their numerical language, in particular, by the level of correspondence between 
written and oral number system.   

Another issue related to difficulties in understanding place value is the teaching itself.  For 
example, Fuson (1990) observes that in usual teaching the multi-digit numbers are treated as linked 
single digits.  So, "for most of the children, a number is a digit alignment” (Bednarz and Janvier, 
1988, p. 300). 

Considering the issues associated to difficulties presented in understanding place value, some of 
which we have mentioned before, several studies have proposed alternative ways for its teaching.  In 
some of these studies, it has been taught the explicit number names (e.g., 1-ten 1, 1-ten 2, 1-ten 3 … 
2-ten, Cotter, 2000). In others, it has turned to the game (e.g., Association of Independent Schools of 
South Australia, 2004) and to manipulative materials for teaching of the decimal number system and 
the place value. 

Furthermore, in the teaching and learning of number system the introduction of different number 
bases, particularly small bases, represents diverse advantages according to Vergnaud (1991): the 
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formation of groupings of second and third order does not represent a difficulty in comparison to the 
base 10 since the number of objects to handle is smaller and the number system rules are essentially 
the same in all bases, and so they will be built by the student regardless the number base. 

Method 
This study was conducted with a first grade group of twelve students (6 years old), in a public 

elementary school in Mexico City. In this group, we implemented an experimental teaching, 
consisted in 20 sessions of approximately 45 min each one, in order to benefit the understanding of 
decimal number system and place value. 

The teaching sessions scene was an adaptation of The Base Ten Game presented by Pengelly 
(1991), consisting in throwing two dice, add the points, take the same number of wood sticks and 
place them on a board that contains place value columns. The game rule is that there can be no more 
than nine items in any column. So, once there are more than nine sticks in the unit column, ten sticks 
must be grouped and placed in the ten column (Association of Independent Schools of South 
Australia, 2004; Pengelly, 1991). The adaptation of this game consisted of a brief introduction of 
different number bases, as other investigators have done, by the advantages that this represents 
(Vergnaud, 1991). 

Our main contribution to the game was the introduction of an abacus of own design with an 
unique peculiarity of two columns for the units order and two for the tens order (with ten beads 
each), to facilitate the exchange: ten for one or one for ten depending on the case; the hundreds order 
is limited to one column because it was expected that students understand numerals up to three 
digits. Furthermore, the first five beads of each column of this abacus have different color in order to 
facilitate the recognition of quantities (Cotter, 2000). This abacus was used by students in The Base 
Ten Game. Thus, when they had more than nine beads in the unit column, they had to trade ten 
(units) for one (ten). 

Students who participated in this study were interviewed individually in order to explore their 
understanding of place value before and after the experimental teaching. In both interviews, the 
following tasks were presented: a) Cognitive representation of number (Miura et al, 1993), b) Digit-
correspondence (Ross, 1986), c) Positional knowledge (Ross, 1986), d) Additions and subtractions 
and e) Numerical comparison. 

Through numerical comparison, task that we focus in this report, we pretend to know if students 
consider the value of the digit according to its position when they compare numbers. In the initial 
interview, there were presented the next pair of numerals to the students on a sheet: 32 and 28, they 
were asked which was the biggest and why or how they knew it.  This allowed us to know the 
strategy they used and their place value understanding. The same task was performed with the 
numerals 71 and 59, this time asking what was the smallest. In the final interview the following 
numerals 139 and 151, 198 and 231 were include, since it was expected that as a result of the 
experimental teaching students could transit from two-digit numerals to three-digit numerals. 

Results 
In the initial interviews, a third part of the students considered that 28 was bigger than 32 and 

more than half said that 71 was smaller than 59. In contrast, in the final interviews, almost all 
students (except two of them) offered correct answers when comparing the four pairs of 
numerals. The latter two children considered that 151 was smaller than 139, this comparison was the 
most difficult for children since hundreds digits were the same and they needed to pay attention to 
tens digits. 

As mentioned before, in the interviews we also found out the reason of their answers, which 
allowed us to explore their understanding of place value before and after the experimental teaching. 
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First we approached the lack of arguments, which did not allow us to know if their answer was a 
random decision or what was the strategy employed.  

In the initial interviews, almost half of the children did not provide any argument about why the 
numeral selected was the biggest in the case of 32 and 28. In the comparison of 71 and 59, a third 
part of the students did not offer argument about their choice of the smallest numeral. In these cases, 
when students were asked about why or how they knew it, some children did not respond and others 
simply said the word or number words associated with the numerals ("Because this is the 32 and this 
28"). In contrast, in the final interviews only 2 of the 12 children interviewed gave no argument only 
in one of the four tasks. 

The strategies used by children in the numerical comparison task, explicit through their 
arguments were organized according to the strategies proposed by Sinclair and Scheuer (1991): a) 
Ordinality-cardinality, b) Face value and c) Place value (Table 1). 

a) Ordinality-cardinality. Within this category the students refer “to the number relation of the 
two numbers (cardinality) ... or to the position of these numbers in the counting sequence 
(ordinality)" according to Sinclair and Scheuer (1991, p. 208). Some of the arguments presented by 
the children in this category were: "Because 32 is farther away than 28"; "Because ... 71 is a lot and 
59 is a little"; 3 of 24 responses corresponded to this category in the initial interview and 5 of 48 
responses in the final interview. 

b) Face value. Children grouped within this category generally focused only in one of the digits 
of numerals compared regardless of its position and all their answers were incorrect. Examples of the 
arguments offered by the children in this category were: "Because it has 1" (71 <59), "3 is less than 
8" (28> 32), "This (151) is the smallest because this (139) has no another one" (151 <139). In initial 
interviews we found 8 answers within this category while in the final interviews we found only 1 
answer. 

Table 1: Numerical comparison strategies used by students 

Strategy 32   &   28 71   &   59 139 & 151 198 & 231 
Initial Final Initial Final Final Final 

Without argument 5 0 4 0 2 0 
Ordinality-cardinality 1 3 2 0 1 2 

Face value 4 0 4 0 1 0 
Place value 2 9 2 12 8 10 

Note: Initial = Initial interview, Final = Final interview, Total students = 12. 
 
c) Place value. In this category, there are children who considered the value of the digits 

according to its position in the numerical comparison. Generally, they focused in one of the positions 
and all their answers were correct. In this category is where we appreciate the most important 
changes resulting from the experimental teaching. In the initial interview, only 2 of the 12 children 
interviewed considered the value of the digits according to its position when they compared numbers. 
In contrast, in the final interview most of the children interviewed offered an argument that showed 
an understanding of place value (39 of 48 responses). 

Some of the arguments offered for 32 and 28 (the biggest) were: "Because 30 is bigger than 
20"; "... And it does not matter that this (8 of 28) is bigger but the first is larger (3 of 32) that this (2 
of 28)"; “Because from 20 … it follows 30".  

When comparing 71 and 59 (the smallest): "Because 5 ... ... is smaller than 7"; "Because this (71) 
takes 7 and this (59) takes 5”; “Because it has 1 (the child points 1 of 71) does not mean that it is 
smaller, this (59) although it has 9 does not mean it is big"; “And it doesn't matter that this (1 of 71) 
is. If only was 1 (the child covers 7 of 71 with his finger) then this (1) would be". 
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For 139 and 151 (the smallest), some of the arguments were: "... because it's 10, 20, 30 (139) and 
this (151) is 10, 20, 30, 40, 50, and they would be missing other two to be like this (151)”; "The two 
would be equal, wouldn´t they?, but here it changes ... because here is like they were just these (39 y 
51, the child hides with her fingers the hundreds of both numerals) and this (39) is smaller". 

In the last comparison, 198 and 231 (the biggest), some of the reasons given by the children 
were: "Because this takes 200 ... and this only takes 100". "And if these two were not here (98 of 198 
and 31 of 231), who would win?” As we can see, within this category children's arguments reflect an 
understanding of place value, understanding that will favor their arithmetic performance as evidenced 
in previous studies (e.g., Moeller et al., 2011). 

Conclusions 
Based on the results of the numerical comparison task presented above, it is clear that the 

experimental teaching implemented benefit the students' understanding of place value. This research 
shows the benefits of implementing alternative approaches in teaching place value, including the use 
of manipulative materials in a way that reflects the structure of our decimal number system. It 
remains to analyze the rest of the tasks that were part of the interviews applied to students, which will 
allow us to comprehend better the development of understanding of place value and the difficulties 
presented by students. 
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We detail a learning progressions approach to early algebra research and how existing work around 
learning progressions and trajectories in mathematics and science education has informed our 
development of a four-component theoretical framework consisting of: a curricular progression of 
learning goals across big algebraic ideas; an instructional sequence of tasks based on objectives 
concerning content and algebraic thinking practices; assessments; and posited levels of 
sophistication in children’s reasoning about algebraic concepts within big ideas of early algebra. 
This research balances the goals of longitudinal research on supporting students’ preparedness for 
algebra while attending to the practical goals of establishing connections among curriculum, 
instruction, and student learning. 

Keywords: Learning Trajectories; Curriculum; Algebra and Algebraic Thinking 

Learning progressions and trajectories are currently receiving much attention in mathematics and 
science education, especially in advancing recommendations for standards, curriculum, assessment, 
and instruction (Daro, Mosher, & Corcoran, 2011). Some key issues within this domain of research 
include the use and meaning of terminology, methods of assessing sophistication in student thinking, 
and connections among curriculum, instruction, and student reasoning (Barrett & Battista, 2014; 
Ellis, Weber, & Lockwood, 2014). This paper addresses these issues, with particular attention to the 
ambiguous use of the term learning progression—“sometimes indicating developmental 
progressions, and at other times suggesting a sequence of instructional activities” (Clements & 
Sarama, 2014, p. 2). We take the stance that a learning progression includes both.  

This research is situated within the Learning through an Early Algebra Progression (LEAP) 
project, which is grounded in a research agenda concerned with a fundamental question of how to 
prepare students in the elementary grades for success in middle grades algebra and beyond (Blanton, 
Stephens, Knuth, Gardiner, Isler, & Kim, 2015). The LEAP project builds on Kaput’s (2008) 
framework for early algebra in documenting changes in students’ learning of both algebraic content 
and algebraic thinking practices over time. Our purpose is to elaborate a theoretical framework for an 
Early Algebra Learning Progression (EALP), making progress in a program of research whose aim 
is to support an integrated system of curriculum, instruction, and student learning in early algebra. 

Theoretical Framework 
The EALP advanced in this research includes four components: (1) a curricular progression of 

learning goals across five big ideas and corresponding core concepts, (2) a sequence of instructional 
tasks based on objectives for content and algebraic thinking practices across big ideas, (3) 
assessments and coding schemes for analyzing student strategies, and (4) levels of sophistication in 
children’s thinking about core concepts in early algebra. See Table 1. 
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Table 1: A Theoretical Framework for an Early Algebra Learning Progression (EALP) 

 
 
This work builds on several related perspectives across “progressions” research in both mathematics 
and science education, elaborated next across each dimension of the framework. 

Curricular Progression 
The multi-year scope of the LEAP project warrants attention to a continuum of levels of 

specificity in content across grades and within grades and lessons. Thus we define our curricular 
progression to encompass various grain sizes (from largest to smallest): big ideas, core concepts, and 
learning goals (or claims). The curricular progression establishes a foundation of targeted learning 
goals from which instruction, assessments, and levels of student thinking are based. 

Big ideas are “key ideas that underlie numerous concepts and procedures across topics” 
(Baroody, Cibulskis, Lai, & Li, 2004, p. 24). Drawing from early algebra the big ideas of the EALP 
are: (a) equivalence, expressions, equations, and inequalities (EEEI), (b) generalized arithmetic, (c) 
functional thinking, (d) variable, and (e) proportional reasoning. The multi-year curricular 
progression is organized around these content strands and the algebraic thinking practices of 
generalizing, representing, justifying, and reasoning with mathematical relationships (Blanton et al., 
2015; Kaput, 2008). A core concept is an idea critical to understanding a big idea. For the big idea of 
EEEI, a core concept is “The equal sign is used to represent the equivalence of two quantities or 
mathematical expressions.” We take a learning goal (Clements & Sarama, 2014) to include claims 
about the nature of understandings or skills (Shin et al., 2009) expected of students regarding a 
concept. For example, in our work a learning goal for the big idea of EEEI is to “understand the 
equal sign as a relational (rather than operational) symbol,” evidence of which is seen through 
students’ actions in interpreting true/false and open equations. 

Instructional Sequence 
The EALP instructional sequence is defined to include a sequence of lessons that entail lesson 

objectives, jumpstarts, and problem-solving tasks designed to address both concepts and algebraic 
thinking practices. Lessons are defined as guides for an instructional intervention session (typically 
one 60-minute class period). Lesson objectives are defined as statements of targeted performances; 
they are derived from the curricular progression’s learning goals and offer a systematic framework 
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for designing or adapting tasks and allow for the revisiting and extending of algebraic ideas across 
the grades. Each lesson begins with a jumpstart designed to engage students in revisiting and 
strengthening their understanding of core concepts and algebraic thinking practices addressed in 
previous lessons. New concepts are introduced through problem solving tasks, or structured 
opportunities for students to build and extend understandings and practices around a goal-driven 
assignment. As an example for EEEI, students are asked to engage in tasks adapted from research 
(e.g., Carpenter, Franke, and Levi, 2003) that have been successful in supporting students’ relational 
understanding of the equal sign.  

Shin and colleagues (2009) note that learning progressions do not set forth a single, linear path to 
understanding, but a web of interconnected constructs within a big idea. We likewise acknowledge 
that our instructional sequence represents one possible path for supporting the development of 
algebra understanding, and different productive paths certainly exist.  

Assessments 
Written assessments for each of grades 3-7 were designed to elicit student reasoning across the 

big ideas and algebraic thinking practices. Assessment items were often adapted from those that had 
performed well in previous research (e.g., for equivalence items see Knuth, Stephens, McNeil, & 
Alibali, 2006) and were piloted and revised prior to administration. The assessments include several 
“anchor items” that appear in multiple grades to allow us to measure growth on the same item over 
multiple years. Assessment items offer multiple points of entry so that students at the very beginning 
of the progression as well as those more experienced in early algebra can demonstrate what they 
know regarding algebraic content and thinking practices. For example, the True/False task 57 + 22 = 
58 + 21is posed across grades 3-5 to elicit understandings of the equal sign and equation structure 
and can be solved in multiple ways.  

Levels of Sophistication in Children’s Thinking 
The final piece of our approach to learning progressions in early algebra research concerns the 

documentation of changes in students’ learning over time. Levels of sophistication are “benchmarks 
of complex growth that represent distinct ways of thinking” (Clements & Sarama, 2014, p. 14). We 
initially conjectured levels of sophistication in student thinking based on extant empirical research on 
student conceptions, misconceptions, and difficulties. We then refined these after analyzing students’ 
responses to assessment items (i.e., student strategies)across grades to discern patterns in children’s 
thinking. Each level of sophistication represents a level of understanding as evidenced in their 
responses to one or more assessment task(s). 

For example, the levels of sophistication we conjectured and observed for students’ developing 
understanding of the equal sign range from Level 1’s “Student has operational view of the equal sign 
and inflexible view of equation structure” to Level 5’s “Student has advanced relational-structural 
understanding of the equal sign and flexible view of equation structure and can consider relationships 
across equations.” We view the levels of sophistication identified in our work as dependent on the 
learning goals and sequence of tasks that drive the intervention. 

Conclusion 
The large-scale nature of the LEAP project and our desire to speak to both research and 

practitioner audiences led to practical decisions about our theoretical frame. This included clearly 
stated objectives and assessment tasks that integrate algebraic thinking across several grades. We 
also integrate several perspectives across learning progressions and learning trajectories. Science 
education literature on learning progressions (e.g., Shin et al., 2009) provided an initial frame for 
coordinating disciplinary and research-based perspectives on student thinking. It also led to our 
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organizing the content of our EALP according to big ideas, core concepts, and claims. In 
mathematics education, our EALP parallels Battista’s (2004) emphasis on connections among core 
concepts, assessment items, and levels of sophistication. We also emphasize that the observed levels 
of sophistication in student strategies are inseparable from the curricular and instructional context in 
which the learning was supported, yet given the large scale scope of the LEAP project, these 
connections are not as tightly linked as in some learning trajectories research (cf. Clements & 
Sarama, 2004). 

Our continued research on a comprehensive approach to curriculum, instruction, and student 
learning is important work to share with the research community towards the goal of coordinating 
efforts to promote effective early algebra education and identifying important milestones in students’ 
thinking. We also feel it is important that this work be available in a practical form for teachers (e.g., 
lesson plans and professional development) as they engage in the day-to-day and year-to-year work 
of developing students’ algebraic reasoning. A feasible future direction of this work is to more 
closely examine paths of students’ thinking across grades and in turn, to posit tighter links between 
tasks and instructional strategies that could be productive in supporting students’ engagement in 
more sophisticated ways of reasoning. 
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We illustrate conceptions of fractional quantity, evidenced through problem solving strategies and 
observable operations, of a fifth grade child with learning disabilities (LD) before, during, and after 
seven instructional sessions situated in equal sharing. The child's work documents levels of 
conception reflective of a trajectory. Implications for future research are discussed. 
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Much of the intervention literature in special education reports children’s responses to strategies 
or representations imposed through the teacher’s instruction as opposed conceptual development 
within children’s thinking (Hiebert & Grouws, 2007). Because conceptions cannot simply be 
imposed onto children (Baroody, Cibulskis, Lai, & Li, 2004), a depiction of the informal notions of 
fractions children with learning disabilities (LD) do possess along with examples of how varying 
idiosyncratic advances in conceptions may occur is needed to conceptualize possible teaching and 
learning environments. Trajectories (Daro, Mosher, & Corcoran, 2011; Simon, 1995) model critical 
transitions in how a child conceives of a mathematical idea along a series of dynamic (i.e., 
changeable) tasks to elicit cognitive dissonance. Documenting trajectories of children with LD is an 
important initial step to address the needs of a historically marginalized population in school 
mathematics. Accordingly, we explored the following research question:  What conceptions of 
fractional quantity, observable through problem solving strategies and operations does a fifth grade 
child with LD display before, during, and after tutoring situated in equal sharing? 

Conceptual Framework 
Problem solving strategies, language, and observable mental operations within equal sharing 

tasks provide evidence of a child’s conceptions. We synthesized existing research (e.g., Empson & 
Levi, 2011; Steffe & Olive, 2010; Tzur, 1999) on children without LD and used it as a framework for 
the study. Initially, children may not view the whole as divisible. A child sharing, for instance, three 
sticks of clay among four people may add to the quantity to be shared (i.e., adding a fourth stick) or 
create unequal shares (e.g., one of the four people does not receive a share). Once the child accepts 
the divisible whole, they employ skip counting or knowledge of halving to create enough shares for 
each person. Yet, the child does not yet determine the number of parts needed to exhaust the wholes 
before their activity because they do not relate their partitioning plan with the number of sharers. 
Through their activity, the child begins to develop a notion of equality and size of the parts relative to 
each other but does not yet unitize one whole when they conceive of the size of the quantity they 
create (Steffe & Olive, 2010). The child views the unit fractions as a number of pieces whose 
magnitude, to the child, may or may not be equivalent to each other but not yet be different from that 
of the whole. The exception is the case of one-half, for which the child has strong informal notions. 

As children’s conceptions of fractional quantity advance, they begin to use the number of 
sharers as an a priori plan to create a predetermined number of parts. Their partitioning activity is no 
longer counting based partitioning in activity but a mentally planned relation supported by an 
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interiorized unitization of the whole. The child now considers one whole as a quantifying unit (i.e., 
Part whole scheme) and knows that the parts they create must exhaust each whole. A flexible 
understanding of composite units (e.g., four is four units of one or one unit of four) may aid in the 
child’s a priori partitioning plan (Olive, 2001; Steffe & Olive, 2010). A partitive unit fraction 
conception and use of an iterating mechanism to prove parts equal and related to the whole is 
surmised to underscore developing multiplicative notions. Over time, children’s mental records 
concerning the equal sharing division becomes distributive (3 clay sticks shared by 4 people is now, 
to the child, “3 ÷ 4”, or (1 ÷ 4) + (1 ÷ 4) + (1 ÷ 4)) and independent of modeled activity. Anticipatory 
strategies reflect the child’s mental recall of the relationship between a value of fraction (e.g. 
three-fourths of a whole unit) and dividing the numerator by the denominator (e.g., 3 divided by 4). 

Method  
The data used in the current study focuses on the case of a fifth grader who we refer to as Stu. 

Stu (age = 12 years) attended elementary school in the Northwestern United States. He was 
purposively chosen to participate in the teaching experiment because he was identified by his school 
system as LD in mathematics and by his teacher as needing additional instruction in fraction concepts 
and operations. Stu was diagnosed as LD by subtracting his score on an academic achievement test 
from his standard intelligence quotient. Stu has documented, sustained low achievement in 
mathematics and a processing disorder documented by the school.  

Teaching Experiment 
Data collection was facilitated through a teaching experiment (Steffe & Thompson, 2000). 

We worked with Stu one-on-one in seven 40-minute tutoring sessions between mid February and late 
April. Sessions were held during school hours and were in addition to the child’s regular 
mathematics class time. Researchers collected three sources of data in the teaching experiment: a) 
transcribed video-recordings, b) the child’s written work, and c) observation field notes. The first and 
second researcher attended all tutoring sessions and collaborated throughout the ongoing analysis of 
teaching episodes. The first author was the researcher-teacher. The second author observed the 
interaction between the researcher-teacher to provide an outsider’s prospective during on-going 
analysis and deter ineffective interactions from continuing. 

Task trajectory. We designed an initial sequence of problem tasks and possible teaching 
moves (i.e., questions) based on the theoretical framework of how children with LD might advance 
their strategies, language, and operations. Tasks were planned to be dynamic (i.e., adaptable to the 
child’s current conceptions), situated in equal sharing (e.g., 2 people share 5 items; 7 people share 4 
items), and presented to Stu in realistic contexts that we changed according to his preference. In each 
task, the number of sharers ranged from two to ten and the number of objects shared ranged from 
three to 13. The problem solving tasks were designed so that Stu could use a variety of strategies and 
representations to reason about the mathematics. 

Analysis 
Ongoing analysis of events that appeared critical (Powell, Francisco, & Maher, 2003) for the 

child’s thinking and learning were noted and discussed before and after each session. The focus was 
on generating (and documenting) initial hypotheses as to what conceptions could underlie the child’s 
apparent problem solving strategies during these critical events. These hypotheses led to (a) planning 
the following teaching episode.  We used retrospective analysis after all data were collected to 
delineate Stu’s informal conceptions of fractional quantities, how his strategies and language shifted 
during each tutoring session, and what his conceptions were during the final session. Finally, 
identified possible indicators of Stu’s conceptual growth using the constant comparison approach 
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(Leech & Onwuegbuzie, 2007). The first and second author read through the initial clinical interview 
and the first two tutoring sessions as a team. We coded the child’s evidenced problem solving 
strategy by task and coded any associated apparent operations and language employed by the child 
within problem solving strategy by task. We compared each set of codes generated for each problem 
solution and task with previously generated coded data to ensure consistency. This led to the creation 
of an initial codebook. We then independently coded two more sessions using the initial codebook. 
Codes were then compared using peer debriefing and collaborative work. Researchers used the 
amended codebook to independently code all remaining sessions (Intercoder reliability = 95%). 

Selected Results 

Initial Conceptions:  Level 1  
In the initial clinical interview, the child had just solved a task involving 12 cookies and four 

people by directly modeling 12 cookies with unifix cubes, dealing out each cookie into four piles 
until he arrived at a solution of three cookies. The excerpt below depicts an extension of the situation 
to involve a 13th cookie (“I” stands for the researcher- teacher instructor, “S” for Stu, and italicized 
text in parentheses indicates actions or gestures). 

S: There would be one left over. One remaining (smiles). 
I: What if we didn’t want it to remain? Suppose they wanted to eat that one, too. 

S: All of them? (Long pause) OK. (Deals out 3 unifix cubes, one at a time, into four  piles) So 
we can take this little cookie (grabs a 13th unifix cube) and this equals… four of them? 
(Grabs four unit cubes, stacks them, and compares the size to the Unifix cube) But oh…no 
no. It doesn’t work like that. We need…another four? 
I: Another four? 
S: To make it the same size! 
I: Oh, I see. That’s pretty clever. 

S: So we did three to this one, three to this one, three to this one, three to this one. And they 
want more (deals out the smaller unit cubes, one at a time, to each of the four piles until 
none remain). Two small pieces of cookie with two big pieces for each one. And it’s 
called three and a half two.  
 

In Level 1, Stu (a) creates fractions in his activity yet does so reluctantly and (c) does not yet 
employ a plan for creating a known number of total pieces across the wholes. Interestingly, Stu 
seems to use a ratio like correspondence (i.e., “trade in” the larger Unifix cube for some number of 
smaller unit cubes as opposed to a halving strategy, such as partitioning through repeated halving) to 
share the leftover cookie. Yet, Stu uses the correspondence in a manner that reflects his focus on the 
size of the objects versus the creation of an anticipated number of parts. He also evidences a guess 
and check conception rather then one supported by a planned number of parts in the whole.  

Level 4 Conceptions 
In later sessions, we exclusively utilized tasks that result in a non-unit fractional quantity less 

than one. Stu’s thinking in previous tasks showed his negotiation of the total parts within one whole 
through his partitioning plan (as opposed to across wholes) along with his increased attention on the 
necessity of the parts being equal with respect to each other. Stu also quantified the equal share in 
terms of one whole with language and was beginning to attach this language to symbolic 
representations that he may have gleaned from previous school based experiences. The following 
excerpt shows Stu’s first thinking in two tasks from the final sessions involving five sandwiches and 
six sharers. 
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S: You just start with one and break it into six (draws a rectangular shaped bar. Draws a part 
within a bar; looks at the size of the piece he creates. Pauses, and then creates next piece 
methodically. Erases; redraws the part until he is satisfied they are equal. Repeats process 
until he has six parts exhausting the first whole) There. 

I: How many more bars will you draw? 
S: Imagine there are more. From each, they would get…one, one, one, one, and one (puts a dot 

on the board for each “sandwich”).  Six-sixths in each! 
I:  Ok. If I was one of the sharers, what I would get? 
S: Well, if there was one sandwich you’d get one- sixth. 
I:  Oh ok. So we can write one-sixth over here for one sandwich? 
S: Yep (writes “1/6”…process continues to “5/6”). 
I:  OK, so how much does he get all together? 
S: Five. Five parts of six. 

In Level 4, Stu (a) comes into the sharing situation with a definitive plan for how each item will 
be shared before enacting activity, (b) seems to base his plan in sharing one item and then projects 
his plan across the rest of the items to be shared, and (c) verbalizes previous directly modeled 
thinking. Stu’s increased need to create equal pieces through his correspondence-based partitioning 
activity seems to fall away it is not observable to us now because he is relying on verbal actions to 
engage in the activity.  

Discussion 
It is noteworthy that Stu’s use of correspondence seemed to be instrumental to his ability to 

conceive of a number of parts within one whole prior to activity.  It is possible that children with LD 
rely on correspondence as a mechanism to through which to build and solidify notions of unit 
fractions as opposed a halving mechanism.  More research is needed to test this assertion. The case of 
Stu also provides preliminary evidence children with LD evidence similar understandings of children 
without disabilities as they grow in their conceptions of fractional quantity (Empson & Levi, 2011; 
Steffe & Olive, 2010). We hypothesize such pathways may show again in future research with more 
children labeled as LD and advocate for further inquiries in intervention research. 
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Although many students struggle with fractions, students with math learning disabilities (MLDs) 
experience pervasive difficulties because of neurological differences in how they process numerical 
information. When comparing fractional quantities, students with MLDs make errors on the easiest 
fraction comparison problems and these errors persist over the years. To investigate the origin of 
these difficulties I conducted a detailed analysis of videotaped tutoring data with two students with 
an MLD. Their explanations revealed that both students relied upon atypical understandings of 
fractional quantities, which may help explain the unique and persistent error patterns identified in 
students with MLDs. 

Keywords: Rational Numbers; Cognition 

Many students struggle with fractions, but not all students struggle for the same reasons. For 
students with math learning disabilities (MLDs) their difficulties stem from a cognitive origin, 
specifically difficulties processing quantitative information (Butterworth, 2010). Because of these 
cognitive differences, students with MLDs make qualitatively different kinds of errors than their 
peers. For example, Mazzocco Myers, Lewis, Hanich, and Murphy (2013) determined that students 
with MLDs make errors on the easiest fraction comparison problems (i.e., comparisons of fractions 
with the same denominators and comparisons involving the fraction 1/2). Although these error 
patterns differentiate the performance of students with MLDs from their peers, it remains unclear 
what the origin of these error patterns are and why these qualitative differences emerge and persist 
over time.  

To begin exploring what underlies these unique patterns of error, I conducted a secondary 
analysis of two students with MLDs. The case studies were originally conducted as part of larger 
study that investigated MLDs during students’ attempt to learn basic fraction concepts during one-
on-one videotaped tutoring sessions. This study addresses the following research questions: 

Do the case study students demonstrate errors similar to those documented in Mazzocco et al., 
(2013), specifically difficulties comparing fractions with the same denominator and comparing 
fractions with 1/2? 

What do the students’ explanations reveal about their reasoning and how does this relate to their 
pattern of errors on comparison and non-comparison problems? 

Theoretical Framework 
In this study, I depart from the predominant deficit approach used to conceptualize MLDs (e.g., 

Geary, 2010) and rely upon a cognitive difference model proposed by Vygotsky.  From this 
perspective, a child with a disability “is not simply a child less developed than his peers, but is a 
child who has developed differently” (Vygotsky 1929/1993, p. 30).  Students with disabilities 
develop differently because sociocultural (i.e., mediational) tools that have evolved over the course 
of human history may be incompatible with the student’s biological development. For example, for 
students with MLDs, standard mathematical mediational tools (e.g., numerals, drawings, 
manipulatives), which support the development of typically developing students, may be inaccessible 
due to incompatibilities with how students with MLDs cognitively process numerical information.  
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These incompatibilities may result in a student developing atypical understandings of standard 
mediational tools. 

Methods 
Data collected for this study were used for two purposes: determination of the student’s MLD 

status and case study analysis (see Figure 1 for an overview of the design of the study).  Out of the 11 
students with potential MLDs who were initially recruited, only two students, “Emily” (a White 18-
year-old recent high school graduate) and “Lisa” (a White, 19-year-old community college student), 
met all the qualifications for having an MLD.  Both students demonstrated (1) persistent low 
mathematics achievement, (2) no social or environmental factors that could explain their low 
mathematics achievement, and (3) a lack of response to a tutoring protocol that had been effective for 
typically achieving students (see Lewis, 2014 for more details).   

 

 
Figure 1: Schematic overview of methods used in this study 

Analytic Approach 
The videotaped tutoring sessions were transcribed, and parsed into individual problem instances. 

In addition to evaluating the errors on comparison problems throughout the tutoring sessions, a 
systematic grounded analysis (Glaser & Strauss, 1967) of the data was conducted, which revealed 
persistent atypical understandings of fractional quantity (Lewis, 2014). These atypical 
understandings provide insight into the nature of the errors made on comparison problems and will 
be discussed in the results section.   

Results 
The results of this study are presented in two parts. First, the students’ performance on 

comparison problems are considered to evaluate whether Emily and Lisa experienced the same error 
patterns noted in the Mazzocco et al. (2013) study. Second, exemplar excerpts are presented for each 
kind of problem to highlight the ways in which the students incorrectly reasoned about (1) 
comparisons of fractions with the same denominators and (2) comparisons involving the fraction 
one-half. For each of these problem types, I consider how these kinds of atypical understanding were 
supported by the systematic analysis of the data.  

Error Analysis 
An evaluation of comparison problems was used to establish that Emily and Lisa demonstrated a 

similar pattern of errors to those documented in the Mazzocco et al., 2013 study. Emily answered 
63% of all same denominator problems incorrectly and 37% of all problems involving 1/2 
incorrectly. Similarly, Lisa answered 14% of comparison problems with the same denominator 
incorrectly and 76% of problems involving 1/2 incorrectly. At the time of the post-test both students 
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answered same denominator comparison problems and one-half comparison problems incorrectly. 
Given the high percentage of errors made on these problems and the continued evidence of errors 
during the posttest, Emily and Lisa’s performance was judged to be consistent with the findings of 
the Mazzocco et al. (2013) study. To understand why the students answered these questions 
incorrectly I consider the student’s solution process and explanation when solving comparison 
problems. The examples presented highlight the atypical understandings that the students relied upon 
when reasoning about fractional quantities both during comparison and non-comparison problems.  

Same Denominator Comparison Problems 
During the pretest Emily was asked to compare the fractions 2/8 and 5/8. To solve the problem 

she correctly drew a representation of both fractions. However, once she drew these two 
representations, she began interpreting 5/8 as 3/8 and attending to the non-shaded pieces (relevant 
transcript bolded in Figure 2). 

 

 
Figure 2: Scanned artifact of Emily’s solution to the comparison of 2/8 and 5/8 

Although Emily correctly represented both fractions, these drawings did not support her 
comparison of the fractional amounts. Once drawn, Emily shifted from attending to the 5 shaded 
pieces to attending to the 3 non-shaded pieces for 5/8 and interpreted her drawn representation as 3/8 
– the fractional complement. In addition, Emily also attended to the six non-shaded pieces of 2/8 by 
pointing to each of the pieces in turn, before determining she did not know how to answer the 
question. What this excerpt reveals is not that Emily had difficulty comparing 2/8 and 5/8, but that 
when presented with the fraction 2/8 and 5/8, she was unsure whether she should be comparing the 
shaded pieces (representing the fractional quantity) or the non-shaded pieces (representing the 
fractional complement).  As in the above example, the tendency to attend to the fractional 
complement was evident in both Emily’s and Lisa’s sessions in comparison and non-comparison 
problems. The students’ attention to the fractional complement provides a potential explanation for 
why both students would make errors on fraction comparison problems involving the same 
denominator. 

One-Half Comparison Problems 
During the first tutoring session Lisa was asked to compare the fractions 1/2 and 3/4. She 

incorrectly determined that 1/2 was larger than 3/4, and justified her answer by explaining that 1/2 
had larger pieces than 3/4 (see Figure 3).  
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Figure 3: Transcript and written work for Lisa’s solution to the comparison of 1/2 and 3/4 

Lisa justified her determination that 1/2 was larger than 3/4, focusing exclusively on the number 
of partitions. As in this example, the fraction 1/2 was not understood as a quantity but as the splitting 
into two pieces (i.e., “halving”). Both Lisa and Emily understood the fraction 1/2 as the act of 
splitting something in two, rather than the quantity 1/2. This “halving” understanding was evident at 
the time of the posttest for both students.  The persistence of the halving understanding for both 
Emily and Lisa suggests why these students would make errors on fraction comparison problems 
involving the fraction 1/2. 

Conclusion 
Emily and Lisa experienced unusual difficulties comparing fractions with the same denominators 

and comparing fractions to 1/2, which were consistent with the errors documented in Mazzocco et al. 
(2013). The students’ explanations revealed that they understood standard representations of 
fractions in atypical ways.  These patterns of reasoning persisted throughout the tutoring sessions and 
were problematic for non-comparison problems as well. As in Emily and Lisa’s cases, it may be an 
atypical understanding of fractional quantity may underlie the fraction comparisons errors 
documented in students with MLDs. Therefore, investigations of students’ atypical understandings of 
quantity may be a productive avenue to consider in future studies of MLDs.  
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This interview study explores how 19 students from grades 4 through 12 attempt to justify the 
commutative property of multiplication (CPM). Harel and Sowder’s (1998) taxonomy of proof 
schemes is used as a general framework for interpreting students’ justifications. Students showed 
evidence of symbolic, authoritative, empirical, quasi-transformational, and transformational proof 
schemes. An important relationship was noted between students’ ability to articulate why it makes 
sense to multiply to enumerate the number of objects in an array, and the production of a 
transformational justification of the commutative property. Two types of conceptions of the 
commutative property emerged from students’ justifications: syntactic and structural conceptions.  

Keywords: Number Concepts and Operations; Reasoning and Proof 

Introduction 
According to the Common Core State Standards for Mathematics (CCSS-M), beginning in the 

third grade students should “understand the properties of multiplication” including the commutative 
property (National Governors Association Center for Best Practices and Council of Chief State 
School Officers, 2010, p. 23). It is relatively simple to describe the commutative property of 
multiplication (CPM): a × b = b × a. It is less clear, however, what it means to “understand” it. The 
CCSS-M, in fact, do not specify what it means to understand the commutative property, nor how that 
understanding is to be attained, though the writers note that “one hallmark of mathematical 
understanding is the ability to justify, in a way appropriate to the student’s mathematical maturity 
why a particular mathematical statement is true or where a mathematical rule comes from” (p. 4). The 
purpose of this study, then, is to explore how students justify the commutative property of 
multiplication. Identifying the ways in which students justify the commutative property can 
contribute to our knowledge of how children use and understand multiplication. 

This study draws from research into several aspects of children’s understanding of multiplication, 
including the classification and relative difficulty of different problem types (Carpenter, Fennema, 
Franke, Levi, & Empson, 1999; Vergnaud, 1983), the strategies children use to solve multiplication 
problems (Ambrose, Baek, & Carpenter, 2003; Carpenter et al., 1999), and the schemes of action and 
operation that underlie children’s strategies (Confrey, 1994; Steffe & Cobb, 1998; Steffe, 1988, 
1994).  

Several previous studies specifically investigated children’s use and understanding of the CPM. 
Two studies found that populations who do not study multiplication in school (e.g., indigenous 
groups in Africa and Brazilian street sellers) are unlikely to apply the CPM, while those who do 
study multiplication in school routinely apply it (Petitto & Ginsburg, 1982; Schliemann, Araujo, 
Cassundé, Macedo, & Nicéas, 1998). Various studies found that young children generally do not 
apply the CPM when solving contextual problems in which the multiplier and multiplicand are 
clearly defined, though they may apply it to number-only problems (Ambrose et al., 2003; Baek, 
2007; Carpenter et al., 1999; Nunes & Bryant, 1995; Vergnaud, 1983). Some authors suggest that 
children may find it more intuitive to apply the CPM to problems involving an array context 
(Ambrose et al., 2003; Carpenter et al., 1999; Nunes & Bryant, 1995). Battista and colleagues, 
however, caution that children do not initially see arrays as multiplicative structures; this is 
something they must construct over time (Battista, Clements, Arnoff, Battista, & Van Auken Borrow, 
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1998). Finally, two studies describe some of the justifications of the CPM produced by children in 
grades 3 and 6. Children justified the property by citing a rule, generating examples, and using array-
based justifications (Bastable & Schifter, 2008; Valentine, Carpenter, & Pligge, 2005). 

Method 
Nineteen students spanning grades 4 through 12 from a rural public school district were 

interviewed in order to learn more about how students justify the CPM. The interviews were semi-
structured, (Bernard, 1988). During the first two segments of the interview, students solved a range 
of contextual and number-only multiplication problems and described their strategies. Contextual 
problems were of two main types: (a) problems in which the multiplier and multiplicand were clearly 
defined, and (b) problems involving rectangular arrays and area. Number-only problems varied in 
difficulty, but all were intended to be solvable mentally. During the final segment of the interview, 
students were asked to justify the CPM in reference to the times they used the property while solving 
problems from earlier interview segments. The interviews were video recorded and students’ written 
work was collected. The videos were transcribed, and transcripts were analyzed to identify how 
students justified the CPM. Harel and Sowder’s (1998) taxonomy of proof schemes was used as an 
initial framework for categorizing students’ justifications of the CPM. A process of open coding was 
used to identify subcategories, although this process was also informed by the research literature 
(e.g., Bastable & Schifter, 2008; Nunes & Bryant, 1995; Valentine et al., 2005). 

Results 
Students articulated numerous justifications of the CPM that can be broadly categorized as 

authoritarian, symbolic, and empirical using Harel and Sowder’s (1998) taxonomy of proof schemes. 
Students’ most interesting attempts to justify the commutative property, though, are—or come close 
to being—examples of what Harel and Sowder (1998) call transformational proof schemes. 
Transformational proof schemes are characterized by goal-oriented operations on objects and 
anticipations of the operations’ results. These schemes are also characterized by considerations of 
generality. Some of the justifications for the CPM were classified as “quasi-transformational” 
because they (a) involve reasoning that goes beyond external and empirical proof schemes, and (b) 
share some of the characteristics of transformational proof schemes, such as transformations of 
mental objects, and considerations of generality; yet, they fall short of demonstrating the logical 
necessity of the CPM. The quasi-transformational and transformational justifications are the most 
interesting because they reveal the most about how children’s conceptions of multiplication and 
commutativity. 

Quasi-transformational justifications included (a) a balancing conception (e.g., 5 groups of 7 is 
the same as 7 groups of 5 because with 5 groups, there are fewer groups and more in a group, while 
with 7 groups, there are more groups, but fewer in each group); (b) a justification based on equivalent 
partial products (e.g., 8×13=13×8 because both are 80+24); and (c) a partition model (e.g., 9×6=6×9 
because 54 can be partitioned into 6 segments of 9, or into 9 segments of 6). Transformational 
justifications included array-based justifications and justifications based on a rectangular area model. 
A significant relationship was noted between students’ ability to articulate why it makes sense to 
multiply to enumerate the number of objects in an array, and the production of an array-based 
justification of the CPM. If students were not able to see the rows and columns of the array as 
iterable, composite units, they were not able to articulate how an array could represent both a×b and 
b×a.  
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Discussion 
Based on students’ justifications of the CPM, there appear to be two types of conceptions of the 

CPM reflected in students’ uses and justifications of the CPM: syntactic and structural. Students 
holding a syntactic conception of the CPM offered authoritarian and empirical justifications of the 
CPM. For these students, the property is a rule dictating how the symbols in an expression can be 
manipulated while still maintaining equivalence. There are two parts to the syntax: you can switch 
the order of the factors, and you get the same answer either way. This conception can sound like just 
restating the CPM in students’ own words. But for some students, it is an explanation as well. This 
may be a symptom of the students’ beliefs about the nature of mathematics. They may see 
mathematics simply as a collection of rules to be followed, which tell them what they can and cannot 
do when manipulating mathematical objects.  

Structural conceptions of the CPM draw on mental imagery connected to students’ conceptions 
of multiplication. Additionally, structural conceptions of the property incorporate the “logical 
necessity” (Simon, 2011) of the numerical equivalence of the two products. Students who produced 
array-based justifications of the commutative property clearly hold a structural conception of the 
property. Justifications based on an area model are also evidence of a structural understanding of the 
property, provided that the relationship between multiplication and area is well understood. Though 
no students in this study articulated a rearrangement justification of the property, this would be 
another example of a structural conception of the property, based in this case on equal groups 
imagery. Ethan (6), who used a partition model to justify the commutative property, seems to have a 
somewhat structural conception of the property. His justification draws on imagery connected to his 
conception of multiplication, but does not include the logical necessity that two products are 
equivalent. Justifications based on a balancing idea, though not entirely structural because of their 
qualitative nature, may be initial steps toward a structural understanding of the property, as they are 
based on equal groups imagery. With appropriate experiences, students who produced a balancing 
justification of the commutative property might be able to construct a rearrangement conception of 
the property.  
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This study investigated the realized learning trajectory that emerged as sixth-grade students 
participated in an algebra whole class teaching experiment.  A learning trajectory evolved based on 
the students’ changing interpretations of a variable. Cognitive schemes emerged as students’ 
understanding of expressions and equations became more sophisticated. The first phase of the 
learning trajectory that transpired is explored. This phase, involving a Variable-as-Label Scheme, is 
described. Specifically, students’ initial misconception of a variable is discussed, including 
conditions, the focus of the classroom activity, forms of reasoning, key mechanisms that shifted 
student thinking, and type of thinking. 

Keywords: Algebra and Algebraic Thinking; Design Experiments; Learning Trajectories 

Theoretical Framework 
A hypothetical learning trajectory (HLT) (Simon, 1995) is a model of student learning that 

consists of the goal for students’ learning, the tasks that will be used to promote students’ learning, 
and hypotheses about the process of this learning. Reconceptualizing a mathematics concept to lead 
to student learning and understanding is challenging (Simon & Tzur, 2004). For instance, 
development of an HLT requires the teacher to have a solid understanding of the mathematics content 
and the current knowledge of the students in order to make hypotheses about the process of student 
learning and to select learning tasks based on these hypotheses. 

An HLT must be developed, tested, and refined to produce a realized learning trajectory (RLT) 
(Lamberg & Middleton, 2009). The RLT results from the HLT and shows the actual 
learning/thinking that took place in the classroom as the lessons were implemented. The RLT 
explains what happened, in other words, describes the sense making that took place.  In addition, it 
documents “why and how” it happened. Once an RLT is established, it can then become the HLT and 
be retested and redeveloped to find a new and improved RLT. 

The actual path that students take might differ from the HLT and can be described by schemes 
used to designate students’ cognitive structures (Norton & McCloskey, 2008; Steffe, 2004; Steffe, 
Cobb, & von Glasersfeld, 1988). These schemes are constructed to explain and document 
mechanisms for supporting shifts in student thinking (Lamberg & Middleton, 2009). This paper 
reports on the first phase of the RLT that emerged. 

Learning Algebra 
Research on algebra shows that students have difficulty interpreting letters as variables and 

studies have focused on how students learn to represent values using variables (Knuth, Alibali, 
McNeil, Weinberg, & Stephens, 2005; NRC, 2001). Students learning algebra must move from 
arithmetic problems to symbolic representations of relationships with variables (Moseley & Brenner, 
2009), requiring students to adapt their prior knowledge to new experiences. This requires the 
integration of symbols used in arithmetic (e.g., +, -, x, •, ÷, and =) to be used in the transition to 
algebra with variable expressions. Once students learn to work with variables without thinking about 
the numbers that the variable might represent, they have achieved manipulation of  “opaque 
formalisms” (Kaput, 1995, p. 8). 
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Variables can represent different situations and therefore can be interpreted by students in 
different ways. For example, a variable can be interpreted as a changing quantity such as varying 
prices of a specific item in different stores. Or, it can be interpreted as an exact value such as the 
price of a specific item in one store. With experience, it becomes clear to algebra learners that these 
two interpretations are actually representing the standard definition of a variable as an unknown 
quantity that can change; however, we found that this is not initially the case. Clearly, learning the 
meaning behind symbols and variables is essential for students to become proficient in algebra.  
Kaput (1995) found that many students view algebra as “little more than many different types of rules 
about how to write and rewrite strings of letters and numerals, rules that must be remembered for the 
next quiz or test” (p. 4). Thus, students must find meaning in algebra not only to understand why they 
are solving algebraic equations, but also to understand what situations these equations represent.  
Therefore, further research on how to support student learning in terms of using variables in algebra is 
needed. We investigated how students respond to algebra tasks and the cognitive schemes that 
emerged as part of a whole class teaching experiment (Lamberg & Middleton, 2009). The purpose in 
using a design research approach was to understand the means of supporting and organizing student 
learning of algebra through tasks presented in a teaching experiment. In this paper, we describe one 
cognitive scheme that emerged as part of an RLT as students solved problems involving adding 
different types of quantities. 

Methods 
Students from a sixth-grade classroom in an urban elementary school in a western state 

participated in the study. The sample included a total of 22 predominately Latino(a) students, ages 11 
to 12. There were 11 female students and 11 male students. The majority of the students were from 
lower to middle socioeconomic backgrounds. A whole class teaching experiment using design 
research (Lamberg & Middleton, 2009) was conducted (Cobb, Confrey, diSessa, Lehrer, & Schauble, 
2003). The framework of design research allows researchers to observe as well as intervene 
throughout the study process. It involves engineering learning environments, systematically studying 
what takes place, and making adjustments to the curriculum (Cobb et al., 2003; Collins, Joseph, & 
Bielaczyc, 2004; Kelly, 2003). Design researchers develop theories about the learning process, as 
well as techniques designed to support learning (Cobb, et al., 2003). We used a variety of data 
sources in order to analyze this teaching experiment using design research. Any source that related to 
the broader phenomena being studied in the experiment was collected (Cobb et al., 2003). Multiple 
sources of data allowed for retrospective analysis once the study was complete, as well as iterative 
analysis throughout the study. Data sources included field notes (Maxwell, 2005), video recordings, 
and documentation of anything that occurred in the classroom such as students’ work and researchers’ 
reflections. We had regular and ongoing discussions with the teacher about the in-class interventions 
and interpretations of the data. These discussions were important because they enhanced the quality 
of the study and research process. Data collection and analysis was a parallel process with 
prospective analysis occurring throughout the teaching experiment and retrospective analysis 
occurring after the teaching experiment. 

Results 
The whole class realized learning trajectory emerged around schemes documenting the meaning 

of a variable in various contexts of expressions, equations, and functions. Within this sequence of 
three phases, students’ mathematical thinking revealed five schemes: Variable-as- Label, Variable-
as-Changing Quantity, Variable-as-Known value, Variable-as-Unknown value, and Independent and 
Dependent variable. This paper presents the first scheme in this learning trajectory: Variable-as-
Label. 
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Variable-as-Label Scheme 
Students developed a Variable-as-Label scheme when they encountered a problem where they 

had to keep a record of adding multiple quantities. This scheme progressed as students encountered 
two different units and represented the problem context as an expression. Students were exploring the 
context scenario of going to soccer game. The class concluded that each family was unique and a 
different combination of people from each family would go to the game. The teacher asked students 
to figure out how many boys and girls would go to the game so that they could determine how many 
colored t-shirts to order. 

Students reasoned that a variable B represented boys and therefore, the B was a shortened form of 
writing the word “boys”. Similarly G was a shortened form for writing the word “girls”.  Therefore, 
students reasoned about variables as representing a label for a category. This reasoning became 
further evident when they began using variables to label a category and not the quantity.  
Specifically, students were asked to find the total of two groups, boys and girls, by writing an 
algebraic expression or equation.  For example, a student labeled the category of boys with B and the 
category of girls with G. A variable was used as a label for the specific category of boys and a 
different variable was used as a label for the specific category of girls.  

In the next case, students used a variable as a label to keep track of their counting. Students in a 
small group were given M&Ms and were asked to figure out the total red M&Ms given to their small 
group. Students recorded each person’s amount in the expression and were asked to write an equation 
that represented the total M&Ms. The purpose in doing this activity was to have students combine 
like terms. Students added the quantities together and indicated the total.  When students added, they 
were indicating the total M&Ms and using the variable as a label for the color of M&M. Students 
added the quantities independently and then indicated a total.  At this point, they were treating the 
variable r as a label for a category of “red M&M” and the 16 represented the total. They were not 
thinking about the variable r as representing one and, thus, were thinking additively as opposed to 
multiplicatively (7r did not mean 7 • r). The misconception of variables in the previous examples is 
to label colors or certain shapes as opposed to quantities.  For instance, 7r means “7 red” in which 
the variable r labels the color red.  In the second case, the variable T is labeling the word “total” – 
68T is 68 Total.  In another activity, students recorded that a soccer ball has 20 hexagons, and wrote 
an h to label and replace the word hexagon. 

The teacher challenged the children to think about the meaning of the numbers. For instance, 1h 
represents 1 hexagon and 20h represents 20 hexagons.  When the students added the number of 
hexagons, they were thinking additively. In other words “16 plus 4 equals 20”. At this point, they 
were combining like terms by adding quantities together. However, they were not thinking 
multiplicatively until the teacher challenged them to think about what 20 hexagons represents – that 
there are 20 times the amount of hexagons.  These examples demonstrate that students were thinking 
both additively by finding a total, and also multiplicatively because they were beginning to grasp the 
concept of 20h as 20 • h where h is one hexagon. The variable represented a label to refer to the 
hexagon. 

Discussion 
Students’ initial understanding of variable was a letter that labeled a specific category.  However, 

their thinking evolved to thinking about a variable as representing a single quantity and thinking of a 
coefficient as multiple units of that item, such as 5r represented five red M&Ms. Their thinking also 
shifted to thinking multiplicatively where the 5 represented five times as many M&Ms. The scheme 
of Variable-as-Label emerged as students abbreviated the name of a group with the first letter of the 
word or used a letter to represent one object or one group. This scheme developed out of a need to 
keep track of objects that represent a unit when counting. 
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Prior research identifies the importance of learning about the different meaning of variables 
(Kaput, 1995; Blanton, 2008; Carpenter, Franke, & Levi, 2003). However, the schemes in which 
students acquire different meanings and misconceptions for variables and the relationship between 
these schemes are not adequately addressed. This research provides a starting point for teachers and 
researchers to develop learning trajectories to promote student learning, keeping in mind that 
developing problem types and carefully sequencing them based on variables should be considered to 
support student learning of expressions and equations. 
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This study investigates middle school students understanding of integer operations through basic 
computation problems and in their ability to generate story problems for certain number sentences. 
Consistent with other research, this study finds that students struggle more with certain types of 
subtraction problems than with others. Additionally, this study finds students conceptions of integers 
may make certain problem types more difficult to navigate. Student reasoning is compared to the 
typical classroom presentation of integer operations. Implications for instruction on integer 
operations are made. 

Keywords: Middle School Education; Number Concepts and Operations 

Student difficulties solving problems involving addition and subtraction of positive and negative 
values are well known to mathematics teachers and mathematics education researchers. Many studies 
have explored whether and how concrete models and/or real world contexts may be helpful in 
building student understanding about integers and integer operations (Ball, 1993; Stephan & Akyuz, 
2012). Helpful models include using different colored chips, and number lines (Hayes & Stacey, 
1998; Stephan & Akyuz, 2012; Tillema, 2012). Helpful contexts have included assets and debts, 
elevators going above and below ground, and stories about temperature changes, among others (Ball, 
1993; Hayes & Stacey, 1998; Stephan & Akyuz, 2012). These studies show that while these models 
and contexts support student reasoning about integer operations, students consistently find 
subtraction more difficult than addition, even after instruction (Ball, 1993; Hayes & Stacey, 1998; 
Stephan & Akyuz, 2012). Recent work focusing on the ways students reason about integer addition 
and subtraction has found that integer addition is not uniformly easier than integer subtraction, but 
rather that performance varies by problem type and prior knowledge (Bishop et al., 2014; Bofferding, 
2014; Whitacre et al., 2012). 

In partnership with three sixth grade teachers, we have worked over three years to develop, test, 
and refine an instructional sequence meant to support students’ informal reasoning about integer 
addition and subtraction. As part of this work, we observed that while integer addition and some 
integer subtraction problems are fairly easy for students, other subtraction problems remain 
challenging even after instruction. Thus we sought to examine both performance and reasoning 
strategies when students were asked to provide a context for a given subtraction problem in order to 
improve the instructional sequence. The research questions guiding this study were: (1) Are there 
patterns of errors within simple integer computation problems?; (2) In what ways do students 
represent integers and subtraction?; and (3) How does student choice of representation of number and 
operation relate to success in computation? 

Theoretical Framework 
The ability to represent mathematical concepts in a variety of representations along with the 

ability to translate between those representations plays an important role in the development of 
mathematical understanding (NCTM, 2000). With that in mind, this study uses the Lesh Translation 
Model (Lesh & Doerr, 2003) as a framework for representational fluency. According to this model, 
conceptual understanding is marked by an ability to translate between and within modes of 
representation, and asking students to represent concepts in multiple ways and to translate between 
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those representations promotes conceptual understanding. For example, asking students to translate 
an equation (a symbolic representation) to a story problem (a real world representation) can both 
promote and reveal their understanding. 

A key feature of the Lesh Translation Model is that the different representational forms are but 
one component to building student understanding. Students must also be able to make connections 
between the different representations and understand how the different representations each embody 
the deeper mathematical concept being taught. When students fail to see the connections between the 
different representations, they also fail to comprehend the deeper mathematical concept embodied by 
this connection (Cramer, 2003). Thus, when employing multiple representations for the purpose of 
deepening student understanding, we should intentionally incorporate opportunities for students to 
translate within and between the representational forms. This was emphasized in this study by asking 
students to model an equation with chips or to write a story that would match an equation, thus 
providing them with opportunities to translate between modes of representation.  

Method 
 This study was conducted during the 2012-2013 and 2013-2014 school years with the 

approximately 300 sixth grade students at a suburban, Midwestern middle school where 24% of 
students are on free or reduced lunch. This study is part of a larger project that is following a design-
based research approach (Clements, 2007), with the ultimate goal of designing an instructional 
sequence that develops and supports student conceptual understanding of integer addition and 
subtraction appropriate for use with middle school students. Based on site restrictions, the unit was 
very short in duration, typically about one week in length, and included introducing the concepts of 
negative integers and integer addition and subtraction.  

This study took place during the third iteration of the design-based research cycle and included a 
game called Floats and Anchors that had shown promise in supporting student reasoning about 
integer addition and subtraction. In the game, students model integer addition and subtraction by 
moving a ship up and down a vertical number line (i.e. above or below sea level) by adding or 
removing floats or anchors from the ship. This iteration of the study was designed to investigate the 
particular features of integer addition and subtraction problems that students found most challenging 
so that the game and follow-up activities could be redesigned to better support student reasoning for 
the most difficult problem types. 

In addition to playing the Floats and Anchors game, instruction in the classes included moving 
forward and backwards along a number line, real-world contexts including money and good/bad 
guys, and mnemonic devices for remembering rules. The researchers made recommendations for and 
against some of these models, but the classroom teachers ultimately made the final decisions on 
instruction. All three teachers introduced a variety of models, but classroom observations conducted 
by the researchers at the time of the intervention indicated that one teacher placed comparatively 
more emphasis on mnemonic devices than the others while another placed more emphasis on the 
number line model. The unit, including the intervention, lasted between five and six class periods for 
all teachers. 

 Study Design 
In this study, a concurrent explanatory mixed methods design was used to explore the 

relationship between student understanding of number and operations and student performance on 
various forms of integer addition and subtraction problems both before and after instruction. This 
design involved collecting and analyzing both quantitative and qualitative data then using the 
qualitative data to explain the quantitative results  
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In the quantitative component of the study, pre- and post-test data were collected to assess 
student performance on nine different forms of integer addition and subtraction problems to measure 
students’ basic computational abilities with integers. The pretest was administered prior to any 
instruction and the post-test was given the class period immediately following the completion of the 
unit. Time between tests was approximately one week.  

Pre- and post-test items were matched across the two tests, with numbers differing but the 
structure of the problem remaining the same across time. All problems involved only integers 
between -9 and 9, excluding 0. Twelve different categories of problem types were created based upon 
the possible combinations of the sign of the subtrahend, minuend, and answer (+ or -) and the 
operation (addition or subtraction). Magnitude of the numbers was not considered except as 
necessary to generate an answer of an appropriate sign, i.e. -3 – 5 and -5 – 3 were considered the 
same problem type while -3 – -5 and -5 – -3 were not because of the differing sign of the answer. Of 
the twelve possible problem types, three were not included, specifically (+) + (+) = (+), (+) + -) = 
(+), and (+) - (+) = (+). The problem types not tested were excluded because nearly all students in a 
pilot study answered these problems correctly on both the pre- and post-test.  

For the qualitative component of the study, students were asked to translate an open number 
sentence of the form (+) – (-) = (+) into a story problem at two different times during the unit. This 
problem type was chosen in part because it was a subtraction problem type that was most difficult for 
students on the pretest. The student generated stories were coded to determine the way they 
represented both positive and negative numbers and the operation of subtraction. In particular, we 
were interested in the ways students tried to make connections between real world contexts and 
symbolic representations.   

Results and Discussion 
Similar to previous work, integer subtraction was more difficult for students than addition. 

However, when we looked at student responses based upon the type of subtraction problem, we 
found that students performed only slightly worse on subtraction problems positive minuend and 
subtrahend (e.g. 3 - 5) than they did on the addition problems. Prior to instruction, students 
performed far worse on subtraction problems with a negative subtrahend or in which the signs 
differed between the subtrahend and minuend. Of these, problems like 3 - (-5) were the most difficult 
on the pretest, with fewer than 5% of students answering these problems correctly, while after 
instruction, student performance on this problem type improved to nearly the same success rate as 
addition problems. However, most of the other subtraction problems remained very difficult for 
students even after instruction. For example, problems like 5 – -2 = 7, -3 – (-5)=2 and (-3) – 5 = -8 
had a very low success rate on both the pre- and post-test. 

One result from the quantitative component of this study is that integer subtraction is not 
uniformly difficult for students but rather varies in difficulty depending on other features of the 
problem. This validates other research that has suggested that the sign and magnitude of the 
subtrahend and minuend both influence student success in solving such problems (Bofferding, 2014). 
Moreover, the students showed no or very little gain in their ability to solve these most difficult 
problem types even after instruction. Only problems such as 3 - (-5) showed considerable 
improvement, suggesting that the instructional sequence as implemented was not doing enough to 
support student reasoning about these difficult problems. Additionally, students were highly 
successful on addition problems of any type before and after instruction. 

Qualitative analysis of the stories students generated for the open number sentences showed that 
nearly all the students modeled subtraction as take-away and used contexts that involved either 
discrete objects or money on both the pre- and post-tests. Students who used money as a context 
typically referred to “dollar bills.” For both dollar bills and discrete objects, negative numbers were 
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typically represented as those dollars/object being “borrowed” or “owed.”  Such representations were 
supportive for reasoning about subtraction problems involving a positive minuend and subtrahend 
but negative difference (e.g. 3-5), but were not supportive for cases involving a negative subtrahend 
(e.g. 3 - (-5)).  Students who tried to create stories that involved taking-away owed objects were 
unilaterally unsuccessful in creating meaningful stories.  

Together, these results suggest that instructional sequences must include explicit opportunities 
for students to learn how to model subtraction involving both positive and negative quantities. 
Instruction that works with discrete models and subtraction as take-away will connect with students’ 
prior knowledge, but attention must be paid to helping students understand the need to use contexts 
that involve opposites (such as floats and anchors or credits and debts) as they are unlikely to note 
the importance of this on their own. Finally, a significant portion of instructional time should be 
spent developing students’ understanding of integer subtraction when the subtrahend and/or minuend 
are negative, while relatively less time needs to be spent developing integer addition concepts.  
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As students develop proportional reasoning, they employ a variety of solution strategies with 
problems of different complexity. The solution strategy they choose gives insight to their thinking. In 
this report, we vary three characteristics of the number structure of missing-value proportion 
problems and compare both the success rate and types of strategies employed by middle school 
students. Findings indicate student thinking is more influenced by the character of the scale factor 
than the unit rate. Also, a hierarchy of difficulty in problem types is suggested. 

Keywords: Rational Numbers; Middle School Education 

Purpose of the Study 
In school settings, the common way to develop students’ proportional reasoning is to engage 

them in solving proportion-related problems. Since these problems are an important part of the 
curriculum, we need to understand how grappling with them advances the development of 
proportional reasoning. In our research, we focus on missing-value proportion problems and vary 
number structure characteristics. We seek to identify milestones of understanding, that is, essential 
understandings students require to reason through increasingly more difficult problems. Which 
variations in number structure provoke changes in students’ success rate and strategy use? Which 
aspects of proportional reasoning are required for students to solve subsequent problems?  This 
report is based on a preliminary analysis of eight problems in which three number structure 
characteristics vary. We compare student success rates and strategy use to establish a hierarchy of 
problem difficulty and aim to identify number structure characteristics that are most influential on 
student thinking.  

Theoretical Framework and Methods 
Our research is based on the idea there is a sequence of recognizable developmental stages 

achieved by students as their proportional reasoning matures. We use a learning progression for 
missing-value proportion problems proposed by Carpenter et al. (1999) and refined by 
Steinthorsdottir and Sriraman (2009) as our starting point. Associated with this learning progression 
is an implied hierarchy of problems. Students who have attained a particular developmental stage are 
predicted to be able to solve certain problems, but fail on problems that require more advanced 
reasoning. A premise of our investigation is we can infer the developmental stage of a student based 
on his/her work on a set of problems. Research, such as that involving cognitively guided instruction, 
has used this approach (Carpenter, Fennema, Franke, Levi, & Empson, 1999). In this study, instead 
of following individual students over several years, we are investigating the written work of many 
students of different ages for patterns of success and strategy use on a range of problems. As 
problems increase in difficulty, we expect to see both lower rates of success as well as decreased use 
of efficient strategies. We aim to identify what additional knowledge students employ at different 
levels of problem difficulty. 

Prior research indicates many task features affect students’ ability to solve missing-value 
proportion problems. Key among these are semantic type and number structure (Heller, Post, Behr & 
Lesh, 1990; Lamon, 1993; Tourniaire & Pulos, 1985; Vergnaud, 1983), though many others have 
been identified (Harel& Behr, 1989). We designed our instrument paying most attention to features 
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related to number structure since a comparison of the impact of semantic type and the presence or 
absence of integer ratios indicated students were more influenced by the number structures of 
problems (Steinthorsdottir, 2006). We considered tasks in which the within measure space ratio was 
either an integer or non-integer, the between measure space ratio was either an integer or non-integer, 
and the given proportion was either to be enlarged or decreased in the target. The term within 
measure space ratio refers to the ratio of the given quantities with identical units; it is the scale factor 
needed to transform the given into the target quantity. Between measure space ratio refers to the ratio 
between the given quantities with different units. This ratio is a unit rate.  

For our study, a pencil and paper instrument was administered to 409 middle school students (5th 
– 8th grades) in a small Midwestern city. Since the instrument is long (26 questions), three class 
periods were used over a two week period at the beginning of the school year. There was no 
instruction given in conjunction with data collection, therefore we consider the students’ work to 
represent their natural approach, built on both informal and formal prior experiences. Students 
showed their work and did not have access to calculators.  

The problems in this study, categorized by their number structure, are presented in Table 1. Each 
was given as a story problem, such as Q18: “Kris works at the stable and it is feeding time. If 24 
horses eat 40 bales of hay each day, how many bales would 6 horses eat?” Prior research suggests 
that problems with an integer scale factor (Cells A and B) are easier than those with a non-integer 
scale factor (Cells C and D). Further, the ability to scale down by an integer, as in a Cell B shrink 
problem, is predicted to prepare students to succeed on problems in which the scale factor is a non-
integer (Carpenter et al., 1999; Steinthorsdottir & Sriraman, 2009).  

Table 1: Number Structures of Problems Analyzed 
 

 Integer Scale Factor Non-integer Scale Factor 
Integer Unit Rate Cell A 

Q23   4:16 = ?:48 
Cell C 

Q19   60:20 = ?:45 
Q03   3:9 = 11:? 

Non-integer Unit Rate Cell B 
Q02   5:7 = 40:? 

Q18   24:40 = 6:? (shrink) 
Q06  36:24 = ?:8 (shrink) 

Cell D 
Q11   18:16 = 45:? 

Q12   42:35 = ?:10 (shrink) 

 
Many researchers discuss common student strategies, both correct and error (Bezuk, 1988; 

Misailidou & Williams, 2003; Tourniaire & Pulos, 1985). We used a detailed rubric to code 
strategies. Broad categories of error strategies included haphazard calculations, additive comparisons, 
and incomplete multiplicative comparisons. Broad categories of correct strategies included build-up 
and multiplicative proportional reasoning strategies. We also coded a variety of errors students made 
after beginning a problem using proportional reasoning. These partially correct strategies had errors 
that included either calculation or conceptual errors. In all categories, we captured details of the 
students’ work. Each strategy was coded by two people, and any disagreements were discussed and 
resolved. For this report, codes were then collapsed into the following categories. Essentially correct 
solutions are those with answers achieved using any proportional reasoning strategy with at most a 
minor calculation error. Partially correct are those that begin with proportional reasoning but finish 
with incorrect reasoning or contain a major (conceptual) calculation error. These typically arise from 
mishandling non-integer factors. Incorrect solutions are those in which students do not apply 
proportional reasoning. 
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Essentially correct solutions are further categorized as representing efficient or less efficient 
strategies. An efficient strategy is multiplicative in nature and uses two calculations; for example, a 
factor (either the scale factor or unit rate) is computed, then applied. Less efficient strategies are 
build up strategies (e. g. 5:7 = 10:14 = 20:28 = 40:?, answer 56) which take more than two steps. This 
labeling is subjective but indicates the sophistication of the strategy chosen by the student. 

Results and Discussion 
Results are presented in Table 2 with questions arranged from easiest to hardest based on the 

number of essentially correct solutions observed.  

Table 2: Categorization of Strategies, Percent of 409 Students 
 

 Q23 
Cell A 

Q02 
Cell B 

Q18 
Cell B 
shrink 

Q06 
Cell B 
shrink 

Q19 
Cell C 

Q03 
Cell C 

Q11 
Cell D 

Q12 
Cell D 
shrink 

Essentially 
Correct 

Strategies 

Efficient 52% 44% 47% 40% 23% 24% 21% 24% 
Less 

Efficient 16% 21% 9% 8% 19% 17% 11% 2% 

Essentially Correct 67% 65% 56% 48% 41% 41% 32% 26% 
Partially Correct 1% 2% 3% 2% 19% 20% 19% 10% 

Incorrect 32% 33% 41% 49% 39% 39% 49% 64% 
 

McNemar’s test is appropriate for comparing two paired proportions. Using this test, the 
proportion of essentially correct responses in all but two question pairs (Q23 and Q02; Q19 and Q03) 
were significantly different at the 5% level. As predicted by the learning progression, the enlarge 
problems with integer scale factors were the easiest, followed by the shrink problems with integer 
scale factors. The enlarge problems with a non-integer scale factor but integer unit rate are next, 
followed by the enlarge problem with two non-integer factors. The shrink problem with two non-
integer factors is the hardest problem.  

The amount of change between problems in different cells strongly suggests the complexity of 
the scale factor plays a larger role in student thinking than the complexity of the unit rate. Compare 
the enlarge problems from cells A and B in Table 2, in which the unit rate is integer and non-integer, 
respectively. The difference in the proportion of essentially correct solutions for Q23 and Q02 is 
negligible. On the other hand, when the scale factor changes from integer to non-integer, Cell A to 
Cell C, the success rate drops from 67% to 41% (Table 2, Q23, Q19 and Q03). We hypothesize 
students more easily notice the multiplicative relationship for quantities with identical units rather 
than for those with different units.  

The ability to correctly partition a given ratio appears to represent a developmental milestone. 
Shrink problems have lower success rates than enlarge problems with a similar number structure. 
Compare results in Table 2 for Q02, Q18 and Q06, all cell B questions. The striking difference is the 
drop in less efficient strategies. This drop also occurs in Cell D, Q11 (enlarge) and Q12 (shrink). 
Most students who correctly solve a shrink problem do so with an efficient strategy. The ratio of 
efficient to inefficient solutions is about 2:1 on the enlarge problem and about 5:1 on the shrink 
problems in Cell B. Perhaps less advanced students have more entry points into an enlarge problem, 
allowing them to figure out a correct answer. Not seeing an entry point in a shrink problem, these 
students have a greater tendency to immediately use non-proportional reasoning. In fact, if our 
questions are ordered by increasing percentage of incorrect responses, the Cell C enlarge problems 
precede the Cell B shrink problems.  
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The ability to scale up and down by an integer should enable students to solve problems with 
non-integer scale factors (Cell C and D problems) equally well. We observed, however, students 
were more successful on Cell C problems (Q19 and Q03) than on Cell D problems (Q11 and Q12). 
We conclude the presence of an integer unit rate is beneficial, even though the explicit use of the unit 
rate strategy does not explain the differences in success. Rather, the integer unit rate appears to 
enable students to correctly finish a build-up strategy. It also may be that the “nice” unit rate provides 
an entry to the problem and so prevents students from turning immediately to non-proportional 
strategies.  

Data from additional questions and deeper analysis should clarify our findings regarding the 
relative importance of number structure task characteristics.  
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We examine how 1343 students in grades 5 to 9 solved an arithmetic problem and attempted to 
provide a general representation for a function described in the problem. We found that use of letters 
appears from grade 5 and continuously increases through grade 9 and that students who solved the 
arithmetic part of the problem were more likely to use letters as variables.   

Keywords: Algebra and Algebraic Thinking; Assessment and Evaluation 

Research shows that middle and high school students often fail to solve algebra problems (Knuth 
et al, 2011), have trouble generating equations from word problems (Kieran, 2007), and do not use 
letters to solve them (Booth, 1984; Küchemann, 1981). Difficulties with algebra have been attributed 
to the inherent abstractness of algebra (Collis, 1975, Kuchemann, 1981) or to teaching that 
emphasizes the “meaningless manipulation” of variables (Chazan, 2000).  

More recently, a different approach to high school algebra (see Schwartz and Yerushalmy, 1992), 
which emphasizes the relationship between quantities and focuses on functions and their multiple 
representations (e.g., tables, symbolic expressions, and Cartesian graphs) have shown to promote a 
deeper understanding of algebra (Chazan, 2000). In fact, even in elementary school, a functions 
approach to algebra can promote students’ understanding of algebraic principles and representations 
and use of variables to represent verbal statements (Carraher & Schliemann, 2007; Kaput, Carraher, 
& Blanton, 2008). These results support the proposal for a different curriculum, aimed at integrating 
algebraic reasoning across all grades (Kaput, 1998). To design such curriculum, we need to better 
understand students’ intuitive and conventional ways of attempting to use letters as variables across 
grades and to identify their typical mistakes.  This study contributes to this goal by examining the 
evolving use of letters as a variable by students in grades 5 to 9, as they attempted to represent a 
function described in a verbal problem, after they had solved a specific instance of the problem using 
arithmetic.  

Method 
A total of 1343 students from New England (U.S.A.) completed a mathematics written 

assessment at the start of the 2012-2013 school year; 233 students were in grade 5 (17.3%), 465 in 
grade 6 (34.6%), 378 in grade 7 (28.1%), 131 in grade 8 (9.8%), and 136 in grade 9 (10.1%). We 
analyzed students’ answers to parts (a) and (b) of a five-part problem taken from a grade 10 State 
Assessment test. Part (a) relates to grade 6 Common Core State Standards (on expressions and 
equations) and part (b) relates to grade 8 standards (on functions). The problem situation and the two 
questions examined were: 

Liam and Tobet are going to walk in a fund-raising event to raise money for their school. Liam’s 
mother promised to donate to the school $4 per mile that Liam walks, plus an additional $30. 
Tobet’s father promised to donate to the school $6 per mile that Tobet walks, plus an additional 
$20. (a) If Liam walks 15 miles during the event, what is the total amount of money his mother 
will donate? Show or explain how you got your answer. (b) Write an equation that represents y, 
the total amount of money Liam’s mother will donate if Liam walks x miles during the event. 
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Results 
Missing or incorrect answers were scored as 0 and correct answers as 1. Then, part (a) answers 

were coded into no response (blank answer or I don’t know), incorrect answer, and correct answer; 
and part (b) into no response, do not use letters (e.g., 90, $60+$30=$90; $50=5 mi; 60, 15*4 = 60 or 
20*4 = 80, 1120; 30 by 7.50 miles; if he walks 40 miles then his mom will donate $110), and use 
letters. Answers to part (b) that used letters were also coded into the six categories in Figure 1.  

 
Use of Letters 

a. Conventional Correct Notation: (e.g., y=4x +30) 

b. Different Correct Notation: uses different letters to represent x (number of miles walked) and y 
(total donated) (e.g., d=4m+30 or 4y+30=x) 

c. Reverse Notation: reverses order of number and letter 
i. Correct Answers (e.g., x4+30 = y) 

ii. Incorrect Answers (e.g., y = x6+20) 
d. Incomplete Notation: provides an incomplete equation 

i. Correct Answers (e.g., 4x+30) 
ii. Incorrect Answers (e.g., y = x + 30 or y=4x) 

e. Wrong Information (uses wrong number information in a complete, incomplete, or incorrect set-
up; e.g., 30 + (x*5)=y; y = 4x + 40; y = 15x + 20; y = 6x, y = x + 20; y *x = 450; y=90) 

f. Unidentified Use of Letters (Randomly combines letters given/not given in problem; e.g., x + y = 
m; (x*y)+20=90; y/x+30=60; 16xy; 15xy=y; 4x=y+30=y; y=x)  

Figure 1: Categories for Use of Letters as a Variable in Part (b) of the Problem 

Representing and solving the arithmetic part of the problem seems to have been easier than 
providing a general algebraic representation of the situation. Here, the percentage of correct 
arithmetic answers (part a) ranged from 38.2% in grade 5 to 77.9% in grade 9, with no significant 
differences (analyzed with an ANOVA) between grades 7 to 9, but significant differences between 
the other grades. Correct algebra representations (part b) ranged from 4.7% in grade 5 to 70.6% in 
grade 9; differences across all grades were significant. 

The arithmetic part of the problem was significantly more difficult for 5th graders, with 38.2% 
correctly solving the problem, than for 7th through 9th graders, where more than 70% did so. 

The algebraic representation of the problem was difficult for 5th, 6th, and 7th graders, with from 
4.7% to 36.5% of the students correctly using letters.  These percentages increased to 57.3 in grade 8 
(the grade where variables are introduced) and to 70.6 in grade 9. 

Table 1 shows, for students in each grade, how the percentage of no response, incorrect, or 
correct responses to part (a) relates to no response, did not use letters, and used letters in part (b). 
Percentages in the cells for each grade level add up to 100%. 

The last column in the table shows the total number of responses to part (a), for each category 
and grade level.  Here, 5th graders show almost equal percentages for each of the three categories. 
Among 6th graders, there was a slight improvement in results. For the three higher grades over 70% 
of students provided a correct response to part (a).  

Overall, in response to part (b), 33.6% of students in all grades gave no response, 5.3% did not 
use letters, and 61.1% used letters as a variable.  

Even though a high percentage (33.9%) of 5th graders provided no response for both parts (a) and 
(b), as many as 21.9% correctly solved part (a) and used variable(s) in their solution to part (b).  
From grades 6th through 9th, the percentage of students who correctly solved part (a) and used 
variables in part (b) increased from 42.4% to 75%. 

As expected, across all grades, a high percentage of students who provided no response to part 
(a) also provided no response to part (b), while those who correctly solved part (a) had a higher 
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percentage of use of variables in part (b). This suggests that students who understand the arithmetic 
relations in the problem are more likely to use variables in part (b), at any grade level. Also, the  

Table 1: Percentage of Each response by Grade 

Grade Part (a) 
Response 

Part (b) Response  
No 

Response 
Didn’t use 

letters 
Used 

Letters 
Total 

5 (N=233) 
No Response 33.9% 0.9% 0 34.8% 
Incorrect 10.7% 9.0% 7.3% 27.0% 
Correct 12.0% 4.3% 21.9% 38.2% 

6 (N=465) 
No Response 21.7% 0 0.9% 22.6% 
Incorrect 9.5% 2.4% 9.5% 21.4% 
Correct 10.8% 3.0% 42.4% 56.2% 

7 (N=378) 
No Response 12.2% 0 0 12.2% 
Incorrect 3.7% 0.8% 13.0% 17.5% 
Correct 7.9% 1.6% 60.8% 70.3% 

8 (N=131) 
No Response 10.7% 0 0.8% 11.5% 
Incorrect 0.8% 0 14.5% 15.3% 
Correct 0.8% 2.3% 70.2% 73.3% 

9 (N=136) 
No Response 10.3% 0 0.7% 11.0% 
Incorrect 0 0.7% 10.3% 11.0% 
Correct 2.9% 0 75.0% 77.9% 

All Grades 
(N=1343) 

No Response 18.9% 0.1% 0.4% 19.4% 
Incorrect 6.3% 2.7% 10.6% 19.6% 
Correct 8.4% 2.5% 50.0% 60.9% 

 
percentage of students who correctly answered part (a) and used variables in part (b) positively 
correlates with grade level. 

A total of 672 (50%) of the 1343 students were able to correctly solve part (a) and then use letters 
as a variable in part (b).  These were 51 students in grade 5 (21.9% of 5th graders), 197 in grade 6 
(42.4% of 6th graders), 230 in grade 7 (60.8% of 7th graders), 92 in grade 8 (70.2% of 8th graders), 
and 102 in grade 9 (75.0% of 9th graders).  

The percentage of students correctly using letters as a variable increases with grade level as does 
the percentage of those using the conventional notation. Accordingly, the percentages of most types 
of incomplete, wrong, and unidentified use of letters decreased with increasing grade levels but was 
still found among 27.3% and 12.8% of 8th and 9th graders, respectively. Only 9th graders used the 
correct conventional notation in more than 50% of responses, with 71.6% of them in this category.  
However, 5th to 8th graders would also use correct notation but reversing the order of variables and 
constants. Total percentages for correct use of variables, including cases of inversion and incomplete 
answers, show that 17.6% of the 5th graders, 49.2% of the 6th graders, and 56.5% of the 7th graders 
who used variables did so correctly, even though this is an 8th grade standard.  

Discussion 
In keeping with previous research on high school students’ difficulties with algebra, our results 

show that generalized use of letters as a variable, although more frequent in later grades, is still 
problematic for more than half of 7th graders, more than 40% of 8th graders, and nearly 30% of 9th 
graders. However, among students who could solve the arithmetic part of the problem and used 
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variables in its algebraic part, use of letters in the correct conventional notation or reverse correct 
notation start to appear from grade 5 and continuously increase through grade 9.   

In terms of solving the arithmetic part of the problem, even though 7th to 9th graders results were 
better than those for earlier grades, as many as 38.2% of 5th graders and 56.1% of 6th graders 
understood what the problem was asking them to do.  This is noteworthy because this study’s data 
were collected at the beginning of the school year, before 5th and 6th graders were taught the content 
of part (a).  

Our results show that even 5th graders are capable of using letters to represent variables described 
in verbal statements and suggest that instruction about variables can start much earlier in the K-12 
curriculum.  The results also suggest that the ability to understand and solve arithmetic problems is a 
basis for considering variables and using letters for representing them.  

Concerning students mistakes, reversing the conventional order for representing variables and 
constants was present at all grade levels. This could be easily addressed with practice. Other mistakes 
such as incomplete, wrong, and unidentified use of letters, present even in 8th and 9th grades, call for 
introducing algebra and functions through activities that promote a clear understanding of variables 
and of how algebra notation relates to verbal statements.  

This study’s results and previous findings on young students’ use of letters as a variable, suggest 
that the integrated teaching and learning of arithmetic and algebra may successfully start in 
elementary school to promote a deep understanding of mathematics across the curriculum. 
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The concept of equivalence is one of the first algebraic notions introduced to students in early 
childhood. The future success of students in mathematics, and related subjects, is believed to rely 
significantly on their understanding of this basic algebraic concept. However studies have found that 
the operational view of the equals sign is a major obstacle in students’ proper understanding of 
equivalence, and hinders their mathematical abilities. In this paper we report findings from part of a 
teaching experiment involving second-graders where students were observed developing their 
conceptions of equivalence. We describe the overlap of the operational view of equivalence and the 
relational view in two students.  

Keywords: Algebra and Algebraic Thinking; Classroom Discourse; Reasoning and Proof 

Background and Objectives 
Numerous research studies have found that students’ misconception of equivalence surfaces in 

the form of an operator conception the of equals sign (Carpenter et al., 2003; McNeil & Alibali, 
2005). Students with such an operational view treat the equals sign as an operator to produce the 
result of the operation performed on the numbers on one side of the sign. Thus, equals is conveyed as 
“makes” or “produces” instead of “the same as.” These effects have been observed to be long lasting 
and hinder students’ success in their mathematics learning in later grades (McNeil & Alibali, 2005). 
Research spanning over 40 years has reported various reasons for this misconception and suggest that 
many students retain this misconception in some form or other even in higher grade levels (Kieran, 
1981; Knuth et al. 2006). The present study extends this large body of literature by focusing on how 
children’s conceptions of equivalence changed and varied across several weeks. Therefore, the 
purpose of this study is to examine the interaction of children’s conception of the equals sign as an 
operator with their ability to grasp of a relational view. 

Theoretical Framework 
Children with an operational view of the equals sign generally give significance only to the 

number immediately following the equals sign and usually ignore any operations thereafter. 
However, with a relational view, students consider expressions appearing on the either side of equals 
sign as equivalent/same (Baroody & Ginsburg, 1983). The particular focus of research on students’ 
conception of equivalence has been on the nature of children’s misconceptions. Such research has 
found that beyond the conventional arithmetic problems (e.g., 2+1=!), children demonstrate 
difficulty with alternate forms. These include equations in reverse-order such as a=b-c (McNeil et 
al., 2006), equivalent expressions such as a=a (Baroody & Ginsburg, 1983), or missing numbers in 
equivalent expressions such as a+b= !+d (Rittle-Johnson & Matthews 2011).  

Our primary interest in this study is to look for any nonstandard difficulties faced by students in 
realizing the relational view of equals sign. We used the construct map for mathematical equivalence 
knowledge, suggested by (Rittle-Johnson & Matthews 2011) to determine students’ demonstrated 
level in terms of an operational or relational view of equals sign. 
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Methods 
The data used in this paper focuses on the work of two students, Julia and Jacob, who were a part 

of a year-long teaching experiment with four second-grade students from a public school in a 
Midwestern U.S. state. For the sake of simplicity and space, we focus on six of these sessions 
(session 8 to 13). Based on Steffe & Thompson’s (2000) description of teaching experiment, the first 
author served as the observer and the second author as the teacher-researcher. During the sessions of 
focus here, children were asked to consider different number sentences and their properties, including 
their association on number balances. The number sentences ranged from single expressions with 
single digit numbers (e.g., 5 + 7) to two expressions with multi-digit numbers in the equation (e.g., 
15 + 10 = 18 + 7). All the sessions were video recorded and transcribed and written work of 
participants was digitally scanned. Field notes collected from the first author were also included. 

Analysis  
After each session, both authors used video, students’ writing, and observer notes to examine 

students’ understanding of equivalence. Transcripts were used along with other data following all 
sessions for further analysis. We used the construct map provided by Rittle-Johnson & Matthews 
(2011) to code students’ demonstrated understanding. The concept map proposes four levels of 
mathematical equivalence knowledge; rigid operational (a+b=c); flexible operational (c=a+b, a=a); 
basic relational (a+b=c+d, a+b–c=d+e); and comparative relational (e.g., knowing that 85 + 14 = 80 
+ 19 without needing to find the sum of each expression). The findings were refined through 
continuous review of student data. After careful observation and independent analysis of data, both 
authors reached agreement on levels of the construct map for each student across different sessions.  

Results and Discussions 
In early sessions Julia demonstrates an operational view of the equal sign, as opposed to Jacob 

who consistently demonstrated the relational view. However, it should be noted that the very first 
problems involved equivalent expressions containing single digit number only (Figure. 1). 

 

Figure 1. Julia and Jacob’s responses to whether 5+5=6+4 and why. 

Notice how, in Figure 1, Julia identifies only the 6 to the right of the equals sign, and does not 
identify the + 4 afterwards. Jacob, however, describes the whole equation in framing his response. 
Despite her rigid operational view in the beginning, Julia started to shift how she began describing 
the equals sign in using language resembling “same as” descriptions, but never reached a point where 
her descriptions of the arithmetic aligned with a flexible operational stage (Rittle-Johnson & 
Matthews 2011). Jacob’s performance demonstrated a unique misconception hindering his 
advancement to the basic relational stage. For the sake of clarity, we discuss Julia and Jacob’s 
performance separately for the remainder of the paper. 

  
Julia: “It can’t be 6 because it is lower” Jacob: “True the 5’s equal...it equals another ten, 

6+4” 
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Julia’s work 
In view of (Rittle-Johnson & Matthews 2011) construct map, Julia would, at times, seemingly 

demonstrate a transition from the rigid operational view of equals sign to a flexible operational view, 
but this transition was not consistent. During one session, Julia responded to the question “Explain 
why 38 + 16 = 40 + 14” by stating “They did not show the same numbers but they are the same 
answers. So it is a different equation but it is the same answer.” Thus, Julia performs the operation of 
addition irrespective of the appearance of expression on the left or right of the equals sign, but does 
not demonstrate the equivalence of the expression. Rather, she talks about the answer of the addition 
operation separately on either side. We infer from this that she is, at this time, considering the two 
expressions either as a+b=c or c=a+b. 

Jacob’s work  
Jacob’s responses for the equivalent expressions using single digit numbers suggest that his level 

of equivalence knowledge is beyond the rigid operational level (see figure. 1). When asked to 
consider the equivalent expressions involving two digit numbers, Jacob did not demonstrate an 
understanding of equivalence (see the Figure 2 below). 

 
40+14=38+16:             “Because they are not the same patterns and the same          

numbers and the same equal” 
10+15=17+8:               “It doesn’t work because it is not equal”. 

Figure 2. Jacob’s failure to realize equivalence of expressions. 

Based on his work with equations with single-digit numbers, we initially considered that Jacob 
had an operational view, but we found disconfirmatory evidence in this regard. Jacob correctly 
identifies the equivalence in some other problems involving two digit numbers. For example consider 
his responses for the questions in Figure 3.This evidence seemingly contrasts an assumption of an 
operational view. To understand this discrepancy in Jacob’s responses, we considered his work in 
response to various problems such as “35+28=50+13”, as shown in Figure 3. 

 
35+28=50+13:     “Because they have the same total and have the same places” 
21+36=50+7:       “Because they have the same total” 

Figure 3. Jacob’s realization of equivalence of expressions. 

On careful observation, we found that Jacob’s strategy with equivalent expressions involving two 
digit numbers relied primarily on adding the numbers in ones place on the left hand side of equals 
sign. He then looked for the same number (the sum of numbers in the ones place) on the right hand 
side of the equals sign. If the equation had the same number on the right hand side of equals sign, 
Jacob would conclude that the expressions are equivalent, and are not equivalent otherwise.  

 

 

35+28=50+13; “Because they have the same 
total and have the same places” 

 

Figure 4. Jacob’s responses to equivalent expressions with two digit numbers. 
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Confirmatory evidence for Jacob’s adding strategy is presented in Figure 4. Jacob demonstrates 
adding the numbers in the ones place on left hand side of equals sign, but then looks for the resulting 
number on the right hand side.  Thus, he adds 8+5 to get 13. He then checks to see 13 on the right 
hand side of equals. Finally he adds the numbers in tens place on the left hand side of the equals sign 
to get 30+20. He then verifies 50 to appear on the left hand side again and concludes that the 
expressions are equal. He does the same for 21+36 = 50 +7 and declares it to be correct (see Figure 
3). Using the same method, he concludes that the two examples in Figure 2 are not equivalent. Based 
on the discussion above, we conclude that Jacob’s level of equivalence knowledge can be placed 
somewhere between flexible operational and basic relational. His exhibition of a “pseudo-relational” 
view of the equals sign might be considered as his preliminary advent to the basic relational level of 
equivalence knowledge. Rather, at times he is able to demonstrate what appears to be a relational 
view, and provide what appear to be relational definitions, but disconfirmatory evidence suggests that 
such a view is too ill defined by Jacob for him to show consistency in his responses. 

Conclusion 
In this report, we have shown that children’s relational and operational views of the equals sign 

may be mutually exclusive, but there is not as clear a line between these views as much prior 
research has suggested (Rittle-Johnson & Matthews 2011). We observed that Jacob’s pseudo-
relational understanding of the equals sign prevented him from consistently demonstrating a basic 
relational understanding. Such a view may signal false indicators of a basic relational view and thus 
be misleading for teachers (and also researchers).  
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Across the professional spectrum, teachers’ mathematical knowledge for teaching impacts their 
teaching practice and students’ learning opportunities. This brief research report details an ongoing 
study focused on the conceptions of place value and whole number operations among preservice 
(n=26) and inservice (n=8) teachers engaged in a multi-week teaching intervention involving an 
unfamiliar number system in base six. Using mixed methods, analysis of pre- and post-Assessment of 
Place Value data, participant reflections, and pre- and post-surveys of productive and unproductive 
beliefs about teaching and learning mathematics, yields insights about teachers’ conceptions of place 
value and whole number operations, specifically noting differences across preservice and inservice 
teachers. Supporting literature and pilot data indicate the potential for positive impact on 
participants’ mathematical knowledge for teaching. 

Keywords: Number Concepts and Operations; Teacher Education-Preservice; Teacher Education-
Inservice (Professional Development); Teacher Knowledge 

Number and operations are a consistent component of the K-12 mathematics curriculum, and 
supporting teaching and learning of these concepts remains an enduring challenge in mathematics 
education. In U.S. states that have adopted the Common Core State Standards for Mathematics 
(CCSSM), teachers are expected to build upon concepts of number, operations, and place value, 
applying those concepts with increasing sophistication from natural and whole numbers, to fractions, 
integers, rational, irrational, and complex numbers. Similar progressions can be found in alternative 
curriculum standards. Here we report on an ongoing study of preservice and inservice teachers’ 
conceptions of place value and whole number operations throughout an intervention designed to 
deepen teachers’ understanding of these foundational concepts. 

Purpose of Study 
Preservice and inservice teachers’ conceptual understanding of numeration systems, place value, 

and mathematical properties can influence how they teach the concepts and help students make 
meaning of them (Ma, 1999). Teachers must possess a deep conceptual understanding of numeration 
and place value in order to select the appropriate order of tasks to engage students in knowledge 
construction, choose appropriate manipulatives and representations to support those constructions 
(Morin & Samelson, 2015), analyze students’ reasoning, facilitate productive mathematical 
discourse, and anticipate possible alternative solutions and strategies. The purpose of this study is to 
explore teachers' conceptions of place value and whole number operations through an intervention 
involving a base-six number system and alternative numerals. We also explore howthese conceptions 
differ among and between preservice and inservice teachers. 

Theoretical Perspective 
Building on Shulman’s (1987) concept of pedagogical content knowledge, mathematical 

knowledge for teaching (Hill, Rowan, & Ball, 2005; Ball, Thames, & Phelps, 2008) is now a well-
established construct in mathematics education. We draw from this construct as we consider 
conceptions of place value and operations among elementary preservice teachers (PSTs) enrolled in 
an undergraduate mathematics methods course and inservice teachers enrolled in a graduate 
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mathematics education course. The study described in this paper engages teachers as mathematical 
learners of place value and operations concepts in an unfamiliar number system, providing them with 
opportunities to construct deeper understanding of mathematics and pedagogy through exploration 
and productive struggle with cognitively demanding mathematical tasks in base-six (Stein, Smith, 
Henningsen, & Silver, 2009). 

There exists a robust research literature relating to teaching and learning elementary number 
concepts, with much attention directed toward progressions and characteristics of teaching and 
learning about place value and multi-digit addition and subtraction concepts (see, for instance, Fuson, 
1990; Baroody, 1990; Fuson et al., 1997; Clements, et al., 2011). In order to facilitate student 
learning that focuses on such concepts, teachers must possess deep conceptual understanding 
(CBMS, 2001; Sowder, Philipp, Armstrong, & Schappelle, 1998). Yet, deep conceptual 
understanding cannot simply be assumed. For example, Thanheiser (2009) examined elementary pre-
service teachers’ (PSTs’) conceptions of multi-digit whole numbers in a variety of contexts and 
found that the majority of PSTs experienced some gaps in their conceptions of whole numbers and 
place value. Variation in teachers’ understanding of place value concepts has also been documented 
among practicing teachers (Tanase, 2011; Tanase & Wang, 2013). 

One approach to developing teachers’ knowledge and conceptual understanding of place value 
and operations has been to engage teachers as learners in a non-base ten number system (Andreason, 
2006; McClain, 2003; Roy, 2008). Hopkins and Cady (2007) describe how learning experiences with 
the Orpda system, a base five number system that used symbols other than Hindu-Arabic numerals, 
provided preservice and inservice teachers with insight about student thinking and manipulative use, 
while developing a deeper understanding of place value concepts. In her dissertation study involving 
the Orpda system, Price (2011) also documents positive changes in teachers’ conceptual 
understanding of place value and operations. Likewise, dissertation studies by Rusch (1997) and 
Radin (2007) emphasized a variety of number bases in coursework for pre-service elementary 
teachers. Positioning preservice and inservice teachers as learners of familiar mathematics in 
unfamiliar number systems can facilitate the construction of conceptual understanding, while 
providing authentic experiences with pedagogical approaches, potentially impacting teachers’ 
mathematical knowledge for teaching. 

Methods 
The specific teaching intervention used in this study engages participants in place value and 

whole number operations tasks that parallel the progression of Number and Operations in Base Ten 
from the CCSSM (CCSSI, 2010). Throughout the multi-week unit, participants create, represent, and 
solve tasks in a base-six numeration system, termed the Sloth System, that uses the symbols ", #, !, 
!, �, ★, to represent the Hindu-Arabic numerals 0, 1, 2, 3, 4, 5, respectively. As instructors for 
these two courses, the authors pose tasks that include bundling objects in groups of six; representing 
and comparing quantities; manipulatives and representations of base-six blocks and six frames; 
composing and decomposing numbers; and adding, subtracting, multiplying, and dividing, all in the 
Sloth System. The intervention models many of the base ten concepts across elementary mathematics 
using the Sloth System with the goal of improving participants’ mathematical knowledge for 
teaching place value and operations. 

A mixed-methods approach is used throughout the study involving 26 preservice teachers in two 
sections of an undergraduate elementary mathematics methods course and eight inservice teachers in 
a graduate course on Numbers & Operations. Each participant is asked to complete a pre- and post-
Assessment of Place Value, adapted from Rusch (1997), at the beginning and end of the semester. 
Additional data sources include teachers’ written reflections on their learning related to the teaching 
intervention, and results of a four-point Likert-type beliefs survey adapted from productive and 
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unproductive teaching beliefs as described in Principles to Action: Ensuring Mathematical Success 
for All (National Council of Teachers of Mathematics, 2014), administered at the beginning and end 
of the semester.  

Using the constant comparative method (Strauss & Corbin, 1998), participants’ reflections will 
be coded and examined for themes. The unit of analysis is the individual teacher. Additionally, 
reflections and the responses to open-ended items on the pre- and post-assessments will be analyzed 
using the conceptions of multi-digit whole numbers framework (Thanheiser, 2009). Results from 
qualitative analyses will be mapped to the findings from the quantitative results for each participant. 
Analysis of data from the subset of preservice participants will be compared with the subset of 
inservice participants, as well as among individuals in each group.  

Preliminary Findings 
We report on preliminary findings from this study in progress. Two prior iterations of the base-

six teaching intervention yielded pilot data from elementary preservice teachers’ reflections. Three 
themes emerged from the qualitative pilot data: preservice teachers reported increased understanding 
of student thinking and misconceptions about place value and operations; acknowledged that 
discussion of multiple strategies fostered their own understanding of place value and operations; and, 
gained appreciation for the manipulatives and representations.  Preservice teachers described their 
initial frustration with representing and operating on numbers in an alternative numeration system, 
but were cognizant that their struggle was likely similar to that of many of their future students 
learning the same concepts in base ten. Because the teaching intervention in this study builds upon 
prior iterations, these findings suggest that teachers’ understanding of both mathematical content and 
pedagogy, or perceptions thereof, may be impacted. Yet the extent to which that impact differs 
among students and between preservice and inservice teachers cannot yet be determined. 
Additionally, preliminary analysis of preservice teachers’ pre-tests for this study indicates lack of 
familiarity with non-decimal number bases prior to the teaching intervention. Thus, participants’ 
facility with alternative number bases, builds from a rudimentary baseline understanding of place 
value and operations that are not in base ten. 

Discussion 
Prior research has indicated positive results when preservice teachers’ learn in non-base-ten 

numeration systems (Rusch, 1997; McClain, 2003; Andreason, 2006; Hopkins & Cady, 2007; Radin, 
2007; Roy, 2008; Price, 2011). To this body of literature, the study described here will add results 
about inservice teachers’ conceptions of number and operation concepts. Increased understanding of 
preservice and inservice teachers’ conceptions of place value and whole number operations will 
support researchers and mathematics teacher educators to better target teachers’ preparation and 
professional development needs, in turn potentially impacting teachers’ mathematical knowledge for 
teaching (Ball et al., 2008) and students’ learning of foundational number and operations concepts 
(Hill et al., 2005). 
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Alice, a fifth grader who participated in twelve weeks of a teaching experiment on integer addition 
and subtraction, produced drawings as part of her strategy for solving integer addition and 
subtraction open number sentences. The drawings she created during the twelve weeks of the 
teaching experiment were analyzed and grouped into the following categories: Single Set of Objects, 
Double Set of Objects, Number Paths & Number Lines, and Number Sentences. These drawings 
provide insight into how children may directly model or count when solving integer addition and 
subtraction problems.  

Keywords: Number Concepts and Operation; Elementary School Education; Cognition 

For solving addition and subtraction problem with positive integers we know that children often 
use strategies that incorporate drawings that include direct modeling, counting, or derived facts 
(Carpenter, Fennema, Franke, Levi, & Empson, 2015). Children often use drawings paired with 
direct modeling or counting strategies as they begin to invent strategies for solving addition and 
subtractions problems. We also know that children often draw upon direct modeling strategies, which 
may incorporate drawings, when the number size changes. However, as a field, we know little about 
the drawings that children employ as they transition from using positive integers to negative integers. 
Bofferding (2010) demonstrated that children often use a number path when solving integer 
problems. Other researchers have shown that children will use a variety of ways to reason about the 
integers which include order-based or number line reasoning (e.g., Bishop et al., 2014). Despite the 
insurgence of research on the ways that student think about integers (e.g., Bofferding, 2014; Bishop 
et al., 2014; Wessman-Enzinger & Mooney, 2014), we need to know more about the ways that 
children reason about integers in relationship to they ways that children employ direct modeling or 
counting. One way to identify more of these direct modeling and counting strategies from children is 
to look at the drawings that they produce and create. Vig, Murray, Star (2014) highlight that 
understanding the productive aspects of models, as well as their breaking points, is an important 
component to integer addition and subtraction. Understanding ways that children use these drawings 
productively and unproductively could help provide insight into affordances and hindrances of 
models.   

Theoretical Perspective 
Word use, visual mediators, narratives, and routines are the central tenets of discourse in 

commognitve theory (Sfard, 2008). Although all of the tenets of commognitive theory work together 
synergistically, the visual mediators are the focus of this paper. Visual mediators include recognizing 
artifacts such as gestures or drawings as part of a students’ discourse. Drawings that children produce 
while solving integer addition and subtraction open number sentences represent a component of their 
discourse that is just as important as their verbal reasoning. For students, drawings can be as 
communicative as their verbal expressions and investigations into their drawings for negative 
integers can be illuminative. During the time with the Grade 5 students, they often used drawings to 
help them make sense of the negative integers. This research brief highlights one of these three 
students, Alice, and her drawings. Specifically, this research brief addresses the research question: 
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What types of drawings does Alice produce as she solves integer addition and subtraction open 
number sentences?  

Methodology 
Three Grade 5 students from a rural Midwest school participated in a 12-week teaching 

experiment (Steffe& Thompson, 2000) centered on integer addition and subtraction, using both 
contextual problems and open number sentences. The students met in both individual and group 
sessions during the teaching experiment and all sessions were videotaped. The students primarily 
solved problems in contexts during both the individual and group sessions; however, there were four 
individual sessions where students solved open number sentences.  

Integer addition and subtraction open number sentences were solved during four individual 
sessions across the 12-weeks. During these sessions the open number sentences were provided on 
paper, with no manipulatives and only a box of markers available. The students were asked to 
explain their reasoning for solving the open number sentences. Alice was chosen as the participant to 
report on in this research brief because of the three participants Alice used drawings the most. Alice’s 
drawings from the individual sessions with open number sentences represent the unit of analysis. A 
grounded theory approach (Glaser & Strauss, 1967) was utilized for categorizing the different types 
of Alice’s drawings. Both the verbal interactions from Alice and the teacher-researcher, as well as, 
the process of her drawings were transcribed. Each of the drawings, paired with these descriptions 
and transcripts, was examined and sorted for common themes.  

Results & Discussion 

Single Set of Objects  
Alice often drew a Single Set of Objects to solve the open number sentences. The Single Set of 

Objects were utilized in two different ways, by either crossing off objects or adding objects on. For 
crossing off a Single Set of Objects, Alice began by drawing an initial set of objects (e.g., boxes or 
tallies), which represented either a positive or negative integer. She then crossed some of the objects 
off (see Figure 1). The objects crossed off represented either the addition or subtraction of a positive 
or negative integer. Alice’s objects that she drew included either boxes or tallies for the Single Set of 
Objects.  

 
Figure 1: Single Set of Objects for Solving  -18 + 12 = ☐  

In Figure 1, Alice used 18 tallies to represent the negative integer, -18. Then, Alice crossed off 12 
tallies, representing the positive integer being added.  

Double Set of Objects 
Other drawings that Alice produced frequently included two layers or two separated groups of 

objects. The drawings that included these layered or separated objects were considered a Double Set 
of Objects (see Figure 2).  For example, Alice used the Double Set of Objects drawings with when 
solving ☐+ -4 = 13. In Figure 2, the pink tallies represent negative four and the green tallies 
represent 17. Alice added tallies until the leftover tallies totaled 13. Then, she counted all of the 
green tallies to determine the solution of 17.  
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Figure 2: Double Set of Objects for Solving☐+ -4 = 13 

Although Alice would use objects that were layered on top of each other, Alice also represented the addition 
and subtraction with segregated layers. For example, in Figure 3, Alice represented the -4 with boxes and 
then segregated the second set of boxes, but this layer of boxes was not stacked on top of the other boxes like 
in Figure 2. She then added up all of the boxes to get 14. Alice described her drawing, “I did four for 
negative four (motions across four boxes), then I did how many I was adding a box for how many it would 
take to get me up to ten.” Although this type of drawing is reminiscent of a Number Path (see, e.g., 
Bofferding, 2010; Wessman-Enzinger & Bofferding, 2014), Alice did not recognize these boxes as orderings 
of numbers. Instead, she described the quantities -4 and 10 without order.  

 
Figure 3: Double Set of Objects for Solving -4 + ☐= 10 

Number Sentences 
Alice often drew horizontal or vertical number sentences to solve the open number sentences. 

Sometimes the horizontal or vertical number sentences used only positive integers, while sometimes 
the horizontal or vertical number sentences incorporated negative integers. For example, to solve -12 
– -11 = ☐, Alice drew a vertical number sentence involving negative integers. She vertically wrote, -
11 – -12. Yet, Alice still obtained -1 as a solution. This is consistent to findings that children often 
incorrectly apply the commutative property when subtracting negative integers (Bofferding, 2010).   

Number Path & Number Lines 
Alice only drew a Number Path with negative integers once during all of the individual sessions 

(see Figure 4). Alice did not draw a conventional Number Line; rather, she drew a Number Path (see, 
e.g., Bofferding, 2010; Wessman-Enzinger & Bofferding, 2014).  

 
Figure 4: Number Path for Solving 2 – -3 = ☐  

Her drawing in Figure 4 included the ordering of a Number Line and has a close relationship to the 
formal Number Line, yet is not a Number Line. She drew this Number Path after solving the open 
number sentences 2 – -3 = ☐ during the last individual session of the twelve weeks. To solve 2 – -3 = 
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�, Alice first solved it by recalling a rule that the student developed during the group sessions, 
“Because it's just like the last one. You do plus (changes minus sign to plus sign) and take that off 
(scratches off the negative symbol of -3). And, it just be like two plus three.” When asked why it 
worked, she drew both a Single Set of Objects (e.g., tallies) and then a Number Path to try to justify 
her reasoning. Although she drew a Number Path, she didn’t utilize it to solve or justify her solution. 
In fact, Alice shared that she didn’t know how to use either of her drawings (Single Set of Objects or 
Number Path) to explain her answer. 

Conclusion 
Alice used a variety of drawings that were productive for solving integer addition and subtraction 

number sentences. Despite the different types of drawings she drew, she did not draw very many 
Number Paths or any Number Lines during the individual sessions. Instead, Alice drew the quantities 
of objects that seem to be related to direct modeling strategies (Carpenter et al., 2015). Towards the 
end of the teaching experiment Alice began to utilize a Number Path, which may highlight that the 
development of drawing Number Lines takes extended time for some children. This may point that 
the development of using Number Paths and Number Lines takes significant for some students. 
These different types of drawings (e.g., Single Set of Objects, Double Set of Objects) provide further 
insight into the ways we understand student thinking about addition and subtraction with integers.  
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What strategies can secondary precalculus and calculus students use to identify whether 
representations correspond to the same function, and how do the coordination strategies a student 
uses correspond with his/her success in identifying matching representations? We analyzed 64 think 
aloud protocols in which high school students were asked to identify whether a given pair of 
representations (graph, table, equation) corresponded to the same function to answer these 
questions. Results indicated that two clusters of students using distinct strategies were identifiable on 
tasks that required matching equations and graphs and equations and tables. However, we were not 
able to identify clusters by strategy for graph-table representations. We discuss how task demands 
might explain this pattern of results and consider implications for teaching that are responsive to 
students’ conceptions of mathematics. 

Keywords: Algebra and Algebraic Thinking; High School Education; Cognition 

Objectives 
A critical ongoing challenge for mathematics educators is helping more students achieve success 

in advanced mathematics courses such as calculus where flexibly using multiple representations is a 
critical skill. This study seeks to extend the field’s understanding of how secondary calculus and 
precalculus students identify whether pairs of equations, graphs, and tables corresponded to the same 
function. In secondary mathematics and especially in reform approaches to calculus (e.g. Hughes-
Hallet et al., 2012), students are often required to identify whether two graphs, tables, or equations 
are equivalent (Leinhardt, Zaslavsky, & Stein, 1990). This identification is part of a more complex 
set of skills related to coordinating multiple representations (CMR). This study builds on our past 
work (Zahner, 2012, Chang, Cromley, & Tran, in press) through incorporating mixed methods to 
more fully describe how 64 secondary students approached CMR tasks. 

Consider the CMR identification task in Figure 1. A student has multiple options when deciding 
whether these two representations correspond to the same function. Since the y-intercept and 
constant term match, these two representations might correspond to the same function. How could a 
student check? She could use the equation to evaluate f(x) for a set of inputs (e.g., let x = {1, 2, 3}). 
This point-testing strategy would solve this mismatch problem (e.g. since f(3) = 7 but (3,7) is not on 
the graph, the graph and equation are not the same function). However, with some background 
knowledge another strategy is possible. Knowing that degree two (quadratic) functions have a U-
shaped graph, a student could coordinate the shape of the graph and the equation and conclude these 



Early!Algebra,!Algebra,!and!Number!Concepts:!Brief!Research!Reports! 246!

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

cannot be the same function. These two hypothetical solutions represent different strategies for 
solving CMR problems. 

 
Figure 1: Sample Equation Graph Item 

This study was designed to investigate the strategies used by precalculus and calculus students to 
coordinate representations of polynomials. Our main research questions were 1) What are the 
strategies students use to solve CMR identification tasks such as this? 2) Is it possible to identify 
distinct groups of students based on strategies used? 3) If it is possible to identify distinct groups, are 
there data to show that one group is more or less successful than the other? 

Theoretical Perspectives 
We draw on theoretical models and analytical methods from Siegler’s overlapping waves theory 

(Siegler, 2005). This theory describes children’s development and use of problem solving strategies 
as probabilistic. Rather than developing expertise in strategy use along a linear progression, problem 
solvers often mix more and less sophisticated strategies, and the problem prompt is an important 
mediator of strategy choice. This latter insight from Siegler’s cognitive work brings to mind 
Wertsch’s (1998) cultural historical and semiotic analysis of the affordances of representational tools 
that make particular problem solving strategies more or less viable. Thus in our discussion we tie 
together these two distinct branches of research. 

Methods & Analysis 
The participants were 64 secondary students enrolled in precalculus and calculus in suburban 

high schools in the Northeast. The sample consisted of 60% female and 79% White students. As a 
proxy for socio-economic status, we measured maximum parental education; 80% of families had at 
least one parent with a Bachelor’s degree or above.  

The students were presented with a set of 12 questions similar to the question in Figure 1 and 
they were asked to follow a think-aloud protocol (Ericsson & Simon, 1984) while solving the 
problems. The questions were presented on a computer screen that included eye-tracking tools. The 
12 prompts included four items with each of the possible combinations of equation ↔ ︎ graph, 
equation ↔ ︎ table, and graph ↔ ︎ table. The functions were distributed among linear, quadratic, and 
cubic functions with integer coefficients. Half of the items showed a match.  

The think aloud data were transcribed and divided into utterances roughly corresponding to a 
phrase containing a subject and a verb such as “the negative x squared matches the parabola.” Codes 
were created to identify CMR strategies including matching ordered pairs (MOP for non-intercepts 
and MOPX or MOPY for matching an intercept without naming the intercept as such), explicitly 
matching the x- and y- intercepts (MINTX and MINTY), evaluating the degree of a function (DEG), 
and evaluating the direction (DIR) or magnitude of the leading coefficient (MAGC). A total of 2889 
utterances were coded. After the initial coding by strategy, two overarching strategies were 
identified: evaluating global characteristics of the function (DEG, DIR, and MAGC), and evaluating 
on a point-by-point basis (MOP, MOPX, MOPY, MINTX, and MINTY).  



Early!Algebra,!Algebra,!and!Number!Concepts:!Brief!Research!Reports! 247!

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

In the process of coding we also noted that although some students tended to use global strategies 
while others used “point-by-point” comparisons, both groups of students who used different 
strategies had similar levels of accuracy on the CMR tasks (Zahner & Cromley, 2014). To further 
explore students’ strategy-use profiles by representation pair, we employed a cluster analysis 
(Aldenderfer & Blashfield, 1984) on strategy use by representation pair. Cluster analysis is a person-
centered approach that uncovers homogeneous groups underlying a set of data (DiStefano & 
Kamphaus, 2006). We used a hierarchical cluster analysis procedure based on squared Euclidian 
distances with the Ward’s method on standardized ratios of strategy use (i.e., Z scores of 
[occurrences of a strategy/occurrences of all strategies per student]; Milligan, 1996). We then 
evaluated the validity of the obtained cluster solutions by comparing the subgroups with respect to 
accuracy in answering the CMR items, time used in answering the CMR items, and total number of 
strategies used. 

Results 
For the equation ↔ ︎graph (EG) items, cluster analysis results indicated two distinct groups of 

students by strategy use: EG group 1 (n = 49) used significantly more EVAL and fewer MOP 
strategies, whereas EG group 2 (n = 16) applied significantly more MOP but fewer EVAL strategies. 
Comparing the two groups in accuracy and average time used, we found both groups were similar in 
accuracy but EG group 1 spent significantly less time than EG group 2 to complete the equation-
graph items. 

Table 1: Summary of cluster analysis for EG items  

  Accuracy Rate Time Used** 
No. of Strategies 

Used 
Group 1 (n=49) 85.0% 25.1 9.4 
Group 2 (n=16) 87.5% 36.8 9.3 
**p<.01 

 
For the equation ↔ table (ET) items, cluster analysis results also indicated two distinct groups of 

students. However, the groups were only marginally different with respect to their use of EVAL. 
Instead the ET group 1 (n = 12) explicitly matched the y-intercept (MOPY) more often while ET 
group 2 (n = 52) matched order pairs without explicitly referencing the y-intercept as a salient point. 
Comparing these two groups in accuracy and time used, we found members of ET group 1 were 
significantly quicker but less accurate in responding to the equation-table items. 

Table 2: Summary of cluster analysis for ET items  

  
Accuracy 
Rate** 

Time 
Used*** 

EVAL~ MOP*** MOPY*** 

Group 1 
(n=52) 86% 51.6 1.4% 68.7% 22.0% 

Group 2 
(n=12) 67% 23.2 9.6% 22.5% 66.3% 

Note: ~ p< .10; * p< .05; ** p< .01; *** p< .001. 
 

Finally, the graph ↔ table (GT) cluster analysis did not yield a solution we consider meaningful 
in practice due to the size difference in clusters.  
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Discussion & Conclusions 
In summary, the cluster analysis confirmed one of the hypothesized relationships. For the items 

that presented an equation-graph pair of representations, one group of students tended to use 
strategies from the superordinate category “Evaluate” while the other group tended to use strategies 
under the superordinate category “Match Ordered Pairs.” Interestingly there was no significant 
difference between the two groups in terms of accuracy on the task, but the students who used 
evaluate tended to complete the task faster than those who matched ordered pairs. It is notable that 
the accuracy of the respondents’ answers was not significantly related to cluster identification. This 
indicates that there are multiple possible solution pathways on CMR identification items like the ones 
used in this study.  

Looking ahead, we are currently testing whether modifications such as adding arrows and boxes 
to highlight particular features of the prompt will be associated with a shift in the strategy that 
students use while solving the problem.  

Second, the cluster analysis revealed that clusters of students by overarching strategy were not 
readily identifiable on the table ↔ ︎ graph items. We relate this to the affordances of a table, which 
makes point-by-point comparison easy and global comparisons relatively difficult. In future research 
where we attempt interventions, it may be worthwhile to build on Lobato’s focusing perspective 
(Lobato et al., 2003) and investigate how modifications to table items (e.g. adding a difference or 
ration column) can prompt students to use more sophisticated strategies. 
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This study examines undergraduate responses to a fraction task designed to investigate how different 
individuals leverage a perceptually based “sense of proportion” with a continuous, nonsymbolic 
representation of fraction values. Participants were asked to double two parallel line segments used 
to represent the fraction 3/5, write an equation, and give explanations to show what they did 
mathematically. The representation elicited a diversity of symbolic operations and explanations of 
reasoning among participants. This may provide further insight into the complex psychological 
foundations involved with learning fractions.  

Keywords: Rational Numbers; Elementary School Education; Reasoning and Proof 

Developing a strong understanding of fractions is one of the main goals of K-8 mathematics 
education (e.g., CCSSM, 2010).Yet children often experience considerable difficulties developing an 
understanding of fractions. Indeed, the National Math Advisory Panel (2008) declared fraction 
knowledge to be the most important foundational skill that is not presently developed in the school-
aged population. Additionally, fractions are also considered a topic not adequately developed in 
primary education (NMAP, 2008) 

One potential source of these difficulties may be located in foundational assumptions about how 
fractions are learned. For example, fraction knowledge is often approached from the assumption that 
fractions knowledge must be rooted somehow in whole number knowledge (e.g., Steffe & Olive, 
2010). However, some research suggests that we should re-evaluate this widely held assumption. 
Notably, evidence strongly suggests that humans (and even non-human primates) easily compare 
visuo-spatial ratios in multiple types of representations such as line segments, dots, and areas (e.g., 
Jacob, Vallentin & Nieder, 2012; Lewis, Matthews, Hubbard, 2014; Matthews & Chesney, 2015). 
This perspective accords well with Carraher’s (1996) distinction between a ratio of quantities and a 
ratio of numbers. A ratio of quantities concerns two magnitudes such as the ratio of two lengths (e.g., 
one half instantiated as   , or even the ratio between a circle’s circumference and its 
diameter). If we take seriously the proposition that number knowledge is “developed through acting 
and reflecting upon physical quantities” (Carraher, p. 241), then we should pay due attention to 
research suggesting fractions qua ratios might be accessed by the perceptual system – even in 
approximate form. The implication is that this type of representation may provide a valuable 
foundation for understanding fraction magnitudes in ways that may be elusive to current research 
paradigms. 

Although some research does suggest that humans have an early ability to identify and reason 
with visuo-spatial ratios, little research has investigated how such nonsymbolic ratio abilities interact 
explicitly with mathematical reasoning. With this research, we sought to investigate this question 
using a sample of undergraduate students from a selective Midwestern university. This study was 
undertaken as part of a larger study of undergraduates’ understanding of fractions which has shown 
a) that fractions knowledge is often fragile - even at a selective university, and b) that 
undergraduates’ nonsymbolic ratio processing abilities are predictive of standardized math 
achievement test scores (Lewis, Matthews & Hubbard, 2014). 
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Theoretical Question 

Ratios as Units? 
It is not clear that research in mathematics education has sufficiently explored whether a 

continuous visuospatial ratio can be taken as a mathematical unit. To clarify, can the relationship 
between two line segments deemed to be perceptual items by Steffe & Olive (2010) in the plural 
sense potentially be conceived alternately as a perceptual item in the singular? Stated alternately, can 
perception of an intensive ratio between what are commonly understood as two separate items itself 
be taken as a mathematical unit? We explore this possibility in the discussion section by considering 
the construct of unitizing- which we take to mean “the mental act of forming unit items out of 
sensory experience (Olive & Lobato, 2008, p.5). For example, 3 equal slices of a pizza divided into 5 
equal slices can be unitized as a 3/5-unit (such that two of these 3/5-units can then be understood to 
make 6/5). Units-coordination is necessary to simultaneously understand, for example, that 3/5 is 
three 1/5’s, which is in turn 3/5 of a unit whole (e.g., Steffe& Olive, 2010). Our question examines 
how the unit may be identified in a continuous representation that is in some sense equivalent to 3:5 
such as                  . 

Methods 

Participants and Task 
27 undergraduate participants were given a pencil-and-paper assessment of aspects of their 

fractions knowledge that included a task adapted from Carraher (1996) shown below (Fig. 1). 
 
5. The fraction shown by the line segments below represents   . If you double the length of both line 

segments, what did you do mathematically? (Write an equation and try to solve the problem. Then explain.)  
 

 
 
a. Equation: 
 
b. Explanation: 

 
Figure 1: Selected task 

Data Analysis  
First, we considered any nonsymbolic drawings or markings made by participants on the 

representation. We categorized markings as one of five types: partitioning each segment separately, 
partitioning both segments, extending both segments, extending only one segment, and no 
markings/drawings. Second, we categorized equations as either showing the fraction as a ratio 
remained the same (“correct”) or did not (“incorrect”). Subcategories were created for equations that 
were procedurally correct and those that were not, those that included idiosyncrasies such as the 
presence of algebraic symbols, and those treating the problem mathematically as either two separate 
equations or one equation. Finally, explanations were classified as either congruent with the 
procedure, in conflict with the procedure, or not present.  

Results 
Results were consistent with the extensive body of research demonstrating learner difficulties 

coordinating numerical and non-symbolic representations of fractions (e.g., Moss & Case, 1999). 
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Here, we focus on examples that help communicate the diversity of responses generated. The figures 
below show examples of a “correct” result with a procedurally correct equation where the verbal 
response is in agreement (Fig. 2), a “correct” result with algebraic symbols and an incorrect 
procedure that is in conflict with the explanation (Fig. 3), as well as examples of an “incorrect” result 
with an incorrect procedure (Fig. 4), and a “correct” result with a correct procedure that is 
approached in two separate equations (Fig. 5). It is of note that 15 participants verbally explained the 
result as an equivalent fraction – not including those participants who found the result to be 6/10 or 
3/5. Finally, two participants explicitly identified the two segments as a single “whole” or unit (Fig. 2 
& Fig. 3).  
 

 
Figure 2: Partitioned “whole” 

 
Figure 3: Algebraic symbol use with unit “whole” 

 

 
Figure 4: “Incorrect” response 

 

 
Figure 5: Separate equations (and operations) 

Discussion 
Although this study is clearly limited in scope (indeed, it only considers a singe task), we feel the 

wide variety of procedures brought to bear on identifying the “same fraction” as well as the explicit 
identification of two segments as a unit whole are notable. They demonstrate a marked need to 
continue the project of disentangling numerical, nonsymbolic, and verbal understandings of what 
might constitute a unit and under what circumstances. For example, it may simply have been the case 
that a numeric unit of 3/5 was identified and that the procedural knowledge necessary to multiply the 
numerator and the denominator was sufficient to recognize the resulting equivalent fraction. 
However, participants’ drawings, explanations, and inscriptions  of the nonsymbolic fraction as 
single or separate equations suggests different ways of interpreting the representation - from 
potentially a single perceptual item that can be “doubled” (Fig. 2 & Fig. 3) to separate unit items that 
are not integrated (Fig. 5). Similarly, it is difficult to determine what additional mathematical 
processes support idiosyncratic symbolic responses that recognize the preserved ratio (Fig. 3) or 
those that appear not to rely on perceptual supports at all (Fig. 4). Thus, further research is needed to 
delimit alternative ways in which units come to be understood– particularly insofar as basic 
perception may support certain intuitive conceptions which may help ground more formal 
knowledge. Ultimately, if unit ratios can in fact be both perceptually and mathematically identified, 
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this may have implications for early fractions pedagogy by leveraging a more intuitive “sense” of 
proportional and multiplicative reasoning. 
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Introduction/Purpose/Methods 
Researchers have identified a shared cognitive necessity for understanding fractions as numbers 

and for conceptualizing multiplication (and division) – an ability to coordinate multiple levels of 
units (Hackenberg & Tillema, 2009; Steffe, 1992). We describe how a teacher’s alternating tasks 
with fractions and tasks with whole numbers in multiple contexts contributed to growth in a sixth-
grade student’s (Dylan) ability to coordinate units during an 11-session constructivist teaching 
experiment (Steffe & Thompson, 2000).  

Results/Conclusions/Implications 
Dylan had interiorized two levels of (whole number) units and could coordinate a third level of 

whole number unit in activity at the onset of the teaching experiment. Introducing tasks where the 
units coordination demands varied helped Dylan begin to anticipate coordination of three levels of 
units in activity with fractions. Dylan thus made progress toward interiorizing three levels of units, a 
developmental precursor to understanding improper fractions as numbers (Steffe & Olive, 2010).  

Within-session task sequencing generally involved whole numbers tasks preceding fractions, but 
the random sequencing of tasks in some contexts, including engagement with the iOS app 
CandyDepot (LTRG, 2013)meant that any task could potentially involve improper fractions or whole 
numbers. This seemed to help prolong productive interaction in Dylan’s zone of potential 
construction (Norton & d’Ambrosio, 2008). Future plans include further investigations of this 
conjecture and its generalizability. 
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This poster reports the evaluation findings of a sustained early algebra professional and 
curriculum development project; Conceptual Algebra Readiness for Everyone, (CARE) in fourth and 
fifth grade for both students and teachers. CARE is designed to prepare students conceptually for 
algebra-conceptual algebra readiness. Through a state Mathematics Science Partnership grant with a 
local school system we developed weekly problem solving activities for students in grades 3-7 to 
improve their conceptual algebra readiness.  Our guiding rationale is that helping students understand 
certain underlying, foundational concepts of algebra will prepare them for future success in formal 
algebra.   

Three parts of the evaluation are presented.  First, treatment/control test results of algebra 
readiness test given to fourth and fifth grade students are provided.  Second, graphs of the 
mathematics standardized test results over a five year period for grades 4 and 5 are given. Finally, 
results from the Diagnostic Teacher Assessments in Mathematics and Science (DTAMS) Exam from 
the University of Louisville was utilized to determine if professional development impacted teachers’ 
mathematical content knowledge.  The methodology and participants differed for each part of the 
evaluation. The project and evaluation occurred in a Midwestern, high-needs, urban school (free and 
reduced lunch rate of 75% and a minority population of 51%).  The results provided were collected 
in different years and involve different cohorts of teachers and students.   

Results from the evaluation indicate that children using the CARE materials are engaged in deep 
mathematical thinking.  Not only are they problem solving, but they are able to model mathematical 
situations and describe their own thinking in mathematical language.  In almost every case, there are 
indicators that they are engaged in mathematical practices consistent with the Common Core State 
Standards for Mathematical Practice.  Classroom observations of students engaged in these activities 
indicated that students enjoy solving the activities and that many teachers are developing problem 
based learning approaches to instruction.  Students are frequently engaged in rich mathematical 
discussions.  Many of the teachers and students are realizing the type of instructional practice 
advocated by the CCSS.  These results indicate that students are developing algebraic reasoning 
through their participation in the project. 

Our study supports current research that early algebra interventions can impact algebra readiness 
(Blanton, Stephens, Knuth, Gardiner, Isler, & Kim, 2015) and provides evidence that teachers can 
successfully provide algebra readiness interventions.  Teachers, when provided with the appropriate 
professional development, can be agents of change for algebra readiness.   
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The National Research Council (2010) review noted the dearth of detailed studies of mathematics 
teacher education programs. As algebra is a gatekeeper for advanced mathematics and science 
studies and career opportunities (Kilpatrick & Izsàk, 2008), it is important to investigate the 
opportunities that preservice teachers (PSTs) have to prepare to teach algebra to diverse student 
populations at a program level. The Conference Board of the Mathematical Sciences (2012) 
recommends that PSTs should have opportunities to learn advanced algebraic knowledge and 
connections between advanced algebra and school algebra in five dimensions: (1) applications, (2) 
algebraic structures, (3) connections between geometry and algebra, (4) reasoning and proofs, and (5) 
technology. This poster will describe the nature of opportunities provided by three secondary 
mathematics teacher education programs (Beta, Gamma, and Kappa Universities) according to these 
five dimensions.   

For this poster we draw on case study data from a larger project, but we only analyzed interviews 
with instructors of Linear Algebra and Abstract Algebra. Here we preview results from Linear 
Algebra, but the poster will also include results from Abstract Algebra.  

Instructors of Linear Algebra at Beta reported opportunities to learn [OTL] advanced algebra 
across all five dimensions, whereas Gamma offered OTL across the four dimensions other than 
technology, and Kappa offered OTL across the four dimensions other than applications. Across the 
three programs instructors reported fewer opportunities to learn connections between advanced 
algebra and school algebra than opportunities to learn advanced algebraic ideas. Beta stood out by 
offering opportunities to learn connections across all dimensions. Gamma provided opportunities to 
learn connections only in the dimensions of applications and reasoning and proof. Kappa offered no 
opportunities to learn connections at all. In addition to quantitative differences, universities provided 
qualitatively different experiences to learn in each dimension. For instance, for the dimension of 
technology, Kappa only used TI-84 calculators, whereas Beta used Maple.  
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An enduring challenge in today’s middle schools is the increasing need to understand students’ 
diverse cognitive needs and organize mathematics instruction accordingly. Students enter middle 
school at different levels of reasoning about multiplicative relationships (Hackenberg & Tillema, 
2009). These levels affect the way they understand quantitative relationships, thus affecting the way 
they work with and talk about fractions. One way schools have traditionally dealt with cognitive 
difference is to track students into different classes. Another way, which is relatively new, is 
differentiating instruction by creating tasks that are both accessible and challenging for different 
groups of students (Tomlinson, 2014). In order to differentiate instruction for cognitively different 
students in mathematics, it is necessary to create models of student thinking (Steffe, 1994). This 
requires attention not just to the products a student creates, but also to the meaning of those products.  

Our study is part of a larger study that investigates how to differentiate mathematics instruction at 
middle school. The focus of our poster study is on models of middle school students’ reasoning with 
quantitative relationships and the potential use of those models in differentiating instruction. In our 
analysis we use video/audio records of individual and group work of middle school students in 
addition to their written and computer works. Specifically, we look at their drawings, algebraic 
notation and explanations of fractional relationships between two unknown quantities.  

Our preliminary analysis shows interesting differences in the models of thinking we have created 
for two students who are at the same level of multiplicative reasoning. For example, one student 
anchored his explanations of quantitative relationships in drawings and seemed to create equations 
based on those. The other student appeared to anchor her explanations in equations, struggling with 
visual representations of quantitative relationships. Given the persistence of this level of reasoning 
for students (Steffe, 2007), we would like to learn more about the models of reasoning for these 
students by researching the diversity of thinking within the group. We believe this will guide us in 
responding to our students’ diverse cognitive needs through differentiated mathematics instruction. 
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The U. S. Department of Education (2009) noted that teaching is becoming increasingly 
challenging as teachers seek to meet changing needs and requirements: Diversity of student 
populations is growing and state graduation requirements, especially with respect to algebra, are 
evolving. Algebra is a foundation for advanced mathematics and a gatekeeper for high school 
students to enter a college or university (e.g., Kilpatrick & Izsák, 2008). Given this context, teacher 
education programs play a vital role in supporting pre-service teachers (PSTs) to overcome these 
challenges and prepare their students to learn about algebra.  

Modeling is an area that has been emphasized since Common Core State Standards for 
Mathematics (CCSSM) included modeling as a mathematical practice for all K-12 students (NGA & 
CCSSO, 2010). The processes of modeling described in CCSSM (e.g., identifying and selecting 
variables) is related to algebra learning because students choose variables and develop algebraic 
representations (e.g., graphs, equations) to solve realistic problems. The new expectations from 
CCSSM related to modeling raise questions about whether teachers are being prepared to teach 
algebraic modeling in secondary school mathematics classrooms. 

As part of a larger project, Preparing to Teach Algebra, we gathered data at five universities to 
investigate PSTs’ opportunities to learn about algebra. We interviewed instructors of required 
mathematics and mathematics education courses for PSTs and collected corresponding instructional 
materials. We also interviewed two groups of PSTs from each institution. With these data sets, we 
aim to answer the question, “What opportunities do secondary mathematics teacher preparation 
programs provide to learn about algebra related to the modeling standards described in CCSSM? For 
data analysis, we coded our data according to each modeling process described in CCSSM and 
compared different types of opportunities.  

We will present concentrations of opportunities provided to PSTs to learn about and learn to 
teach algebra related to each modeling process within and across mathematics and mathematics 
education courses in five institutions. For example, at Gamma University, both instructors and PSTs 
describe diverse opportunities to learn about creating algebraic representations and few opportunities 
to reason behind their solutions to modeling problems. Teacher educators can look across 
opportunities provided from these exemplar teacher education programs to find gaps in their 
programs and refine their instructions about algebraic modeling. 
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Mathematics educators and researchers agree that algebra is pivotal in students’ mathematical 
development ( National Research Council [NRC], 1998; RAND Mathematics Study Panel, 2003). 
However, children encounter many obstacles as they acquire algebra (National Council of Teachers 
of Mathematics, 1988). Because of its importance and the challenges children have learning it, 
experts have recommended introducing algebra as early as kindergarten (NRC, 1998; RAND, 2003). 
This recommendation raises questions about how algebraic thinking develops over the longer term, 
and what prerequisite knowledge is needed for success. The current study investigated students' 
understanding of mathematical equivalence as it relates to performance on a range of algebraic tasks.  

Some students have an operational understanding of the equal sign and view it as a signal to 
supply an answer or apply the operation. Those students fare worse in algebra than those with a 
relational view of equivalence in which they view the equal sign as representing a balance between 
two quantities (Knuth, Stephens, Mcneil, & Alibali, 2006). This research, however, has focused 
solely on the effects of equivalence understanding on solving algebraic equations. Thus, it is unclear 
whether equivalence concepts also impact learning in other areas of algebra.  

There is reason to think equivalence understanding is implicated throughout this system. For 
functions, students have to understand that any manipulations that they make to x will result in a 
particular value of y. The relational view of mathematical equivalence might help students perceive 
the functional relations among symbols rather than focusing on specific quantities. Similarly, 
variables are symbols that represent unknown quantities in an equation or expression. A relational 
understanding of equivalence might help students comprehend their many-to-one mapping to 
referents.  

In the present study, 242 7th and 8th grade students completed a 22-item written assessment that 
included items about equivalence, equations and equation solving, expressions, functions, and 
variables. Students’ level of equivalence understanding was coded according to the guidelines 
provided in Knuth et al. (2006). In a series of regressions, with level of algebra instruction controlled, 
there were significant relations between equivalence understanding and three algebra subskills 
(variables, functions, and equations). This finding suggests that differences in equivalence 
understanding can have far-reaching effects on algebra learning.  
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The National Center for Education Statistics (NCES) reported that almost 30% of incoming 
freshman students entering a postsecondary institution in the fall of 2000 needed developmental 
coursework due to a lack of preparedness for standard credit-earning courses (Wirt, Choy, Rooney, 
Provasnik, Sen, & Tobin, 2004). The majority of these developmental courses were in the area of 
mathematics. Despite this remediation, developmental mathematics courses usually have the highest 
failure and incompletion rates among all developmental subjects (Bonham & Boylan, 2011). 
According to data from the National Educational Longitudinal Study, only 30% of students pass all 
of the developmental mathematics courses in which they enroll, as compared to 68% in writing and 
71% in reading (Attewell, Lavin, Domina, & Levey, 2006). These developmental mathematics 
courses become a barrier to students’ degree completion. Therefore it is necessary to examine the 
concepts with which students in these courses typically struggle. Fractions have been studied 
extensively across the middle and high school grades and have repeatedly been cited as a difficult 
concept for students of all ages (Moss & Case, 1999). Yet, fraction understanding is essential for 
further learning of mathematics. To date, little research has been done on adult developmental 
students' understandings and conceptions of fractions. 

The purpose of this study was to examine adult developmental algebra students' knowledge 
of fraction addition with unlike denominators. Prior research has shown that two typical errors 
are made by students when adding fractions with unlike denominators: representing fractions 
with unequal whole units and not using a common denominator (Hui-Chuan, 2014). The present 
study conducted clinical interviews with two adult developmental algebra students. The first set 
of interviews revealed errors consistent with the aforementioned research, as well as the 
tendency to try to remember rules learned in prior mathematics courses. Additionally, 
participants’ responses on fraction addition tasks did not rely upon a model (e.g., pie chart) to 
represent the fractions or upon rational number sense (e.g., magnitude and/or estimation of the 
fractions). A teaching activity using paper folding was designed and implemented during the 
second set of interviews. The activity helped both participants to understand why equal whole 
units and common denominators are necessary in fraction addition.   
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How students conceptualize slope and the extent to which they are able to consider functions as 
relations of covarying quantities impacts their understanding of linear functions as well as advanced 
topics that require a foundational understanding of linearity.  In this case study, we consider how one 
student, Claire, leveraged her notions of slope when conceptualizing and placing the line of best fit 
(LOBF).  In particular, we call on previous research to investigate the conceptualizations of slope 
(Moore-Russo, Connor, & Rugg, 2011) and the stages of covariational reasoning (Carlson, Jacobs, 
Coe, Larsen, & Hsu, 2002) Claire used on four interview-based tasks which asked her to place a 
straight piece of wire to represent the LOBF on a scatterplot (see Casey, 2015).  

The first two tasks involved scatter plots representing the relationship between the drop height 
and corresponding bounce height of a golf ball.  Claire struggled with the notion of placing a straight 
line to represent non-collinear data points.  Her responses showed that she was neither reasoning 
about slope nor the covariational relationship between drop height and bounce height.  She placed 
inaccurate lines that were meant to show the range of values represented by the points.  The second 
two tasks provided a context (ticket price vs. movie attendance) that seemed to resonate with Claire.  
She immediately described the relationship between the covarying quantities by describing the 
Directional Change (L2) between the quantities.  This helped her place an accurate line using the 
Behavior Indicator conceptualization of slope.  Despite her success on these tasks, Claire was not 
able to explain how she determined the line’s steepness (Physical Property) using covariational 
language (i.e., Amount of Change – L3). 

The findings suggest that covariational reasoning and the notion of slope are closely connected 
ideas and suggest the need to more carefully link the two bodies of research.  Instruction that focuses 
on slope as indicating the increasing and decreasing behavior of a line is supported by, and in turn 
supports, students’ ability to think covariationally about the direction of change of two quantities.  
More clearly describing how covariational reasoning can be developed when studying slope, one of 
students’ earliest interactions with covarying quantities, could greatly improve the learning of slope 
and strengthen students’ understanding of advanced mathematics and statistics. 
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Given the move toward algebra-for-all across the U.S., most mathematics teachers find 
themselves teaching algebra in their first position upon completion of their teacher preparation 
program; in addition, they are expected to teach algebra to a more diverse population of students than 
ever before (Stein, Kaufman, Sherman, & Hillen, 2011). Given this movement and algebra’s role as a 
gatekeeper to college and career opportunities (e.g., Kilpatrik & Izsák, 2008; Moses & Cobb, 2001), 
it is imperative that we study how future teachers are prepared to teach algebra.  

When future teachers learn algebra and learn to teach algebra, they need to make connections 
among mathematical topics and in relation to others, as they consider mathematics as a “whole 
fabric” (National Board for Professional Teaching Standards, 2010). In this poster, we report the 
findings from an investigation of future teachers’ opportunities to learn about such connections. 
Specifically, our research question is “What opportunities do secondary mathematics teacher 
preparation programs provide to learn about connections related to algebra and algebra teaching? The 
algebraic connections of interest here include: (1) connections within algebra, (2) connections 
between algebra and other mathematical fields, (3) connections between algebra and non-
mathematical fields, and (4) connections between college-level algebra and school algebra. 

This study is being conducted as part of a larger mixed methods study (i.e., a national survey and 
five case studies of secondary teacher education programs) that investigated opportunities to learn 
about algebra, algebra teaching, equity issues related to algebra, and the algebra described in the 
Common Core State Standards for Mathematics. Data were collected from semi-structured instructor 
interviews, focus group interviews with pre-service teachers (PSTs), and course materials. To answer 
the research question of focus here, two members of the research team coded interview data for 
opportunities to learn related to the four types of algebra connections described above; connections 
that did not fit into these types were also noted.   

 Analysis of this data is ongoing; however, preliminary findings show that different types of 
opportunities to learn about algebra connections were found at all case study sites. Instructors and 
PSTs alike at Gamma University reported more attention to connections within algebra and between 
algebra and other mathematical field than to the other two types of connections. PSTs provided 
examples of such connections, along with how technology helped them connect algebra with 
geometry in the courses designed to link school and college mathematics. 

 It is only by investigating how PSTs are prepared to teach algebra that we can improve 
teacher education and effect the enduring challenge of students who are unprepared for the algebra 
required by college and career opportunities. This study is a step in that direction.  
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Inverse function, and more generally reversibility, is important for success in mathematics 
(Hackenberg, 2010). Researchers (Oehrtman, Carlson, & Thompson, 2008) have argued that college 
students, pre-service teachers, and in-service teachers construct unproductive inverse function 
meanings. For instance, Vidakovic (1997) identified that despite having success in determining 
analytical and graphical representations of inverse functions, students did not relate these 
representations to critical ideas of inverse function (e.g., function composition).  

We used semi-structured task-based clinical interviews (Goldin, 2000) for the purpose of further 
understanding students’ inverse meanings. Specifically, we interviewed 25 pre-service teachers using 
an interview protocol that consisted of decontextualized and contextualized tasks that included 
analytical (e.g., equation) or graphical representations. We characterize students’ actions based on 
our perspective of the consistency of their strategies used within and among the various task types. 
Compatible with previous researchers’ findings, we argue that students’ meanings are often restricted 
to carrying out specific actions in analytic or graphing situations. We also illustrate that the students 
held compartmentalized meanings for inverse function dependent on the function and/or 
representation. For instance, although each of the 25 students used a consistent technique in analytic, 
decontextualized tasks, only five of these students were able to determine a viable interpretation of 
the inverse function they defined analytically in a contextual (e.g., temperature conversion) situation. 
An important finding is the extent that students focused on carrying out a particular activity (e.g., 
switching x and y); to most students, carrying out a particular activity dependent on representation 
and context was their meaning for inverse. We did not interpret these students to hold meanings for 
inverse function that enabled them to conceive connections across all task types. Future researchers 
may be interested in exploring ways that would support students in constructing productive meanings 
for function and inverse function in contextualized and decontextualized situations.  
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For many students, algebra continues to be a gatekeeper to future academic and employment 
opportunities. As a result, it is now widely accepted that algebra should be treated as a grades K–12 
strand of thinking. In response, our project aims to examine the effectiveness of a longitudinal early 
algebra intervention on grade 3-5 students’ algebra learning and algebra-readiness for middle school. 
The study described here compares understandings of the Commutative Property of Addition 
demonstrated by students who participated in an early algebra intervention in grades 3 and 4 to those 
of students who experienced more traditional elementary grades instruction. 

Arithmetic properties provide students an opportunity to look at arithmetic expressions “in terms 
of their form rather than their value when computed,” and can serve as a route into algebra (Kaput, 
2008, p. 12). Based on the results of our study, we argue that traditional arithmetic approaches to 
properties do not provide sufficient opportunities for students to engage in the important algebraic 
thinking practices of generalizing, representing generalizations, justifying generalizations, and 
reasoning with generalizations (Kaput, 2008). 

Participants included approximately 100 intervention students and 60 comparison students from 
two elementary schools in the same district in the Northeast. Written assessments administered at the 
beginning of grade 3, end of grade 3, and end of grade 4, were coded based on correctness as well as 
strategy use. On the grade 3 pre-test, there were no significant differences between the performances 
of intervention and comparison students. At the grade 3 and grade 4 post-tests, there were no 
significant differences between the proportions of students who invoked the Commutative Property 
of Addition when justifying the correctness of a specific numerical example (23 + 15 = 15 + 23). 
However, when students were asked to represent and justify this generalization, the groups’ results 
differed significantly. Students who participated in the intervention were more successful 
representing the property using variables (e.g., a + b = b + a) and justifying why the property holds 
true for all numbers. Our findings suggest that arithmetic properties can serve as useful contexts to 
engage students in developing, representing, and justifying generalizations. 

The inclusion of field properties in early grade mathematics instruction may provide teachers 
with the opportunity to use them as a springboard for engaging students in algebraic reasoning. The 
development of teachers’ “algebra eyes and ears” and the use of supplemental “algebrafied” 
instructional materials are critical to teachers’ ability to encourage such algebraic activity amongst 
elementary students (Blanton & Kaput, 2003). 
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At the end of her chapter in the Second Handbook of Research on Mathematical Teaching and 
Learning, Susan Lamon (2007) lists outstanding questions for future research. The first of these is, 
“What are the links between additive and multiplicative structures?” (p. 662). Understanding the 
psychological operations that link additive and multiplicative reasoning remains relatively 
mysterious for researchers today. From December 2013 until May 2014 we conducted a 
constructivist teaching experiment (Steffe & Ulrich, 2014) with three pairs of sixth-grade students in 
order to investigate how the complexity of a student's additive reasoning was related to the 
complexity of their multiplicative reasoning. As part of this analysis, we compared the students' 
zones of potential construction (ZPCs) (Norton & D’Ambrosio, 2008) in coordinating multiple 
additive comparisons and their ZPCs in coordinating multiple multiplicative comparisons.  

Using tasks and findings from previous research (Steffe & Olive, 2010), we selected students 
whose ZPCs included constructing multiplicative comparisons in activity but not using them to 
assimilate situations (Pair 1), students for whom a single multiplicative comparison could be 
assimilatory (Pair 2), and students who could coordinate multiple multiplicative comparisons in their 
assimilatory structures. These ZPCs were confirmed in various contexts throughout the teaching 
experiment. Multiple additive comparisons were engendered using tasks involving a second 
difference (a comparison of differences between quantities), such as the following:  

Team B beat Team A and Team D beat Team C. Team D won their game by 18 more points than 
Team B won their game by. Find the missing score. Team A: 89. Team B: ___. Team C: 54. 
Team D: 77. 

We found that the additive complexity within each pair’s ZPCs were either comparable to or greater 
than the multiplicative complexity in their ZPCs. In particular, these problems were not in the ZPC of 
Pair 1. Solving these problems was in the ZPC of Pair 2. However, constructing an assimilatory 
structure for the problem was surprisingly difficult: It took six teaching sessions for Pair 2 to stop 
regularly conflating quantities and eight teaching sessions until the underlying additive structure of 
these problems appeared to be assimilatory for both students in Pair 2. Finally, this problem was 
within the ZPC of Pair 3. One potential implication is that complex additive situations can sometimes 
be used to challenge a student to work with increasingly complex quantitative relationships when 
corresponding multiplicative complexity is outside the student’s current ZPC. 
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Introduction. Previous studies indicated that it is not until about second grade that numerical 
estimations of two-digit number magnitudes show a linear correspondence between estimated and 
actual magnitudes (Siegler & Booth, 2004), consistent with the developmental progression depicted 
by Case and Okamoto (1996). The objective of the present study is to examine the effectiveness of 
three instructional strategies to promote first graders’ acquisition of numerical magnitudes of two-
digit numbers. We predicted that teaching children magnitudes of decades (e.g., 10, 20, and 30) in a 
linear fashion would be more effective than the alternative strategies.  

Procedure. Thirty-one first graders participated in the study. The experimenter met with the 
participants individually for four 15-minute sessions (pretest, two training sessions, and posttest) 
over a 4-week period. The number estimation task (Siegler & Booth, 2004) was used as a pre and 
posttest measure. A blank number line (25 cm long) was drawn on a sheet of paper with “0” and 
“100” appearing below the left end and the right end of the number line, respectively. Each child 
worked on 26 estimation problems in a random order.  

Training. The students were randomly assigned to one of the three training groups. In all three 
interventions, base-10 blocks were used. The interventions differed in the terms of which blocks 
were used: (1) multiple 10 blocks and unit blocks (M10U), (2) single-10 block and unit blocks 
(S10U), and (3) unit-blocks only (U). For the M10U group, the experimenter demonstrated how to 
construct two-digit numbers by using the precise combination of 10 and unit blocks. For example, 35 
was constructed by placing three 10 blocks and five unit-blocks in a linear fashion. For the S10U 
group, the experimenter constructed 35 by placing one 10 block and 25 unit blocks in a linear fashion. 
For the U group, the experimenter constructed 35 by placing 35 unit blocks in a linear fashion.  

Results. The students in the M10U group improved their PAE from pretest (41%) to posttest 
(16%) whereas the other two groups did not. All three groups at pretest showed estimation patterns 
best described as logarithmic but only the M10U group’s estimation patterns changed to linear at the 
posttest (Rlin

2 = 98%).  
Discussion. The current study showed that use of base-10 blocks to show chunks of 10s in a 

linear fashion was effective in promoting first-graders’ understanding of two-digit number 
magnitudes. This study showed that unstructured use or non-canonical base-10 use does not lead to 
improved understanding. It is the activity of placing 10 blocks in a linear fashion that helps students 
to build canonical base-10 representations. 
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Research suggests teachers should know how to selectively use multiple representations of 
fractions to teach for understanding (e.g., Cramer & Wyberg, 2009; National Mathematics Advisory 
Panel, 2008). Yet little is known about how children reason within and between elements of fraction 
representation systems. Drawing from Behr, Lesh, Post, & Silver’s (1983) representation systems 
(i.e., pictures, manipulatives, spoken and written symbols, and “real-world” situations), we 
investigate this problem with the following research question: How is children’s reasoning related 
with their use of fraction representations? 

Part of a larger study, the data considered for this report focus on clinical interviews with four 
children (at the ends of 2nd, 3rd, or 4th grades) from a diverse group of 24 children in the 
Southeastern U.S. Children were given fraction tasks designed to probe their fraction understanding 
and encourage use of multiple fraction representations. Results from cycles of open coding that 
highlight nuances of reasoning types are presented in Table 1.  

Table 1. Student Reasoning Types   
Reasoning Type Brief Description Examples 
Informal/Intuitive  “Real-world” prior 

knowledge is used to 
extend reasoning 
beyond the original 
problem context. 

- Sadie introduces brownies that can be partitioned instead of 
candies in a discrete collection in order to reason about fraction 
sizes.   
- Ariel recognizes that 2 cakes can be cut and shared equally 
with 3 people after saying it was impossible to equally share 2 
cookies with 3 people.  

Formal and 
Disconnected 

Knowledge within one 
representation is not 
extended to another. 

- Kevin argues that 2/3 is larger than 5/8 when using an area 
model to compare fractions but that 5/8 comes after 2/3 on a 
number line. 

Formal and 
Connected 

Knowledge is extended 
from one representation 
to another. 

- Paul identifies a unit fraction from a bar described as 2/5 and is 
able to find the length of the whole. He generalizes his 
knowledge when given 13/15 as a numeric symbol only. 

Results both extend previous research (e.g., Cramer & Wyberg, 2009) and suggest a more 
nuanced approach is needed to understand student thinking with representation systems. Importantly, 
existing analytical frameworks for understanding how and when knowledge is connected (or not) 
with different representation types may be insufficient for both researchers and teachers to assess and 
support student thinking at fine-grained level of analysis.  
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This paper reports on a study of the instructional situation in high school Geometry that Hsu (2010) 
called Geometric Calculation in Algebra (GCA). In particular, we conducted a virtual breaching 
experiment in order to examine the extent to which high school teachers recognized breaches of two 
norms that we conjectured to describe geometry teachers’ expectations of this work context. The 
results of our analysis of the data (using z-tests and mixed effect regression models) provide evidence 
that, in the situation of GCA, (1) teachers appear not to take issue with giving students tasks that 
require them to set-up and solve equations whose solutions have no geometric meaning (e.g., the 
length of a side of the figure is zero), and (2) teachers do not appear to expect students to document 
the geometric theorem or property that justify the setup of those equations (highlighting the contrast 
between the situation GCA and that of doing proofs). 

Keywords: Algebra and Algebraic Thinking; Geometry; Instructional Activities and Practices; 
Measurement 

In an effort to describe the practice of teaching mathematics in schools, some mathematics 
educators have argued for the importance of understanding the factors that influence mathematics 
teachers’ instructional decisions. Some researchers have described these decisions as motivated by 
the teacher’s individual goals, beliefs, and knowledge (Schoenfeld, 2010). However, others have 
sought to complement this perspective by suggesting that decisions might also be understood as 
influenced by customary norms of the practice of teaching. In their account of the practical 
rationality of mathematics teaching, Herbst and Chazan (2012) suggest that students and teachers 
recognize some patterns of interaction as defaults for recurring classroom situations (e.g., when 
doing proofs in high school geometry class).  

This study investigates norms of another instructional situation in high school geometry 
instruction: what Hsu (2010) has referred to as Geometric Calculation in Algebra. We use Herbst’s 
(2006) definition of instructional situation to conceptualize geometric calculations in algebra (GCA): 
GCA enables an exchange between the work students do posing and solving an equation and the 
claim their teacher can make that they know properties about a geometric figure (to which the 
equation refers). As in the case of other instructional situations, we expect there are norms for what 
the teacher and the student are expected to do to enable them to do such work and operate such 
exchange. Figure 1 shows an example of a GCA task. 

 

 
Figure 1: Sample GCA task 
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The example in Figure 1 illustrates some norms of GCA: Students are informed (often, through a 
diagram) that certain dimensions of a given geometric figure can be represented by given algebraic 
expressions and they are expected to use their knowledge of the properties of that figure to set up and 
solve algebraic equations using the given expressions in order to find one or more of the figure’s 
dimensions. Their success in this work counts toward their understanding of the geometric properties 
of the figure as well as their retention of algebraic skill.  

The work of investigating the norms of this instructional situation may be of interest to 
mathematics educators (both practitioners and researchers) for several reasons. For one, in terms of 
efforts to understand and describe the ways that mathematics is actually taught and learned in 
schools, norms provide interesting insights because they represent both expected actions and a 
rationale for teacher’s instructional actions. Norms also provide a baseline in the process of 
improving instruction: Efforts to change instruction need to oppose existing norms and propose 
justifiable breaches of such norms. Along those lines, while this study explores GCA in particular, its 
methods are equally applicable to the study of norms of other situations in other courses of study 
beyond high school geometry. Second, for those particularly interested in geometry instruction, the 
situation of GCA is a common instructional situations in American high school geometry courses, 
and one that provides students with opportunities to engage in practices that have generally been 
supported by mathematics educators, such as engaging in algebraic and geometric reasoning as well 
as connecting multiple representations (NCTM, 2014). Further, Hsu (2010) argued that geometric 
calculation tasks offer students inroads to the types of reasoning needed for understanding and 
writing proofs in geometry. 

Based on our observations of American high school geometry classrooms and informal analysis 
of geometry textbooks, we hypothesized that the following were norms of the instructional situation 
of GCA: 

• When a GCA task is given to students the algebraic expressions associated to the dimensions 
of the figure are such that when an equation is set-up on the basis of one or more true 
geometric properties of the figure the numerical measures obtained from the solution of such 
equation will have interpretable geometric meanings (e.g., side lengths and angle measures 
will be positive).  

• Although students may be asked to state orally the geometric property that they use to set-up 
one or more equations when solving GCA problems at the board, they are not expected to 
write that property.  

For sake of brevity, we will refer to the first of these two norms as the GCA Figure (GCAF) norm 
and to the second as the GCA Theorem (GCAT) norm.  

Similar to other mathematics educators who have endeavored to investigate instructional norms 
(e.g.,Dimmel, 2015; Herbst, Kosko, & Dimmel, 2013), we adopted a variation of a breaching 
experiment (Garfinkel, 1963) to determine whether two norms that we conjectured to exist actually 
describe how high school geometry teachers expect work on GCA problems will unfold, by 
examining the extent to which high school mathematics teachers recognize breaches of them. 
Accordingly, we posed the following two research questions:  

• Do the GCAF and GCAT norms exist (i.e., represent how high school geometry teachers 
expect work on GCA problems will unfold)? 

• How do participants react to breaches of the GCAF and GCAT norms? 

Further, aware that in any instance of an instructional situation more than one norm might be 
breached, we also sought to investigate how breaches of a given norm at one point in a lesson might 
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influence teacher’s reactions to breaches of norms of that situation that occur later in the lesson. We 
therefore also posed a third research question: 

• Is participants’ recognition of breaches of the GCAT norm affected by whether the GCAF 
norm is breached or complied with? 

In order to measure teachers’ recognition of breaches of these hypothesized norms, we designed 
and implemented a research instrument, which we describe in the next section.  

Methods 

Data Collection 
The present study represents a first attempt at answering our three research questions – by 

designing a research instrument and using it with a convenience sample of 40 high school 
mathematics teachers from a Midwestern state. The instrument designed sought to elicit mathematics 
teachers’ reactions to storyboard representations of classroom scenarios, through online multimedia 
questionnaires, in order to determine whether hypothesized norms of the instructional situation of 
GCA exist, by measuring the extent to which participants recognize the breaches of those 
hypothesized norms (see Herbst, Kosko, and Dimmel, 2013) that occurred in some of those 
scenarios.  

The instrument was comprised of twelve item sets. Each item set consisted of various questions 
referring to one storyboard. The scenario represented by each storyboard can be described as 
following one of three experimental conditions, which we refer to as the CFCT, the CFBT and the 
BFBT conditions (to denote which of the two norms are breached or complied with). The four CFCT 
scenarios were conjectured to be completely normative (both norms were complied with). The four 
CFBT scenarios breach the GCAT norm, but not the GCAF norm. The four BTBF scenarios breach 
both norms. We represented four scenarios of each condition to increase the “construct validity” 
(Shadish, Cook, & Campbell, 2002) of the instrument – only having one scenario of each condition 
would threaten the validity of our claim that participants’ responses to the scenarios represent 
whether and how participants might react to breaches or compliance with the two norms (rather than 
the specific task or other incidental aspects of the scenario). One way of distinguishing the four 
scenarios in each experimental condition is by describing them as following one of four general 
storylines (i.e., plots), which differ in terms of how the task and student who solves it are selected, as 
well as how the correctness of the students’ solution is discussed. The scenarios also differ in terms 
of the figure in the task – a feature that we use to title the storylines: the similar-triangles storyline, 
the trapezoid storyline, the isosceles-triangle storyline and the parallelogram storyline.  

Each storyboard consists of 12 frames. During the first three frames, the class selects a GCA task 
to work on and the teacher either asks for a volunteer or selects a student to solve it, at the board. 
This occurs in one of four ways (depending on which storyline the given scenario follows), all of 
which were conjectured to be normative (e.g., the teacher in the scenario may accept a student’s 
request to review a problem from the homework given the day before or may choose a problem that 
they conjecture might challenge the students; they may request that a particular student share their 
solution or ask for a volunteer). In the following three frames of each storyboard, the teacher puts the 
problem on the board and asks for the selected student to present their solution. In the CFCT and 
CFBT scenarios, the task complies with the GCAF norm, while in the BFBT scenarios, it breaches 
the GCAF norm by involving algebraic expressions that imply that the length of one of the sides of 
the figure is less than or equal to zero (and, therefore, that the figure does not exist). In the following 
three frames, the selected student writes a correct equation on the board, after which the teacher asks 
the student what theorem or property they used to set-up that equation. In all cases, the student 
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identifies a correct theorem but, whereas in the CFCT and CFBT scenarios the teacher then affirms 
the student, in the BFBT scenarios the teacher breaches the GCAT norm by saying something that 
conveys that they expected the student to write the theorem or property on the board (e.g., the teacher 
says “Why was that not written on the board? Please always write down the properties you use to 
justify your work.”). In the last three frames, the student finishes correctly solving the problem and 
asks the teacher to help them determine whether their solution is correct. This occurs in one of two 
ways, both of which were conjectured to be normative - the teacher either asks the class whether they 
think the solution is correct (which occurs in two of the storylines) or asks a specific student the same 
question (which occurs in the other two storylines). In the CFBT and BTBF scenarios, the theorem or 
property used to set up the first equation is also written on the board, in response to the teacher’s 
request1. 

For each item set, and hence for each scenario, the questionnaire contained seven open-response 
and five closed-response questions. After being shown the first six frames of a storyboard, 
participants were asked, “what did you see happening in this first segment of the scenario?” and 
provided with an open box in which they could type their response. Asking this type of question (a 
prompt for participants to describe what they notice about a given scenario) permits one to observe 
what participants tacitly expect will occur in those situations. In line with the notion of breaching 
experiments, we would expect that most participants who saw a scenario where GCAF had been 
breached would remark that breach. After that open-ended question, participants were asked to rate 
the appropriateness ofthe teacher's actions in the first three frames of the storyboard, using a 6-point 
Likert scale, and asked to explain their rating in an open-response field. The same appropriateness 
questions were asked about the second group of three frames of the storyboard. From the 
explanations of their ratings, we also expected to see evidence of participants’ recognition of the 
breaches of the GCAF norm as well as to learn why some teachers might disagree with certain 
breaches, while others might deem them justifiable.  

Participants then saw the second half of the scenario (the third and fourth segments) and were 
asked the same three open-response and two closed-response questions about those segments. Last, 
they were asked to rate the appropriateness of the teacher's facilitation of the work on the problem 
throughout the scenario (again, using a 6-point Likert scale) and to explain their answer (in an open 
response field). This last question was posed, in particular, to provide participants with an 
opportunity to remark on breaches of the GCAF norm, in the chance that they had not realized that 
the task was not normative (if it was not) when it was first put on the board, but realized it once the 
student finished solving it. 

Each participant was randomly assigned to one of three groups, each of which was assigned four 
item sets (two of one condition and two of another), as follows:  

• Group 1 was assignedtwo CFCT item sets, one that followed the similar-triangles storyline 
and one that followed the trapezoid storyline, as well as two CFBT item sets, one that 
followed the isosceles-triangle storyline and one that followed the parallelogram storyline. 

• Group 2 was assignedtwo CFBT item sets, one that followed the similar-triangles storyline 
and one that followed the trapezoid storyline, as well as two BFBT item sets, one that 
followed the isosceles-triangle storyline and one that followed the parallelogram storyline. 

• Group 3 was assignedtwo BFBT item sets, one that followed the similar-triangles storyline 
and one that followed the trapezoid storyline, as well as two CTCF item sets, one that 
followed the isosceles-triangle storyline and one that followed the parallelogram storyline. 

Data analysis 
As each participant was assigned two item sets of the same condition, we used mixed effects 

regression models (Agresti & Finlay, 2009) to analyze the closed-response data, using MemberID (a 
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variable used to keep track of which responses were associated with which participant) as the random 
effect. The outcome variable in each model was the set of responses to one of the five Likert-scale 
items that asked participants to rate the appropriateness of the teacher’s action (in each of the four 
segments of the scenario, then overall). To be able to compare ratings of scenarios of different 
experimental conditions and scenarios of different storylines, we created two variables - Condition 
(with values CFCT, CFBT, BFBT) and Storyline (with values similar-triangles, trapezoid, isosceles-
triangle, parallelogram) – applied these to code each of the closed-responses and, after dichotomizing 
each, used those dichotomous variables as dependent variables in each model.  The CFCT condition 
was used as the reference group for the CFBT and BFBT conditions, because the CFCT scenarios 
were designed as control scenarios (i.e., neither norm was breached in them). The choice to have the 
similar-triangles storyline as the reference group was arbitrary, as all scenarios were designed to be 
normative except for whether or not they complied with either the GCAF or GCAT norms.  

We hypothesized that, when controlling for the Condition variable, there would be no significant 
differences between the mean ratings of the scenarios of different storylines, in any of the models, as 
we conjectured that the teachers’ actions in each were equally appropriate (as they were designed to 
be normative, outside of the moments when each of the norms were at issue). Similarly, we also 
conjectured that there would be no significant differences between the mean rating of segments 1 and 
4 of the scenarios, when controlling for the Storyline variable. The only significant differences we 
expected to observe were in the mean ratings of segments 2 and 3 of the scenarios, because they each 
relate to part of the text where one of the norms was breached in some items, but not in others. 
Specifically, since the GCAF norm was only breached in segment 2 of the BFBT scenarios, we 
expected that it would be rated significantly lower than segment 2 in CFCT (the reference group) 
scenarios, on average. As the GCAT norm was breached in segment 3 of both the CFBT and BFBT 
scenarios, we expected that it would be rated significantly lower than segment 3 in the CFCT 
scenarios, on average. 

Last, to evaluate our hypothesis that teachers would recognize the breaches of our two 
hypothesized norms, we created two dichotomous codes – one representing that there was evidence 
of recognition (versus non-recognition) of the breach of the GCAF norm and one representing that 
there was evidence of recognition (versus non-recognition) of the breach of the GCAT norm – and 
applied each to all open-response items. The following is an example of a response coded for 
recognition of a breach of the GCAT norm: “Kids solves it but doesn't write justification. Teacher 
tells kid (with different word choice) to write justifications.  Kid does it and we move on.” 

Each participants was then given two scores – one indicating whether there was evidence of 
recognition of a breach the GCAF norm in any of their open responses and another indicating 
whether there was evidence of recognition of a breach of the GCAF norm in any of their open 
responses. A series of z-tests were then conducted to determine whether most participants who were 
assigned each item that contained a breach of one or both norms recognized those breaches.   

Results 

Results related to research question 1 
In terms of the results of the twelve z-tests of the proportion of participants who recognized the 

breach of the GCAT norm in each open-response item (against the null hypothesis of 50% 
recognition), as predicted, no participants recognized a breach in any of the CFCT-condition items, 
as the norm was not breached in those scenarios. The proportion of participants who recognized the 
breach in each of the CFBT-condition and BFBT-condition items, except one, ranged from 0.45 to 
0.73 (but none of those values were statistically significant at the level of 0.05).  

Further, when coding the open-response data for recognition of the breaches of the GCAT norm, 
we noticed that there were several participants who noted that the teacher requested that the student 
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state the theorem or property that they used to set-up the equation. Consequently, we also conducted 
a z-test of the proportion of participants that recognized this request in relation to each item. The 
results indicate more than 50% recognition in all the CFBT-condition and BFBT-condition items (in 
some cases, significantly more). In fact, even the proportion of participants that recognized this 
request in each of the four CFCT-condition items was 0.82, 0.43, 0.47 and 0.33.  

One surprising result was that, although all BFBT scenarios contained a breach of the GCAF 
norm, there was only evidence that one participant recognized one of those breaches. Further, this 
evidence was in their response to the rating of the third segment of the scenario, when they wrote: 
“the teacher is allowing the student to discover that there is no solution to the problem”. Therefore, 
there was no recognition of the breach of the GCAF norm when the problem was being written on 
the board (despite this being done over three frames). As we discuss in the next section, this result 
suggests the need for deeper exploration of the GCAF norm. 

Results related to research questions 2 and 3 
The results of the five mixed-effect regression analyses (one for each of the ratings of the four 

segments of the scenario and one for the rating of the teacher’s facilitation of the work on the 
problem throughout the scenario) are summarized in table 1 and generally confirm most of our 
hypotheses.  

As indicated in table 1, when controlling for the Condition variable, we see that all but two of the 
coefficients are not significant. This supports our earlier claim that, outside of the breach or 
compliance with one or both of the norms, participants rated the teachers’ actions in the scenarios as 
being similarly appropriate. On the other hand, the two significant Storyline coefficients suggest that 
this might not be the case. We will discuss this point further in the next section.  

When controlling for the Storyline variable, the coefficients for the Segment-3 ratings and the 
Overall ratings of the CFBT scenarios and BFBT scenarios are negative and significant. This 
indicates, as hypothesized, that ratings of the segment of the scenarios in which the GCAT norm was 
breached would be rated lower, on average, than the equivalent segments of scenarios in which that 
norm was not breached (CFCT scenarios), and that the same would consequently be true for the 
overall rating of the scenarios. However, neither the rating of segment 3 or the overall rating 
associated with BFBT scenarios was significantly different than those of the CFBT scenarios. 
Although this does not provide us with evidence to believe that participants’ reactions to breaches of 
the GCAT norm are influenced by the reactions to breaches of the GCAF norm, as we also discuss in  

Table 1: Summary of Mixed Effect Regression Analyses for Variables Predicting Ratings of 
Each Segment of the Scenarios and the Overall Rating 

 Seg-1 rating Seg-2 rating Seg-3 rating Seg-4 rating Overall rating 
 B(SE) B(SE) B(SE) B(SE) B(SE) 
Fixed effects      

Trap storyline  -0.55(0.28)* 0.14(0.21) 0.02(0.18) 0.06(0.24) 0.11(0.16) 
Iso-tri storyline  -0.22(0.24) 0.04(0.25) 0.03(0.23) -0.26(0.21) 0.27(0.17) 
Parall storyline  -0.04(0.23) 0.27(0.21) -0.02(0.27) -0.03(0.22) 0.45(0.22) * 

CFBT cond 0.46(0.24)* 0.60(0.20)** -0.95(0.23)*** -0.11(0.18) -0.63(0.24)** 
 BFBT cond 0.21(0.22) 0.14(0.20) -0.98(0.29)*** -0.23(0.18) -0.56(0.20)** 

Constant 4.19(0.23)*** 3.72(0.21)*** 5.00(0.20)*** 4.78(0.21)*** 4.58(0.22)*** 
Random effects      

Constant 0.41(0.23) -0.19(0.14) 0.24(0.16) 0.32(0.13)* 0.23(0.15) 
Residual 0.08(0.09) 0.10(0.07) 0.02(0.09) 0.01(0.10) 0.21(0.08) 

N 158 158 158 158 158 
Standard errors in parentheses; *p< 0.05, **p< 0.01, ***p< 0.001 
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the next section, lack of recognition of the GCAF norm could be the explanation for this. 
Also in line with our hypotheses, the mean ratings of segment 4 in all scenarios were similar, 

which was expected, as no norm was breached in that segment of any of the scenarios. In contrast, 
however, segment 1 and segment 2 of the CFBT scenarios were rated significantly higher, on 
average, when controlling for the Storyline variable, than those segments in the CFCT scenarios, 
which contrasted with our hypothesis that they would be rated similarly (as both of those segments in 
all of those scenarios were also designed to represent normative instruction). 

Discussion: Potential Revisions to the Instrument 
Although the results of the study are mixed, in the sense that the instrument provided us with 

evidence that the GCAT norm is, in fact, a norm of the instructional situation of GCA, but did not 
allow us to conclude the same about the GCAF norm, nor to detect any relationship between the way 
that participants reacted to the two norms, the results do provide us with ideas for future research.  
For one, we would argue that the general design of the instrument is promising. The “what did you 
see happening…” questions provided us with evidence that one of the hypothesized norms exists. 
Another affordance of the open-response questions was that they not only allowed us to collect 
evidence in support of our hypothesized norms, but also allowed us to consider whether and how to 
revise these hypotheses. Although the proportion of participants that recognized breaches of the 
GCAT norm in some of the scenarios was as high as we expected, there were scenarios for which the 
proportion was lower. Of course, this could be a consequence of the small sample size or the 
representativeness of the sample, but the proportions of participants that recognized the teachers 
request that the student state the theorem or property at least suggests that the norms might have been 
slightly different than we first conjectured. For example, it could be that the norm is in fact that 
students are not expected to write or state the theorem or property that they used to set-up their 
equation(s). This alternative is supported by the fact that many of the participants’ attention were 
drawn to the request to state the theorem of property, even in the CFCT scenarios. 

In terms of the lack of recognition of the GCAF norm, although it could indicate that the norm 
does not exist, we argue that this is more likely a consequence of at least one of the following two 
issues with the scenarios. The first is that, in order to detect that the norm was breached, a participant 
would have likely had to work through the problem, which they might not ordinarily have to, if they 
assumed that the task was normative, as it had been put on the board by the teacher in the scenarios. 
Alternatively, there is also evidence in the open-response data that there were more distracting 
aspects of the scenarios than whether or not the norm was breached. In particular, many participants 
commented that the teacher took too long (3 frames) to write the problem on the board and that they 
should have instead used a document camera or have the student write the problem on the board, 
while the teacher circulated. We found the suggestion of having the student put the problem on the 
board to be especially helpful, as we conjecture that the teacher would also more likely analyze a 
problem if the student was the one putting it on the board, and are considering revising the items to 
integrate this change.  

Last, as we are more likely to detect a relationship between the two norms if participants 
recognize the breaches of the first norm, we are considering adding a question, after they evaluate the 
first half of the scenario but before they evaluate the second half, that will ask participants to rate the 
appropriateness of the task in the scenario, expecting that this will also require them to analyze the 
GCA task (if they did not do so when it was put on the board). Similar to our other rating questions, 
their rating of the task and their explanation of that rating could also provide us with some evidence 
that teachers recognize the GCAF norm, even if breaches are not remarked in the first three open-
responses. 
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Endnote 
1A table describing the four storylines in more detail is included in an extended version of this 

paper, available on Deep Blue. 
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We used multimedia surveys to investigate secondary mathematics teachers’ reactions to storyboards 
that represented episodes of instruction. Participants were asked open-ended questions about the 
storyboards. We analyzed the responses to the open-ended questions for evidence of the attitudes 
(Martin & White, 2005) that participants conveyed about the episodes. We found that, when 
presented with storyboards that depart from what is hypothesized to be routine instruction, 
participants’ open responses included significantly more negative than positive linguistic markers of 
attitude. At the same time, when participants were shown storyboards that represented what 
routinely happens in classrooms, markers of positive and negative linguistic markers of attitude 
occurred with equal frequency.    

Keywords: Instructional Activities and Practices; Geometry 

Introduction 
For as long as mathematics has been taught in US public schools, there have been initiatives that 

have attempted to improve the quality of mathematics teaching in classrooms. A fundamental 
challenge for such initiatives is the paradox of change without difference: reform efforts that, in 
principle, could bring about fundamental shifts in classrooms emerge, in practice, as “shadows of 
their original intent” (Woodbury & Gess-Newsome, 2002, p. 763). One reason for this paradox is that 
the patterns of classroom interaction that practicing teachers have honed through years of experience 
are robust. Initiatives that aim to effect change in the way that mathematics is taught thus need to 
contend with the realities of the already established practice of mathematics teachers (Cobb, Zhao, & 
Dean, 2009). To understand how reform efforts might contend with such realities we need to raise a 
natural question: When teachers encounter reasonable departures from routine instruction, how do 
they relate to such actions?  

To answer this question, we conducted a study that used multimedia surveys to investigate 
secondary mathematics teachers’ reactions to storyboards that represented episodes of instruction. 
Participants were asked open-ended questions about the storyboards. We analyzed the responses to 
the open-ended questions for evidence of the attitudes (Martin & White, 2005) that participants 
conveyed about the episodes. We found that, when presented with storyboard representations of 
reasonable departures from what we hypothesized to be routine instruction, participants provided 
open responses that contained more negative than positive linguistic markers of attitude. At the same 
time, when participants were shown storyboards that represented what routinely happens in 
classrooms, positive and negative markers of attitude occurred with equal frequency.  

The analysis reported below is part of a larger study whose objective was to investigate 
instructional routines that pertain to discipline-specific communication practices. The communication 
skills used by disciplinary experts have traditionally been thought to be gradually and tacitly 
developed by novices as the novices are apprenticed into a field (Lemke, 2013; Thurston, 1994). But 
recent work in analyzing mathematical communication suggests that discipline-specific ways of 
communicating are practices that can be described and taught (Fang, 2012; O’Halloran, 2011; Yore, 
Pimm & Tuan, 2007). Doing proofs is one classroom activity during which students could develop 
discipline-specific communication practices. As the geometry classroom has historically been the 
principal instructional setting in which students are introduced to mathematical proof (Knuth, 2002), 
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the instructional situation of doing proofs in geometry (Herbst & Brach, 2006) was the focus of this 
study.  

Theoretical Framework 
Classroom activity can be modeled as a social system in which an agent playing the role of 

teacher and other agents playing the roles of students act in accordance with tacit but mutually held 
norms (Herbst & Chazan, 2012). Such norms help characterize instructional situations: stable 
segments of classroom activity in which students’ work is exchanged for claims that they have 
acquired items of knowledge (Herbst, 2006; Herbst & Brach, 2006). Though the instructional activity 
of doing proofs in geometry has been criticized by mathematics educators for being a 
misrepresentation of the work of proving in mathematics (Schoenfeld, 1988; Martin & Harel, 1989; 
Lockhart, 2009), it endures as an instructional setting where students are introduced to the notion that 
there is such a thing as mathematical proof. The goal of this work was to describe norms of the 
instructional situation of doing proofs that pertain to how student proofs are presented and checked in 
geometry classrooms.  

We use norm to refer to those aspects of social situations that not only regularly happen but also 
that participants (in social situations) expect to happen (Garfinkel, 1963). In social situations, when 
people confront departures from what they expect, they can react with anxiety, bewilderment, or 
anger (Mehan & Wood, 1975). Such negative reactions are ways in which people mark that a norm 
has been breached. The work reported here used the notion of a breaching experiment (Garfinkel, 
1963) to investigate secondary teachers’ reactions to episodes of instruction in which hypothesized 
norms1 of instructional situations were breached.  

Method 
Our method of inquiry combined a planned-comparison study with a virtual breaching 

experiment (Herbst, Aaron, Dimmel, & Erickson, 2013) in an instrument that we call a virtual 
breaching experiment with control (Dimmel & Herbst, 2014). The instrument was a multimedia 
survey that used storyboards to represent episodes of geometry instruction that were inspired by 
video records of actual geometry classrooms. Our use of storyboards to probe for recognition of 
norms is analogous to how scripted classroom videos have been used to probe teacher professional 
knowledge (Kaiser, 2014) and is an application of the cyclical use of records of practice (Jacobs, 
Kawanaka, & Stigler, 1999). Each participant2 in our study viewed two sets of parallel storyboards: 
one set of parallel storyboards represented departures from hypothesized norms (i.e., breach 
storyboards), and the other set of parallel storyboards represented instances of instruction that were 
hypothesized to be routine3 (i.e., control storyboards). The storyboards that were designed to 
represent routine instruction (i.e., the control storyboards) were based on video records of actual 
geometry classrooms, hence our claim that these storyboards represent the instruction that might 
typically occur in geometry classrooms. The storyboards in a set were parallel in the sense that they 
targeted the same hypothesized norm.  

After viewing each storyboard, participants were given four opportunities to provide open-
response data. The first question that participants were asked is: “What did you see happening in this 
scenario?” The purpose of prompting participants with this broad, open-ended question was to 
capture participants’ overall reactions to the instances of doing proofs (hereafter: situation instances) 
that were represented by the different storyboards. This general open response question has been 
used in previous virtual breaching experiments (Herbst, Aaron, Dimmel, & Erickson, 2013) as a 
means to capture participants’ reactions to storyboards. Participants had three other opportunities to 
provide open responses, following their review of each storyboard. These open response fields 
followed episode—how appropriate was the teacher’s review of the proof in this scenario?—and 
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segment-specific—how appropriate were the teacher’s actions in this segment of the storyboard?—
appropriateness rating questions.4 Following each rating question, participants were prompted to 
“Please explain your rating.”  

Responses to the four open response questions were coded using a scheme derived from the 
attitude system of the appraisal framework (Martin & White, 2005). Coding for attitude is a means to 
capture participants’ ways of feeling (Martin & White, 2005) toward the situation instances 
represented by the storyboards. The attitude system differentiates statements of affect, judgment, and 
appreciation.  Statements of affect convey personal feelings through linguistic markers of emotion, 
such as “sad”, “happy” or “angry” (Read & Carroll, 2012). Statements of judgment convey 
evaluations of people and their deeds, such as “he is a good teacher.” Statements of appreciation 
convey aesthetic evaluations of non-person things in the world (goods and services), such as “that is 
a clear proof” (Read & Carroll, 2012). The scheme we developed coded each response for all 
instances of attitude. Attitudes were classified by type—is it judgment, affect, or appreciation?—
target—e.g., the teacher, the proof—and polarity—positive or negative. 

An example of a response that conveys a positive judgment of the teacher is: “teacher is guiding 
students effectively.” In this response, the teacher is the target of the attitude and “effectively” is a 
positive evaluation of the action—guiding—that the teacher is described as doing in the scenario. 
Since the response is about the quality of how a person (i.e., the teacher) performs an action, it is 
coded as a positive judgment. An example response that contains a negative judgment of the teacher 
is: “This teacher is being a bit ridiculous.” These examples were coded as judgments because, in each 
case, the targets of the appraisals are people and their deeds. An example response that contains an 
appreciation is: “the math proof was not accurate.” In this example, a mathematical proof is the target 
of the appraisal. It was coded as a negative appraisal because the response states that the proof is “ 
not accurate.”  

Reliability of the Attitude Coding Scheme 
The attitude scheme was tested for reliability by comparing coded responses of two independent 

coders5. The coders applied each scheme to 100 randomly selected texts in the corpus—25 of each of 
the 4 response types, roughly 10% of the total number of responses. Before each text was coded, it 
was blinded with respect to whether the response was provided for a storyboard in which the norm 
was breached or a storyboard in which the norm was not breached. The purpose of blinding the data 
was to minimize bias. The kappa statistics for the attitude coding for which there were sufficient 
instances of the codes to warrant the statistics are .79 for negative judgments of the teacher; .49 for 
positive judgments of the teacher; .77 for negative mathematical appreciations; .49 for positive 
mathematical appreciations. These kappa scores indicate moderate (.49), high (.76, .77, .79), and 
very high (.89) agreement between the coders. 

Data 
Data was gathered from 73 secondary mathematics teachers located within a 60-mile radius of 

Midwestern University. Participants completed the instrument during in-person and online data 
collection periods that occurred during the 2013-2014 academic year. The multimedia survey 
(described above) that contained the four storyboards was one of several instruments participants 
completed during a day-long data collection event.  

Results 
Each response in the corpus was coded for judgments, appreciations, or statements of affect, and 

each instance of an attitudinal appraisal was coded in each response. This means that it was possible 
for a response to contain multiple instances of the same kind of statement of attitude (e.g., there 
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could have been several judgments of a teacher), as well as instances of different kinds of statements 
of attitude (e.g., a judgment of the students, an appreciation of the proof), and statements of attitude 
that had different polarities (e.g., a response could contain both positive and negative judgments of 
the teacher).  

We hypothesized that, in the case of storyboards that represent a breach of a norm, participants 
would react negatively. These negative reactions would be evident by higher numbers of negative 
statements of attitude. By contrast, based on the premise that the control storyboards represent 
routine teaching, we hypothesized that open responses associated with control storyboards would 
contain roughly equal numbers of positive and negative statements of attitude. Such a distribution of 
positive and negative statements of attitude could be explained on the basis of individual differences 
(among participants) alone. 

Table 1 shows the total number of positive and negative statements of attitude throughout the 
open responses in the corpus. The results are reported according to storyboard condition. The entire 
corpus contained 1168 open responses to the 4 different open response questions, with equal numbers 
of responses to the breach and control conditions (584 responses per condition). These were divided 
equally (146 per question) among the 4 open response questions that were described above. The 
results reported in Table 1 are for the entire corpus across all 4 question types. Furthermore, the 
results reported in Table 1 are simple counts of the number of statements of positive or negative 
attitude that were coded in the open responses to the storyboards in the breach and control conditions. 

Table 1: Counts of statements of attitude, tallied by polarity and storyboard condition. 
Storyboard 
Condition 

Statements of 
Positive 
Attitude 

Statements of 
Negative 
Attitude  

Total 

Breach 
Storyboards 

211 473 684 

Control 
Storyboards  

309 310 619 

    

 
 The results reported in Table 1 are consistent with the hypotheses stated above. The open 

responses to the storyboards in which a hypothesized norm was breached had more statements of 
negative attitude than statements of positive attitude. In the case of the control storyboards, there 
were nearly equal numbers of positive and negative statements of appraisal. A chi-square test 
indicates that there is a significant association between storyboard condition and the number of 
positive or negative statements of attitude (χ2 = 48.49, p <.001).  

The unit of analysis for the results reported in Table 1 is a statement of attitude. This means that 
each statement of attitude in a response was included in the totals. To further investigate the 
relationship between attitude polarity and storyboard condition, we recoded the data to eliminate 
multiples, by polarity, within each response. Thus, if a response contained 3 positive statements of 
attitude and 2 negative statements of attitude, it was recoded as (1) for positive attitude and (1) for 
negative attitude. Table 2 reports tallies of statements of attitude after applying this reduction. The 
unit of analysis for the results reported in Table 2 is an open response (n = 584 for each storyboard 
condition). 

The results reported in Table 2 are consistent with those reported above. Across the corpus for 
the control storyboards, there were 248 responses that contained at least one statement of positive 
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Table 2: Counts of open responses that contain positive or negative statements of attitude, by 
storyboard condition.  

Storyboard 
Condition 

Statements of 
Positive 
Attitude 

Statements of 
Negative 
Attitude  

Total 

Breach 
Storyboards 

176 352 528 

Control 
Storyboards  

248 245 493 

    

attitude and 245 responses that contained at least one statement of negative attitude. By contrast, 
across the corpus for the breach storyboards, there were 176 responses that contained at least one 
statement of positive attitude compared to 352 responses that contained at least one statement of 
negative attitude. A chi-square test of association indicates that there is a significant relationship 
between storyboard condition and attitude polarity (χ2 = 29.54, p <.001). 

The results reported in Table 2 are a refinement of the results reported in Table 1 because 
multiples have been eliminated. The results reported in Table 3 (below) refine these results further by 
distinguishing 4 categories of response: those that contain only positive statements of attitude, those 
that contain only negative statements of attitude, those that contain both positive and negative 
statements of attitude, and those that contain no statements of attitude.  

Table 3: Counts of open responses that contain only positive attitude, only negative attitude, 
both, or neither.  

Storyboard 
Condition 

Statements of 
Positive 
Attitude 

Statements 
of Negative 

Attitude 

Both Positive and 
Negative Attitude 

None Total 

Breach 
Storyboards 

78 254 98 154 584 

Control 
Storyboards  

166 163 82 173 584 

      

 
The results reported in Table 3 are consistent with those reported in Table 1 and Table 2. The 

breach storyboards contained more responses that contained only negative statements of attitude than 
responses that contained only positive statements of attitude. By contrast, the control storyboards 
contained nearly equal numbers of responses that contained only positive statements of attitude and 
responses that contained only negative statements of attitude. A chi-square test of association 
indicates a significant relationship between storyboard condition and the categories of attitude in 
Table 3 (χ2 = 54.12, p <.001) 

The results reported above provide evidence to support our hypotheses: Throughout the corpus, 
the responses to the breach versions of the storyboards yielded more negative statements of attitude 
than positive statements of attitude. That responses to the breach versions of the storyboards 
produced more negative statements of attitude is consistent with the results of the breaching 
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experiments conducted by Garfinkel (1963) and the virtual breaching experiments conducted by 
others (Herbst, Aaron, Dimmel, & Erickson, 2013). In contrast with the breach storyboards, 
responses to the control storyboards contained roughly equal numbers of positive and negative 
statements of attitude. Because the breach and control storyboards were the same except during those 
frames where the teacher is shown breaching (or complying with) a hypothesized norm, it follows 
that the teacher’s breach of the norm is what prompted participants to react negatively to the 
storyboard. 

Conclusion 
We began with the question: When teachers encounter reasonable departures from the routine, 

how do they react? The results reported above provide evidence that secondary mathematics teachers 
react more negatively to episodes of instruction that represent breaches of hypothesized classroom 
norms than to episodes of instruction that represent instruction that is hypothesized to be routine. We 
provide context for these findings here by describing the nature of the breaches.  

The storyboards representing instances of doing proofs were scripted to investigate 
communication practices expected by secondary teachers when proofs are presented (by students) 
and checked in geometry classrooms. An example of a routine practice for presenting proofs is that 
of a student going to the board and creating a mark-for-mark reproduction of an already completed 
proof—an act we call proof transcription. Such transcriptions of proofs by students do not match the 
practices used by disciplinary experts, where a proof is described verbally (with accompanying 
gestures) as it is generated at a blackboard (Artemeva & Fox, 2011; Greiffenhagen, 2014; Núñez, 
2009).  

In our study, one set of breach storyboards depicted teachers interfering with student 
transcriptions of proofs, for example, by requiring students to provide labels on a diagram before 
using those labels in a proof. The teacher’s interference could be defended as reasonable on the 
grounds that the teacher is steering the student presenter toward staging a discovery—as opposed to a 
reproduction—of the proof that shows how the student engaged with the material artifact of the proof 
(Livingston, 1999). Such a move on the part of the teacher could be seen as an effort to bring the 
student’s proof presentation practices more in line with disciplinary practices for presenting proofs 
(Greiffenhagen, 2014). In fact, some participants in the study remarked on the positive instructional 
value of the teacher’s interference in such storyboards. Yet on the whole, the attitudes that 
participants expressed toward the teachers that interfered with the student transcriptions tended to be 
negative. What are we to make of these findings? 

One implication is that it is possible that teachers could recognize, in the abstract, the value of an 
instructional alternative yet prefer, in actuality, the routines they have developed. The tendency 
toward routine is not evidence of a deficiency in teachers but is rather a fact of social life (Garfinkel, 
1963). We see teachers’ preference for routines as a resource that could be used to design 
instructional alternatives that are likely to have greater uptake by practicing teachers. For the work of 
managing student presentations of proofs in geometry classrooms, the expectation that students 
create mark-for-mark reproductions of proofs could be the basis for alternatives that would help 
students develop discipline-specific communication practices. An example of such an alternative 
could involve asking students to present proofs in pairs, where one student is responsible for 
generating the transcription and the other student explains the proof as the transcription is being 
completed. Such an alternative practice would recognize the value in the existing routine—i.e., that 
the proof that is displayed on the board is an accurate record of the work the student completed—
while at the same time provide a scaffold for students to develop the proof presentation skills that are 
used by mathematical experts.  
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Endnotes 
1The target norms were: (1) hypotheses about the details students are expected to include in a 

proof, and (2) hypotheses about how students are expected to present proofs during class. 
2Participants were randomly assigned to one of five different treatment groups. 
3The design of the study was described in a prior report. See (Dimmel & Herbst, 2014) for 

details. 
4Analysis of the closed-ended responses to the rating questions were reported in a prior study 

(Dimmel & Herbst, 2014). 
5We acknowledge the support of Nicolas Boileau for assisting with the reliability study. 
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WHEN “HALF AN HOUR” IS NOT “THIRTY MINUTES”:  
ELEMENTARY STUDENTS SOLVING ELAPSED TIME PROBLEMS 

Darrell Earnest 
University of Massachusetts, Amherst 

dearnest@educ.umass.edu 

This paper presents assessment study results addressing the question: Do students treat elapsed time 
problems differently if phrased as “half an hour” versus “thirty minutes”? A paper-and-pencil 
assessment was given to second (n=292) and fourth (n=205) grade students in six New England 
elementary schools. I compare responses on tasks presented in hour units and minute units. Results 
indicate that children respond differently to elapsed time questions as a function of the units provided 
in the question (half hour or thirty minutes) depending on the provided starting time (e.g., on the half 
hour versus on the second half of the clock). 

Keywords: Measurement; Elementary School Education; Problem Solving 

Objective 
The teaching and learning of STEM topics has been identified as a key to our country’s 

innovation as well as a gateway to individuals’ job opportunities. Uniting the various STEM domains, 
time underlies many scientific explorations of how things work, from determinations of speed and 
impact in physical phenomena to the Earth’s orbit and rotation to graphs of functions over time. At 
the same time, our understanding of how children interpret time in standard units is minimal. While a 
staple of early elementary mathematics instruction (National Governors Association Center for Best 
Practices [NGA Center] & Council of Chief State School Officers [CCSSO], 2010), time has been 
repeatedly referred to as one of the least studied mathematical symbol systems (Blume, Galindo, & 
Walcotte, 2007; Burny, Valcke & Desoete, 2009; Kamii & Russell, 2012), with little known about 
how children problem solve using conventional notation and units for time. This is of particular 
concern given the prevalent role of time underlying the mathematics of change in middle and high 
school (see Yerushalmy & Shternberg, 2000). Although our culture’s pervasive use of digital clocks 
may imply a collective mastery of time, such tools mask the rich and complex mathematics that 
underlies the unitizing of time and in determining elapsed time. 

Theoretical Framework 
My theoretical framework coordinates two areas: time is an area of measurement situated within 

children’s developing theory of measure (Lehrer, Jaslow, & Curtis, 2003); and cultural tools and 
representations mediate our thought and communication (Cole, 1996; Sfard, 2007, 2008). 

First, children develop a theory of measure through everyday examinations of the attributes of 
objects or events. Ideally, instruction provides opportunities for children to coordinate sensorimotor 
actions and everyday experiences with principles of measure (such as unit iteration, the need for equal 
units, or tiling; see Lehrer, 2003). Such principles cohere across different measures, including length, 
weight, volume, and time. Like length measure, time is a measureable quantity for which humans 
have developed standard units. While developmentally we know how students develop an 
understanding of length measure and also when notions of sequencing and duration develop (Piaget, 
1969), we have little understanding about how children draw upon notation for time as related to their 
theory of measure. 

To support the development of children’s theory of measure, research has emphasized the role of 
units (see Lehrer et al., 2003; Stephans & Clements, 2003). Unitizing is a core concept of measuring, 
with many measurement principles focusing on the role of unit or resulting entailments, such as the 
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need for a zero-point. With standard units of time measure, a long social history has led to our current 
system of notation in which units of time are in groups of 12 or 24 (hours) and 60 (minutes). The 
groupings of these hierarchical units greatly contrast with base-10 system of numeration underlying 
much of the mathematics content in elementary school, suggesting that drawing upon the proportional 
relation between hour and minute units may pose challenges. However, little research exists that 
explores how children may apply and coordinate standard units for time in their problem solving. The 
present study seeks examines how children solve elapsed time problems in order to document whether 
such challenges involving unit exist and, if so, how to characterize them. 

Second, I consider thinking and learning to be inextricably linked to culture (Cole, 1996; Earnest, 
2015; Sfard, 2007), with tools (i.e., a digital or analog clock) and conventional notation serving 
mediating roles in thought and communication. This may include cultural and mathematical referents 
such as “half an hour” and “thirty minutes.” Analog and digital clocks represent time and its 
properties in different ways, with the analog clock’s intervals of time translating duration into spatial 
distance (Lakoff & Nuñez, 2000; Williams, 2012). Digital time provides a precise time to the minute 
without reflecting hour-to-minute relations. The digital time 5:10, for example, provides a quick and 
precise numeric realization of time. Contrasting with this, the analog clock indicates time through a 
length based representational context. If we consider the hour hand for 5:10, for example, one may 
interpret its position as not just showing the “5” as with digital notation, but its displacement from 
5:00 to 5:10 as well as the length corresponding to the 50 minutes remaining in the hour from 5:10 to 
6:00. Tapping into children’s developing theory of measure, the analog clock is a cultural tool that 
builds on principles of measure reflected on a number line. A premise of this work is that, in 
children’s problem solving involving time, prior experiences with notation and tools serve mediating 
roles, even when solving problems involving digital notation alone. 

Mathematically, elapsed times are equivalent whether provided in hour-units (e.g., half an 
hour) or minute-units (e.g., 30 minutes). However, children may interpret such units in different 
ways, though prior research has not considered this. Various articles have provided important 
examples about how children may treat time notation in terms of base ten (e.g., Breyfogle & 
Williams, 2008; Kamii & Russell, 2012), such as adding 30 minutes to the time 4:40 to reach 
4:70. An underlying complexity underlying standard time notation is that hierarchical units of 
hours and minutes are grouped by 12 (hours) and 60 (minutes and seconds), a stark contrast to 
the base-10 groupings underlying place value and standard algorithms in elementary 
mathematics. The present study seeks to contribute systematic research to support whether 
such issues are pervasive in children’s problem solving. 

Research Questions 
The present study investigates the research questions: Do children perform differently on elapsed 

time tasks as a function of the units of elapsed time? Do such differences depend on the starting time 
provided in the task? Based on these questions, I investigate patterns of responses across the focal 
tasks. 

Methods 
Participants included 292 Grade 2 students and 205 Grade 4 students drawn from six elementary 

schools in urban, rural, and suburban contexts in New England. Grade 2 students were selected 
because standards indicate children in this grade have already mastered time to the hour and half hour 
and are currently working on time at the 5 minutes (NGA Center & CCSSO, 2010). Grade 4 students 
were selected because, according to standards, time concepts including elapsed time have been 
mastered in prior grades, and their performances therefore illuminate any persisting differences in 
performance on problems involving time. 
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The assessment featured 31 items, the design of which was informed by  classroom observations 
and informal interviews with students in second and fourth  grades over 1.5 years. This paper focuses 
on a subset of six assessment items: three items featured minute-units for elapsed time (“30 minutes”) 
and three analogous items involving hour-units (“half an hour”) (see Figure 1). For each problem 
type, one problem had a starting time at x:30, another corresponding to the first half of the clock 
(x:10), and the final to the second half of the clock (x:40). 

 
 

 
Figure 1: Assessment tasks by Problem Type (rows A and B) and Starting Time (columns 1, 2, 

or 3). 

Teachers administered the assessments in December 2014 and January 2015 (dates were 
staggered due to weather-related school cancellations). Students had 25 minutes to complete the 
assessment; students that did not finish the assessment were not included in this analysis. The 
researcher was present to oversee each administration. All assessments were collected and scanned. 
Though not reported in the current paper, a subset of grade 2 (n = 72) and grade 4 (n = 72) students 
participated in problem solving interviews with analog or digital clocks. 

Analysis and Results 
The analysis is presented in two parts. I first present quantitative results that reveal students 

perform differently on “30 minutes” versus “half an hour” questions depending on the starting time. 
Following this, I present an analysis of responses on tasks in order to demonstrate that particular 
responses arise for one unit type but not for the other. 

Performance by Problem Type and Starting Time 
Six problems on the assessment addressed elapsed time in digital notation (see Figure 1). Each 

student was given one point for each correct response; incorrect responses were assigned 0 points. 
Means and standard deviations are represented in Figure 2. To determine whether there was a 
difference in performance, I conducted a Two (Problem Type) x Three (Starting Time) x Two (Grade) 
repeated measures analysis of variance (ANOVA) for performance. 

 
Figure 2: Mean scores with standard deviations on focal tasks. 
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I first report three-way and two-way interactions in the data. While there was not a statistically 
significant three-way interaction between Grade, Problem Type, and Starting Time, p = .558, there 
was a statistically significant two-way interaction between Problem Type and Starting Time, F(2, 
982) = 17.798, p < .0001. There were no significant interactions between Problem Type and Grade (p 
= .204) or Starting Time and Grade (p = .204), suggesting a similar performance profile across 
problems independent of grade. Given the significant two-way interaction between Problem Type and 
Starting Time, I also compare performance for each Problem Type for each of the three starting times 
for the sample (corresponding to data points in the columns of Figure 1). There were statistically 
different performances on “half an hour” and “thirty minute” tasks for each of the three starting times: 
x:30 (p = .020), x:10 (p < .0001), and x:40 (p < .0001). 

Results thus far confirm that students interpret questions phrased as “half an hour” versus “thirty 
minutes” differently, with students performing better on tasks phrased as “thirty minutes.” These 
results lead to the following question: How do students’ responses vary on tasks based on the units of 
elapsed time? In order to consider these questions, I turn to an analysis of students’ provided 
responses for across the six tasks. 

Examining Patterns in Student Responses 
I now consider patterns in incorrect responses for the six tasks presented in Figure 1 identify 

incorrect responses according to how the final response reflects a particular displacement from the 
starting time. Five types of displacements emerged across problems (see Figure 3): (1) Displacement 
by an hour (e.g., 4:40 with 30 minutes elapsed is 5:40); (2) Displacement by 1.5 hours; (3) 
Displacement to a x:00 or x:30 point (e.g., 4:40 with 30 minutes elapsed is 5:30); (4) Displacement to 
a multiple of 5 between 5 and 55 minutes after the starting time (e.g., 4:40 with 30 minutes elapsed is 
4:50); (5) Accurate displacement with inaccurate notation (e.g., 4:40 with 30 minutes elapsed is 4:70). 
In addition, Figure 3 reflects students that provided as a response: (6) the starting time or one minute 
after the starting time (e.g., 4:40 with 30 minutes elapsed is 4:40 or 4:41); (7) Idiosyncratic responses 
with frequencies of 1 or 2 in the sample; and (8) “I don’t know” or no response. I draw attention to 
parts of the graphs in Figure 3 in which particular incorrect response codes were provided for one 
Problem Type and not the other. Note that since Figure 3 presents the proportion based only on 
incorrect responses, the ns for each problem do not include correct responses and, therefore vary 
across problems. When possible for each code, I reflect on how responses relate to children’s theory 
of measure and/or the role of tools and notation. 

1. Displacement by 1 hour. The first incorrect response code reflected displacement by one hour. 
Students provided this response across problems regardless whether phrased as “half an hour” or 
“thirty minutes.” The proportion was greatest for the starting time of x:30; this may be related to 
children treating the “o’clock” time (e.g., 4:00) as a zero-point rather than the provided starting time. 
In this case, solving problem A1 (3:30 plus 30 minutes) may treat the next hour mark as the zero 
point, thereby adding 30 minutes to 4:00 to solve the problem. While this code was applied most for 
when the starting time was x:30 and when the problem was phrased as “half an hour,” this does not 
well explain how this particular response occurs for starting times of x:10 or x:40, leading to further 
questions regarding children’s problem solving. 

2. Displacement by 1.5 hours. The second strategy code reflected a 1.5-hour displacement from 
the starting time. Students drew upon the use of mathematical words in “half an hour” to quantify 
both half and hour, adding them together for a total displacement of 1.5 hours. Across the sample, 
only once did this response occur when the problem was phrased as “thirty minutes.” In this 
particular case, the two units—hours and minutes—differently mediate children’s problem solving. 

3. Displacement to x:00 or x:30. The third code reflected a translation of either “thirty minutes” 
or “half an hour” into a final time with notation ending with x:00 or x:30. This category arose for  
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Figure 3: Proportions of incorrect response codes comparing tasks for “half an hour” or “thirty 

minutes” by starting time. 

problem phrased both as “half an hour” and “thirty minutes.” Students provided a variety of 
responses that resulted in this code. For example, for problem B3, students responding with “2:00” or 
“11:00” each received this code, though the different response choices do not reveal children’s 
microgenetic constructions leading to these solutions. Assessment data alone do not well reveal the 
logic underlying the variety of responses receiving this code, though a conjecture underlying the 
frequency of x:00 or x:30 responses pertains both to the elapsed duration of 30 minutes/half an hour 
as well as the social relevance of times to the “o’clock” or “thirty.” 

4. Displacement to a multiple of 5. A common incorrect response for problems phrased both as 
“half an hour” and “thirty minutes” involved providing a new time at a multiple of 5. This particular 
category includes many different responses that do not fit into categories provided above. At the 
same time, the pattern of responses at multiples of 5 was striking. A conjecture is that the analog 
clock as a tool highlights time at five- minute intervals. Despite the fact that focal problems did not 
feature analog clocks, students’ prior experiences with time, particularly the instructional and cultural 
emphases on identifying discrete positions in time to the five minutes (NGA Center & CCSSO, 
2010), likely informed their problem solving leading to responses at five minute intervals. 

5. Accurate displacement, inaccurate notation. The fifth strategy code reflected an accurate 
displacement with inaccurate notation, specifically adding minutes without regrouping such that the 
final minutes were greater than 60. This code was employed only for those tasks that reached or 
crossed the hour, and almost exclusively for those problems presented as “thirty minutes.” This may 
be related to students’ developing understanding of addition across elementary grades in which 
minutes to the right of the colon in digital notation are treated in terms of base-10 when asked to add 
thirty minutes. Conversely, “half an hour” tasks did not lead to this particular code. This may be 
because the unit “hour” cues for students spatial representations of time related to the analog clock, 
such that adding half an hour (as opposed to 30 minutes) to 12:40 involves does not cue the same 
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base-10 reasoning. This suggests that issues with composition and decomposition in groups of 60 may 
result from problems phrased as “thirty minutes” in more prevalent ways than when phrased as “half 
an hour.” 

Concluding Remarks 
Results indicate that students treat problems phrased as “half an hour” and “thirty minutes” 

differently. While such displacements are mathematically equivalent, they pose differential challenges 
to children solving such problems. Based on assessment data, this paper makes the following claims 
and conjectures, though all must be further substantiated through interviews of children’s in-the-
moment problem solving: 

• Students treat “half an hour” and “thirty minute” displacements differently in their problem 
solving, despite the fact that such durations are equivalent; 

• Students in each grade may translate an elapsed time of either “half an hour” or “30 minutes” 
into an hour of displacement; 

• Students translate “half an hour” into 1.5 hours, but do not do this with “thirty minutes;” 
• Students may translate displacements of “half an hour” and “thirty minutes” in coordination 

with treating the “o’clock” or “-thirty” time as a zero-point, leading to solutions ending in 
x:00 or x:30; 

• Students draw upon the cultural emphasis of time to the five minutes when solving problems 
involving time; 

• Accurate duration with inaccurate notation is observed when the resulting time either reaches 
or crosses the next hour, and when tasks are presented in minute- units. 

While these findings provide information about children’s problem solving with time notation, the 
study leads to new questions that are yet unanswered in the current analysis. This paper reports on 
trends in data from an assessment given to elementary students, yet does not answer how or why 
students respond in such ways. For example, might students’ success on problems with a starting 
time of x:10 be related to whole number understandings, such that 30 is added to 10 without regard to 
time notation? Does “half an hour” cue for students part-whole relations and their understandings of 
fractions in a way that “30 minutes” does not? 

Given the limited research in this area, the present paper begins to address questions about how 
elementary children respond to questions about elapsed time. Rather than answer such questions 
completely, results of this study lead to further questions. While clocks are certainly pervasive in 
culture, results of this study underscore that children’s conceptions of time in standard notation are 
quite varied. A concern of this project is in supporting all students in coordinating their developing 
notions of duration with standard time units, as such understandings are generative both in children’s 
developing theory of measure as well as engaging in any scientific investigation requires relying on 
time. 
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IDENTIFYING SIMILAR POLYGONS: COMPARING PROSPECTIVE TEACHERS’ 
ROUTINES WITH A MATHEMATICIAN’S 
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This paper reports two prospective teachers’ and a mathematician’s ways of identifying similar 
triangles and hexagons through the analysis of routines, a characteristic of geometric discourse. The 
findings show that visual recognition was a common approach for the mathematician as well as the 
two prospective teachers. However, when asked for justification, their routines of identifying similar 
polygons diverged. The paper also discusses the implication of classroom discourse practices to 
enhance prospective teachers’ communication and reasoning skills while learning geometric 
concepts such as similarity. 

Keywords: Geometry; Classroom Discourse; Teacher Knowledge  

In geometry, similarity is an important concept connecting many other mathematical domains 
such as spatial reasoning, ratio, proportion, and transformation functions. Similarity is defined as a 
relation between figures. For example, similar figures in a plane can be seen as pre-images and 
images of dilations (similar transformation) that preserve their shape but not necessarily the size. 
Similarity is not only a cross-cutting concept in geometry for middle school students (CCSSM, 
2014), but also a concept that has many applications in science and engineering (NGSS, 2011). Yet, 
for some teachers, similarity is still a difficult topic to teach because their prior geometry coursework 
made little mention of it. Therefore, it is important for prospective teachers (PSTs) to know with the 
topic and connect it with other concepts such as ratio and proportion. However, there is little known 
about PSTs’ geometric thinking in the context of similarity in recent research. The purpose of the 
study is to address this gap.  

Theoretical Framework 
Sfard’s (2008) framework is used to analyze participants’ interviews. She has proposed that 

mathematical discourses differ one from another in at least four features: 1) Word use (mathematical 
vocabularies and their use), mathematical words that signify mathematical objects or process; 2) 
Routines, these are well-defined repetitive patterns characteristic of the given mathematical 
discourse; 3) Visual mediators, these are symbolic artifacts related especially for particular 
communication; 4) Endorsed narratives, any text, spoken or written, which is framed as a description 
of objects, of relations between processes with or by objects, and which are subject to endorsement 
or rejection, that is, to be labeled as true or false. These features are interwoven with one another in a 
variety of ways. For example, endorsed narratives contain mathematical vocabularies and provide the 
context in which those words are used; mathematical routines are apparent in the use of visual 
mediators and produce narratives. Sfard’s framework provides an analytical tool to investigate how 
thinking is communicated through interactions. To have a better understanding of PSTs and 
mathematician’s geometric thinking and their ways of identifying similar polygons, this paper reports 
findings that address these two research questions: 1) what are PSTs’ routines for identifying similar 
triangle and hexagons? 2) What are the mathematician’s routines for identifying similar triangles and 
hexagons? 
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Method 
Six PSTs who participated in the study were enrolled in a Midwestern university teacher 

education program in the US. The mathematician was a visiting professor at the university at the time 
of the study. The interviews were designed to investigate participants’ geometric thinking in a 30-
minute one-on-one interaction. In one task during the interviews, participants were asked to identify 
similar figures among fifty pre-selected geometric shapes. These shapes included triangles, 
quadrilaterals, hexagons, and circles; all mixed together on an 11” x 17” piece ofpaper (see Figure 1). 
As shown in Figure 1, all shapes on the paper are labeled with numbers from 1 to 50. Among them, 
some are similar figures, and some are congruent figures. All interview tasks are designed to elicit 
participants’ thinking about similar polygons. For instance, in a task of identifying similar polygons, 
the interview questions such as “How do you know they are similar?” “What do you mean when you 
say ‘they are the similar’?” were asked to capture participants’ geometrical thinking in identifying 
similar figures. All participants were given the same tasks and were asked the same initial interview 
questions by the same researcher following the interview protocol. However, each interview was 
guided by individual participant’s responses to the tasks and questions. All interviews were video 
recorded and transcribed. All transcripts document what participants said and did during the 
interviews. 

 
Figure 1. Identifying similar polygons 

Results 
The results show the differences in PSTs’ and mathematician’s routines of identifying similar 

triangles and hexagons. In this paper, two PSTs’ (PST1 and PST2) routines are used to illustrate 
these differences, and the three main differences are as follows: 

• The mathematician was aware of the abstraction of similar figures at the abstract level 
whereas PSTs only focused on using measurements to verify similar figures at the object 
level.  
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• The mathematician looked for two possibilities of ratios “internal versus external,” whereas 
the PSTs did not, but used one of them instead. That is, the mathematician explicitly 
explained the two possibilities of ratios, internal ratios and external rations and how they 
could fit together to determine similar figures.  

• The mathematician considered different approaches when the first attempt did not work, 
whereas the PSTs refuted their conjectures and did not consider other possibilities that could 
show the polygons were similar. 

Matching Similar Triangles  
For this task, the participants were asked to identify all figures that are similar to a right triangle 

(#21), from the fifty figures given on the grid paper. The mathematician identified a scalene triangle 
(#33) as a similar triangle to this right triangle by direct recognition. When prompted by the 
researcher, “how do you know they are similar not based on visual?” the mathematician measured 
the sides of the trianglesand attempted to check for the ratio between them. She then measured the 
included angles of the two triangles to check for congruency. The conversation between the 
mathematician (M) and the researcher (I) is as follows: 

1    I: Which following figures are similar to this [#21]? 

#21 
2M:  Just looking visually, this one maybe [marked a circle on a triangle]. 

#33 
3I:  If I would ask not just based on the visuals, what would you do?   
4M: Can I do that [find measurements]? No, I can’t necessarily; the best I can do is that to 

show it definitely is not similar.  
5    M: 2.6 centimetres. Is that 3.5 centimetres [#33]? I would say 3 and 4.8 on this one [#21]. I 

need to have more information about the angle. 

  
6M:  It’s not ninety-degrees, maybe eighty-six. That one is ninety degrees 

 
7M: They definitely are not similar. 
The mathematician identified a triangle (#33) as a candidate, which was similar to a given right 

triangle (#21). After measuring the sides and angles of the two triangles, she refuted her claim and 
concluded, “They definitely are not similar” based on different angle measures. The mathematician 
chose the two sides and their included angle to check if the triangles were similar. The mathematician 
did not calculate the ratio of the sides but checked measurement of the included angle first. When she 
found the angle measure did not match, she made her claim of “they definitely are not similar.” In 
contrast to mathematician’s responses to the task, PST1’s routines procedures were different. She 
assumed the triangle (#21) was a right triangle by direct recognition. She identified another triangle 
(#37) that looked like a right triangle and concluded they were similar triangles:  



Geometry!and!Measurement:!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

295!

8I: Which following figures are similar to this figure [#21]? 
9PST1: I am going to go with this triangle [#37] and marked right angle signs on both triangles. 

#21  #37 
10I:  How do you know this triangle[#37] is similar to this one [#21]?   
11PST1: They both have a right angle. 
12PST1: I am sure if you set up the proportions, they have the same angles.  

PST1’s routines procedures were direct recognition and it was self-evident. When prompted by 
the researcher, PST1 realized that two other corresponding angles of the two triangles were not 
congruent to each other and thenshe changed her claim about the two triangles were similar. 
Although PST1 did not say it explicitly, she used Angle-Angle-Angle (AAA) similarity criterion to 
check if the two triangles were similar. PST2’s first reaction to same task was, “they should have 
same shape and same number of sides”. That is she would consider all triangles were similar to each 
other: 

13I: Which following figures are similar to this triangle [# 21]? 
14   PST2:  That is similar to it? It would be…number forty-eight. 

 
15I:  Why do you think they are similar?    
16PST2: Because they have the same shape and same number of sides. 
17I: Can you identify all the figures that are similar to this one [#21]? 
18PST2:   Circle them all? 

#13 

19PST2:     Would that be considered a triangle if I divide a shape [#13]?  
20I:  Maybe not. We only focus on same number of sides like you said earlier. 

PST2 identified triangle #48 as a similar triangle to #21, which was correct. However, her reasoning 
of why the two triangles are similar was incomplete. The following excerpt [18] showed that PST2 
did not understand what similar figures meant mathematically. She focused on the visual appearance 
of the polygons (e.g., they have same shape) by counting the number of sides (e.g., all triangles are 
similar if they have same numbers of sides). To explore further, the interviewer prompted for a 
different verification:   

21I: Why do you think these two triangles are similar to this triangle [#21]?  

 
22PST2:  By measuring their sides 
23I:  Show me   
24PST2: 1-2-3-4-5.. I don’t know.. I forgot how to write 
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25I: Are they similar to each other? 
26PST2: They are not [similar]. They do have same number of sides, but their length measures 

are not the same. They are similar, but they are not the same. I am confused. It’s Side-Side-
Side (SSS). 

Triangles #6 and #31 are not similar triangles. PST2 made a claim that the two triangles were similar 
because they had the same shape and the same number of sides. However, it appeared that she was 
confused about what “similar” meant because the two triangles had the same shape with same 
number of sides but different length measurements. PST2 remembered term “Side-Side-Side”, but 
did not know how to use it in her reasoning. In addition to triangles, participants were asked to 
identify similar polygons to L-shaped hexagons. 

Matching Similar Hexagons  
The mathematician identified an “L” shaped hexagon (#19) as a similar hexagon to the given 

hexagon (#24) by just looking visually again. When asked for substantiation, she measured all the 
angles in hexagon #24 and then in hexagon #19 accordingly, and checked if corresponding angles 
were congruent. After confirming the angles in the two hexagons were congruent, the mathematician 
proceeded to measure the sides in the hexagons, and to check the ratios between the two sides in each 
hexagon: 

27   I: Which following is similar to this one [#24]?  
28M: This one [a hexagon, #19] could be similar to [#24], just looking visually. 
29M: [Used a protractor to measure the angles of the two figures]. 

 
30M: Angle wise, they do seem to be all matched up. That would be not enough. I could do 

some measuring. 

 
31M: [Used a ruler to measure the lengths of the two figures]. 
32M: This length is twice as much as that, and this is more than twice, so they can’t be similar. 

 
This excerpt highlights a set of actions describing how the mathematician substantiates the claim of 
“this one [#19] could be similar to [#24], just looking visually”. She used direct recognition to 
identify a candidate that was similar to hexagon [#24]. After measuring the sides of the two 
hexagons, the mathematician found that the two hexagons did not share same ratios. She refuted her 
initial claim and concluded, “So they can’t be similar.” During the interview, the mathematician was 
concerned about the accuracy of the measurements. Her reaction to the use of measurements to 
determine similar figures was to “disconfirm” or to show “which is not.”  
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In contrast, PST1 was asked to identify similar polygons to a hexagon [#28]. Her first reaction 
was to measure all the sides in hexagon #28, and then looked for L-shaped figures that had same 
shapes with hexagon #28:  

33I: Which following figures are similar to this one [#28]?  
34PST1:  [Used a ruler to measure the sides of the given hexagon. 

#28 #14      #17     #9 

35PST1: This one [#9] is congruent to #28, so it is similar to #28 [a given hexagon]. 

PST1 concluded that the two hexagons (#9 and #28) were similar because they were congruent. 
This is a correct response as congruent figures are special cases in similar figures because the ratios 
between all corresponding sides in congruent figures are 1:1. However, the task was not complete as 
the PST1 was expected to identify all similar figures. Therefore, the researcher prompted for more 
information:  

36I: What about #14 (a hexagon) and #17 (a hexagon) are they similar to this one [#28]?  
37PST1:  I measured this side and this side [in #14], and they (ratios) are equal. When you 

compare it to this one [in #28], they are not equal.  

#14          #28 
38PST1: And this one [#17], I have these two sides, and they (ratios) are not equal to these two 

sides [in #28].  

#17 #28 
39:PST1: So they’re not proportional to each other, and they are not similar to #28 [the given 

hexagon]. 
When verifying similar hexagons, PST1 focused on checking the ratios between the sides in one 

figure (#28) to the ratio of corresponding sides in other figures (17&14). She did not check any angle 
measures. PST2’s response to the same question was different. PST2 first identified all L-shaped 
figures that would be similar to the hexagon (# 28) by direct recognition. When she was asked to 
verify, “How do you know this one (#24) is similar to this one (#28)?”(See Figure 2). 

 
Figure 2.  
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PST2’s responses of hexagons are similar to the given hexagon (#28). PST2 did not measure any 
sides and angles in the two figures, and replied by saying, “they’re the same shape, but just different 
scale sizes,” The researcher then asked, “Is this one [#9] also similar to this one [#28]?” PST2 
replied, “It looks like it’s the same size. Yes, I would have to say so. Yes.” Figure 2 presents a 
collection of hexagons that PST2 considered similar to the given hexagon (#28). PST2’s responses to 
this task showed a repeated pattern of focusing on the shape of the figures rather than checking the 
ratios of sides and measure of angles in the figures when identify similar hexagons.  

Discussion 
Findings suggest that when identifying similar figures, direct recognition is a common first 

approach to the PSTs and the mathematician based on the shapes of the figures and their orientations. 
This could be argued that geometry is one of the most intuitive areas of mathematics. However, 
procedures that are more rigorous are required to identify similar figures by checking the ratios of 
corresponding sides and the congruence of corresponding angles. Mathematically, congruence is a 
special case of similarity; however, findings show that one prospective teacher (PST2) did not think 
this is the case. When identifying similar triangles, the PSTs and the mathematician responded 
differently and their routines of identifying similar triangles showed the differences (see Figures 3, 4 
& 5).  

 
Figure 3. The mathematician’s routines of identifying similar figures 

Between the two PSTs, PST1 demonstrated a better understanding in identifying similar triangles 
than she did in identifying similar hexagons, whereas PST2 showed difficulties and confusion in 
identifying similar triangles and hexagons. The findings also suggest the vague mathematical 
understanding the two PSTs had through their use of the words “similar” and “same shape.” Note 
that both of them were aware of the informal definition of similarity, but there were confusions 
between the colloquial and mathematical meaning of the terms same shape and similar in the context 
of similarity. For example, PST2 did not understand what “same shape” meant when discussing 
similarity, and she interpreted the term as the figures shared the same number of sides, or that figures 
are shaped the same, which was not correct in the classification of similar figures. To the same word, 
similar, the two PSTs responded very differently: PST1 focused on the conditions of similarity (e.g., 
corresponding angles are equal, corresponding sides are proportional), which is more of the 
mathematical use of the term similar, whereas PST2 focused more on the “sameness” (e.g., same 
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number of sides, shaped the same) between shapes than the mathematical reasoning (see Figures 4 & 
5). The vague use of mathematical words such as similar and same shape provide information on 
how the concept of similarity was learned and understood by PSTs to make references to the wide 
range of relationships between shapes. 

 
Figure 4. The PST1s’ routines of identifying similar figures 

 
Figure 5. PST2’s routines of identifying similar polygons 

Findings of the study suggest that many misunderstandings of a concept such as similarity will 
likely be missed if we only focus on the product or single answer of the task. When the PSTs’ were 
asked to explain and to justify claims they made, and to clarify what they meant when mathematical 
terms (e.g., similar, same, proportion, etc.) were used, we started to see the vague understanding of 
similarity. It was through those interactions that the misunderstandings of the concept in similarity 
were detected by a series of questions that were designed to elicit their thinking. Therefore, one 
recommendation the study could make is to infuse discourse practices in our mathematics classrooms 
for PSTs to enhance their explaining, clarifying, and defining skills and to shed a light on their use of 
mathematical terms to ensure that the mathematical concepts are developed correctly. We need to ask 
more questions about “why” and “how” during the classroom discussions in order to help PSTs 
articulate their mathematical thinking and reasoning.  
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Reasoning and proof are an important part of the most recent curricular reform effort (NGA/CCSSO, 
2010), but previous research has shown that many pre- and in-service teachers have insufficient 
conceptions of proof (Knuth, 1999; Martin & Harel, 1998). A limitation of studies of teachers 
knowledge of proof is that researchers have focused on whether or not the teachers work was or was 
not a proof without considering how those teachers understood the concepts with which they were 
being asked to prove. The intent of this study is to understand both the concepts that pre-service 
teachers (PST) have of triangles and quadrilaterals and how they applied those conceptions to 
proving conjectures about triangles and quadrilaterals. An interesting finding is that PSTs whose 
proofs displayed a restriction on the generality of their proof (Harel & Sowder, 1998) was a result of 
their conceptions of triangles or quadrilaterals. 

Keywords: Mathematical Knowledge for Teaching; Reasoning and Proof 

The Common Core State Standards for Mathematics place emphasis on reasoning and proof for 
instruction by including reasoning as one of their Standards for Mathematical Practice and putting 
proof in clusters in half of the domains of geometry (NGA/CCSSO, 2010). However research has 
shown that teacher’s, whether pre- or in-service, elementary or secondary, have insufficient 
conceptions of proof (Knuth, 1999; Martin & Harel, 1998). Studies on teachers’ knowledge of proof 
have focused on whether they consider an argument a proof or not or to what extent the arguments 
they create are proofs. Although it is relevant to understand how teachers reason about topics, what 
studies on teachers’ conceptions of proof lack are an understanding of how their knowledge of the 
content affect their proving.  

The purpose of this paper is to report findings from such a study. Specifically, this study found 
that pre-service secondary teachers (PSST) whose proof productions had a restriction on the 
generality of their argument was a result of how they thought about the figures on which they were 
proving. The organization of this paper includes a description of literature on conceptions of figures 
and proof, which is followed by a description of the study. Results from a PSST who was represented 
of others PSSTs will be presented along with supporting evidence from other PSSTs, but due to 
space restrictions a detailed summary of only one PSST will be given. Finally, implications for 
teacher education will be discussed. 

Conceptions of Figures and Proof 
There are two types of geometric definitions, partitional and hierarchical (de Villiers, 1994). 

Partitional definitions put figures into disjoint sets, for example a square is not a special case of 
rectangle. Hierarchical definitions classify figures so that more particular figures form subsets of 
more general figures. Hierarchical definitions are useful for proving (de Villiers, 1994) because if a 
conjecture is proved for a figure then all the figures in the subset inherit that conjecture. 

A proof in this paper is meant to be an argument that convinces or persuades an individual or 
community (Harel & Sowder, 1998). Harel and Sowder (1998) created a taxonomy of proofs that 
they found individuals use. Two of their categories are relevant to this study so they will be the only 
categories described. The empirical proof scheme is marked by arguments that validate based on the 
conjecture being true for one or more examples. The transformational proof scheme contains three 
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criteria (a) generality–understanding to justify for all cases, (b) operational thought–evidence of goals 
and sub-goals, and (c) logical inference. Individuals who reason in a transformational way can face 
restrictions on the generality of their proof. Meaning that proofs are proved in a specific case, like 
rectangle, but intended to prove for a more general case, like quadrilateral. The transformational 
proof scheme is considered the first deductive proof scheme. 

Harel & Sowder (1998) suggest that it is necessary to have a dynamic conception of figure in 
order to prove, meaning that as one reasons about a quadrilateral, for example, it is important to 
understand the variety of images a quadrilateral can take on instead of focusing on one static or 
prototypical image. Prototypical image is meant to be a specialized case where even things like 
orientation are relevant. An example would be that a triangle has to have three congruent sides and a 
horizontal base. Having a diverse set of examples from which to reason on is considered an important 
skill for proving Sandefur, Mason, Stylianides, Watson (2013). 

Method 
Thirteen PSST agreed to participate in the study. All were enrolled in the second of two required 

methods courses and were in the last semester of their course work. One PSST was majoring in 
special education and getting an endorsement in mathematics, but all others were majoring in 
mathematics education. This population was targeted because they would be near the end of their 
mathematical course work and thus have finished their formal training in proof. 

There were two phases of data collection. The goal of the first phase was to gain an initial 
understanding of the PSSTs’ conceptions of triangles and quadrilaterals and what types of arguments 
they find convincing. The PSSTs were given a packet to take home and return in one week that 
contained thirty-four items. Items asked PSSTs whether definitions were valid or not, whether figures 
had or did not have certain properties, whether conjectures were valid or not, to interpret statements 
of inference, and whether certain arguments were or were not proofs. The items were in a multiple-
choice format. 

The second phase of data collection was an hour-long task-based interview. During the first ten 
to fifteen minutes of the interview, the PSSTs were asked to elaborate on some of their work from the 
take home packet. The rest of the time was spent asking the PSSTs to explore geometric conjectures 
that are typical of a high school geometry course. They were given a list of thirteen conjectures and 
told that some of them are true, some of them are false and all of them are based on Euclidean 
geometry. The majority of the conjectures (9) were false, but they were not entirely false meaning 
that they were often stated for the general case and were not valid for the general case but were true 
for a specific case. The purpose of this was to put the PSSTs in a position where they were first 
exploring whether the conjecture was or was not true in an effort to evoke transformational 
reasoning. 

The PSSTs were asked to decide if the statement was or was not true. If they felt the statement 
was true, they were asked to provide a justification that they felt would prove the conjecture. If they 
felt the statement was false they were asked to give a counterexample and if possible amend the 
conjecture so that it would be true and prove that conjecture.  

During the interview the PSSTs were given a ruler, straight edge, compass, protractor, a list of 
terms and their definitions taken from a high school geometry textbook, and geometer’s sketchpad 
that had built in tools that would construct special cases of triangles and quadrilaterals. The PSSTs 
were told to choose the conjectures with which they felt most comfortable because there would not 
be enough time to finish all the conjectures. 

The take home packets were scanned and marked for accuracy. Interesting patterns in the PSSTs 
answers were identified to be explored in the interview during the second phase. The interviews were 
video recorded and transcripts were made along with scans of written work. The PSSTs proofs were 
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coded using Harel and Sowder’s (1998) taxonomy of proof schemes. The constant comparison 
method of grounded theory (Corbin & Strauss, 2008) was used to analyze how the PSSTs 
conceptions of figures affected their proof productions. Initial passes created codes while continued 
passes through the data resulted in codes being removed, added, and refined until themes emerged. 
One particularly relevant theme that emerged is that the proof productions of the PSSTs that had a 
restriction on the generality of the proof were a result of the PSSTs holding a partitional, static 
conception of figures. 

Results 
During the first phase a PSST with the pseudonym Lara accepted all partitional definitions for 

rectangle and also accepted a definition that was not valid for rectangle. On another item Lara was 
asked if different classes of quadrilaterals had the property that the diagonals bisected each other. She 
drew prototypical images of the classes and based off of those images she accepted properties that 
were not true about quadrilaterals. This suggested that Lara did not have a strong concept of 
quadrilateral. Moreover, for Lara it seemed that any property of a figure was a defining property.  

During the second phase, Lara worked on seven conjectures. She ran out of time on her last proof 
and we chose to stop before she finished. She proved one conjecture, had one purely empirical proof 
and had five proofs with a restriction on the generality of the argument. What was clear is that it was 
not Lara’s inability to think deductively that lead to her struggles with proving the conjectures it was 
her limited conceptions of figures.  

During the second phase, it became clear that Lara saw the general case, quadrilateral, as 
constituting only the special cases (e.g. rectangle, rhombus, parallelogram, and square). For example, 
she proved the conjecture “the diagonals of a quadrilateral cut the area in half” by proving that the 
triangles created by the diagonal of a quadrilateral would be congruent. When asked about her proof 
being for a rectangle she said, “A rectangle is a quadrilateral.” 

For that same conjecture, Ana was confused at first and said she would have to prove for each 
case. She then proved that the triangles created by a diagonal of a rhombus would be congruent using 
the Side-Side-Side Postulate (SSS). She stated that opposite sides being congruent was a property 
and that the third pair of congruent sides was the shared diagonal. She then drew a rectangle, 
parallelogram, and square and created the same proof that rested on SSS for all three cases. When 
asked if she needed each part for her proof to be formal she said “if you wanted to prove for all 
quadrilaterals you would need to show for each case.” Another PSST did not think she could prove a 
conjecture for all quadrilaterals unless she proved each case. In total, five of the thirteen PSST 
reasoned as if quadrilateral only meant the special cases. 

To compound this Lara’s figures appeared to be static for her since she drew only one figure for 
each conjecture except one and on that conjecture her new drawing appeared congruent to her 
previous drawing she simply made her lines straighter. For example she proved the conjecture 
“isosceles triangles are congruent when their vertex angles are congruent” by creating two similar 
sized isosceles triangles and using SSS. She stated from the definition that two sides would be 
congruent and she falsely assumed that the two pairs must then be congruent to each other as well. 
She then reasoned that since the vertex angles are congruent the opposite sides would have to be the 
same length. After creating her argument she gave no indication of considering how her argument 
would stand up for other figures despite being prompted to do so. When asked if she felt there were 
other ways to draw her figure, she said “I don’t think there’s another way.” 

Two other PSSTs gave a similarly false deductive proof for the problem because they drew two 
isosceles triangles that appeared to be congruent. Two other PSSTs gave a proof that had a restriction 
on the generality of the argument. An example would be that one PSST took the measure of the 
vertex angle to be 40 degrees and then using that specific case showed that the other angle measures 



Geometry!and!Measurement:!Brief!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

303!

would have to be 70 degrees. Eventually she showed that all three pairs of sides and angles were 
congruent. 

Finally, Lara’s figures were in my opinion protypical. Her triangles were nearly perfect 
equilateral triangles. Her drawings for quadrilateral were either rectangles or squares. That is not to 
suggest that Lara would not have recognized a definition of triangle as a polygon with three sides. It 
is to note that because Lara often reasoned off of one figure and that figures often perceptually had 
properties that were not true for all figures in the class she often became confused as to whether or 
not the conjecture was true. For the previous proof she went back and forth three times before 
deciding it was true. Because she did not spend time exploring diverse examples of triangles she was 
likely convinced perceptually by her drawing.  

Interestingly, Lara’s only formal proof was for the conjecture “the diagonals of a rhombus are 
angle bisectors.” She drew one diagonal and mentioned drawing either one would not matter. She 
then stated that because it was a rhombus the two triangles were isosceles since the sides were all 
equal. Because the triangles were isosceles she knew that the base angles were equal. She then 
proved the isosceles triangles congruent and showed that all four angles created by the diagonal were 
congruent. Lara, like the other PSSTs whose proofs had a restriction on the generality of the 
argument was able to create a formal proof, but the conjecture did not test her restriction as it was 
true for all rhombi.  

Implications 
It is often stressed that teachers need richer and/or more experiences with proof however, the 

struggle the PSSTs faced in this study was more a result of how they conceived of the figures. 
Therefore it may be critical to first improve teachers’ conceptions of figures prior to improving their 
proving ability. Or PSSTs may improve both their understanding of figures and proving by exploring 
conjectures that are not necessarily true so that they need to be truly explored first. 
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We investigated elementary children’s three-dimensional mental structuring to measure volume 
using a dynamic computer environment constrained by a fixed sequence of length, width, and height. 
The results of three case studies indicate that children’s attention to multiplicative reasoning over 
additive reasoning, recognition of the importance of three-dimensions, and interpretation of two-
dimensional representations as three-dimensional were important in their development of reasoning 
about volume. The constrained order of dimensions proved critical. 

Keywords: Geometry; Learning Trajectories; Measurement 

Measurement of three-dimensional space is an integral topic in children’s mathematical and 
scientific development. However, children’s development of volume concepts is a long and 
complicated journey. Two important conceptual advances in children’s understanding of volume 
involve unitizing and spatial structuring. Young children begin to quantify volume by unitizing space 
and iterating that unit throughout space (Van Dine, et. al., in press). Development of exhaustive and 
efficient counting schemes for their units involves the grouping of units, and the further grouping of 
units of units (Battista & Clements, 1996). This spatial structuring is foundational for computing 
volume.  

The purpose of this investigation was to further understand how students develop spatial 
structuring schemes by grouping units. We instituted a dynamic computer environment that we 
believed would help students establish and apply structuring schemes to three-dimensional tasks 
presented in a two-dimensional format to answer the following question: In what ways does a 
dynamic computer environment constrained by a fixed order of operating in each of three dimensions 
affect students’ three-dimensional mental structuring? Based on the research of Clements (1999), we 
expected that a computer-based visual environment might function as a concrete manipulative for 
students in much the same way as physical objects. In addition, the environment provided a restricted 
structuring scheme that would profer the recognition and incorporation of groups of units rather than 
single units in a broad collection. The restrictive aspects of our microworld afforded us the 
opportunity to investigate children’s change in their application of spatial structuring schemes to 
operate with groups of units, much as dragging in dynamic geometry software was analyzed by 
Arzarello, Olivero, Paola, and Robutti (2002) to infer types of thinking about geometric ideas.  

Theoretical Framework 
We used a learning trajectory (LT) about volume measurement (Van Dine et. al., in press) to 

analyze student progression because we were investigating children’s development of spatial 
structuring schemes. This LT consists of a developmental progression that includes specific 
instructional goals and tasks that support students’ growth. These goals and tasks derive from 
Hierarchic Interactionalism’s stance that children progress through domain-specific, hierarchic levels 
that can be characterized by specific mental objects and actions. 
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The following volume LT levels specify reasoning children exhibit. At Volume Quantifier (VQ) 
children distinguish volume from other spatial dimensions. At Volume Unit Relater and Repeater 
(VURR) children relate size and number of units explicitly and understand that fewer larger than 
smaller units will be needed to fill or packspace. At Initial Composite 3-D Structurer (VICS) 
children understand cubes as filling a space andexplicitly relate size and number of units to volume. 
Children also use additive reasoning, such as skip-counting, converting units requiring ratios even 
more complex than 1:2. At 3-D Row and Column Structurer (VRCS) children begin using 
multiplicative comparisons to carry out comparative analyses of volume among several shapes or 
objects. 

Methodology 
As part of a larger study, we used a case study approach to investigate the thinking of three 

students at a private school in the Midwest. Each student participated in two interviews with one or 
two researchers. During each interview we asked the student to find the volume of rectangular 
prisms, first without, and then with the support of a dynamic computer environment developed using 
GeoGebra (International GeoGebra Institute, 2015).  

 
Figure 1: Dynamic Computer Environment 

At the beginning of the first interview we introduced the student to the computer environment, 
(see Figure 1) asking him to push each color’s ‘+’ and ‘–’ buttons and predict what would occur for 
each push. On each volume task, we first presented the student with a paper version identical to the 
task pictured in Figure 1. The interviewer said, “The volume of the small cube is one cubic unit. 
What is the volume of the larger solid?”  

After the student solved the task on paper, the interviewer asked him to solve the same task using 
the computer environment. This allowed the computer environment to act as an intermediary 
between the two-dimensional representation and three-dimensional reality of the tasks. The computer 
environment allowed the student to move the unit cube inside a wire frame of the initial rectangular 
prism and add cubes to fill the wire frame controlled by the three sets of ‘+’ and ‘–’ buttons. Each set 
would add or subtract cubes in one of three directions.  

We asked the student to use each set of buttons in succession, left to right, without returning to 
previous sets. When the student used the first set of buttons one cube at a time would be added or 
subtracted from the set of cubes, creating an n x 1 x 1 row of cubes. When the student used the 
second set of buttons new nx 1 x 1 rows would be added (or subtracted), one row at a time, resulting 
in an nx m x 1 layer. When the student used the third set of buttons new nx m x 1 layers would be 
added (or subtracted), one layer at a time. Any of the ‘+’ and ‘–’ buttons could be used at any given 
time, but we allowed few exceptions to the left to right succession. These restrictions created an 
environment conducive to students’ spatial structuring development.  
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The interviewer asked questions of the student throughout the process of filling the wire frame on 
the computer. In a typical interview, just before using a set of ‘+’ and ‘–’ buttons, the student was 
asked to predict how many cubes there would be when he finished using that set of buttons. In some 
interviews, after filling the wire frame with cubes we asked the student to push one of the show 
colors buttons, which would alter the colors of the cubic units to show horizontal layers, vertical 
layers left to right, or vertical layers front to back in alternating colors.  

Results, Discussion, and Conclusions 
Peter, age 9, Tim, age 9, and Mike, age 10, were chosen as case studies because each 

demonstrated growth over the course of two interviews. Peter drew two-dimensional representations 
to solve three-dimensional problems and changed from a two-dimensional to three-dimensional 
counting scheme. Tim progressed from additive to multiplicative thinking and identified the 
importance of three dimensions in calculating volume. Mike changed his interpretation of the paper 
task and aligned his counting strategy with the computer. 

Growth Along the Volume Learning Trajectory 
At the beginning of the first interview Peter was using strategies typical of VQ when working on 

paper. For example, he was not accounting for hidden cubes, double counted cubes on the edge, and 
did not connect the displayed measures with the number of cubes that would fit along an edge. 
However, he also demonstrated strategies typical of VRCS when working with the physical 3-D 
objects and when using the computer environment. As Peter progressed through the two interviews 
he displayed fewer misconceptionstypical of VQ, such as double counting edge cubes, while working 
each task on paper. In their place, he began to use strategies typical of VRCS. This suggests that the 
analogous tasks in the dynamic computer environment helped Peter progress along the LT in his 
treatment of the paper tasks. 

At the beginning of the first interview Tim demonstrated strategies and misconceptions ranging 
from VQ (failure to connect number with space) to VRCS (operating on a layer). Although Tim was 
able to calculate accurately on the final task, he did not demonstrate that he was operating at VRCS 
when solving the problem on paper. Using the computer environment Tim demonstrated, through 
consistent operation on composite units, that he was operating at VRCS. This suggests that the 
mediating power of the computer environment characteristic of Peter’s experience might not have 
reached its full potential for Tim. 

At the beginning of the first interview Mike was not operating at VRCS on the paper task, but 
was able to operate on a layer (typical of VRCS) using the computer environment. On the final task 
of the second interview Mike used VRCS strategies when solving the task on paper. This suggests 
that, in a manner similar to Peter, Mike progressed along the LT in his treatment of the paper tasks 
with the mediating influence of the computer environment. 

Influence of the Dynamic Computer Environment 
Students’ three-dimensional spatial structuring schemes were influenced in several ways by the 

use of a dynamic computer environment that constrained students to a sequential use of length and 
width of base and then finally the height of a prism. First, the computer environment enhanced the 
opportunity for students to recognize the efficiency of multiplication for volume calculation. For 
example, Tim transitioned from additive to multiplicative strategies. Peter transitioned from a unit 
counting strategy to a combination of multiplication and addition.  

Second, the computer environment highlighted the importance of three distinct measurements in 
the calculation of volume. Although all three students progressed from the use of many 
measurements to the use of only three, this was most apparent in the interviews with Tim. During the 
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second interview Tim began writing the words tall, long, and wide with measurements ascribed to 
each.  

Third, the computer environment acted as a mediator between two- and three-dimensional 
representations. Although it was difficult for all three students to interpret the two-dimensional 
representation of a volume task as a three-dimensional task, the computer environment facilitated a 
reinterpretation of the task that allowed the students to approach the task with a three-dimensional 
spatial structuring scheme.  

Implications 
We argue that there were three critical features of the study to support growth and we 

recommend that volume instruction include activities that incorporate these features. First, the 
computer environment implemented an implicit spatial structuring scheme by first adding single 
cubes to make a row, then adding additional rows to make a layer, and finally adding additional 
layers to create the full prism. This feature was important because it highlighted a reasonable spatial 
structuring scheme and the multiplicative nature of volume calculation.  

Second, this iteration of rows and layers was accentuated by having students use each set of 
buttons in succession without repeated use of prior sets of buttons. This helped students visualize a 
beneficial structuring of space early in the process. It also accentuated the three-dimensional nature 
of volume and the use of those dimensions in sequence.  

Third, the students were engaged in both paper and computer tasks. This was important because 
the computer provided a medium that allowed students to connect the two-dimensional paper 
representation with actual three-dimensional space. Although this took time, working the same task 
on paper and on the computer allowed the students to make connections between two-dimensional 
representations and three-dimensional space. Further research should investigate the efficacy of this 
intervention for instruction on volume measurement with elementary students. 
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Students’ difficulties learning angle concepts constitute an enduring problem for the field of 
mathematics education that has been well documented at the elementary, middle, and undergraduate 
levels (Lehrer, Jenkins, & Osana, 1998; Mitchelmore & White, 2000; Moore, 2013).  Recent research 
with undergraduate participants (Moore, 2013) has illustrated that instructional sequences with a 
focus on quantitative reasoning (Thompson, 2011) are productive for developing an understanding of 
angle measure as ratio.  However, the outcomes of such an approach to teaching angle measure have 
not been documented in the existing literature with participants in other stages of education.  While a 
ratio understanding of angle measure is productive for undergraduate students enrolled in a 
precalculus course, ratio may be a difficult starting point for some pre-college students learning about 
angle measure.  Thus, research is needed to examine the effects of an instructional sequence with an 
emphasis on quantitative reasoning designed for students at other educational levels.      

In this poster session, I present tasks, data, and findings from individual initial interviews 
conducted with two ninth-grade students who participated in an eight-month teaching experiment 
(Steffe & Thompson, 2005) focusing on angle and angle measure. The tasks in the initial interview 
protocol were organized around three themes that align with key principles of quantitative reasoning.  
First, prompts were developed to explore students’ conceptions of angles as objects.  Second, 
students were asked to describe the quality of an angle that is described by an angle’s measure.  
Finally, students were provided with a series of tasks designed to explore how students order angles 
based on varying extents of this quality.  This final theme was designed to engage students who have 
yet to develop an understanding of ratio.  Findings regarding substantial differences in students’ 
conceptualizations of angles will be presented.   Additionally, three distinct strategies for making 
gross quantitative comparisons exhibited by one student will be presented.  Implications for teaching 
about angle concepts will be considered.     
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ELEMENTARY STUDENTS’ SPATIAL REASONING IN A MINECRAFT ENVIRONMENT 
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Spatial-visualization using three-dimensional objects from different viewpoints is an important 
aspect of geometric reasoning and has been shown to be positively correlated to mathematics 
achievement (Cheng & Mix, 2014). Emergent work within a dynamic geometry spaces (i.e., Battista, 
2007) calls for further investigations in these environments. We report on an exploratory study that 
aims to examine student spatial reasoning with tasks involving cube buildings in a popular computer 
game. Our study extends how students reason about spatial tasks when using the computer game 
Minecraft, an open-world building game, as a dynamic geometry environment. 

We examined 16 4th and 5th grade students working collaboratively on spatial tasks in a Minecraft 
environment during an after-school mathematics enrichment camp.  We gave participants a variety of 
spatial tasks to determine how the game Minecraft could be utilized as a dynamic geometry 
environment.  The tasks were oriented around providing participants with three orthogonal views 
(front, top as seen from the front, and right side) of a cube building (Battista & Clements, 1998). The 
participants were asked to construct these buildings from the given orthogonal views, as well as 
create a written procedure to communicate their building strategy.  

Our results indicate that the participants had trouble initially coordinating the multiple views and 
integrating them into one structure. Consistent with existing work (Battista & Clements, 1996), most 
students were eventually able to coordinate and integrate the views by exploring the placement of 
cubes. Our participants found the top view to be the most difficult to integrate, as they were initially 
not coordinating the other two viewpoints to account for depth. They interpreted the top view as the 
top layer of the structure. However, our participants used in-game features to create a labeling 
scheme by placing sign-posts to help in orienting their perspectives so that each participant could 
keep track of the same orthogonal view.  By using the dynamic features of Minecraft to rotate around 
the cube building and observe a variety of viewpoints, the participants were able to explore the 
placement of the cubes, and thus coordinate and integrate the three viewpoints.  Our poster will 
encapsulate our data, research and analytic processes, significant findings, as well as provide a guide 
for using Minecraft as a teaching and research tool. 
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Calculus may be regarded as a gatekeeper for students pursuing STEM careers, as a required 
course for many students in engineering and science. The calculus reform debates of the 1990s 
illustrated this ongoing struggle to improve the teaching and learning of calculus. There is a need for 
understanding what skills may be helpful for students to be successful in learning calculus. 

One such skill is spatial reasoning, the ability to imagine manipulation of objects. Ferrini-Mundy 
(1987) investigated whether spatial reasoning training would improve students’ achievement in 
calculus. She found that spatial reasoning relates to certain areas of calculus. Studying the 
relationship between spatial reasoning and calculus specifically has some grounding, because spatial 
reasoning is considered integral to studying engineering (Ferrini-Mundy, 1987). This study aims to 
answer the following research questions: What do calculus instructors perceive as topics from 
calculus that use spatial reasoning? What kinds of spatial reasoning are involved in learning 
calculus? The aim is to see (a) if and where spatial reasoning appears in calculus content and (b) 
identifying if there are certain types of spatial reasoning over others that are helpful to learning 
calculus.   

Uttal et al. (2012) constructed a 2x2 framework for classifying types of spatial tasks. A task is (a) 
intrinsic or extrinsic and (b) dynamic or static. A spatial task is intrinsic if the focus of the task is 
about the object itself, whereas a task is extrinsic if the focus is on the relationship between an object 
and its environment. As a second dimension, a task is dynamic if the subject must mentally imagine 
movement, whereas a task is static if it does not involve movement.  

Semi-structured interviews were conducted with four (N=4) calculus instructors at a large 
university. Participants discussed the role of spatial reasoning in single variable and/or multivariable 
undergraduate calculus. Then, they gave specific examples or topics they believed used spatial 
reasoning or where spatial reasoning would be helpful. These examples were analyzed using Uttal et 
al.’s (2012) framework to identify the types of spatial reasoning.  

Some topics that the participants gave included the Fundamental Theorem of Calculus, epsilon-
delta limits, integrals, level fields and planes, three dimensions in general, etc. This research is 
currently in the analysis phase, but preliminary results suggest that many of these calculus examples 
are dynamic and extrinsic in nature. This suggests that students who struggle with imagining 
movement, especially objects in an environment, may also struggle with understanding certain topics 
in calculus; this research hopes to illuminate how spatial reasoning is embedded in calculus. 
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Researchers have stated the importance of broadening students’ opportunities to establish 
connections with their funds of knowledge when doing mathematical work (Drake et al., 2015).  By 
funds of knowledge we refer to the knowledge that students accumulate from their life experiences 
(González, Andrade, Civil, & Moll, 2001). We identify teachers’ actions for activating students’ 
prior knowledge in typical geometry lessons and provide a description of these actions. Drawing 
from a social semiotics approach to examine meaning making processes in mathematics classrooms 
(Morgan, 2006), we ask: What meanings do teachers construct when establishing connections 
between students’ prior knowledge and mathematical content? We provide examples of actions that 
teachers perform with detailed descriptions about the relationships that teachers establish to support 
students’ mathematical understanding. 

We analyzed eight lessons from five different teachers in four different high-needs schools. We 
focused on how the teachers established connections with three sources of prior knowledge: 
mathematical content, the context of the problem, and out-of-school practices. We identified sixteen 
instances where teachers activated students’ prior knowledge with 13 actions. Seven actions 
pertained to mathematical content, six actions pertained to out of school mathematics, and no actions 
were related to contextual problems. This finding may respond to the fact that none of the lessons 
were problem-based, so the teachers did not need have to discuss relevant contexts as in other 
investigations (e.g., Jackson et al., 2013). We then conducted a thematic analysis (Herbel-Eisenmann 
& Otten, 2011) to examine how teachers constructed mathematical meanings. For mathematical prior 
knowledge, teachers established relationships between students’ knowledge of mathematical 
definitions, concepts, theorems, and algebraic operations. For out-of-school practices, teachers 
established relationships between spatial or environmental themes, cultural references, and 
embodying mathematics with properties of angle pairs. Actions connecting with out-of-school 
practices created multiple entry points to develop mathematical understandings. Our goal is to show 
how these actions promote students’ understanding of geometric concepts in relation to their funds of 
knowledge. Furthermore, cataloging teaching actions have implications for teacher educators and 
researchers in documenting examples of activating students’ prior knowledge in secondary 
mathematics. 
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According to PSSM, "Spatial visualization—building and manipulating mental representations of 
two-and three-dimensional objects and perceiving an object from different perspectives—is an 
important aspect of geometric thinking" (NCTM, 2000, p. 41).  In fact, almost all geometric 
reasoning and problem solving are intimately connected to spatial reasoning.  More generally, the 
National Research Council claims that, "Underpinning success in mathematics and science is the 
capacity to think spatially" (NRC, 2006, p6), a statement backed by much research (Newcombe, 
2010; Wai et al, 2009). 

In this paper, we investigate the nexus of geometric and spatial reasoning by examining students' 
reasoning about 3D packing problems (Battista & Berle-Carman, 1996). For example: How many 
packages consisting of a line of 5 cubes fit into a 4-by-6-by-3 box?  Such tasks add complexity to 
students' spatial structuring and enumeration because the packages may not completely fill the box, 
and students must properly visualize package orientations.  Packing problems are not only important 
in mathematics, but provide an opportunity for students to deepen, clarify, and extend their reasoning 
about volume and geometric measurement.  

In our analysis we use theoretical constructs from research on spatial visualization and research 
in mathematics education to investigate the reasoning, cognitive processes, and mental models 
students use to solve cube-package problems.  We also analyze the cognitive obstacles students face. 
Our data sample consists of videotapes of four 5th grade boys who were working in pairs on cube-
package problems in an inquiry-based classroom as part of a four-week unit on volume.  In our data 
analysis, we discovered three cognitive processes above and beyond those used in standard cube-
packing, volume problems—package-orienting, orthogonal projecting, and package-locating. We 
also found that students were using three types of mental models: layer composite-unit based, non-
layer composite-unit based, and non-composite-unit based.  Our research geometrically elaborates 
two general spatial reasoning strategies described in spatial visualization research—visualizing 
object transformations and decomposing objects into parts and reasoning about the parts (Hegarty, 
2010). 
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In this paper we propose a refinement of Michener’s (1978) well-known example classification based 
on data from university mathematicians. The refinement takes into account the mathematician’s 
perspective on the role of examples in doing mathematics. More specifically, our work provides 
insight into the ways in which mathematicians talk about using examples in their scholarly work and 
their work with students. The proposed classification has the potential to inform our work as 
teachers as we strive to create opportunities to engage students in authentic mathematical work. 

Keyword: Advanced Mathematical Thinking 

Examples play a significant role in teaching and learning mathematics. Often it is with a carefully 
formulated example that subtleties in a definition or an algorithmic process can be detected. 
Examples make it possible to consider generalities, but can also limit one’s mathematical 
perspective. Ideally, mathematical learning experiences provide opportunities to develop a rich array 
of examples that contribute to students’ problem-solving skills and understanding. 

Interestingly, what is known about the role of examples in doing mathematics is not adequately 
informed by the mathematician’s perspective. Few studies on examples or related topics have 
mathematician participants (c.f. Lockwood, Ellis, & Knuth, 2013). On the other hand, there is 
evidence that mathematicians frequently generate examples in the process of validating a proof given 
by a peer (Weber, 2008) and that mathematicians use different types of examples in conjecture-
related work (Lockwood, Ellis, & Knuth, 2013). In addition, given the number of proofs without 
words publications, it is reasonable to assume that mathematicians value opportunities to “see the 
general in the specific” (Mason & Pimm, 1984). That is, mathematicians sometimes use an example 
to make a proof. However, we have little evidence that speaks to the mathematicians’ perspective on 
the use of examples in teaching or how examples support their own mathematical work. 

Michener’s seminal work (1978) presented an epistemology of mathematics from her perspective 
as a mathematician that classified example types for the development of mathematical thinking: start-
up examples, reference examples, model examples, and counterexamples. Classifying an example is 
necessarily tied to the purpose the example serves in supporting mathematical learning. Studies on 
the use of examples with students continue to reference Michener’s classification (e.g., Alcock & 
Inglis, 2008; Watson & Mason, 2002; Zaslavsky & Shir, 2005). Because of this, we wondered 
whether Michener’s classification is useful when examining the ways mathematicians use examples 
in their work. In particular, we asked: do mathematicians’ articulations of the uses of examples align 
with these classes? Do the classes capture the range of the mathematicians’ articulations related to 
the uses of examples? 

We describe our initial refinement of Michener’s epistemology based on data from an earlier 
study where we examined how mathematicians make sense of definitions (Kinzel, Cavey, Walen, & 
Rohrig, 2011). We then use preliminary analysis of data from a current study focused on 
mathematicians’ use of examples more generally to propose further refinements.  

Background 
Michener’s (1978) epistemology of mathematical knowledge presents three interrelated 

categories of items: results (theorems), concepts (definitions, heuristics, advice), and examples 
(illustrative material). The interrelatedness of these categories is described in terms of a 
predecessor/successor relationship: Examples may lead to the construction of definitions and/or 
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theorems or alternatively may serve to illustrate a definition or theorem. These relationships are 
connected through the notion of “dual relations” and the identification of “dual items.” The dual 
items of a particular example are the ingredient concepts and results needed to construct the example 
and the results motivated by the example. Similar duals can be defined for results and concepts. 
Thus, examples are integrally entwined with the other categories of items. 

Michener further states that because not all examples are “created equal,” those more noteworthy 
deserve further attention and can be grouped into epistemological classes. These classes are not 
intended to be disjoint: A single example can play more than one role, perhaps even within a 
particular context or situation. It is these classes of examples in which we are interested. Michener’s 
four classes of examples are paraphrased below (1978, pp. 366–368). 

• Start-up examples are used to introduce a new subject by motivating basic concepts and 
useful intuitions, such as using a specific picture or visual representation to highlight key 
features of graphs of monotonically increasing sequences. 

• Reference examples are widely applicable and provide a common point of contact, and so 
tend to be referred to repeatedly. This class can also include standard cases used to verify 
one’s understanding of a particular concept or result as when a particular function is used to 
illustrate what it means for a graph to be concave down. 

• Model examples suggest and summarize the expectations and default assumptions about 
results and concepts. The absolute value function could be a model example for the idea that 
a continuous function need not be differentiable on its domain. 

• Counterexamples sharpen the distinctions between concepts and are used to show a statement 
is not true. The function f (x) = x3, x ∈ℜ  is a counterexample to the statement that all cubic 
polynomial functions have two local extreme values. 

Goldenberg and Mason (2008) elaborated on Michener’s classes, pointing specifically to the role 
of “pertinent nonexamples” (p. 184) in clarifying the sorting of items into things that are versus 
things that are not. Nonexamples are not equivalent to counterexamples in that there may not be a 
statement whose truth is in question; however, the identification of nonexamples can also serve to 
sharpen distinctions or interpretations of results and concepts. Nonexamples may also be used to 
develop one’s intuition (start-up example) or to verify one’s established understanding of a concept 
(reference). The primary use of nonexamples is to highlight contrast, which can overlap with the 
purposes of other classes. In this paper, we include nonexamples as a fifth class in our framework, 
paying particular attention to instances when nonexamples can be classified otherwise. As we 
describe in the next section, data from our earlier research supported the inclusion of this fifth class. 

Methodology  
Interview data from our earlier research, which focused on how mathematicians make sense of 

definitions, revealed themes related to the role of examples within that work (Kinzel, Cavey, Walen, 
& Rohrig, 2011). Nine mathematicians participated in interviews in which they were asked to first 
describe how they make sense of a new definition for themselves and then how they support students 
in making sense of new definitions. Examples, and the purposes for using examples, were prominent 
in the mathematicians’ descriptions. Making sense of definitions is a key component of mathematical 
work but does not capture the full range of that work. We used data from the earlier study to begin a 
refinement of Michener’s framework, then returned to the same group of mathematicians to explore 
the role of examples beyond the context of definitions. In the follow-up study we asked the 
mathematicians to review the classes of examples presented in the framework and consider (1) how 
well the framework reflects the ways in which they use examples, (2) if there are uses of examples 
not represented in the framework, and (3) if the framework is a useful means for thinking about 
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mathematical work, either for themselves or for students. As we are still collecting data from the 
follow-up study, what follows are the methods used to establish the initial refinement.  

Interview data were transcribed and pseudonyms were assigned to the participants. Individual 
research team members reviewed transcripts to identify instances where the mathematicians made a 
reference to the use of an example (example-instances); coded transcripts were then shared and 
example-instances verified. To be identified as an example-instance, an articulation by the 
mathematician either explicitly included the word “example” or referred to illustrating a concept or 
result in some way; for instance, a description of how the mathematician uses examples to clarify 
which items fit a definition and which do not counts as an example-instance. The instances we 
identified did not always include the articulation of a specific concept or mathematical object. Where 
possible, the specific concept or result within the instance was identified (e.g., articulating the 
usefulness of providing visual examples to illustrate the concept of collinear points).  

The second stage of analysis focused on coding the example-instances based on Michener’s 
(1978) classes of examples. We focused the data analysis through two questions: (a) What types of 
examples did the mathematicians describe? and (b) How did they describe the purpose of each 
example? We began this part of the analysis with a discussion of Michener’s classes and a group 
analysis of one transcript to clarify the shared understanding of the classes. This involved using 
transcript data to clarify distinctions between the classes. These distinctions often focused on the 
perspective of the learner as well as the intended use of the example by the mathematician. After 
these criteria were established, the remaining transcripts were analyzed by individual team members; 
two other team members then verified the coding. Within this analysis, we encountered several 
articulations related to the construction or analysis of things that are not; a function that would not 
meet the criteria of a particular definition, for instance. We introduced nonexamples as a fifth class in 
the framework to capture these articulations. 

To illustrate the coding process, we present several example-instances and the resulting 
classification. Consider the articulation from Adam in response to what helps him to make sense of a 
new definition: “I start off with things that are familiar to me . . . I would start going through the list 
of standard examples that I have in my head for these.” This instance was coded as reference because 
we inferred from this statement that Adam’s “standard examples” were widely applicable.  On the 
other hand, Sam responded to the same question as follows: “the simplest thing to try first is just to 
look at the specific concrete examples … you kind of get a feeling of how this specific definition is 
working.” This instance was coded as a start-up, since we inferred from “get a feeling of how this 
specific definition is working” that Sam’s purpose was to develop his intuition. About three-fourths 
of the way into the interview with Greg he began explaining the importance of using examples with 
students where the “main feature” of the concept is “worked out that we actually want to transport by 
those examples.” By this, we inferred that he was articulating the importance of using an example 
that illustrates critical features, and thus coded it as model.  

After we coded all the example-instances, we examined the instances within each class to 
identify themes in how mathematicians talked about using examples to support either their own or 
their students’ learning. Broad epistemological themes emerged within each class of examples. 
Recall that mathematicians were asked to reflect on their own processes/experiences as well as on 
those they intend for students. Because of this, it was necessary to identify the intended learner 
within example-instances. Each instance could potentially refer to the mathematician, to their 
students, or to a hypothetical learner. When we refer to the intended use of an example, we always 
mean in reference to the learner, whether it be the mathematician or a potentially hypothetical 
student. However, the epistemological themes that emerged address both the instructor’s and the 
learner’s perspective. It was the identification of these themes that led to the refinement of 
Michener’s classification of examples. 
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Initial Refinement of Michener’s Example Classification  
In this section we provide a description of our initial refinement of Michener’s example 

classification. Data analysis led to clarification on the classes already noted in the literature 
(Michener, 1978; Watson & Mason, 2005). Informal conversations with mathematicians about our 
proposed refinement indicate that these categories are useful but may not be exhaustive, especially in 
relation to work with results or theorems. For this reason, we anticipated data from the follow-up 
study to lead to further expansion and clarification of our initial refinement.  

See Table 1 for a list of the classes in our initial refinement and a summary of the purposes 
associated with each class. 

Table 1: Initial Refinement Of Michener’s Example Classification 
Class Purpose  

Start-up develop intuitive notions 
consider what is and what is not to isolate concept 
check initial understanding through generating examples 

Reference widely applicable or standard case 
isolate new subclasses of mathematical objects 

Model demonstrate salient features  
consider interplay between features of definition and example 

Counterexample refute the truth of a statement in question 
Nonexample demonstrate what is not 

show “control” of a definition  
consider particular features of a definition 

Start-Up Examples 
In presenting Michener’s classification, Watson and Mason (2005) describe start-up examples as 

those from which “basic problems, definitions, and results can be conjectured at the beginning of 
learning some theory and can be ‘lifted’ to the general case” (p. 64). The articulations from the 
mathematicians provide further detail into particular ways in which this conjecturing might be 
supported. For example, analyzing a collection of examples can help to isolate essential features of a 
new concept. The activity of generating examples of a new idea contributes to clarifying one’s 
emerging understanding of the idea. Creating variations of known examples can serve to further 
demonstrate or clarify one’s understanding. From the learner’s perspective, examples in this class 
should be familiar objects that also illustrate key features of the new concept. 

Mathematicians described using examples to develop intuition about the features of the concept 
that distinguish it from other related ideas. Greg articulated that students may not know to what to 
pay attention at first: “And then I might try to work out with them a little bit, you know, what could 
be mathematically interesting there? What are the features there?  . . . Then state a formal definition 
and then go and do plenty of examples to kind of work on that.” Ned articulated this use of examples 
in his own work: “But if it was foreign or I read it and realized that I didn’t truly understand it, then I 
probably would try to come up with an example. Which is a hard thing because you need your 
example easy enough to understand, yet hard enough so that it eliminates what needs to be 
eliminated.” Wes gave a similar response: “And how is it new? And can I think of something that 
does this as well as something that doesn’t do this?” Across these instances, the focus was on using 
examples of things that are as well as examples of things that are not to develop intuition for the 
essential features of a newly encountered definition.  
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Reference Examples 
Reference examples are intended to be widely applicable and available for consideration as a 

standard case. A learner may return to one or more reference examples while in the process of 
developing understanding of a new idea or subclass of mathematical objects; perhaps using a familiar 
example of a group to explore a new property, for instance. A learner may have a known and familiar 
set of standard examples that are consciously used to verify or extend understanding. As with model 
examples, the level of awareness of the learner with respect to the essential features of these 
examples is critical in their appropriate use. Overuse of a specific case could lead to confusion 
between aspects of the particular with aspects of the more general concept. 

Wes and Adam specifically discussed using familiar objects to understand an unfamiliar 
subclass of objects. Wes shared an experience of reading a student thesis in which a particular 
property was introduced. In considering whether he understood the property as it related to the thesis, 
he asked himself: “It says it does this, or these things do that, so why is this (stably free module) 
different from this thing that we have (free module).” To make sense of the notion, he noted that he 
began thinking of examples of free modules with which he was familiar and tried to identify which 
would have the new property and which would not. Adam expressed this same idea in his own work; 
a general practice for him when encountering a new idea is to check his “list of standard examples” 
to see which of those objects illustrate the new idea. Adam also explained how he uses this process 
with students. The instance he shared related to introducing the concept of algebraic groups; he drew 
students’ attention to familiar sets with operations (such as integers under addition) and then engaged 
them in determining which of these familiar things met the criteria of a group. In this way, Adam 
seemed to intend that these familiar instances could become reference examples for the students for 
the concept of group.  

Model Examples 
Model examples are intended as paradigmatic and generic, and can be used to convey salient 

features of an idea. As noted by Sam, a model example may emerge from the analysis of a collection 
of examples; one exemplar from the collection may serve as an illustration of the desired concept. 
The presentation of a model example can serve to highlight the interplay between the use of the 
example and one’s understanding of the idea; that is, the activity of determining why the presented 
exemplar qualifies as a model example potentially interacts with one’s understanding. Poor choice of 
a model example can cloud one’s understanding of an idea, in that this awareness of essential 
features may be (perhaps implicitly) compromised. 

In choosing examples to present to students as potential model examples, Greg emphasized the 
need for the example to illustrate the key features, and that it be “not too trivial,” yet also “not too 
complicated” as that could interfere with “seeing” the features of the concept. Marc also spoke of 
choosing pictures to convey relevant features to students. Ned stated that he uses the interplay 
between example and concept as a means for checking students’ understanding. After presenting a 
(model) example, he makes small variations, such as changing a positive slope to negative. In his 
experience, students who were able to see the key features were less likely to be distracted by the 
variation. That is, we would argue that Ned was determining whether students saw the initial 
presentation as a model example for the presented idea; if so, students were more likely to be able to 
identify key components and perhaps not be distracted by variations that did not alter the underlying 
concept. 

Nonexamples 
Nonexamples clarify distinctions between what is and what is not, and thus are used to 

demonstrate the importance of key features of a concept. The purpose of a nonexample can overlap 
the purpose of start-up, model, or reference examples. A collection of examples can be used to draw 
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attention to common features; contrasting such a collection with nonexamples serves to sharpen 
distinctions. The successful generation of relevant nonexamples can be taken as an indication of the 
“control” one has with regard to a concept or result. A learner’s explicit attention to aspects of 
nonexamples is an indication of depth of understanding. 

Mathematicians discussed using nonexamples to refine one’s understanding of a definition or 
concept. In particular, the generation of nonexamples can focus attention on salient features and the 
purpose of those features. Often, this involved dropping or violating one or more criteria within the 
definition and asking, in Ned’s words, “how does that change the outcome of what is permissible?” 
Sadie stated that nonexamples give a “different perspective” through analyzing what “it can’t be.” 
Sam acknowledged that “find[ing] an example in which this fails” can be challenging for students, 
but can be a critical step in developing understanding of the definition by forcing one to “look deeper 
at what things are.”  

Counterexamples 
Counterexamples are used to refute a statement. Some become well-known and used often. While 

not an explicit focus of our analysis, we see some common aspects. In particular, the learner’s 
awareness of why an instance qualifies as a counterexample for a given statement is key, and could 
serve as an indication of the learner’s understanding of the underlying ideas. 

Current Work 
We are currently in the midst of a follow-up study focused on mathematicians’ use of examples 

more broadly. We asked the mathematicians who participated in the definitions research study to 
read the results of that work, including our initial refinement of Michener’s example classification 
prior to a face-to-face interview. We also asked each mathematician to respond to the following 
questions in writing prior to the interview: 

• How well does the proposed example-use framework reflect the way you think about the 
purposes of different types of examples in your mathematical work? Please address this 
question as it relates to your scholarly work (writing, research, etc.) and teaching. 

• Is there is a type of example that you use that is not articulated in the framework? Is there an 
example type that you rarely use? Please explain. 

• Is the framework useful as a means of thinking about the different purposes of examples in 
doing mathematics? If so, in what ways?  

• Is the framework useful as a means of thinking about teaching mathematics? If so, in what 
ways?  

The mathematicians we have interviewed articulated benefits associated with thinking carefully 
about the purposes of different types of examples in their teaching but not in relation to their own 
mathematical work. They describe using examples for the purposes described in the initial 
refinement along with other purposes more closely related to their scholarly work. Thus far, it 
appears that there may be one or two other example classes that warrant defining. In particular, two 
mathematicians noted how examples can be preceded by definitions and results, providing the 
impetus for existence examples. The purpose of this class is to demonstrate the existence of a 
mathematical object and is thus distinct from the other classes. Greg noted, “You may actually 
indirectly prove that a thing exists without actually constructing it” while Evan noted odd perfect 
numbers as an instance where the definition has preceded examples. Another possible category is that 
of boundary examples—those that support understanding of “where the boundaries are” (Evan) with 
a concept or result. It not yet clear from the data whether this category stands on its own. The data 
suggest that there is overlap with the purposes of reference and nonexamples in that boundary 
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examples can be used to identify subclasses of objects or to demonstrate control of a definition. 
Further analysis is needed to clarify these distinctions. Moreover, careful consideration of the 
epistemological value of potential new classes is needed. As noted by Michener (1978), the classes 
are not meant to be exhaustive but rather particularly informative in relation to thinking about how to 
fully support students in learning mathematics. 

Discussion 
Research indicates that students benefit from generating their own examples rather than passively 

accepting examples given by the teacher (Dahlberg & Housman, 1997; Watson & Mason, 2002; 
Sowder, 1980; Weber, Porter, & Housman, 2008). In our work, we observed mathematicians 
attending to perceived benefits of example generation both for themselves and for their students. 
Generating examples was seen to help build intuition about a new concept (start-up), to sharpen 
distinctions (non-example), and to reveal or verify understanding (start-up and/or model). In general, 
the ability to construct an appropriate example was taken as evidence of some level of understanding. 
Being able to then modify or create variations of the example could be further evidence of 
understanding. Constructing nonexamples was seen as more challenging, but was also seen as 
evidence of working knowledge of a concept.  

Watson and Mason (2005) describe example spaces as a metaphor for the psychological structure 
of the ideas and examples associated with a particular concept. An interesting feature within the 
mathematicians’ articulations was the interplay between examples and related ideas. For instance, 
Adam talked of drawing on his set of “standard cases” of objects to make sense of a new concept. He 
may think of standard examples of groups to make sense of a newly encountered type of group. 
Using Watson and Mason’s metaphor, he pulls reference examples from one example space to be 
used as start-up examples in a related space. In discussing their work with students, the 
mathematicians talked of beginning with objects that should be familiar or known to students, using 
these as start-up examples for a new concept, or establishing them as reference examples for a 
concept. These descriptions align with Watson and Mason’s characterization of mathematical activity 
as the reorganization of example spaces.  

Our work aligns with work by Lockwood and colleagues (2012, 2013) in which they analyzed 
mathematicians’ articulations of the role of examples within the context of exploring conjectures. We 
particularly agree with Lockwood, et al. (2012) as to the importance of “intentional example 
exploration” (p. 157). Our application of Michener’s classification relies on identifying the intended 
role of the example; for instance, a model example is most powerful when the learner recognizes the 
features that exemplify the concept. 

Implications 
In general, refinement of the example classification provides the mathematics education 

community with a common language about the role of examples in teaching and learning 
mathematics. Having a common language is important for future advances in the area. Of course, this 
work also raises important questions regarding the role of exemplification in the teaching and 
learning of mathematics. In particular, how well does the classification capture the role of examples 
within a broader context of mathematical activity? How might the classification be used to guide 
instructional design? Could deliberate attention to the purposes support the selection of, presentation 
of, and plans for student engagement with examples?  

A common language for example types can support more intentional selection of examples 
within instruction. From an instructional design perspective, one might attend to the intended purpose 
of an example to determine its place within the unit of study. Following Adam’s suggestion, for 
example, a textbook author might include one or more start-up examples of a concept prior to 
introducing a definition. Likewise, reference and model examples may be better placed after a 
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definition has been presented. Further, a classroom teacher might be more explicit about the role of 
examples, providing support to students’ interpretations and use of examples.  
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STUDENTS’ CONCEPTIONS OF DERIVATIVE GIVEN DIFFERENT 
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In Calculus, students are often both presented problems with and taught to use three interconnected 
types of representations: symbolic, graphic, and numeric. However, students often fail to notice the 
relationship between mathematical objects (and even the same object) that are presented using 
different types of representations. Using the APOS framework and student interviews, this study 
explores ways in which students conceive of tasks involving derivatives that are posed using the 
different representational types. Patterns are drawn among: problem conception and representation 
type; problem conception and task type; schema level and representation type; and schema level and 
problem conception.  Though there were patterns between representation and student conception, 
stronger patterns emerged between task type and student conception. 

Keywords: High School Education; Cognition 

Introduction 
In calculus, the concept of derivative is often taught using three interconnected types of 

representations: symbolic, graphic, and numeric (Schwarz & Hershkowitz, 2001).  However, students 
often do not recognize and use the relationships between them well (Asiala et al., 1997; Aspinwall, 
Shaw, & Presmeg, 1997; Schwarz & Hershkowitz, 2001).  This may be for a variety of reasons, such 
as that algebraic representations are typically used more on tests (Aspinwall et. al, 1997), that 
instruction focuses on specific translation skills instead of a discussion of relationships between 
representations (Schwarz & Hershkowitz, 2001), and that students are often asked to translate in one 
direction, but not in reverse (Asiala et al., 1997).   

Anna Sfard (1991) discussed the interaction between visual (graphs and pictures) and analytic 
(equations and numbers) representations and grouped students’ conceptions into two complementary 
categories: operational and structural.  She claimed that analytic notation encourages an operational 
conception, for which the focus is the procedure, whereas visual notation encourages a structural 
conception of the mathematical entity as an object.  Therefore, students might tend to think about 
derivative differently depending on the representation presented in a problem.  For example, if a 
student is presented with a graph of a function, he may tend to use a structural conception, but if 
presented with an equation he may hold an operational conception.  This does not give information 
about the student who is presented with a tabular representation, or that needs to translate between 
representations in order to solve a problem. 

Similar to Sfard’s operational and structural conceptions, Dubinsky posits the APOS theory, with 
which student understanding of a mathematical entity falls into one of four conceptions:  action, 
process, object, and schema (e.g. Dubinsky & McDonald, 2001; Maharaj, 2013).  The action and 
process conceptions align with Sfard’s operational conception, while the APOS object conception 
aligns with Sfard’s structural conception (Maharajh, Brajlall, & Govender, 2010; Tall, 2013).  
However, while a student may possess several different conceptions of a mathematical entity, the 
student may not access all of these equally in all situations (Baker, Cooley, & Trigueros, 2000), 
particularly when comparing visual and analytic representations, both during instruction and problem 
solving (Maharajh et. al, 2010).   

Dubinsky & McDonald (2001) and Baker et. al (2000) also discuss the notion of the triad, a fixed 
order of three stages of schema development (intra, inter, and trans) in which students progressively 
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see more connections between events or objects.  Students begin at the intra stage, where they see 
mathematical entities as disconnected objects, and as they develop connections between objects, they 
progressively advance through the inter stage to the trans stage, in which they possess a coherent 
schema with which they can reason about one or more related objects in a meaningful way.  One 
might expect this triad to exhibit a correspondence of stages to the APOS conceptions of cognition, 
with the action conception corresponding to the intra stage, the process conception corresponding to 
the inter stage, and the object conception corresponding to the trans stage.  This observation brings 
into focus the following research question: how are students’ conceptions of derivative related to the 
ways in which they make connections within and among different representations? For example, is a 
student who is operating at the intra stage unable to utilize an object conception for a mathematical 
entity because that would require connections that are not yet made?  Or, if a student displays an 
object conception of derivative when presented a graph, but an action conception when presented a 
table, would the student be able to draw the necessary connections between the information given by 
the graph and the table?  

Framework 
APOS theory has been used by a variety of researchers to analyze students’ procedural and 

conceptual knowledge (e.g. Asiala et. al, 1997; Baker et. al, 2000; Hähkiöniemi, 2006; Maharaj, 
2013).  APOS stands for action, process, object, and schema, which are categories of conceptions 
that an individual might hold of a mathematical entity (Maharaj, 2013). Understanding APOS 
conceptions allows us to form a genetic decomposition, or model of the specific conceptions that a 
learner might make  (Asiala et. al, 1997) to better describe students’ understanding of mathematical 
concepts  (Dubinsky & McDonald, 2001; Maharajh et. al, 2010). 

An individual who has an action conception is able to carry out a step by step set of instructions 
or a written algorithm, but is able to do little more (Asiala et. al, 1997; Dubinsky & McDonald, 2001) 
or to control the action  (Hähkiöniemi, 2006).  While an action is always in response to a stimulus 
that is perceived as external, a process performs the same operation as an action, but may be 
contained completely in the mind of the individual (Maharaj, 2013).  This internalization allows the 
individual to be able to reverse or compose operations (Dubinsky & McDonald, 2001).  An object is 
formed as a complete entity in the individual’s mind when a process can be transformed and acted on 
as a totality (Dubinsky & McDonald, 2001; Hähkiöniemi, 2006; Maharaj, 2013).  A schema is a 
collection of actions, processes, and objects coordinated by the individual (Baker et. al, 2000; 
Dubinsky & McDonald, 2001).   

Because an individual’s schema is an evolving composition of actions, processes, and objects, it 
is more of a meta-cognitive development for problem solving than a conception in itself (Baker et. al, 
2000; Dubinsky & McDonald, 2001).  This means that at any given moment, when an individual uses 
either an action, process, or object conception to solve a particular problem, the individual is 
concurrently operating within their schema as well.  For this reason, this study describes only the 
APOS conceptions of action, process, and object, and assumes that the individual is always operating 
within some personal schema.  

Table 1 gives examples of what might be observed of a student using each conception if a 
problem involving derivative is given using each of the three main representations: table, equation, 
and graph.  It is important to note that even though these conceptions seem to evolve from one to the 
next, the development of action, process, and object is not necessarily in that order (Dubinsky & 
McDonald, 2001).  Though this study explores the student’s conceptions as a snapshot, and not being 
developed over a substantial period of time, this is still a valuable reminder for the current study 
because, for example, it is possible for an individual to use an object conception without having ever 
thought through the action or process involved first. 
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It is a purpose of this study to determine if a student will tend to use different APOS conceptions 
given different problem representations.  For example, if given a table, a student can perform steps to 
approximate a derivative at a point only when prompted for the steps, the student would be at the 
action conception.  However, if the student is given the same question with a graphical representation 
and has no difficulty recalling that the derivative at a point being the slope of the line tangent to the 
graph, drawing the line, and approximating the slope, the student would be at categorized as having a 
process conception.  This genetic decomposition is used in the analysis and discussion of students’ 
responses to interview questions in this study.   

Table 1: APOS Conceptions of Derivative Given Different Representations. 
Conception Table Equation Graph 
Action The student follows steps 

when prompted to find 
slope and write equation 
of tangent line. 

The student can use steps to 
find equation for derivative 
and tangent line. 

The student can use steps 
when prompted to find 
slope from graph and draw 
the tangent line. 

Process The student can easily 
apply procedures using 
tabular data, and can 
catch errors and explain 
reasoning. 

The student can easily 
manipulate equations 
dealing with derivatives and 
provide some rationale. 

The student can notice and 
use parts of the graph to 
answer questions about 
tangent line and 
derivative. 

Object The student uses the table 
to reason about derivative 
and solve problems. 

The student uses the 
equation to reason about 
derivative and solve 
problems. 

The student uses the graph 
to reason about derivative 
and solve problems. 

 
APOS theory has been further refined through the introduction of the triad to recognize the 

evolving nature of schemas (Baker et. al, 2000).  The triad consists of three stages, intra, inter, and 
trans, which occur in that order (Baker, Cooley, & Trigueros, 2000).  As is suggested by their names, 
at the intra stage, the individual is concerned with and isolates the single action, process, or object of 
focus, while at the inter stage, relationships are formed between cognitive entities  (Dubinsky & 
McDonald, 2001).  For example, a student given a graph at the intra stage may be able to draw a 
tangent line but not look for numerical information to find its slope.  The student at the inter stage 
would use the graph to find numerical values or an equation that could then be used to solve the 
problem, but these connections would still be isolated and superficial and while the student may 
reason about why a particular representation is chosen, the student does not reason about more than 
one representation at a time.  An individual operating at the trans stage exhibits a schema with the 
most coherence, for example, recognizing all situations requiring the computation of a derivative at a 
point as interconnected  (Baker et. al, 2000).  Table 2 describes what might be observed of a student 
at each stage given different representations. 

Methods 
Four students were interviewed using a series of calculus questions to determine their 

understanding of derivatives.  The researcher recruited volunteers from an AP Calculus class at a 
mid-sized, southern high school.  The volunteers from this class are considered to be typical students 
who take AP Calculus at this school.  They have all taken two courses in algebra, a course in 
geometry, and a preparatory class for calculus (Pre-calculus).  Two are female and two are male, with 
one of the females in twelfth grade and the other three students in eleventh grade.  All four of the 
students interviewed perform well in their class, with an average grade of either an A or high B.  At  
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Table 2: Triad Stages for Derivative Given Different Representations. 
Triad stage Table Equation Graph 
Intra The student makes 

decisions using only a 
tabular representation. 

The student makes 
decisions using only 
equations. 

The student makes 
decisions using only a 
graphic representation. 

Inter The student uses the 
values in the table to 
construct a graph or 
equation. 

The student uses the 
equation to find 
numerical values or 
construct a graph. 

The student uses the 
graph to find numerical 
values or an equation. 

Trans The student reasons about 
connections between the 
table and an equation 
and/or graph to solve the 
problem. 

The student reasons about 
connections between the 
equation and table and/or 
graph to solve the 
problem. 

The student reasons about 
connections between the 
graph and the equation 
and/or numerical values 
to solve the problem. 

 
the time of the interviews, students had been in the calculus class for about eight months, and were 
studying integrals. They began their study of derivatives several months before the interviews took 
place, completed a unit focused on derivatives, and have continually used and applied them to other 
calculus problems since.   

Each interview was conducted outside of school hours at a local public library, and lasted 
between 30 and 45 minutes.  Interviews were recorded using a Livescribe pen and paper, which 
records the interview and connects the audio recording to the written work.   

Each of the three interview questions presented the student with information about a problem 
using a different representation (table, equation, or graph).  Question 1 (tabular representation) is 
shown in Figure 1 as a representative of each of the questions asked.  Though the representation is 
different across the three questions, the tasks in each part are the same across questions.  The reason 
for the repetition of the four tasks across interview questions is to determine if students tend to use a 
particular conception over another for a task when given different representations.  In addition, these 
tasks were designed to assess the student’s ability to translate between representations, thus assessing 
the triad stage that the student uses.   

 
Figure 1: Interview Question #1 

The data from each interview was then analyzed to determine each student’s APOS conception 
and triad stage for each interview question.   The results were then reviewed to determine if there is a 
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correlation between the representation given to the student, the APOS conception that the student 
used, and the triad stage at which the student operated. 

Results 
While there was at least one instance for each APOS conception given each representation, some 

strong patterns emerged.  Table 3 compares the given representation to the APOS conception that the 
student used.  Since each problem contained four tasks, and each was asked to four students, the total 
for each row is sixteen.  The no determination column was added because there were some problem 
parts where the student either said that they did not know how to do it or else created an incorrect 
“rule” with no justification.  

Table 3: Students APOS Conceptions Across Given Representations. 
Representation No determination Action  Process  Object  
1. Table (numeric) 7 2 3 4 
2. Equation (analytic) 1 3 9 3 
3. Graph (visual) 5 1 5 5 

Students felt the most confident when given the equation, with which they almost all 
immediately started writing out answers, compared to where they generally stopped to think about a 
course of action given the other representations.   They exhibited a strong process conception in that 
there was a routine and they were following it, but they also knew why they followed each step and 
could give appropriate justifications for each part of their answers.   

A stronger pattern that emerged was that between the type of information asked for in each task 
and the students’ APOS conception used in approaching the task.  Table 4 compares the task type to 
the APOS conception used.   

Table 4: Students APOS Conceptions Across Task Type. 
Task Type No determination Action  Process  Object  
a. Find derivative (at a point) 3 1 5 3 
b. Find derivative by limit. 9 3 - - 
c. Write equation of tangent line. - 1 10 1 
d. Is the derivative increasing or 
decreasing? 

2 - 2 8 

Students had the most difficult time with the limit part of each question.  All four students 
verbally said that they had forgotten how to find limits, but this again was dependent on the given 
representation.  In the questions that give the table and graph, students could describe what a limit is, 
but when actually approaching the problem, mostly said that they do not “remember how to do it.”  
Given the equation representation, three students of the four made much more of an attempt to try 
different algebraic rules until they came to an answer for the limit.  The student in the following 
excerpt demonstrates an action conception in trying to find the limit of a difference quotient given an 
equation (A denotes the student, R the researcher): 

A: [draws graph] I feel like this is not the way to do it, but if you plug in -1… you get 33, and at 
1… it’s 51. [sighs] I know there is another way to do this, it’s been so long. 

[The student skipped to parts c and d and then came back to b.] 
R: So when you were doing limits, did you just plug numbers in, or did you cancel first and then 

plug numbers in? Did you do anything with simplifying? 
A: Oh, wait, wait, ok.  Ok, um, you factor, not factor, but, um… 3 times 2, 6, plug 3 times h 

equals 3h [continues to simplify part b at the right of Figure 1]… Yes! Ok, sorry, yeah, so 



Mathematical!Processes:!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

329!

then you factor h out, you have 9h plus 42 over h, those cancel, and nine times 0 plus 42, so 
the limit at that point is 42! 

In contrast, the students held a process conception in ten of the twelve instances of writing the 
equation of a tangent line, and did this part of each question with the least effort, regardless of 
representation, and also regardless of whether they could find the derivative.  The student who 
struggled with the limit went through the solution to using the equation of the function to find the 
equation of the tangent line at x = 0 almost without pause:   

A: Ok, so all you gotta do is plug in 0 to the derivative so that’s 6, so that’s the slope of your 
tangent line.  And to find y, you plug it into your original equation, that’s 1, so I need slope-
intercept form, b = 1, the equation of the tangent line is 6x + 1 at x = 0.  

The students used an object conception in eight of the twelve instances when thinking about how 
the derivative changes, regardless of given representation.  In this excerpt, the student is reasoning 
about if the derivative is increasing or decreasing given the graph of the function: 

B: All right, k’ is the rate of change of the graph itself, and it’s decreasing the entire time. 
R: What’s decreasing? 
B: Well, the original function is decreasing all throughout this set, but it’s getting less and less 

steep of a decrease, which means that the, uh, the derivative or k’ is increasing on this period 
because it is uh, it’s sort of like, it’s approaching 0 which it does, it hits at 0 or somewhere 
near there it looks like, and it’s negative before that because it’s going downwards, and it’s 
positive afterwards because it’s going up afterwards.  So in between here it’s negative, or 
increasing, because it’s approaching zero from a negative number. 

However, the way that students thought about finding the derivative to begin with depended more 
on the representation.  All of the students used the chain rule quickly and easily and could give 
appropriate justifications when given the equation.  In contrast, there is only one instance of a student 
that was given a graph or table who held a process conception of finding a derivative.  For these 
representations, the students were much more likely to reason about the function as an object, or to 
decide that they did not know how to get the answer.  Students also looked at the graph and table in 
much the same way.  One student actually remarked when they got to #3 (the tasks using the 
graphical representations) that they looked a lot like #1 (the tasks using the tabular representation), 
even though the questions were identical for all three representations: 

C: Ok, so this is pretty similar to the first one. 
R: Ok, in what way? 
C: Well, I mean it gives you data, except it’s in a graph, not a table.  And it uh, in general it’s 

pretty much the same thing.  When it says approximate k’…  

The given representation did not seem to make much of a difference in the schema level that the 
students employed (see Table 5).  The intra schema, for which students stay within the given 
representation, seems to be more common with equations; however, that is affected by the students 
being willing to try the limit question when given the equation, effectively moving three scores from  

Table 5: Schema Stage Across Representation 
 No determination Intra Inter Trans 

1. Table (numeric) 4 6 3 3 
2. Equation (analytic) 1 8 4 3 
3. Graph (visual) 4 4 6 2 
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no schema to intra. The inter and trans schemas show similar amounts of instances across 
representations. 

There was a very strong relationship between APOS conception and the schema employed.  
Table 6 shows the amount of instances of reasoning within each conception at each schema level. 

 Table 6: Comparison of APOS Conception and Triad Stage 
 No determination Intra Inter Trans 

No determination 9 3 1 - 
Action conception - 3 3 - 
Process conception - 10 7 - 
Object conception - 2 3 7 

Not surprisingly, most instances in which the conception is not determined also had no 
determined schema with which to deal with the problem. This occurred most often with the limit 
task, but also in two instances of finding the derivative at a point and in determining whether the 
derivative was increasing or decreasing.  At the intra and inter level, students with undetermined 
conception substituted in numbers or came up with some false “rule,” which they applied to the 
problem.   

All of the students interviewed revealed an action or process conception at least part of the time, 
and in all instances that the action or process conception was held, the student operated at the intra or 
inter schema level.  This means that the student either stayed entirely within the given representation, 
or that they translated part of the information given to a different representation without reasoning 
about the relationship between representations. For example, when asked to find a derivative given 
an equation, all four students operated under a process conception and simply applied the chain rule.  
They stayed within the given representation, and when prompted, they explained how the chain rule 
works, but did not include other representations in their description.  When asked to find the equation 
of the tangent line at a point given an equation, all four again used a process conception, and one 
student stayed in the intra schema level, but the other three moved into an inter level, translating 
between representations to either complete the task or describe it, but not reasoning about the 
connections between representations. 

Finally, students who used an object conception did use all three schema levels, but tended to be 
at the trans level more often, reasoning about connections between representations in order to 
complete the task.  For example, in reasoning about whether the derivative is increasing or 
decreasing a student set the derivative equal to zero and solved.  She then explained that this would 
help her find whether there is a local maximum or minimum.  She sketched graphs of a minimum and 
maximum and gestured the slope along each graph to reason about which derivative would be 
increasing or decreasing.  The student then went on to sketch a number line and populate the number 
line with the solution she found by setting the derivative to zero.  She related the number line to her 
graphs by cross-comparing the points she had made before determining that the derivative is going 
from negative to positive so it is increasing.  Though it seems like she answered the question several 
times in different ways, in her mind she only answered it once because her answer consisted of 
connecting all of the pieces of her schema in forming her object conception of the derivative to 
complete the task. 

Discussion 
This study uses APOS theory to guide the theoretical framework for analyzing students’ 

conceptions of derivatives in calculus.  Four students participated in task-based interviews in which 
tasks were presented using three different representations.  While findings agree with the existing 
literature that students tend to use a process conception more when given an equation and less when 
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given a graph, there is also evidence to suggest that a relationship may exist between task type and 
student conception.  In particular, students tended to use an action or process conception when 
determining the derivative of a function or the equation of the tangent line, and an object conception 
when reasoning about the change in derivative.  The students in this study also used an intra or inter 
schema in conjunction with their action or process conception, and only operated on the trans schema 
level when using an object conception.  However, even with the object conception, the trans schema 
level was only employed in seven out of 12 instances.   

This study contributes to our understanding of students’ conceptions of derivative, which can be 
useful for instructors in planning course instruction and assessment.  For example, teachers may find 
it helpful to be cognizant of the conceptions that students tend to have when given different tasks 
such as writing the equation of a tangent line or reasoning about the change in derivative for a 
function.  It may also be useful to consider students’ schematic levels for thinking of derivative when 
considering problems to pose that may lead to action, process, or object conceptions by students.   

Students complete many other tasks in calculus that were not analyzed in this study, and further 
research is needed to determine if the relationship between task type and APOS conception relies on 
cognitive demand, type of representation, class routine, or other contributing factors.  Further 
research is also needed to determine the strength of the relationships between representation and 
conception, between task type and conception, and between conception and schema level for students 
in a variety of calculus classes.   
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Given the Common Core’s dual emphases on mathematical modeling, there is a need to understand 
modeling as a practice and content standard to develop students’ mathematical modeling skills. This 
study of 12 students from differing levels of mathematics instruction and English Language 
proficiency includes analysis of their modeling with mathematics and a focus on their transitions 
through a mathematical modeling cycle. Findings suggest that students were engaging in critical 
processes that support mathematical modeling. We posit that conventional word problems can 
augment the benefits of using mathematical modeling tasks and can help educators explore a 
process-oriented approach to mathematical modeling. 

Keywords: Modeling; Standards; Cognition 

Globally, research in the teaching and learning of mathematical modeling spans the past 40 years. 
In the US, the models and modeling perspective (Lesh & Doerr, 2003) has given rise to model-
eliciting activities (MEAs) (Lesh, Hoover, Hole, Kelly, & Post, 2000), model-development 
sequences (Lesh, Cramer, Doerr, Post, & Zawojewski, 2003), and a design approach to developing 
these sequences. These research programs have focused on developing novel classroom instructional 
tools in order to teach significant mathematical concepts and on providing transformative teacher 
professional development. 

Elsewhere, other mathematical modeling research theorizes the modeling process carried out by 
the modeler. The modeling process transforms a real world problem into a well-posed mathematical 
problem that can be analyzed mathematically. The results are then interpreted in terms of real world 
constraints and the model is validated. The mathematical model, or its representation in conventional 
mathematical terms (e.g., equations, graphs, etc.) is then iteratively refined. One such widely adopted 
mathematical modeling cycle (MMC) was posed by Blum & Leiß (2007) and has been used as a 
framework for examining and developing students’ modeling skills It also serves as the basis of the 
CCSSM’s description of mathematical modeling (CCSSM, 2010). Two complementary perspectives 
on mathematical models in the secondary curriculum are offered in the Common Core:  one with the 
Standard of Mathematical Practice #4, Modeling with Mathematics and one with mathematical 
modeling as a Standard for Mathematical Content. Missing in the current literature is research on 
how to link the research findings (models of students’ mathematical modeling) to the daily practice 
of solving conventional word problems in the secondary classroom.    

The goal of this paper is to offer insights on students’ mathematical thinking generated from a 
process-oriented view of their work on mathematical modeling tasks. It is a timely contribution as 
the mathematics education research community embarks on emphasizing mathematical modeling in 
the K – 12 U. S. classrooms. We choose to begin from the stance that the status of the task and the 
modeler’s work is determined by the research lens rather than intrinsic properties of the task and we 
pose the question: What does a mathematical modeling perspective on a conventional word problem 
afford us? 

Mathematical Modeling Cycle 
The MMC is a description of the modeling process in terms of stages of model construction and 

modeling activities that are transitions between the stages. (See Figure 1.) The MMC was adopted as 
a research framework and focus was on the observable mathematical activities underlying each of the 
transitions in order to understand what a process view reveals about students’ mathematical 
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modeling. The MMC was operationalized via an observational rubric which conceptualizes each of 
the six transitions as a suite of mathematical activities (Czocher, 2013). The rubric was developed, 
refined, and validated via the method of constant comparison. Table 1 summarizes the transitions, the 
process they capture, and a sample indicator from the rubric. We offer an analysis of student work in 
the results section below. It is important to note that students may not exhibit all stages and 
transitions in order, or at all. Focusing on the transitions is intended to draw attention to 
mathematical thinking and activities being carried out, not to serve as a checklist of requirements. 

 
Figure 1 Schematic for a mathematical modeling cycle (Blum & Leiß, 2007) 

Table 1 Modeling cycle transitions and sample indicators from the observational rubric 
Activity Trying to Capture Sample Indicator 
Understanding Forming an initial idea about what 

the problem is asking for 
Reading the task 

Simplifying/struc
turing 

Identify critical components of the 
mathematical model; i.e., create an 
idealized view of the problem 

Listing assumptions or specifying 
conditions 

Mathematizing Represent the idealized model 
mathematically 

Writing mathematical representations 
of ideas (e.g., symbols, equations, 
graphs, tables, etc.) 

Working 
mathematically 

Mathematical analysis Explicit algebraic or arithmetic 
manipulations 

Interpreting Recontextualizing the mathematical 
result 

Speaking about the result in context of 
the problem or referring to units 

Validating Verifying results against constraints Implicit or explicit statements about 
the reasonableness of the 
answer/representation 

Methodology 
This study draws on a larger qualitative research design project aimed at understanding students’ 

mathematical modeling processes. Participants were 12 middle and high school students who were 
selected so that four each were pre-algebra (6th grade), algebra (9th grade), and post-algebra (two in 
10th grade; two in 12th). From each mathematical level, two had at some point in the U.S. schooling 
been identified as an English Learner (EL). All performed at the satisfactory or advanced level on the 
Texas mathematics standardized exam (STAAR) in the most recent year taken. 81% of the students 
at the middle school and 27% of the students at the high school that participated in this study are 
eligible to participate in the free or reduced price lunch program. The sampling plan was developed 
to be inclusive of mathematical approaches and representative of the diverse student population in 
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Texas. Tasks were provided in Spanish for EL students if they preferred. All of the EL students 
elected to conduct their interviews in English and explained their thinking in English. Due to the 
research design, this study reports qualities of students’ modeling processes rather than an 
exploration of student characteristics. 

The students participated in a series of three semi-structured, task-based interviews. For this 
study we consider their work on a conventional word problem, attempted by all 12 students, and 
similar to problems that appear in the algebra curriculum and on standardized tests. The students 
were asked to solve the following Turkeys & Goats problem (T&G): A nearby farm raises turkeys 
and goats. In the morning, the farmer counts 48 heads and 134 legs among the animals on the farm. 
How many goats and how many turkeys does he have?  The task has value as a cornerstone of the 
institution of classroom algebra, but we do not claim that T&G is itself a modeling task. It is best 
classified as a concept-then-word problem (English, 2010) because it is designed and assigned to 
encourage students to practice already-learned procedures. T&G has the potential to reveal student 
thinking about making and justifying assumptions (e.g., one-to-one correspondence between heads 
and animals), working with real-world-imposed constraints (e.g., only whole-number animals should 
be considered), creating representations (e.g., equations or algorithms), and validating the resulting 
mathematical model. The ubiquity of similar tasks in mathematics classrooms suggests that analysis 
of student work via a mathematical modeling lens may be valuable in helping educators identify 
mathematical modeling processes carried out by students and therefore using such tasks to help 
students develop modeling skills. 

The objective of each interview was to elicit the students’ mathematical thinking and reasoning 
about the task, not to teach mathematics nor to teach mathematical modeling. The students were 
reassured that we were interested in their responses and explanations and not in whether the obtained 
the correct answer. Interviewer interjections were kept to a minimum.  The interview sessions used 
design research principles of cross-fertilization and thought experiments (Brown, 1992).  Cross-
fertilization is when information and experiences from one interview session inform interviewer 
sensitivity and follow-up questions in another session. The interviewer posed clarifying and follow 
up questions (“Can you help me understand what you did here?”) or asking the student to think aloud 
(“What are you thinking about?”) or to provide additional reasoning (“Can you say more?”).  
Another set of interventions could be classified as scaffolding questions. For example, the 
interviewer adjusted the numbers in the problem if they proved too large for the student to reason 
about or calculate with.  Thought experiments pose what-if questions that tweak the task as follow-
ups to student explanations. For example, the interviewer could change the kinds of animals present 
on the farm so that the number of legs could not be realistically distributed among the animals. 

Interviews were audio and video recorded and transcribed. The transcripts were summarized 
holistically according to the following dimensions: what approach did the student use, how it was 
executed, and what result was obtained. We used the observational rubric calibrated to the transitions 
in the MMC to look for evidence that the students were engaging in mathematical thinking that 
supported mathematical modeling (which is described below).  When a mathematical activity was 
observed in the transcript or in the student’s writing, it was tagged with a descriptive indicator and 
then coded with the associated transition from the modeling process. For example, if the student was 
observed to be carrying out a mathematical activity that could be described as an explicit algebraic 
or arithmetic manipulation that segment of transcript was coded working mathematically. In this 
way, the transcripts and students’ written work were microanalyzed according to the MMC. Coding 
was carried out individually and then in pairs. All discrepancies were resolved. We then conducted a 
cross-case analysis looking for patterns in the students’ modeling and to generate a list of questions 
and insights that arose from the two-layer analysis. This list guides our discussion of the implications 
of using a mathematical modeling lens on tasks currently used in mathematics K-12 classrooms. 
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Results 
A solution to the Turkeys & Goats problem satisfies two conditions simultaneously (a fixed 

number of heads and a fixed number of legs).  An algebraic solution strategy was defined as an 
attempt to write symbolic, algebraic expressions describing the relationships among the total number 
of heads and the total number of legs. A partitioning strategy was defined as some intention to 
separate the total number of heads into goat heads and turkey heads (or separate the total number of 
legs into those belonging to goats and those belonging to turkeys) and work out how many legs 
(heads) must belong to each group. The 6 students who attempted a partitioning strategy began with a 
halving strategy that there were 24 goat heads and 24 turkey heads. Based on typical student 
explanations, this is because there were two kinds of animal and   

The partitioning strategy led to a guess-and-check approach where the number of heads (legs) 
was adjusted based on the outcome from the previous assumption. This approach handles the two 
conditions sequentially and iteratively. The strength of the algebraic approach is that it generalizes 
the guess-and-check strategy by simultaneously evaluating the cases that arise and so it is more 
mathematically efficient. However, using an analytic, algebraic approach requires that both 
conditions are made explicit via the implicit assumption that each animal has one head and the 
constraints that goats have one head and four legs and turkeys have one head and two legs. The 
modeling lens recognizes that this transformation is nontrivial and it allows us to decompose 
students’ difficulties in formulating mathematical constraints. Regardless of student level, the task 
has the potential to afford insights into their mathematical thinking. Table 2 summarizes the students’ 
work on the task according to mathematical level and EL status. 

Table 2 Summary of student strategies and answers 
Level EL Algebraic 

Strategy 
Partitioning 
Strategy 

Both 
Constraints  

Any 
Answer 

Correct 
Answer 

Pre EL 0 2 1 2 0 
Non EL 0 1 1 2 1 

Algebra EL 0 1 1 1 0 
Non EL 2 0 1 2 1 

Post EL  1 1 1 1 1 
Non EL 1* 1* 1 2 1 

* The same student used a partitioning strategy and then transitioned to an algebraic strategy. 
 

At each level there was at least one student who executed neither solution strategy. Of the 9 
students who attempted either strategy, only 6 recognized the need to satisfy both constraints at once. 
This discrepancy may point to a reason why the other 3 students were unable to use a solution 
strategy and they may have been unable to see a way to handle both constraints simultaneously. Ten 
of the 12 students obtained an answer but only 4 obtained a correct answer. For the pre-algebraic 
students, this may not be surprising since solving the task without algebraic techniques is cognitively 
demanding and computationally inefficient. However, of the 8 students who were in algebra or post-
algebra classes, this is quite surprising given that such systems-of-equations tasks are a focus of 
instruction and high stakes tests.  

Due to space constraints, we present a synopsis of one student’s work on the Turkeys & Goats 
problem. Bree was a pre-algebra, non-EL student. Her work was selected because she developed a 
non-algebraic of the situation and because she focuses autonomously on satisfying both constraints. 
Thus her work illustrates what the students, regardless of mathematics level, are capable of doing.  
Transitions from the MMC are marked in the first part of the synopsis to demonstrate how the MMC 
is present in the student’s work. Though we highlight one student’s work, all students exhibited 
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transitions from the MMC, demonstrating that they were engaging in mathematical modeling when 
working on the task even if no answer or conclusion was ultimately reached. 

Bree began by reading the problem aloud (understanding) and then questioned the number of 
legs on a turkey (simplifying/structuring). She initially tried  (mathematizing, working 
mathematically) to obtain the total number of legs (interpreting) because “it’d be easy.” She 
abandoned this approach because “some of them have two legs” (validating). She continued, “since 
there’s turkeys I have to figure that out. So it’s either that most of them could be like, I’m going to 
try half” (simplifying/structuring) and decided to find the number of legs among 24 turkeys and 24 
goats by combining  with  (mathematizing) and using the standard algorithm (working 
mathematically) to get  legs (interpreting). Bree noted that she needed  legs. She wondered 
what to do about the “10 extra” legs. The interviewer asked her what she was thinking. She 
responded “What I was thinking first is if I, maybe if I div…cut the 48 in half, 24 turkeys and 40, 24 
goats, then I figure I would, so 48 legs for the turkeys and 96 legs for like goats…I got . But I 
think we needed 134 legs, so I’m trying to figure out right now how I could put that down.” Bree 
switched her focus from the heads constraint to the legs constraint. As a follow up, the interviewer 
asked how she would reduce the number of legs. She concluded that there would have to be more 
goats. Next, Bree tried 22 turkeys and 26 goats and realized that she added legs. She reversed her 
guess and tried 22 goats and 26 turkeys to obtain 140 legs. She shook her head because she recalled 
that “We’re trying to find 134.” 

Bree changed her approach yet again: “So I guess I could try to find how many times 4 goes into 
134 or how many times 2 goes into 134.” She proceeded to carry out long division via the standard 
algorithm for  and . She obtains 32 goats and 6 turkeys, but did not realize that she was 
missing 13 heads. She became confused on how to figure out the number of legs for a given number 
of heads and backpedals to her computation  She states that this would yield 67 turkeys and 
no goats which is impossible because there were only 48 animals. At this point, Bree announced 
“There has to be an answer” and began working quietly doing various multiplicative computations.  

The interviewer asked, “Could you summarize for me what you know about what the possible 
combinations [of turkeys and goats] might be?” This prompts Bree to organize her work into a list of 
goat/turkey combinations she had tried and begin systematically adjusting those values. She stated 
her strategy, “I’ve tried 22 goats and 26 turkeys and I got 50, 52, and 88 goats, but that equaled 140. 
So that one didn’t work. And 9, 8, I guess I could try other ones just like that. I just have to keep on 
going down ‘til I got to 134.” She used her algorithm developed from trying 24 goats with 24 turkeys 
and 22 goats with 26 turkeys to “keep on going down” until she found the combination 19 goats with 
29 turkeys yielded 134 legs.  When asked to explain how she knew to increase the number of turkeys 
and decrease the number of goats, she responded that “4 doesn’t go into many numbers as much as 2 
does ‘cause it’s bigger,” indicating that she had some sense of needing the net number of legs to 
decrease. 

Implications and Conclusions 
The Turkeys & Goats problem is a conventional word problem similar to those found in algebra 

textbooks and on standardized tests. We presented two layers of analysis on students’ work: one 
focused on solution obtained by the student and how the student carried it out and one that examined 
students’ mathematical activity in support of mathematical modeling processes.  The first is a 
product-oriented perspective that focuses on representation of the solution and its correctness. 
According to this perspective, many of our students were unable to solve a conventional word 
problem. However, this kind of surface level analysis is limited in that it does not reveal the deeper 
complexities of student’s mathematical thinking and understanding which are useful for informing 
classroom instruction. A closer examination of students’ mathematical thinking showed that students 
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took an algebraic approach or used a partitioning strategy. Analysis of student strategies reveals how 
they were thinking about the task. 

The process-oriented perspective focused on mathematical modeling as a process. 
Operationalizing the MMC in terms of mathematical activity and then applying the rubric to 
students’ work showed that all students were engaging in mathematical modeling processes. Analysis 
revealed how students progressed through the task even if they did not ultimately obtain a right (or 
any) answer. Bree’s work demonstrated that students are capable of modeling with mathematics, a 
Standard of Mathematical Practice (CCSSM, 2010) without necessarily using an explicitly algebraic 
approach. She carried out a guess-and-check strategy, but her guesses were not haphazard. She 
developed an algorithm based on constraints implied by the problem statement in order to relate the 
number of heads of each kind of animal to the total number of legs among the animals. To do so, she 
introduced two parameters: the number of turkey heads and the number of goat heads. After each 
trial, she adjusted her estimates in ways that anticipated their effects on the outcome (number of 
legs). That she was capable of organizing her work into a systematic algorithm after some prompting 
and encouragement suggests that she was at a participatory stage of forming a concept about 
satisfying multiple constraints simultaneously but that she had developed an activity-effect 
relationship between adjusting the head parameters and verifying the number of legs (Tzur & Simon, 
2004). In essence, she was able to apply her mathematical model as an algorithm dependent on input 
parameters. 

Thus a product-oriented perspective on a conventional word problem can impede educators from 
fully understanding students’ mathematical activity because it emphasizes what students could 
accomplish. Therefore, it reveals student struggles in achieving objectives in mathematics 
instruction. In contrast, a process-oriented perspective on mathematical modeling offers more 
information that educators can base decisions on because it shifts attention to the students’ 
mathematical activity and allows for articulation of what students are capable of doing. The shift has 
implications for helping classroom mathematics teachers identify and harness student success in 
mathematical modeling in a way that is grounded in students’ current mathematical activity rather 
than solely on obtaining a correct answer. 

Our analysis suggests that independent of where the student is in their formal mathematical 
instruction, they are capable of and spontaneously do exhibit the kinds of thinking that support 
mathematical modeling. These results parallel the findings of Cognitively Guided Instruction (CGI) 
research: children do not need explicit direct instruction in modeling (Carpenter, Fennema, Franke, 
Levi & Empson, 2015). Children come to school with ways of thinking about mathematics that do 
not need to be formally taught. Instead, the goal is to understand their thinking and original strategies 
and guide them toward more efficient and proficient ways of solving problems. Likewise, the goal in 
teaching modeling should be providing opportunities for the students to develop their judgment to 
become comfortable making assumptions that will satisfy a complicated situation.  As demonstrated 
by Bree, the students may already have a sense of needing to validate their models and revise their 
assumptions. Reinforcement of the idea that assumptions and representations may require revision 
could be provided by working on techniques for validation. 

Thus, classroom mathematics teachers may not need to consider the modeling standard and 
practice articulated by the CCSSM as something “new” to add to the curriculum. Our analysis shows 
that even on conventional word problems, students are already thinking in ways that support 
mathematical modeling. The challenge becomes helping teachers identify what the modeling process 
looks like so that they can recognize when a student is developing a model (not just that the strategy 
is inefficient) and ask specific questions of students at specific times. A comparison between process- 
and product-oriented views of students’ mathematical activity can help educators focus on 
mathematical structure instead of just correcting mistakes in carrying out procedures. Such emphasis 
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may also push students toward process-oriented views of their own mathematical activity instead of 
focusing on obtaining the correct answer. . 

Using the MMC to see beyond solution strategies on a seemingly straightforward task led to 
conversations about the role of the interviewer (and by extension, the role of the teacher in a 
classroom setting). Though all students were capable of making progress in the modeling process, the 
realization that the models needed revision and some encouragement as to how to do so was 
influenced by interviewer questions. In Bree’s case, to fully develop her algorithm she was prompted 
to summarize what she had done so far. Perhaps realizing that their models may need revision later 
contributed to some students’ unwillingness to commit to a solution strategy. Future research must 
critically examine the role of interviewer prompts in scaffolding mathematical modeling. Such 
analysis would have implications for when and how teachers may most productively intervene in 
students’ modeling processes while respecting the students’ ideas and model development.  In 
addition, due to the ELs opting to conduct their interviews in English, we can continue to question 
and think about the implications of past schooling on their mathematical modeling. One of the 
challenges in implementing the CCSSM has been that teachers may not share the same vision of how 
to operationalize the standards in the classroom as the standards writers intended.  There is a need for 
research-based understandings of what teachers may be currently doing in classrooms which may 
need to be reconsidered or adjusted in order to fully realize a mathematical modeling perspective. We 
suggest that mathematical modeling need not be a wholly new undertaking. The participants in this 
study demonstrate that K-12 students are engaging in mathematical modeling processes whether it is 
taught explicitly or not. The challenge becomes helping teachers identify it – it’s not foreign -- and 
how their students are doing it. 
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This paper presents results from three teaching experiments intended to guide students to reinvent 
truth-functional interpretations for mathematical disjunctions. The initial teaching experiments 
revealed that students’ emergent strategies for assessing disjunctions did not entail or facilitate the 
development of a relevant partitioning of example space (comparable to Venn diagrams). Students 
were unable to form generalizable strategies for finding relevant exemplars to evaluate quantified 
disjunctions. The latter teaching experiment, in contrast, successfully prompted students’ to attend to 
reference and partitioning of the referent space through an alternative instructional sequence. I set 
forth the methodology and findings of this study to demonstrate how conventions of mathematical 
logic can emerge within students’ mathematical activity toward the end of their apprenticeship into 
proof-oriented mathematics.  

Keywords: Cognition; Advanced Mathematical Thinking; Post-Secondary Education 

In proof-oriented mathematics, mathematicians embed mathematical meaning in mathematical 
language (definitions, theorems, proofs, etc.). This requires a high level of clarity and precision in 
mathematical language, which is why mathematicians were the first to invent formal languages 
(Azzouni, 2009). Formalizing language requires attending to the relationship between linguistic form 
and meaning. For mathematicians, this involved 1) creating equivalences – but and and are 
mathematically equivalent connectives, 2) disambiguation – distinguishing or and either…or as 
capturing the inclusive and exclusive everyday meanings of or, and 3) creating truth-functions 
relating truth-values of component and compound predicates. These aspects of formal language and 
its acquisition stand in contrast to natural language, which is learned through many more implicit or 
preconscious processes and which entails looser relations between form and meaning (see Stenning, 
2002).  

How then can mathematics students in proof-oriented mathematics courses learn formal, 
mathematical language, specifically as it pertains to the relation between form and meaning? Using 
the guided reinvention heuristic of Realistic Mathematics Education (Gravemeijer, 1994), I sought to 
engage students in conscious and effortful systematization of their use of mathematical language. I 
guided students to reinvent truth-functional definitions for mathematical disjunctions and 
conditionals in a series of short teaching experiments (Steffe & Thompson, 2000). In this paper I 
report on the major patterns of student interpretation of mathematical disjunctions, how failure to 
partition example spaces inhibited their ability to reinvent normative interpretations of quantified 
disjunctions, and an alternative instructional sequence that supported the emergence of normative 
interpretations of quantification.  

Studies of students’ interpretations of linguistic form 
Because there is ample evidence that students’ untrained interpretations of mathematical 

language differ significantly from that of mathematicians (e.g. Durand-Guerrier, 2003; Epp, 2003), 
many Introduction to Proof courses include a unit on logic. However, my method departs from many 
of the common approaches to teaching these topics in mathematical logic because 1) I want students 
to impose logical form on meaningful mathematical statements rather than abstract or nonsensical 
ones and 2) I problematize students’ reasoning toward an interpretation (Stenning, 2002; Stenning & 
van Lambalgen, 2004) of language. The majority of psychological and mathematics education 
studies of student’s interpretations of linguistic form tend to elicit students’ preconscious interpretive 
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processes (Evans, 2005; Inglis & Simpson, 2008), but assess those interpretations against a single, 
formalized linguistic meaning. This assumes some logical structure is embedded in language or 
semantic content and that people are irrational for reasoning alternatively (e.g., Stanovich, 1999). As 
Stenning (2002) eloquently argues, everyday linguistic interpretation is far too complex and varied 
for this approach. One may distinguish three views of logic’s relation to language use that clarify my 
stance. Logic can be thought of as a description of language use (common in later 20th century logic, 
Stenning, 2002), a prescription for proper language use (as many psychologists deem it), or the 
constructed product of a learning process of systematizing language (my proposal). I call this third 
view students reasoning about logic to denote its conscious and reflective nature. I adopt this lens 
because many studies suggest formal logic is a poor model of most students’ reasoning, but proof-
oriented mathematics requires that students conform their reasoning to mathematical norms. 
Stenning’s (ibid.) findings support this study’s use of meaningful mathematical statements, as he 
states, “formal teaching can be effective as long as it concentrates on the relation between 
formalisms and what it formalizes” (p. 187) and “logic teaching has to be aimed at teaching how to 
find form in content” (p. 190). So, I operationalize logic not in terms of students learning formalisms 
(e.g. truth-tables, Venn diagrams), but as their progressive systematization of their interpretations of 
mathematical statements till they impose a consistent, generalizable, and normative form.  

Methods 
I recruited three pairs of Calculus 3 students from a medium-sized Midwestern university to take 

part in short teaching experiments. I chose this course to find students who were mathematically 
proficient, could benefit from learning formal mathematical language, and who had not taken proof-
oriented mathematics courses. I identified their background in learning logic via an online survey. 
Students met in pairs with the author for six one-hour sessions, and were compensated monetarily for 
their participation. The first three sessions focused on mathematical disjunctions and the latter three 
sessions on mathematical conditionals.  

The guided reinvention approach helped to identify the interpretations students imposed upon the 
statements, how those interpretations shifted upon reflection, and which tasks elicited reasoning that 
approximated normative interpretations. I asked students to determine whether provided 
mathematical statements were true or false, then to systematize and describe their method, before 
asking them to negate the statements. It was initially anticipated that disjunctions would be easier for 
students to formalize and provide a foundation for interpreting conditionals (known to be a 
problematic linguistic form, Evans, 2005). Instead, disjunctions were quite challenging for 
mathematically important reasons. Thus, I only report on data from the first three days of each 
teaching experiment. The first two pairs met simultaneously and employed the same instructional 
activities. The third met several months later using modified activities. As such, data is presented as 
two experiments distinguished by their anticipated learning trajectories and instructional tasks. Table 
1 presents a selection of the statements used in the study, with “D1:3” denoting the third statement on 
Day 1. An apostrophe denotes an item from Experiment 2. 

Consistent with the teaching experiment methodology (Steffe & Thompson, 2000), during 
Experiment 1 the author served as teacher/researcher and another researcher served as outside 
observer. The observer kept field notes during each session and the researchers debriefed after each 
teaching session. Video recordings were also reviewed each day to form and test hypotheses about 
student learning to inform the teaching activities for the following session. Full retrospective analysis 
commenced after the experiment ended. The author coded data in the open and axial method of 
grounded theory (Strauss & Corbin, 1998). Codes related to 1) truth-value assessment strategies (e.g., 
one condition false makes the disjunction false), 2) paraphrases of provided statements (e.g., 
introducing “either…or” language), 3) modes of reasoning about logic (e.g., attending to the meaning 
of the or connective), 4) clarification of semantic information (e.g., identifying relevant warrants 
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such as “all squares are rectangles”), and 5) negating actions (e.g. negating [A or B] with [not A or 
not B]). I report on common trends in students’ interpretive behavior and emergent links among their 
strategies, interpretations, and particular disjunctions.   

Table 1: Sample disjunctions provided to study participants 
D1:1 “Given an integer number x, x is even or x is 

odd” 
D1:2:“The integer 15 is even or 15 is odd. 
D1:7 “The real number 0 has a reciprocal  such that 

 or 0=0.” 
D1:9 “Given any even number z, z is divisible by 2 

or z is divisible by 3” 
D2:6 “Given any triangle, it is equilateral or it is not 

acute.” 
D2:7 “Given any triangle, it is acute, or it is not 

equilateral.” 

D3:3 “10 is an even number or 20 is 
an even number” 

D3:4 “13 is an even number or 6 is 
an even number.” 

D2’:6 “For which integer numbers z 
is it true that ‘z is divisible by 4 or z is 
divisible by 3’” 

D2’:10 “For which real numbers y is 
it true that “y<3 or y>5” 

D2’:12 “For which triangles is it true 
that ‘it is equilateral or it is not acute.’” 

Experiment 1 
Of the four participants in this experiment, one pair had no training in logic and the other pair had 

completed a philosophy course in logic. Their patterns of reasoning were nearly identical. When 
initially assessing the truth-values of non-quantified disjunctions, both groups declared a disjunction 
with a false component false (e.g. D1:2 and D1:7). Only on D1:9 did either group begin explicitly 
attending to the connective or and its role in the statements’ meaning. Both groups at this point also 
began distinguishing the truth-values of the two components from that of the disjunction. For 
instance, Ron said, “This just got interesting cause when you say “or” only one of ‘em has to work, 
not both of ‘em.” When asked to revisit their initial decisions, both groups reinterpreted D1:2 as true 
because of the or connective. Students were more reluctant to affirm D1:7 as it seemed more 
mathematically absurd, but later decided that the 0=0 condition also made it true. By the end of the 
first session, both groups were consistently interpreting non-quantified disjunctions in a manner 
consistent with the normative truth-functional definition. As Ovid said, “Cause “or” for me means 
either it could be one or the other or both.”  

Students generally had more trouble with quantified disjunctions where the truth-function was 
not sufficient to assess the truth-value of the statement. Some statements afforded semantic 
affirmation without testing particular cases as with D1:1 where the categories are exhaustive. In other 
cases, though, students used a sentential testing strategy in which they picked examples and reread 
the statement to evaluate whether it “covered” the given case (often reading left to right). This 
strategy reduced quantified disjunctions to a sequence of non-quantified disjunctions, but it also 
necessitated a strategy for picking cases and organizing the example space.  

Partitioning the example space 
Experiment 1 participants did not spontaneously develop an intentional way to partition the 

spaces of examples because each space was pre-organized according to familiar mathematical 
categories (e.g. even, acute, rectangle). The normative logical partitioning of examples (as portrayed 
in Venn diagrams) distinguishes cases that satisfy each component condition of the disjunction such 
that the examples fall into four categories (TT, TF, FT, and FF). Because students’ reasoning stayed 
focused on the statements themselves, they failed to attend to how the statement provided a novel 
partitioning of example spaces. This was not problematic for cases that could be easily and 
exhaustively seriated such as the integers or even integers. Students tested cases sequentially (2, 4, 6, 
8…), usually assigning a truth-value after 3-5 examples. However, both pairs of students struggled to 
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assess geometric statements such as D2:6 and D2:7. This is because they reasoned about triangles in 
terms of familiar semantic categories – equilateral, acute, right, obtuse – rather than treating right and 
obtuse as equivalent relative to the given statements – non-equilateral, non-acute. Without a simple 
way of exhausting the example space, they were never sure if a statement was true of all triangles.  

Students developed some other normative and non-normative strategies that helped them resolve 
quantification issues. First, recognizing that all equilateral triangles are acute, some students 
incorrectly concluded that not equilateral meant not acute, implying that statements like D2:6 were 
true. Students struggled in other ways with how to interpret negative predicates, often substituting a 
positive predicate that was non-complementary, such as replacing “<” with “>” or “not acute” with 
“is obtuse.” In general, students did not seem aware that a negative predicate (“not acute”) could be 
thought of as denoting the complement of the set of cases satisfying the positive predicate (“is 
acute”). As a result, students were disinclined to reason about negative predicates without 
paraphrasing (“can’t be acute”) or substituting positive conditions.  

However, students’ sentential testing strategy led to some other strategies that more closely 
approximated normative interpretations and led students to make appropriate determinations of truth-
values. Two participants began anticipating that anything satisfying the first condition made the 
statement true. So, they began ignoring such cases, as when Ron interpreted D2:6 as, “if it's not 
equilateral, it must be obtuse.” I call this strategy an “if not…then” paraphrase. While not identical 
to the Venn diagram partitioning of examples, this strategy allowed students to reduce the set of 
cases they had to attend to by excluding cases satisfying the first predicate. Their reasoning also 
implicitly approximated the negation of the disjunction – negating both predicates – because it led 
students to question whether anything failing the first condition must necessarily satisfy the second. 
For instance, Ron rejected that any non-equilateral triangle must be obtuse, which led him to find the 
non-equilateral, acute counterexample1. Though they used it repeatedly, students in Experiment 1 did 
not consciously identify or abstract their “if not…then…” strategy. Furthermore, without specific 
guidance students did not reinvent the Venn diagram partitioning of examples and consistently used 
sentential testing of a few cases.  

Negating disjunctions 
One of the challenges in reinventing logic is to find experientially real activities (Gravemeijer, 

1994) that foster language systematization as entailed in reasoning about logic. Assessing truth-
values successfully prompted students’ reinvention of truth functions. Negating statements appeared 
a natural next activity, but it was unclear how to describe logical negation to participants unfamiliar 
with the notion. In Experiment 1, I asked students to find a systematic way to produce an opposite 
statement that always had the opposite truth-value. This description of the negation of a statement 
proved to be underspecified for reinvention.  

Experiment 1 participants commonly engaged in syntactic manipulations of the statements to 
produce a negation such as 1) negating both conditions with the same connective (

) or 2) negating with a non-complementary property ( ). 
Even when provided with various statements intended to dissuade such strategies, students were 
unperturbed to negate different statements in different ways. Ron and Drew negated “10 is even” 
with “10 is odd,” but more appropriately negated “  is even” with “  is not even.” Anticipating that 
the and connective in the negation would not be obvious, I asked participants to negate D3:3 and 
D3:4. Students in both pairs negated D3:3 as “10 is an odd number or 20 is an odd number,” which 
yielded the opposite truth-value as desired. They then recognized a problem when the same 
transformation of D3:4 yielded another true statement. Drew responded by negating D3:4 with “13 is 
an even number or 6 is an odd number.” This statement is false, as required, but Drew did not show 
evidence of anticipating whether this method would work for any other statements. Ron and Drew 
proposed and tested various transformations of the statement before introducing an and connective, 
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seemingly by trial and error. Upon testing, they recognized that this method properly negated the 
given statements, but could not semantically justify why. Contrary to the researcher’s intentions, 
study participants did not perceive any connection between why a counterexample falsified a 
disjunction (it satisfied neither condition) and a systematic method of negating a disjunction (not A 
and not B). There was also no evidence that they understood why the negation of a universally 
quantified disjunction should be an existentially quantified conjunction, though the counterexample 
heuristic might suggest it. It appears from these two teaching experiments that the negation criterion 
of merely having the opposite truth-value was too underspecified to foster students’ recognition of a 
generalizable method. They relied on trial and error syntactic transformations of the statement in lieu 
of any intentional, semantic strategy.  

An alternative criterion for mathematical negation 
One episode from the third interview with Ovid (his partner Eric was absent) suggested an 

alternative approach to reinventing negation. Ovid was already comfortable with abstracting from 
each non-quantified disjunction the two component truth-values and applying their truth function. 
Ovid recognized that negating a disjunction with a disjunction would not work because each of the 
two components would reverse truth-values. He said, “If this is false-true, then the opposite would be 
a true-false statement.” Like Drew, Ovid initially wanted to change the way he negated the 
components rather than changing the connective. I invited him to explore all such component 
patterns and the desired outcomes for the negation, which produced the table in Figure 1. Analyzing 
this representation, Ovid said, “So we would have to do, probably would be an and statement. 
Because then it would have to fit both criteria rather than either, or, or both.” He went on to check 
that “13 is not an even number and 6 is not an even number” properly negated D3:4 (i.e. produced 
the opposite truth-value as desired). 

Figure 1: Reproduction of Ovid’s truth table for negating disjunctions. 

Ovid’s discovery that the negation of a disjunction must be a conjunction was significant for two 
reasons. First, this was one of the clearest cases where the formalization and abstraction of the truth-
value structure of the mathematical statements led a student to reinvent a normative logical theorem. 
As Stenning (2002) discussed, Ovid learned from the relation between the formalization and what it 
formalized. Ovid translated the semantic statements into a logical representation system (a truth 
table), deduced the appropriate pattern from that representation, and then translated it back to the 
semantic system of mathematical statements.  

The second reason I highlight Ovid’s discovery is that it suggested an alternative way of 
characterizing negations. Each of the statements Ovid reasoned about in this episode could be viewed 
as a case of the condition “x is even or y is even.” As in Ovid’s truth table, the negation of the 
condition must yield the opposite truth-value for each pair of numbers. Thus the negation of a 
quantified disjunction must be a case-wise negation (yielding opposite truth values for each example) 
in addition to a global negation (having the opposite truth-value overall). This insight, combined with 
the need to guide students to attend to partitioning the example space suggested the revised teaching 
activities employed in Experiment 2.  

Parts St Parts Neg 
TT T FF F 
FT T TF F 
TF T FT F 
FF F TT T 
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Experiment 2 
The teaching activities on the first day of this teaching experiment were nearly identical to those 

in the former, except that some uninformative items were removed and the geometry items from the 
second day were added. The participants in Experiment 2, Cid and Macy, attended to the or 
connective much earlier (on D1:2), but still rejected D1:7 as false due to its apparent absurdity. 
Unlike the participants in Experiment 1, Macy had been taught logic in a mathematical context. 
Despite this, she consistently imposed a non-normative “exclusive or” interpretation, though it took 
her some time to recognize when it applied to quantified disjunctions. Like the first group, Macy and 
Cid distinguished and coordinated the three truth-values in a non-quantified disjunction according to 
truth-functions, though they disagreed about the output when both predicates were true. Like the 
previous pairs, neither Cid nor Macy developed a generalizable strategy for finding example cases, 
especially for the geometric items. Cid himself explained that he was merely “stabbing at examples 
in [his] head.” He implicitly used a sentential testing strategy and “if not…then” paraphrases, but did 
not recognize or abstract these approaches. Macy attempted semantic substitution, inappropriately 
paraphrasing D2:6 as “is acute or is not acute” because “equilateral triangles are acute.”  

Alternative activities intended to emphasize quantification of predicates 
On day 2, many of the same conditions were presented to the students, but the activity was 

reframed from assigning truth-values to quantified disjunctions to finding the set of cases that 
satisfied a disjunctive predicate (see the D2’ items in Table 1). This sequence of tasks was intended 
to guide students to associate classes of examples with each condition rather than single examples, 
leading to the normative interpretation that mathematical predicates entail sets (rather than simply 
describing cases). The close association between “divisibility by 2” and  (the set of even 
integers) is commonplace in proof-oriented mathematics, but analysis of Experiment 1 suggested that 
it was not a natural association for study participants.  

I anticipated that visually representing some of the sets described by these disjunctive predicates 
might lead students to an interpretation approximating the Venn diagram for or, the principle of 
which is that a disjunctive predicate entails the union of the sets of cases entailed by the two 
component predicates. For this reason, I included items such as D2’:10 that would easily lend 
themselves to visual representation.  

The third reason to shift from declaring quantified disjunctions true or false to identifying the set 
of cases that satisfied a disjunctive predicate was to provide a natural segue to case-wise negation. 
Rather than negating statements by other statements that have opposite truth-values, the negation of a 
disjunctive predicate “X or Y” is the predicate that entails the complement of the cases. Thus I 
anticipated modifying the task to, “For which integers is the condition false?”  

Results of the alternative instructional activities 
Cid and Macy approached the second day’s activities initially using verbal strategies as they had 

done the day before. In some cases, they could describe the set easily as “all real numbers” or “all 
even integers.” They ran into difficulty when they tried to use “and” to denote the union of two sets, 
which confused the intended meaning of the connectives. Beginning with the geometric items, they 
began instead describing the cases that do not satisfy the condition. Regarding the correlate task to 
D2:6, Cid said, “An acute triangle doesn’t satisfy it. I think.” Macy clarified, “An acute triangle 
that’s not equilateral.” The interviewer invited them to extend this strategy and specify the set of 
cases making each condition false. By the next item, Macy generalized the strategy, saying “I am 
trying to think if there’s any counterexamples where you can make both of those statements false. 
Cause then you can exclude some of the triangles.” In this way, Macy recognized that the statement 
was false for cases that failed both component predicates. Both Cid and Macy later noted that it was 
much easier to describe the set of counterexamples to disjunctive conditions than describing the cases 
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that satisfied them. They could not articulate why this was easier, though. In addition, they implicitly 
recognized the complement relation between the satisfying and falsifying cases.  

I intended for a visual representation to suggest the relationship that the cases satisfying a 
disjunctive condition consist of the union of the cases satisfying each condition (as the Venn diagram 
suggests). Cid and Macy drew number lines for D2’:10, but they described the resulting set in spatial 
terms (“It’s false when y is between 3 and 5.”) rather than in inequality language. This dissociated 
the set from the negations of the two component predicates and led to no generalizable strategy. The 
interviewer then revisited D2’:6 and invited the students to create two number lines that 
demonstrated which numbers satisfied and falsified the given condition. The students did so (Figure 
2) including the truth-values of the two components for each number. This led them to rediscover 
Ovid’s observation that the component truth pattern of the negation will invert that of the original 
and that the connective and will ensure the proper pattern of truth-values for the disjunction and 
negations overall. While this alternative visual representation did not emphasize the union property, 
it clearly fostered truth functional analysis leading Cid and Macy to reinvent the case-wise negation 
of a disjunction.  

 
Figure 2: Representing the sets entailed by a disjunctive predicate and its negation. 

Summary and discussion 
From the diversity of strategies employed, and the frequency with which study participants 

paraphrased the given statements in various ways, it was clear that study participants had not 
systematized the meaning of or in mathematical sentences prior to the teaching experiments. Rather, 
students reasoned toward an interpretation (Stenning & van Lambalgen, 2004) of each sentence 
trying to find some way to have the language or content suggest a means of assessing each statement. 
Several key strategies emerged repeatedly and independently such as sentential testing and “if 
not…then,” but students did not apply such strategies consistently. Due to the methodological choice 
to work in meaningful mathematical contexts, participants had to impose logical form in their 
mathematical interpretations. Participants only slowly developed meta-language for describing and 
abstracting patterns and strategies across various contexts.  

In each study, students reinvented the standard truth-function for inclusive or exclusive or in one 
session. The activity of assessing truth-values did not lead study participants to develop strategies for 
quantified disjunctions that approximated the normative Venn diagram partition of examples. 
Students selected examples according to the semantic structure of the content of each sentence 
(numbers, triangles, etc.) rather than according to the predicates in the disjunction. This suggests that 
instruction in proof-oriented classes must help students begin associating any property or predicate 
with the set of examples satisfying that predicate and its complement. Properties describe single 
cases, but they also organize or partition sets of examples. None of the study participants approached 
the given tasks in this quantified way without being guided to do so. Motivated by the need to attend 
to quantification of predicates and to develop a case-wise meaning of negation, I developed the 
instructional sequence used in Experiment 2. This approach successfully led Cid and Macy to 
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formulate the normative negation of a disjunctive condition and to identify that a condition and its 
negation entailed complementary sets.  

A theoretical goal of this project is to recast mathematical logic within students’ activity. These 
results provide several instances of students reasoning about logic such as problematizing linguistic 
interpretation, reinventing the standard definition of or, comparing interpretations across statements, 
developing meta-language to abstract patterns, and truth-table analysis leading to new discoveries. 
These data support the hypothesis that students can reinvent the structures of logic when engaged in 
the activity of logic: systematizing language. However, further studies are needed to better 
understand reinventing logic’s instructional affordances and implications.  

Endnote 
1While Ron’s paraphrase also falsely suggests right triangles are counterexamples, his line of 

reasoning led him to the correct counterexample. 
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We studied the linguistic norms of mathematical proof writing at the undergraduate level by asking 
two mathematicians and five mathematics undergraduate students to read seven partial proofs based 
on student-generated work and to identify and discuss uses of mathematical language that were out 
of the ordinary with respect to standard mathematical proof writing. By asking participants to 
discuss the seriousness of each breach, we not only identify and discuss some of these linguistic 
norms, but also describe important differences between the ways in which mathematicians and 
students understand them. 

Keywords: Reasoning and Proof; Advanced Mathematical Thinking 

In professional mathematical practice, proofs are an essential type of communication.  In an 
influential paper on the role of proof in mathematics, Rav (1999) wrote that proofs “are the heart of 
mathematics” and that they play an “intricate role […] in generating mathematical knowledge and 
understanding” (p.6). As a result, fostering undergraduate mathematics students’ abilities to 
understand and construct valid proofs is one of the primary goals of mathematics instruction at the 
advanced undergraduate level. However, evidence of undergraduate students’ difficulties when 
reading and constructing proofs is pervasive in the mathematics education literature (Weber, 2003). 
One potential difficulty students have when constructing proofs concerns students’ inability to 
understand and use mathematical language and notation (Moore, 1994).   

Mathematical language has been studied and interpreted in a variety of different ways: as a 
foreign language composed almost entirely of technical symbolic representations (Ervynck, 1992), as 
a combination of natural language and a system of mathematical symbols (Kane, 1968), and as a set 
of meaning that is created and expanded with the creation of terminology and the designation of 
technical definitions to natural English words (Pimm, 1987). In particular, researchers have focused 
on the differences between mathematical language and neutral or common language. For example, 
Veel (1999) discussed the precision necessary when implementing certain verb phrases in 
mathematics and Halliday (1978) noted the nominalization of mathematical language, in which a 
mathematical action or phenomenon becomes an object (e.g., differentiation). As these aspects of 
precision and rigor in mathematical writing may cause difficulties for students, a number of 
mathematics educators have suggested ways to improve students’ use of mathematical language (e.g. 
Veel, 1999; Moschkovich, 1999; Lemke, 2003). However, these suggestions have focused on school 
level mathematics. Research on how mathematicians and undergraduate students understand the 
language of mathematics is lacking: to our knowledge, there are only two studies (Konior, 1993; 
Burton & Morgan, 2000) to date that have explicitly and empirically investigated the language of 
mathematical proof writing, and neither study investigates how undergraduate students understand 
such language.  

Objectives of the Study 
This qualitative study is a first attempt to address this gap in the literature by examining how 

mathematicians and undergraduate students understand the linguistic norms of mathematical proof 
writing. By interviewing both mathematicians and undergraduate students, this study not only 
identified various linguistic norms of undergraduate mathematics proof writing, but also illustrated 
how students understand these norms. In particular, this study addressed the following research 
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questions: 
1. How do mathematicians view and describe the linguistic norms of mathematical proof 

writing at the undergraduate level? 
2. How do undergraduate mathematics students taking an introduction to proof course 

understand these norms? 

Theoretical Framework 
This study is informed by Herbst and Chazan’s (2003) body of work on practical rationality. In 

particular, Herbst (2010) described norms as statements that articulate practice, as made by an 
observer of the practice. Since participants may not be fully aware of the norms they follow, Herbst 
and Chazan (2003) adapted the ethnomethodological concept of breaching experiments (Mehan & 
Wood, 1975) to study these norms. Herbst and Chazan hypothesized that when a participant of a 
practice is engaged in a situation where a norm has been breached, the participant will attempt to 
repair the breached norm highlighting not only what the norm is, but also expounding on the role that 
the norm has in the practice (Herbst, 2010). Adapting this methodology, this study used the concept 
of breached norms to investigate the linguistic norms of mathematical proof writing at the 
undergraduate level.   

This study also employed the use of Scarcella’s (2003) conceptual framework for academic 
English. Scarcella defined academic English as a “register of English used in professional books and 
characterized by the specific linguistic features associated with academic disciplines” (Scarcella, 
2003, p. 9). This framework has previously been applied to mathematics education with regards to 
English learners studying mathematics (e.g. Silva et al., 2008; Heller, in press).  However, we 
propose to apply the framework as a tool to begin to investigate important aspects of the mathematics 
sub-register of academic English. The framework of academic English specifies that there are three 
dimensions of language; the linguistic dimension, the cognitive dimension, and the sociocultural-
psychological dimension. For the sake of brevity, we focus on the linguistic dimension and its 
components. 

The linguistic dimension of academic English involves phonological, lexical, grammatical, 
sociolinguistic, and discourse components. The phonological component “includ[es] stress, 
intonation, and sound patterns” (p. 11) and “knowledge of graphemes (symbols) and arbitrary sound-
symbol correspondences” (p.13).  

The lexical component requires knowledge of the words used in a field. In particular, Scarcella 
(2003) distinguished between general words used in everyday language, academic words used across 
academic fields, and technical words that are field-dependent. She also included knowledge of fixed 
expressions, which are “expressions that tend to stick together and cannot be changed in any way” (p. 
14), as part of the lexical component.  

The grammatical component of academic English entails knowledge of “the grammatical co-
occurrence relations that govern the use of nouns” (Scarcella, 2003, p.15). For instance, Scarcella 
(2003) noted students need to learn the associated grammatical features for these technical words, 
that “certain nouns […] are generally followed by prepositional phrases” and that some “verb + 
preposition combinations […] cannot be changed” (p. 16).  

The sociolinguistic component involves developing competence in a variety of functions of 
language, including an understanding of the appropriateness of a given sentence in a particular 
context. Scarcella (2003) noted that “signaling cause and effect, hypothesizing, generalizing, 
comparing, contrasting, explaining, describing, defining, justifying, giving examples, sequencing, 
and evaluating” (p. 18) are examples of different academic language functions.  

The discursive component entails understanding and using linguistic forms necessary to 
communicate successfully and coherently. For instance, in every day language, greetings and parting 
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phrases indicate to speakers the beginning and end of conversations. Scarcella (2003) noted academic 
English “includes specific introductory features and other organizational signals” and that “writers’ 
presentation of ideas must be orderly and convey a sense of direction” (p. 19).  

This conceptual framework of academic English highlights important aspects of learning an 
academic language, and the components of the linguistic dimension provide a lens for analyzing 
mathematicians’ and undergraduate mathematics students’ understandings of the linguistic norms of 
proof writing in undergraduate mathematics.   

Methods 
Based on the methodology used by Herbst (2010) and Herbst and Chazan (2003), this study 

investigates the linguistic norms of undergraduate mathematics proof writing by showing participants 
student-generated proofs and asking them to identify and describe uses of mathematical language that 
are out of the ordinary with respect to standard mathematical proof writing at the undergraduate 
level. By identifying these non-standard uses of mathematical language, mathematicians and 
undergraduate students discuss their understanding of the linguistic norms of proof writing at this 
level.  

Two mathematicians and five undergraduate students were interviewed for this study. Both 
mathematicians had experience teaching an introduction to proof course at the large research 
university in the United States. The undergraduate students were all enrolled in an introduction to 
proof course at the same university at the time of the study. Interviews with individual participants 
were conducted by the first author, videotaped, and lasted one to two hours.  

Materials 
The materials for this study include seven partial proofs that are based on student-generated work 

and truncated to help participants focus on the use of mathematical language and not the attempted 
proof’s logical validity. One example of a partial proof used in the study is presented in Figure 1.   

 
Figure 1: Example of the partial proofs presented to participants 

These partial proofs were chosen from student exams given in an introduction to proof course at 
the same university of the study. For each one of these proofs we created a copy with markings of 
what we considered to be breaches of linguistic norms of mathematical proof writing at the 
undergraduate level. An eighth partial proof was constructed to illustrate the interview procedure 
prior to the beginning of the interview.   

Procedures 
Mathematicians were presented with the student-constructed partial proofs one at a time and were 

asked to mark the partial proofs for anything that was out of the ordinary with respect to the use of 
mathematical language in the writing of mathematicians.  

The interviews made two passes through the materials. In the first pass, mathematicians were 
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asked to explain why they made each mark indicating an unconventional use of mathematical 
language. For each of those unconventional uses, the mathematician was asked if the issue at hand 
was a logical issue, if it would affect the validity of the proof, if it was an issue of mathematical 
writing, if it was definitely unconventional or a matter of personal preference, if it significantly 
lowered the quality of the proof, and if the mathematician would have deducted points based on this 
issue when grading the student generated proof in an introductory proof course. These prompts were 
designed to elicit the mathematician’s views on mathematical language with respect to proof writing. 
In particular, the prompts addressed the severity of each breach and enabled a differentiation between 
issues of logic and issues of mathematical writing in the analysis of the data.   

In the second pass through the data, mathematicians were presented with marked copies of partial 
proofs presented in the first pass. That is, they were presented with a copy of a partial proof marked 
with one instance of an unconventional use of mathematical language as identified by the authors. 
These marked partial proofs were presented for each of the predicted instances of unconventional use 
of mathematical language that had not been previously identified by the participant in the first pass of 
the data. In particular, mathematicians were asked whether or not they would agree with a colleague 
of theirs who had suggested that these were indeed unconventional uses of mathematical language. If 
the participant agreed, the interviewer would then prompt the mathematician to discuss the breach as 
in the first pass of the data.    

The structure of the interviews with the undergraduate students mirrored the structure of the 
interviews with mathematicians. However, the instructions and prompts used in the student 
interviews specified that the participants were to indicate and describe what they believed a 
mathematician would find out of the ordinary with respect to the use of mathematical language in the 
writing of mathematicians in formal settings. The only two other differences with the previously 
described protocol was that in the first pass students were not asked to make an assessment regarding 
the deduction of points in the grading of the partial proofs, and that in the second pass they were 
asked whether or not they would agree with a classmate of theirs who had suggested each 
unconventional use of mathematical language not identified in pass 1. 

Analysis 
Interview videos were transcribed and materials generated in the interviews were scanned for 

analysis. Data was analyzed using memoing and grounded theory in the style of Strauss and Corbin 
(1990). Memos were used to conceptualize the breached linguistic norms and to categorize the 
broken norms.     

Results 
The analysis of the mathematicians’ interviews identified ten breaches of linguistic norms in the 

partial proofs presented to them. The number of mathematicians and the number of students who 
identified each one of these breached norms in the first part of the interview (pass 1) are listed in 
Table 1. Analysis of the interviews provided us with participants’ descriptions of each breached 
norm, their perceived seriousness of each breach (whether they considered the breach to be definitely 
unconventional, or a matter of personal interest or context), and in the case of mathematicians, 
whether or not they would deduct points when grading a proof containing such a breach. A summary 
of some of this information is included in Table 1. However, for the sake of brevity, we only describe 
how four of these ten norms emerged from the data and how the student participants understood 
these four norms. 
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Include Necessary Antecedents 
In the interviews, both mathematicians identified an unclear referent in a partial proof. 

Specifically, the proof included the word ‘it’ referring to a function that had not been explicitly 
defined in the partial proof. One of the mathematicians said:  
 

Table 1: Identification of Norms and Their Severity by Mathematicians and Students in the 
First Pass 

Linguistic Norms of Mathematical Proof Writing Mathematicians* Students** 
Specify each variable 2 – 2 – 2  2 – 1  
Include necessary antecedents 2 – 2 – 2  0 – 0  
Use proper imperative sentence structure 2 – 2 – 2  4 – 3  
Use standard mathematical vernacular 2 – 2 – 2 3 – 2  
Write in full sentences 2 – 2 – 2  0 – 0  
Make relations between statements clear 2 – 2 – 1  3 – 3  
Do not use abbreviations in formal settings 2 – 2 – 0  4 – 1  
Do not use formal propositional logic 1 – 0 – 0  0 – 0  
Explicitly indicate the structure of a proof 1 – 1 – 1  1 – 1  
Use notation appropriately in texts 1 – 1 – 0  3 – 1  
*Number of mathematicians (out of 2) who identified the norm breach in the first pass (1st number), deemed the 
breach definitely unconventional (2nd number), and would deduct points for this type of breach (3rd number).  
**Number of students (out of 5) who identified the breach of the norm in the first pass (1st number) and deemed 
the breach definitely unconventional (2nd number). 

Yes, I mean it’s always, in writing in general, you need to have… the pronouns have to have an 
antecedent. And so, not just mathematical writing, but in particular you have to be careful about 
mathematical writing. 

In this quote the mathematician indicated the necessity of including antecedents to avoid unclear 
referents and suggested that it is not only the case that the rules of English grammar apply to 
mathematical language, but also that the adherence to this rule in mathematics is particularly 
important. Using Scarcella’s (2003) framework, we identify the inclusion of necessary antecedents as 
a linguistic norm regarding the grammatical component of the language of mathematical proof 
writing. Both mathematicians judged the use of pronouns lacking clear referents as definitely 
unconventional in mathematical proof writing and indicated that they would deduct points from an 
exam in an introductory proof course based on that breach.   

However, none of the students identified the unclear referent in the first pass through the data. 
After presented with the marked partial proof indicating the unconventional use of mathematical 
language, four students agreed that the word ‘it’ introduced ambiguity. But these students did not see 
this issue as severely as the mathematicians. In particular, the students indicated that they believed a 
mathematician would view this issue as a matter of personal preference. Failing to view the 
grammatical necessity of including antecedents could be interpreted as evidence that these students 
are not proficient in this aspect of the grammatical component of mathematical proof writing. 

Use Proper Imperative Sentence Structure 
The interviewed mathematicians indicated that the following phrases from the partial proofs were 

ungrammatical and meaningless:  1) “Suppose  s.t. ” and  2) “Let 
”. These are both imperative phrases beginning with transitive verbs. As such, English 

grammar dictates that the phrases need both a direct object and an object complement to be a 
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complete sentence. That is to say, that the sentence must suppose the direct object in relation to 
another object or a property about the direct object.   

Both mathematicians judged these two statements to be definitely unconventional and worthy of 
deducting points on an exam in an introduction to proof course. In particular, one mathematician said 
that the former “just doesn’t make any sense at all, I don’t know what they were… what they mean to 
be saying.” He continued to say “Suppose what about ?  Following it with the ‘such that’ is 
not a statement about , so you can’t say suppose”, indicating that the sentence is 
incomplete. Concerning the phrase “Let ”, the second mathematician said:  

It’s not a statement.  I mean, let something implies that the something is a statement that’s being 
assumed and this is not a statement. […] Linguists probably have a word for this; it’s just not a 
sentence. […] It’s not a correctly constructed meaningful thing.  

Here the mathematician attempted to describe that using the word ‘let’ needs to be followed by a 
meaningful statement. While the mathematicians had difficulty explaining the breached linguistic 
norm exactly, it is evident that both believed the phrases included unconventional use of 
mathematical language. 

Four of the student participants agreed in the first pass that these sentences are unconventional 
uses of mathematical language. Moreover, one of the students indicated that the statements were 
incomplete sentences and were grammatically incorrect. However, they did not agree with the 
mathematicians’ severe opinions of this type of breach. While three students indicated that this was 
indeed an unconventional use of mathematical language (and not simply a matter of writing style), 
each of students also believed such a use of language was harmless to the quality of the proof.  

Make Relations Between Statements Clear 
Both mathematicians discussed the importance of using verbal connectives to show the relations 

between different statements within the partial proofs. Moreover, they both agreed that lacking these 
verbal connectives was definitely unconventional and would merit point deductions on an exam in an 
introductory proof course. In particular, one mathematician said:  

No, it’s not harmless. […] I mean if I’m worried about a student actually getting broken of a 
habit of making these kinds of, here’s a statement, here’s a statement, here’s a statement, without 
drawing the connectives in between. Then that’s not a logical issue, but it’s a serious presentation 
issue.  

In this quote, the mathematician indicated that he did not want students to write proofs as a series 
of unrelated statements, and deemed this breach as a serious presentation issue. Such relations 
between statements show the flow of the argument to readers, which is an aspect of the discursive 
component of mathematical language.  

 However, there was less agreement among the students. The three students who indicated in 
the first pass that one must make relations between statements clear each agreed that this use of 
mathematical language was definitely unconventional. One student said:   

I don’t know if he’s just stating it or if he means it to be part of that [assumption], but I think if 
you’re writing it out formally, you should be more clear about it, like put an assume.  

This student indicated that lacking verbal connectives could lead to ambiguity, which puts 
unnecessary stress on the reader to decipher the flow of the argument. On the contrary, two of the 
five students indicated in the second pass that there was no need for verbal connectives and a proof 
lacking words was conventional. One of these students said, “in some homework assignments, I have 
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done this before and it’s not wrong. You could write it in words or you could write it like this.” This 
student did not seem to believe in the necessity of connecting the various statements in a proof.  

Use Notation Appropriately within Text 
One partial proof included the sentence “So there are 19 possible differences in  that are 

 and ”. One of the mathematicians indicated in the first pass that this sentence used the 
mathematical symbols  and  inappropriately. In particular, the mathematician said:  

I would say that those should have been said in words rather than using the symbols. Or complete 
expression – that is, there are 19 possible differences, d, such that  and . […] Do it in a 
symbolic phrase or do it in words, but don’t kind of mix it in.   

In this quote, the mathematician indicated that the binary operators  and  require notation on 
both the left and right sides of the symbols. Relating the to lexical component of academic English, 
this quote suggests that using the binary operator without notation on both sides of the operator is an 
unconventional use of mathematical language. This mathematician indicated that inappropriately 
mixing the symbolic notation with text would significantly lower the quality of the presentation and 
that he would deduct points from an exam based on this use of language. While the other 
mathematician agreed in the second pass that such a use would be unconventional, he believed that 
mixing the symbolic notation with text is a personal preference and would not deduct points off of an 
exam. This mathematician however discussed that one should not technically use this type of “short 
hand” in formal settings, but that it is commonly used despite it being unconventional. This indicates 
the sociological component of mathematical proof writing includes understanding the 
appropriateness mixing mathematical notation and prose. 

Three of the five students’ responses in the first pass also indicated that mixing the notation and 
text in this way was an unconventional use of mathematical language. For example, one student said:  

I think it’s just more the notation. It looks odd to just have the greater than sign without having 
something like directly in front of it. So I think it should be written out in words.   

In this quote, the student described that the binary operators  and  require notation on both the 
left and right sides of the symbols, suggesting that the students agreed with the first mathematician 
on what was the appropriate way to use symbols in prose. On the other hand, many of the students 
also believed that this mix of notation and prose was harmless. In particular, one student said that 
“it’s faster than writing greater than or equal to or less than or equal to [… and] I’ve seen lots of 
teachers use that when like they do lectures.” So this student emphasizes that since teachers mixed 
the notation and prose when writing on the board, there is no reason why he should not do so as well.  

Discussion 
As this qualitative study considers only a small sample of mathematicians and undergraduate 

students, the findings are simply suggestive of how mathematicians and undergraduates view the 
language of undergraduate mathematics proof writing. In particular, based on mathematicians’ 
interviews we have identified ten linguistic norms of mathematical proof writing. Our analysis 
suggests that while interviewed students showed some competence in certain aspects of the lexical 
and grammatical components of mathematical proof writing, there were significant differences 
between these students’ understandings of some aspects of the sociological and discursive 
components of mathematical proof writing and the corresponding understandings of the 
mathematicians interviewed in this study. 

While the nature of this study precludes any claim of sample-to-population generalization of 
these findings, we believe the linguistic norms of mathematical proof writing identified in this study, 
as well as the method suggested for studying such norms, opens interesting avenues for future 
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research in an area that is both under-researched in mathematics education and important in our 
attempt to understand students’ difficulties reading and writing mathematics. In particular, these 
findings suggest the following research questions: To what extent does the larger community of 
undergraduate mathematics professors agree on the linguistic norms of undergraduate mathematics 
proof writing identified in this study? To what extent do students in transition to proof courses (and 
beyond) agree on the described views of these norms, and to what extent do students’ perceived 
views of these norms align with those of the professional mathematical community? How do 
students’ understandings of these norms develop and change throughout a semester of an 
introduction to proof course? We are currently designing studies that address some of these 
questions. 
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Action-Process-Object-Schema (APOS) Theory is applied to study student understanding of 
directional derivatives of functions of two variables. A conjecture of the main mental constructions 
that students may do in order to come to understand directional derivatives is proposed and is tested 
by conducting semi-structured interviews with 26 students who had just taken multivariable calculus. 
The interviews explored the specific constructions of the genetic decomposition that student are able 
to do and also the ones they have difficulty doing. The conjecture, called a genetic decomposition, is 
largely based on the elementary notion of slope and on a development of the concept of tangent 
plane. The results of the empirical study suggest the importance of constructing coordinations of 
plane, tangent plane, and vertical change processes in order for students to conceptually understand 
directional derivatives. 
Keywords: Advanced Mathematical Thinking 

Introduction and purpose of the study 
The calculus of functions of several variables is of fundamental importance in the study of 

mathematics, science, and engineering. Some work has been published regarding functions of two 
variables (see for example, Trigueros and Martínez-Planell, 2010; Martínez-Planell and Trigueros, 
2012). However, there are very few publications on the differential calculus of such functions. The 
only publication we’ll refer to, Weber (2012), includes a discussion of the rate of change of functions 
of two variables focusing on the use of covariational thinking to help students build a notion of rate 
of change in space which centers on students' development of a symbolic representation of the 
directional derivative. In this paper we focus on students' geometrical understanding of directional 
derivatives and its relationship to other important ideas in the schema of the differential calculus of 
functions of two variables. Our research questions are: What are students’ conceptions of directional 
derivatives after taking a Multivariate Calculus course? What are the main mental constructions 
involved in learning this concept?  

Theoretical framework 
APOS Theory is used as a theoretical framework to study the cognitive development of students 

who completed a course using a traditional lecture/recitation model, as discussed in Arnon et al. 
(2013, p. 106). As APOS is a well-known theory it is briefly discussed (see Figure 1). In APOS, an 
Action is a transformation of a mathematical object that is perceived by the individual as external. It 
could be the step by step implementation of an algorithm according to explicit instructions or the 
application of a fact or result that has only been memorized. Activities that lead students to repeat 
and reflect on an action can help them to interiorize the Action into a Process. A Process is 
characterized by the individual’s ability to imagine doing the main Actions and to anticipate their 
result without having to explicitly perform them; In a Process the Actions are perceived as internal. A 
Process may be coordinated with other Processes, and may also be reversed. As an individual needs 
to apply Actions on a Process, he/she may become aware of the process as a totality. In this case, 
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when the individual applies or can imagine applying Actions to the Process, then it is said that the 
Process has been encapsulated into an Object. Actions, Processes, and Objects may be organized into 
Schemas. A Schema for a given mathematical notion is a coherent collection of Actions, Processes, 
Objects, and other Schemas that are related in the individual’s mind to the notion that is being 
considered. Actions on a Schema may result in its being thematized into an Object. Schemas develop 
as relations between new and previous Actions, Processes, Objects and other Schemas are 
constructed and reconstructed. Their development may be described by the Intra-, Inter-, Trans- 
“triad”:  At the Intra- stage relations among the Schema components are being constructed but they 
remain for the most part isolated from one another.  At the Inter-stage, transformations between some 
of the Schema components are recognized. The Trans- stage is defined in terms of the construction of 
a synthesis between them, so that the Schema is coherent and the individual can decide when its use 
in problem solving is needed.  

Also, although it might be thought that in APOS theory there is a linear progression from Action 
to Process to Object and then to having different Actions, Processes, and Objects organized in 
Schemas, this often appears more like a dialectical progression where there can be partial 
developments, passages and returns from one conception to another. What the theory states is that a 
student’s tendency to deal with problem situations in diverse mathematical tasks involving a 
particular mathematical concept is different depending on whether the student understands the 
concept as an Action, a Process, or an Object or has constructed a coherent Schema.  

 
Figure 1: Mental structures and mechanisms 

The application of APOS theory to describe particular constructions by students requires that 
researchers develop a genetic decomposition - a model that describes the specific mental 
constructions a student may make in understanding mathematical concepts and their relationships. As 
a model, a genetic decomposition predicts the constructions needed to learn the concepts of interest.  
It is proposed by researchers and needs to be tested experimentally. The genetic decomposition that 
follows was developed from reflection on the mathematics itself, considering what it takes to make 
the idea of a directional derivative understandable to students, and the classroom experience of the 
researchers implementing initial versions of the idea for several consecutive academic years.  

Our genetic decomposition of the directional derivative is essentially based on the notions of 
directed slope in R3 and vertical change on a plane. Moreover, the genetic decomposition of vertical 
change on a plane can be used as a starting point to describe the mental construction of several 
important concepts of the differential calculus of functions of two variables including tangent plane, 
differentials, and directional derivatives. Hence, while based on the elementary idea of slope, it can 
potentially provide a unifying framework for the description of the main ideas of the differential 
calculus of two-variable functions, thus contributing to help students construct, at least, an Inter-
Schema stage of development for the differential calculus of functions of two variables.   

The genetic decomposition is as follows: Given a non-vertical plane, the Processes of slope of a 
line and fundamental plane (planes of the form x c= , y c= , z c= ) are coordinated into new 
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processes of vertical change in the x and y directions, where it is recognized that vertical change in 
the x direction can be described as a function of the horizontal change in the x direction ( x xz m xΔ = Δ
), and similarly for vertical change in the y direction ( y yz m yΔ = Δ ). These processes are coordinated 
into a Process of total vertical change on a plane, so that total vertical change in any plane is given in 
terms of the sum of vertical changes in the directions of the coordinate axes: 

x y x yz z z m x m yΔ = Δ +Δ = Δ + Δ  (see Figure 2). Actions and Processes which are treatments and 
conversions in and between representations (Duval, 2006) are performed on the Process of total 
vertical change to encapsulate it into the Object conception of plane in three dimensions. In 
particular, the point-slopes formula for a plane, 0z z− =  ( ) ( )0 0x ym x x m y y− + −  may be seen as the 

vertical change from an initial point x0 , y0 , z0( )  to a final generic point ( ), ,x y z  on the plane. 

 
Figure 2: Vertical change on a plane and directional derivative 

The Process of partial derivative is coordinated with that of plane in three-dimensional space into 
a new Process where tangent planes to any surface at different points can be considered and 
calculated. When there is a need to consider particular tangent planes and perform actions on them to 
describe the surface in terms of the behavior of partial derivatives, this Process is interiorized into an 
Object conception of tangent plane.  

To do the mental construction of ( , )vD f a br , the directional derivative of f in the direction 
,v x y= Δ Δ

r  (not necessarily unitary) at the point ( , )a b , the student may coordinate the Process of 
three-dimensional space with the Process of function of two variables in order to locate and represent 
in space or imagine the point ( )( ), , ,a b f a b . Further coordination with the Process of vectors allows 

use of the point ( ), ,0a b , or more generally any point of the form ( ), ,a b z  as a starting point from 
which to represent the direction vector  ,v x y= Δ Δ

r  in space as , ,0x yΔ Δ .  Then, the Processes of 
vector, slope, and derivative of function of one variable are coordinated to represent physically or 
geometrically, and recognize, the directional derivative as the slope of the line tangent to the graph of 
the function at the point ( )( ), , ,a b f a b  in the given vector direction (a directed slope). To obtain the 
value of ( , )vD f a br  (see Figure 2), the student would then coordinate the Process of slope of a line 
with the Process of tangent plane to obtain the vertical change as ( , ) ( , )x yf a b x f a b yΔ + Δ , and with a 
Process of vector magnitude to obtain the horizontal change as the magnitude of the direction vector 

,v x y= Δ Δ =
r  ( ) ( )2 2x yΔ + Δ , and thus obtain ( , )vD f a br , as 

( , ) ( , )
,

x yf a b x f a b y

x y

Δ + Δ

Δ Δ
. These 
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Processes and coordinations must be constructed in different representations. The computation of 
( , )vD f a br  at a fixed point ( , )a b  for different direction vectors vr  and at different points ( , )a b  for a 

fixed direction vector vr  allows the encapsulation of the directional derivative Process as a function 
that depends on the direction vector vr  while also recognizing the functional dependence of the 
directional derivative on the starting point ( , )a b . 

Method 
An instrument consisting in 6 multi-task questions was designed to conduct semi-structured 

interviews with 26 students to test their understanding of the different components of the proposed 
genetic decomposition. Of these 6 questions we will only report on the 2 which directly considered 
directional derivatives. All participants were students of science and engineering that had just 
finished a course on multivariable calculus. Nine (9) of them came from a group where a traditional 
teaching approach was followed, and the other 17 students came from two groups where activities 
designed in terms of the genetic decomposition were used. All students used the same textbook 
(Stewart, 2006) and covered the same material in the course. The three instructors of the groups were 
asked to choose 9 students from each of them, considered as above average, average, or below 
average based on their performance in the class, providing as balanced a distribution as possible, to 
participate in the interviews. One of the students did not show up to the interview and hence we were 
left with a total of 26 students. All participating professors were experienced (with at least 20 years 
of experience and having repeatedly taught the course during those years), popular with students 
(judging on how fast their sections fill up and on student evaluations), and had, throughout the years, 
shown concern about student’s learning. Each interview lasted on the average from 40 minutes to 1 
hour. The interviews were recorded and transcribed. Data was independently analyzed by the 
researchers and conclusions were negotiated among them. We now discuss the questions that dealt 
directly with the directional derivative and that were analyzed in terms of the structures described in 
the genetic decomposition: 

1. Suppose the graph of ( , )z f x y=  is as follows. State 
the sign (positive, negative, zero) of 2,1 (4,0)D f<− > . 
(This is the second part of a question in the original 
interview instrument. In the first part, students used the 
same graph to determine the sign of ( )4,0.7yf .) 

  

2. The following plane is tangent to the graph of 
( , )z f x y=  at the point (1,2,0). Use the given figure to 

find 1,1 (1,2)D f .  

 

 
It is important to note that in the first question, the function initially is increasing in the given 

direction and thus the directional derivative is positive, 2,1 (4,0) 0D f<− > > , while in the second one, 
thinking of the directional derivative as a slope, the vertical change may be obtained looking at the 
given figure as 4 0zΔ = − , and the horizontal change as 1,1 2= . Hence the value of the 

directional derivative is 4 / 2 . Using the Process of vertical change on a plane this may also be 
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obtained as ( )1,1 1,2D f =  
1,1

x ym x m yΔ + Δ
=
1(1) 3(1)

2
+ 4

2
= .  

Results 
It seems to be commonly assumed in instruction that students can readily represent the vector 

direction in a directional derivative. However, we found that frequently this is not the case. Tania, 
one of the best performing students, could quickly and without hesitation identify the sign of 
( )4,0.7yf  in problem 1, but seemed unable to represent the vector direction and thus was not able to 

give the sign of ( )2,1 4,0D f−
.  

Interviewer: Will that directional derivative be the slope of a tangent line or not?  
Tania: Yes, it is the slope of a tangent line. 
Interviewer: Of what line?  
Tania: That's the tricky part. That's the line I'm looking for.  
In the case of David it was observed that in problem 1, he made the necessary coordinations to 

identify the base point and correctly represented the direction vector. However, he did not coordinate 
the vector and derivative of a function of one variable Processes. Furthermore, he remembered a 
formula that would give him a correct answer but did not seem to have constructed a Process of 
vertical change on a plane that would enable him to give geometric meaning to it: 

David: The directional derivative at the point ( )4,0  … x is 2− , y is 1, it goes this way… 
[Correctly representing the vector direction with a dashed line starting at the base point; see 
Figure 3.] Then the directional derivative at this point will be equal to … 
(4,0)( 2) (4,0)(1)

5
x yf f− +

… [He went on to interpret this as the slope of the secant line he 

drew in Figure 3.] 
After a while, the interviewer suggested to David that he think of a tangent line. He then 

managed to correctly draw a tangent line (see Figure 3), however, the slope he came up with was not 
the directed slope: 

 
 

Figure 3: David’s drawing on problem 1 
Interviewer: And if I were to tell you that the directional derivative is the slope of a tangent line, 

could you draw the tangent line to that graph at that point in that direction?   
David: At this point in that direction? [He draws a tangent line that seems to be correct.] 
Interviewer: Will that slope be positive or negative?  
David: it will be a negative slope… it is negative because… while the value of z decreases, the 

value of x increases, so it would, it would be negative, it would be coming down.   
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Even though David manages, without hesitation, to obtain the correct answer to problem 2, he 
gives no evidence of having coordinated the Processes of vertical change and plane or of tangent 
plane to give geometric meaning to his conception of directional derivative: 

David: Use the given figure to find … it would be the partial with respect to x at the point (1,2) 
times 1, the partial with respect to y at the point  (1,2) times 1, over the square root of 2… 4 
over the square root of 2 (see Figure 4). 

Overall we can only say that David seems to show a conception of directional derivative that is in 
transition from Action to Process because, even though he showed some evidence of having 
constructed a Process conception of directional derivative, as evidenced by his ability to locate base 
points, represent vectors’ directions, and do some computations, he was still mostly dependent on a 
memorized formula. 

 
 

Figure 4: David's written answer to problem 2 
Some students like Luis, were able to do these coordinations to explain correctly the expected 

answer. His behavior on problem 1 is consistent with a Process conception of directional derivative. 
Of course, his behavior on just one problem is not sufficient to guarantee he has constructed this type 
of conception of directional derivative, since a student's conception can only be ascertained by 
considering the student's tendency to deal with different problem situations involving directional 
derivatives.  

Luis: [On problem 1] The directional derivative, I'm given (4, 0). Here I have located the point. I 
have to look for the direction 2,1−  which would be 2 units to the left on the graph, that vector, and 
1 unit to the right in y. It should be positive there since the slope of z [he probably means the value of 
z] in that direction is increasing.  

Continuing with the genetic decomposition, after the student was able to locate the base point and 
the vector direction, and after coordinating the Processes of vector and that of derivative of function 
of one variable to think of the problem in terms of tangent lines and directed slopes (in problem 1), 
the student was expected (in problem 2) to coordinate the Process of slope with the Process of 
tangent plane in order to compute the vertical change along the plane and to coordinate this last 
Process with that of vectors in order to compute the horizontal change as the magnitude of the 
direction vector. However, in problem 2, Luis was not able to coordinate the Processes of vertical 
change, horizontal change, and slope of a line to deal with the directional derivative, but rather 
seemed to be depending on a memorized and unconnected formula (used in the class textbook; 
Stewart, 2006) which is valid only for unit direction vectors. After writing:  

 
Luis: The directional derivative should have the value of 4. I'm not completely sure, but I am 

quite sure this should be the value of the directional derivative.  
Interviewer: Does the fact that the vector is not unitary play any role?  
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Luis: … Well, in this case, since it is a plane… I believe that in this case since it is a plane it 
won’t make much of a difference… the directional derivative will have the same value as 
long as it is in the direction 1,1 … maybe if it were a more complex graph… in this case it 
shouldn't be. Maybe there's a problem but I'm not sure. 

Although Luis showed that he was certainly on his way to constructing a Process understanding 
of directional derivative, he did not show he was able to coordinate  the Process of vertical change on 
a plane needed to interpret ( ), ,x yD f a bΔ Δ

 as a slope with vertical change given by 

( ) ( ), ,x yf a b x f a b yΔ + Δ . The reason for this is, probably, that in his classroom and in the textbook,  

( ),uD f a br  was defined only for a unit direction vector ur  and the geometric interpretation of the 
directional derivative as a slope remained hidden both in a graph and in the formal development of 
the mathematics (see Stewart, 2006). 

Daylin was able to compute the directional derivative in problem 2 while justifying geometrically 
her computations. Hence she seems to have constructed the conjectured coordinations needed to be 
able to think of the directional derivative as a slope and obtain the necessary vertical change and 
horizontal change (see Figure 5). Further, since she also gave evidence of doing the conjectured 
mental constructions required to solve and explain problem 1, one may reasonably state that she 
seems to have constructed a Process conception of directional derivative. 

Daylin: Then the height at the new point will be 4, if I put this triangle [see Figure 5] my height 
here is 4… this is the direction 1,1  and I want the slope… here z is zero, I have the rise, I 

need the run, the run will be … the square root… so the slope will be 4 over 2 .  

 
Figure 5: Daylin's drawing on problem 2 

Summary and Discussion 
Only 4 of 26 students gave evidence of having made all or most of the mental constructions 

required in the genetic decomposition. This tells us that the idea of a directional derivative is difficult 
for most students and they need more help understanding even the most elementary notions 
associated with this idea. It also suggests that much work still remains to be done designing and 
improving activities to help students do the conjectured constructions. 

We just saw that although teachers probably frequently assume that students will be able to 
imagine the base point and the role of the vector direction to understand directional derivatives, this 
seems not to be the case for many students, and that explicit attention to the necessary coordinations 
can help students make the desired mental constructions. Also, many students did not show a Process 
conception of derivative of function of one variable to be used in the proposed mental constructions 
of directional derivative. This suggests that rather than assume they have constructed this Process, 
instruction can start by, once again, explicitly considering ways to help them construct it, but now in 
the context of functions of two variables. The construction of a Process of vertical change on a plane 
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was shown in this study to be important to facilitate the mental construction of the processes of 
tangent plane and directional derivative that help students give geometrical meaning to directional 
derivative, and that students may not be able to construct it without explicit attention in their 
classroom instruction. 

Overall, results show that most of the students who had successfully finished a course on 
multivariable calculus did not have a deep understanding of the concept of directional derivative. 
Many students relied on memorized facts and formulas and thus showed difficulties when responding 
to questions that needed a deeper conceptual understanding. Most students lacked geometrical 
understanding of the basic components involved in the definition of a directional derivative. The lack 
of understanding of those concepts impaired them from realizing that the symbol ( ),vD f a br  denotes 
a special type of derivative and that, as such, it can be represented as a slope of a tangent line in the 
given direction, as well as understanding that, in three-dimensional space, the notion of slope would 
be ambiguous unless it is a directed slope, and recognizing that for a vector direction ,x yΔ Δ , which 
is not necessarily unitary, the directional derivative represents the directed slope of a line on the 
tangent plane with vertical change given by ( ) ( ), ,x yf a b x f a b yΔ + Δ  and horizontal change given by 

the magnitude of the direction vector ,x yΔ Δ . This is necessary to make sense of the formula 
traditionally used in textbooks, where the direction vector 1 2,u u  is unitary.  

The assumption that students will, look at textbook figures and on their own, come to understand 
the geometric ideas involved in directional derivatives, apparently held by many teachers who just 
present students with the formula ( ) ( ) ( )

1 2 1 2, , , ,x yu uD f a b f a b u f a b u= + , seems not to be valid since 

the simple geometrical explanation of the notion of directional derivative as a slope remains hidden. 
Of course, any instructional approach will need to eventually consider only unitary direction vectors 
since this formula can be expressed as the dot product of the gradient vector and the unitary direction 
vector, an observation which is crucial in exploring the properties of the gradient vector. Results 
obtained suggest that instruction might start by exploring the basic property of slope where the 
vertical change is seen as the slope times the horizontal change, V m HΔ = Δ , and then interpreting 
this in the case of a plane to obtain the basic idea of vertical change on a plane, symbolically 
represented by x yz m x m yΔ = Δ + Δ . This is essentially the idea inspiring the genetic decomposition 
presented. A possible virtue of this approach is that the notions of plane, tangent plane, the 
differential, and the vertical change in a directional derivative are all explained and inter-related by 
this simple geometric idea, thus potentially helping students build a coherent schema for the 
differential calculus of functions of two variables. But, this remains to be investigated. 
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Researchers have identified challenges students face when modeling dynamic situations. This report 
discusses the results of semi-structured clinical interviews with ten prospective secondary 
mathematics teachers who were provided with a dynamic image of a growing and shrinking cone. 
We asked the students to graph the relationship between the surface area and the height of the cone. 
We identify four themes in the students’ solution approaches and discuss the implications of these 
approaches. Specifically, we discuss the themes with respect to relationships between the students’ 
solutions and their images of the growing and shrinking cone, including the extent that they 
leveraged this image to determine their solutions. 

Keywords: Modeling; Problem Solving; Cognition 

The authors of the Common Core State Standards for Mathematics (CCSSM) (National 
Governors Association Center for Best Practices, 2010) argued students should have the opportunity 
to construct and compare a multitude of relationships including those that have constant rates of 
change and those that have varying rates of change. They also identified modeling and reasoning 
quantitatively as two practices that should permeate students’ mathematical experiences. These 
policy calls are in line with researchers who have identified students’ quantitative and covariational 
reasoning–students conceiving situations as composed of measurable attributes that vary in tandem–
as critical to numerous K-16 concepts (Ellis, 2007; Johnson, 2015a; Moore & Carlson, 2012; 
Thompson, 2011). These same researchers have argued that much is to be learned about how students 
approach dynamic situations, including the extent that these approaches are rooted in constructing 
structures of quantities and relationships between these quantities. Further, researchers have called 
for increased attention to exploring students’ activities as they make sense of situations where they 
conceive of multiple quantities covarying (Castillo-Garsow, Johnson, & Moore, 2013; Thompson, 
2011). 

We discuss ten prospective secondary mathematics teachers’ (heretofore referred to as students) 
solutions to a task in which they graphed a relationship between the surface area and height of a cone 
as the cone changed in size (but maintained a constant slant-angle). Using our analyses of the 
students’ activities in semi-structured clinical interviews (Clement, 2000), we illustrate four themes 
in their solution approaches. With respect to these themes, we discuss how they used their images of 
the situation to determine a relationship between the surface area and height of a cone. Collectively, 
these themes provide glimpses into students’ thinking as they construct relationships between 
quantities in what we intended to be a three-dimensional context. 

Literature Review and Motivation 
Saldanha and Thompson (1998) described covariation to include, “imagistic foundations for 

someone’s ability to ‘see’ covariation” (p. 298). By ‘see’ covariation, we infer Saldanha and 
Thompson did not mean that covariation and quantities are independent of the mind or merely 
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perceptual objects. Instead, we interpret them to refer to someone constructing and re-constructing a 
dynamic situation to the point that they envision it as entailing measurable attributes and an 
understanding or anticipation of how these attributes change in tandem. Additionally, we characterize 
a sophisticated image of covariation to include the capacity to ‘replay’ one’s image of the dynamic 
situation while holding in mind how these attributes are changing in tandem. In this regard, how 
students operate and reason in what they come to understand a covariational situation is directly tied 
to their images of that situation.  

Students’ images are important for their construction of mathematical objects (Izsák, 2004; 
Thompson, 1994). Focusing on students’ images in applied problems, Moore and Carlson (2012) 
examined students’ activities for the purpose of determining distinguishing features of students’ 
images with respect to the formulas and graphs that the students produced when modeling and 
representing situations with covarying quantities. Most relevant to the present work, the authors 
noted that despite the students’ creations of mathematical products that an observer might deem 
incorrect with respect to the intended situation, these mathematical products were consistent with the 
students’ images of the situations. For instance, on a task that included a box with varying base 
dimensions, some students envisioned a box with fixed base dimensions. As a result, these students 
determined a volume formula that captured a base with fixed dimensions. Based on their findings, the 
authors (Moore & Carlson, 2012) argued that researchers and educators should give more attention to 
students’ images of problem contexts including determining how these images play a role in the 
mathematical products students construct.  

Theoretical Perspective 
We leverage tenets of radical constructivism by approaching knowledge as actively built up by 

the individual in ways that are idiosyncratic to that individual and fundamentally unknowable to 
another individual (von Glasersfeld, 1995). Hence, we approach quantities as personally constructed 
measurable attributes (Steffe, 1991). Likewise, relationships between quantities are constructed by 
the individual, with these relationships being influenced by the individual’s understanding of each 
quantity and their image of the relevant situation (along with other potential influences). It follows 
that we do not assume that students see situations that we provide them with in the same way that we 
do or intend for them to do (Thompson, 2011). For instance, a student may imagine a cone growing 
smoothly as a video suggests, growing in discrete snapshots corresponding to adding to the cone in 
sections, or physically changing in some other fashion (e.g., stretching the cone as if it is made of 
malleable rubber).  

Although we take the stance that students’ knowing and thinking is fundamentally unknowable to 
us as researchers, we can make inferences about students’ thinking based on our interpretations of 
their words and actions. Steffe and Thompson (2000) referred to such inferences or models as the 
mathematics of students. Our goal was to characterize students’ images of a situation and the 
mathematical products they created based on our inferences of their activities when given a dynamic 
situation as described in the following sections. 

Methodology 
We conducted a series of three semi-structured task-based clinical interviews (Clement, 2000) 

with ten students (eight female, two male). The students were enrolled in a secondary mathematics 
teacher education program at a large university in the southeast United States. At the time of the third 
interview–the interview we focus on here–these students had completed their first content course in 
the secondary mathematics education program, as well as at least a full calculus sequence and two 
additional mathematics courses (e.g., linear algebra, differential equations, etc.) with a grade of C or 
better. Some students had completed several additional education and mathematics courses. 
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The interviews consisted of a series of tasks and problems with many tasks asking the students to 
construct and represent a relationship between quantities in a dynamic situation. Each interview was 
videotaped and these videos were digitized for analysis. Two members of the research team were 
present at each interview, and for each interview, the interviewers took field notes and discussed 
observations and insights afterwards. Upon completion of the interviews, members of the research 
team viewed the videos and selected instances of student activity that revealed insights into the 
students’ thinking. The research team then met to discuss their observations and used an open 
(generative) and axial (convergent) approach (Strauss & Corbin, 1998) to construct tentative themes 
we observed across students. Upon further analysis, themes were refined by comparing and 
contrasting different students’ activities. Through this process of constructing, refining, and re-
refining, the research group reached a consensus on themes that characterized the students’ activities 
on the cone problem. 

Task Design – The Cone Problem 
At the start of the interview, we presented students with a video of a growing and shrinking cone 

with a fixed slant angle. The height of the cone increased and decreased at a constant rate with 
respect to the video playback (Figure 1). We then gave the students the following prompt, “Watch 
the video, which illustrates a cone with a varying height. Sketch a graph of the relationship between 
the height of the cone and the outer surface area of the cone.” 

  
Figure 1: Dynamic Image of Cone 

Saldanha and Thompson (1998) described a student’s activity as he considered the relationship 
between two similar quantities (e.g., length)–a car’s distances from two fixed points as the car 
traveled along a straight line. We extended this type of situation to involve the covariation of two 
quantities of different attributes: length and surface area. We also designed the task so that the 
situation lent itself to reasoning about amounts of change between the two quantities (e.g., for 
successive equal changes in height, the outer surface area of the cone increases and the change in the 
outer surface area also increases). We consider Saldanha and Thompson’s (1998) task to be much 
more complex (imagistically) in this regard. We also note that we designed the task so that the 
students would not have a memorized formula readily at hand, although we hypothesized that 
students may attempt to construct or recall such a formula.  

Results 
We organize the students’ solution approaches to the cone problem into four themes (Table 1). In 

what follows, we describe these themes including the relationships between students’ images of the 
situation and their solution activity. 

 

Predetermined Relationship 
Students classified in the “Predetermined Relationship” theme used their initial image of the 

situation to dictate all further actions and conclusions. These students quickly came to a conclusion 
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about the relationship between height and surface area based on some imagistic or physical aspect of 
the cone (e.g., the cone growing and shrinking in a ‘smooth’ or ‘constant’ manner). Instead of further 
analyzing the situation in an attempt to justify their claimed relationship, the students assimilated all  

Table 1: Student Solution Approach Themes 
Theme Name Theme Description Students 

Predetermined 
Relationship 

The student uses some imagistic aspect of the situation to reason about 
the relationship of the quantities. No fundamental changes of image 
occur from his/her initial observation. 

Polly, Alice, 
Roz 

Formula Values Determine 
Relationship 

The student derives a formula to obtain specific numbers to determine 
and investigate the relationship between the quantities. 

David, Kate, 
Terrence 

Formula Structure 
Determines Relationship 

The student derives a formula and uses properties of the formula to 
determine the relationship. 

Angela, 
Audrey 

Images of Covariation 
Determine Relationship 

The student uses their image of the situation to determine the directional 
change and amounts of change of the two quantities under 
consideration. 

Caroline, 
Trish 

 
subsequent actions and products in terms of their initial claim. For instance, if the students 
determined a formula, they described the formula in terms of their initially stated relationship 
between the quantities; the students did not intend the formula to be for testing or verifying their 
relationship. Most notably, the students maintained their initial conclusions even when we directed 
them toward particular aspects of the situation or their activity that we thought would contradict their 
initial conclusions. 

   
(a)           (b) 

Figure 2:  Roz’s Solution to the Cone Problem 

For example, after concluding the relationship was linear and drawing a graph to reflect that 
relationship (Figure 2a), Roz drew the 3-D cone in a way that identified (from our perspective) 
amounts of change of surface area for successive equal changes of cone height (Figure 2b). When 
asked to describe how the changes in surface area for each successive height were changing, she 
responded, “going off this idea that it’s a constant change in surface area,” and then described that for 
equal changes in height, there was an equal change in surface area. Roz maintained that the surface 
area changed by constant amounts, even after the interviewer repeatedly prompted her to identify and 
shade different sections that represented the change in surface area. This response illustrates that Roz 
already had a pre-determined linear relationship in mind when reasoning with her picture of the 
situation (Figure 2b) to identify and explain how the changes in surface area varied. 

Formula Use  
We identified two themes in which students constructed formulas to model surface area (but not 

always in relation to only the height of the cone) and used their formulas to reason about the 
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relationship between height and surface area. We make two distinctions between these students’ 
solutions based on how they used their formula to make conclusions about the relationship.  

Formula Values Determine Relationship. Some students used formulas to compute numerical 
values. Students in this theme constructed an initial image of how the quantities were related (e.g., 
both the surface area and height increase as the cone grows), but were then perturbed by whether the 
quantities covary at a constant or changing rate of change. Each student then moved to determine a 
formula by which they could calculate paired (height, surface area) values. As no actual values were 
given to the students to describe the cone, the students created hypothetical values. After determining 
a formula, each student calculated the area for several specified values of height, with these height 
values increasing in equal increments. Each student then determined the relationship by comparing 
her or his calculated values (e.g., determining the difference between successive surface areas). We 
note that despite each student creating a different, technically incorrect formula, all students in this 
theme concluded (accurately) that the changes of surface area increased for equal changes of height. 

David is one of the students who engaged in this type of reasoning. After watching the video, 
David conjectured that the surface area is increasing at an increasing rate with respect to height. 
Having difficulty using the situation or a diagram to justify his conjecture, he created a formula to 
compute surface area. David used the height, h, and average radius, rave, (which he described as half 
the radius) of the cone in combination with his prior knowledge of surface area (SA) of a cylinder to 
derive SA = 2π(rave)h. He assumed the height and radius were equal to get the final formula, SA = 
2π(h/2)h. After first trying to use this formula to determine changes of surface area for arbitrary equal 
changes of height, he moved to using specific (numeric) height values to compute surface area values 
(Figure 3). He then computed differences in surface area values to conclude that the changes of 
surface area increase for equal changes of height.  

 
Figure 3: David’s Solution to the Cone Problem 

Formula Structure Determines Relationship. Whereas students grouped in the previous theme 
used their formulas to calculate and compare numerical values, students classified in this theme 
inferred how the quantities covaried based on the structure of their formulas. Specifically, the 
students determined a surface area formula with a multiplicative relationship between the quantities 
(i.e., height times height or height and radius of the base multiplied together with an assumption that 
the height and radius were proportionally related) and thus concluded that as height increased, 
surface area increased at an increasing rate.  

To illustrate, after watching the video, Angela concluded that the surface area of the cone 
increased as the height increased. She then created a 2-D image to represent surface area by drawing 
a circle with a wedge removed (Figure 4a). Angela wrote the formula A= πr2, where r represents the 
radius of her circle (or, equivalently, the slant height represented by x). Although she understood that 
the formula would not produce accurate surface area values without further information or 
modification, she reasoned that the formula was correct in its general structure and drew a graph 
(Figure 4b) that she associated with that formula. She claimed, “I know that since this is r-squared 
that it’s going to be, the surface area is going to be a quadratic…path of a parabola” After using a 
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linear function to relate the radius of the circle (or, equivalently, the slant height) to the cone’s 
height, she further justified her graph by noting that the quadratic nature of her modified formula (A= 
‘some quadratic in h’). She added, “I know what a parabola looks like and I know it’s increasing at 
an increasing rate.” Although Angela drew several diagrams to reason about an increasing surface 
area (see Figure 4a), she did not use these diagrams to describe changes in surface area for equal 
changes in height. Rather, Angela relied on the quadratic nature of the formula for surface area to 
make conclusions about the graph and relationship; she reasoned with a formula structure-
covariational relationship association. 

  
(a)   (b) 

Figure 4: Angela’s Solution to the Cone Problem 

Images of Covariation Determine Relationship 
The students classified in this theme relied solely on their image of the situation to determine 

how the surface area and height of the cone covaried. The students maintained a 3-D image of the 
situation, and they were the only students to exclusively leverage a 3-D image of the situation to 
describe the rates of change of surface area and height of the cone. Specifically, Caroline and Trish 
imagined the surface area and height increasing continuously. Each student also imagined changes of 
surface area as successive strips for equal changes of height. The students used this image of the 
changes of surface area to compare successive changes in surface area.  

As an example, after reading the prompt, Caroline drew three cones corresponding to equal 
changes in cone height (Figure 5a) and used these diagrams to determine how the quantities covaried. 
Caroline stated, “When you add some height, you add an extra strap around it [re-draws 2nd cone 
bigger than 1st, draws strap with bottom of the strap at the height of 1st cone, seen in Figure 5b]. 
Then you add some height, then you add a strap above that [re-draws 3rd cone, bigger than 2nd with 
strap starting at height of top of 2nd cone seen in Figure 5b].” She continued, “And if I were 
drawing these, to scale, this [shades in strap in 3rd cone] would have more surface area then this 
[shades in strap in 2nd cone]. So that means for equal changes in height [marking changes of height 
in her diagram see in Figure 5b], the change in surface area increases.” Caroline used this reasoning 
to conclude that the surface area increases at an increasing rate with respect to height, and she 
produced a graph to reflect this relationship. Further, she identified how changes in surface area were 
represented on her graph (represented in orange on Figure 5c). 

     
(a)   (b)    (c) 

Figure 5: Caroline’s Activity and Solution to the Cone Problem 
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Discussion 
We identified themes in the students’ activities that provide insight into ways these students 

modeled a dynamic situation. These themes are not intended to be evaluative or exhaustive; we do 
not claim preference of one theme over another, and there are many other possible solution 
approaches to this task. By comparing the students’ activities across these themes, we note 
differences in how students’ solution approaches are related to and influenced by their images of the 
situation. Three of the ten students (classified in the first theme) focused on a particular physical 
phenomenon of the situation (the constant or smooth growth of the cone), and they generalized 
properties of this phenomenon to the relationship between height and surface area. Five of the ten 
students relied on values produced from (second theme) or the attributes of (third theme) a formula to 
describe the relationship between the quantities. Although these five students leveraged an image of 
the situation that was attentive to the quantities of height and surface area, their use of this image was 
primarily static (e.g., using a fixed state to determine a rule). Only two of the ten students (fourth 
theme) used their images of the situation exclusively and continually reconstructed these images to 
reason covariationally.  

We were surprised that only two of the ten students relied exclusively on leveraging images of 
the situation to represent amounts of change. Many students (e.g., Roz, Angela) engaged in activities 
that we believed had the potential to support them in reasoning emergently about the relationship 
(e.g., drawing diagrams and shading), but such activity was often assimilated in terms of previously 
made conclusions. This result was especially unexpected considering that in previous interview tasks 
several of the students classified in the first to third themes modeled relationships in dynamic 
situations by strictly leveraging images of the situation. One possible explanation for this result is 
that these students had learned the formula for the surface area of a cone in their prior school 
experiences. Hence, the students aimed to remember or to derive this formula rather than attempt to 
use images of the situation to construct the relationship. 

Future Research 
Several students’ initial images of the situation relied on the video showing a constant change of 

height with respect to (implicit) time (first theme). Thus, we ponder how these students would 
engage in a task in which the cone’s height grows at a non-constant rate or the students are able to 
control how the height varies. Additionally, several students persistently attempted to derive a 
formula for the relationship with their subsequent actions relying on their formula. Future researchers 
might be interested in comparing how students engage in situations that lend themselves to formulas 
and situations that do not. This would give insight into how students reason and rely on formulas and 
the consequences of such reliance, especially with respect to nuances in students’ covariational 
reasoning (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Johnson, 2015b). 

Although some students maintained viable images of the quantities in the situation (from our 
perspective), they had difficulty reasoning about and comparing corresponding changes in the 
quantities. Moreover, even when we directed the students to consider how changes in the quantities 
might be identified in the context of the situation, some students identified what we perceived to be 
increasing amounts of change, yet argued that these amounts of change were equal. We envision that 
further investigation into students’ images of change (Castillo-Garsow et al., 2013) would help 
explain these seemingly contradicting activities.  
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The study reported in this paper is part of a larger study on the roles of examples in learning to 
prove. We focus here on manifestations of students’ productive use of examples for proving in the 
course of exploring conjectures and proving or disproving them. In this context, we define productive 
use of examples for proving as students’ utterances that indicate that working with examples led 
them to realize and gain insights into some aspects of the key ideas for proving (or disproving) the 
conjecture. There were a total of 39 participants (12 middle school, 17 high school, and 10 
undergraduate students). Each took part in an individual one-hour task-based interview. We 
identified 77 cases of productive use of examples, 41 based on an interviewer’s provision of 
example(s) and 36 based on students’ spontaneous generation of examples. These cases serve to 
characterize students’ strengths that are not directly fostered in school.  

Keywords: Reasoning and Proof    

Proof and Proving in Mathematics Education 
It is commonly agreed among mathematicians and mathematics educators that mathematical 

proof and proving are at the heart of mathematics, and that the activity of mathematically proving is 
dauntingly difficult even for most good undergraduate students. A continuing concern in 
mathematics education is that students do not sufficiently understand the nature of evidence and 
proof in mathematics and that they struggle with providing logically sound justifications and 
arguments to support the validity of mathematical conjectures or claims (e.g., Healy & Hoyles, 2000; 
Kloosterman & Lester, 2004; Knuth, Choppin, & Bieda, 2009). This concern has been guiding 
numerous studies, as it reflects a deficiency in one of the key elements of mathematics and 
mathematical practice (e.g., Harel & Sowder, 2007; Knuth, 2002; Sowder & Harel, 1998). 
Consequently, there have been calls for proof to play a more central role in mathematics education, 
by researchers (e.g., Ball, Hoyles, Jahnke, & Movshovitz-Hadar, 2002), as well as reform initiatives 
(the Common Core State Standards for Mathematics and the NCTM Principles and Standards for 
School Mathematics). However, despite these calls, research continues to indicate that students’ 
understanding of proof is far from being satisfactory (Harel & Sowder, 2007; Healy & Hoyles, 
2000).  

A major source underlying students’ difficulties in understanding proof and proving is related to 
their treatment of examples (e.g., Healy & Hoyles, 2000; Zaslavsky, Nickerson, Stylianides, Kidron, 
& Winicki-Landman, 2012). There is evidence that an inhibiting factor in students’ proving (at all 
levels) is an over reliance on examples. They often infer that a general claim is true for all cases on 
the basis of checking just a number of examples that satisfy this claim. This tendency has been 
recognized as a stumbling block in the transition from inductive to deductive arguments, and the 
progression from empirical justifications to proof (e.g., Fischbein, 1987). This tension between 
empirical and formal aspects of proving suggests that understanding the logical relations between 
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examples and statements is a non-trivial task that is critical for proving. However, this kind of 
understanding is not usually explicitly addressed in the course of learning mathematics, in general, 
and learning to prove, in particular. 

There have been attempts to help students learn the limitations of examples for proving in order 
to reduce their tendency to infer from examples more than is logically valid (e.g., Sowder & Harel, 
1998; Stylianides & Stylianides, 2009; Zaslavsky et al, 2012). While these attempts address the 
limitations of examples for proving, they overlook the potential of example-based reasoning 
strategies in enhancing conjecturing and proving. In fact, less attention has been given to facilitating 
students’ ability and inclination to build on the potential strengths of using examples for proving. 
More specifically, there is scarce research on using examples generically, i.e., in a way that allows to 
see the general through the particular, make sense of a mathematical statement, and gain insight into 
all or some of the main ideas of its proof (e.g., Knuth, Kalish, Ellis, Williams, & Felton, 2011; Leron 
& Zaslavsky, 2013; Mason & Pimm, 1984; Rowland, 2001). Mason and Pimm’s (1984) terms of 
generic example and generic proof capture the essence of what we mean by using examples 
generically. Accordingly, “A generic example is an actual example, but one presented in such a way 
as to bring out its intended role as the carrier of the general.” (ibid p. 287); and a “generic proof, 
although given in terms of a particular number, nowhere relies on any specific properties of that 
number.” (ibid p. 284). Example-based reasoning strategies encompass this way of thinking with and 
through examples. 

We believe that students’ failure to engage productively in example-based reasoning strategies, to 
think about examples generically, and to analyze examples when engaging in activities related to 
proving, accounts for many of the difficulties they encounter in learning to prove. Our study stems 
from the stand that students should learn to use and analyze examples analytically and generically, 
not only in order to gain a better understanding of the conjectures (or statements) that they explore 
but also in order to learn to develop proofs (or dis-proofs) of these conjectures.  

Very little research has focused on the nature of middle school, high school, or undergraduate 
mathematics students’ thinking about and use of examples in generating, making sense of, and 
proving mathematical conjectures. Alcock and Inglis (2008) argue that such studies are needed in 
order to effectively develop instructional practices that foster the development of students’ learning 
to prove. We aim at better understanding the nature of example use across grade levels, and in 
particular, how example use may support students’ reasoning and proof development.  

Zaslavsky (2014) distinguished between three settings of example use: spontaneous example use, 
evoked example production, and provisioning of examples. The spontaneous setting highlights what 
may come naturally to learners and experts, and how productive their choices and what they make of 
them are. The evoked example production allows us to study what choices learners make when 
pushed to use examples and also how productive they are. This setting has a strong diagnostic power, 
as it may evoke students’ strengths as well as their weaknesses with respect to exemplification and 
proving. The provisioning of examples by a researcher allows us to examine what learners see in 
these examples, and in what ways they are able to build on the given examples to gain insights about 
how to justify or prove a claim. This setting also may shed light on possible mis-matches between 
intentions (of a teacher/researcher and a learner). In our study, we distinguish between example uses 
that involve student generated examples and those that involve researcher provided examples. 

The Study 
The study reported in this paper is part of a larger study of the roles of examples in learning to 

prove. Its purpose is to better understand the roles examples play in the development, exploration, 
and justification of mathematical conjectures, with the overarching goal being to help students 
appreciate the need to prove and to learn to prove. In this portion we focus on ways in which students 
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use their own examples or examples provided by the researchers to support their claims about the 
validity of mathematical statements and conjectures. More specifically, we examine cases in which 
the use of examples can be considered productive for proving. For productive use of examples for 
proving we consider indications of gaining insights from an example or set of examples about the 
main idea(s) of a proof. It can be manifested, for instance, by a shift from no clue why a conjecture 
works (or doesn’t work) to an articulation of an idea why. Some of the manifestations of this type of 
example-use may be seen as generic proving (Leron & Zaslavsky, 2013). 

Data Collection 
This study was based on individual task-based interviews with 12 middle school (MS) students, 

17 high school students (HS), and 10 undergraduate (UG) mathematics majors. The interviews lasted 
approximately 1 hour and were comprised of a series of tasks in which participants were given the 
opportunity to conjecture and prove.  

 
Task 2: The Sum of Consecutive Integers 

Part 1: 
This question involves consecutive numbers. For example, 2, 3, and 4 are consecutive numbers, but 2, 3, 
and 8 are not consecutive numbers. 
Tyson came up with a conjecture about consecutive whole numbers that states: If you add any number of 
consecutive whole numbers together, the sum will be a multiple of however many numbers you added 
up.  At this point the interviewer suggests that the participant give an example of how the conjecture 
works for 5 consecutive whole numbers. 
 
Tyson thinks that this conjecture will always be true no matter how many consecutive numbers you use 
or which consecutive numbers you choose. So he thinks that if you add any 3 consecutive numbers, the 
answer will be a multiple of 3, or if you add any 6 consecutive numbers, the answer will be a multiple of 
6, and so on. 
Do you think the conjecture is true for any set of consecutive numbers, not just when you pick five 
consecutive numbers? 
 
Part 2: 
Let’s come back to the Question 2 [i.e., Part 1 above] conjecture that the sum of five consecutive 
numbers is a multiple of 5. 
At this point the interviewer says while writing the example: Another student had an idea of how to 
explain it. For the five consecutive numbers 5, 6, 7, 8, and 9, she decided to write the sum as (7-2)+(7-
1)+7+(7+1)+(7+2), and writing it that way helped her to explain why the sum must be a multiple of 5. 
How do you think that helped her see why the conjecture is true for any five consecutive numbers? 

 
The interview protocol for middle and high school participants included 8 tasks total each, and 

the one for undergraduate participants included 7 tasks total. Three tasks were shared across all 
participant populations. In this paper we focus mainly on one of these three shared tasks (Task 2 
above): The Sum of Consecutive Integers Task. Similar versions of this task served researchers in 
other studies (e.g., Tabach et al., 2011). For several reasons (mainly due to time constraints, and 
protocols’ modifications done after a number of interviews had been conducted), not all students got 
to engage in all the tasks that were included in the final interview protocols. 

Data Analysis 
While we started out looking for example-uses and focusing on whether each example-use was 

productive for proving, other categories emerged as we were analyzing the data, thus, in part, we 
used a grounded theory approach to analyze participant responses. The units of analysis were the 
tasks (except for Task 2, for which we coded each part separately). For each participant, we coded 
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his or her performance on each task according to several categories (productivity, example-source, 
proof-exhibition). We began by identifying cases in which we observed productive and non-
productive example-use for proving. For example, in task 2 part 1, if a participant was able to use 
many numerical examples to determine that Tyson’s conjecture was true only for odd numbers of 
integers but was not able to produce a legitimate argument as for why this was the case, we 
considered this “non-productive” for proving (although this activity was clearly productive for 
conjecturing). In order to be categorized as “productive” for proving, a participant had to use 
examples to make an argument that showed not only that Tyson’s conjecture was true only for odd 
numbers of integers, but why this conjecture holds or does not hold, based on the parity of the 
number of integers involved. Instances of productive example use included participants’ use of 
examples to generate an argument, and were related to a shift in their ability to provide a valid 
justification that would hold for any other such case.  

Additionally, we looked at the source of the example, and distinguished between cases in which 
an example was provided by the student (spontaneously) or by the interviewer (non-spontaneously). 
This distinction is important as cases in which productive example-use was based on provided 
examples, may have pedagogical implications in the classroom. 

For each participant we coded his or her performance on each task as productive (P), non-
productive (NP), or indecisive. There were two main reasons for considering a case indecisive: (i) if 
a student came up with a proof but it was unclear whether the examples were helpful in reaching the 
proof; or (ii) if it was not clear whether an argument qualified as proof. Altogether, 222 cases were 
analyzed, of which 24 were indecisive. 

 We also coded cases according to whether or not a proof was exhibited (even a partial or 
informal one), and whether or not examples were used. When examples were used, we distinguished 
between cases that included just examples generated by the students (Exp. by St.) and cases where 
examples were provided also or solely by the interviewer (Exp. by Int.). Note that for those who 
completed Task 2 Part 1 with a full proof that the conjecture holds for all odd numbers and does not 
hold for even numbers, and used the same reasoning as in the prompt for Part 2, did not receive the 
second part (to eliminate redundancy).  

Findings 

Scope of Productive Example-Use for Proving 
The findings in Table 1 include all cases that were coded either as productive or as non-

productive (excluding the 24 indecisive cases). There were a total of 198 cases, 62 MS, 89 HS, and 
47 UG. Of the 198 cases, 77 (39%) included productive use of examples for proving. Of these, more 
than half (41) the cases were based on examples provided by the interviewer. 

Table 1: Distribution of Cases by Example-Use and Productivity for Proving in all Tasks 

Grade 
Level 

Came up with a Proof 
(or partial proof) No Proof 

Total 
Productive (P) 

Use of Examples 
for Proving 

No 
Exp. 
(NE) 

Non-Productive 
(NP) Use of 

Examples for 
Proving 

No 
Exp. 
(NE) 

Exp. 
by St. 

Exp. 
by Int. 

Exp. 
by St. 

Exp. 
by Int. 

MS 10 13 2 27 10 0 62 
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HS 11 18 2 37 17 4 89 

UG 15 10 3 12 4 3 47 

Total 36 41 7 76 31 7 198 
In terms of productivity, middle school and high school students performed similarly, as 37% of 

MS cases and 33% of the HS cases exhibited productive use of examples for proving, while the 
undergraduate students exhibited considerably more productive use of examples (53%). 

Table 2: Productive and Non-Productive Example-Use in Task 2 
(the Sum of Consecutive Integers) 

Grade 
Level 

 

Task 
 

Productive (P) Use of 
Examples for Proving 

Non-Productive (NP) 
Use of Examples for 

Proving Total 
 

Exp. 
by St. 

Exp. 
by Int. 

Exp. 
by St. 

Exp. 
by Int. 

MS 
Part 1 4 0 6 0 10 

Part 2 0 4 0 2 6 

HS 
Part 1 4 0 13 0 17 

Part 2 0 7 0 5 12 

UG 
Part 1 5 0 3 0 8 

Part 2 0 5 0 1 6 

Total  13 16 22 8 59 
In table 2 we present the findings related to Part 1 and Part 2 of Task 2. Looking at the task as a 

whole, for this task there are larger differences between the extent of productive use of examples for 
proving between the three groups: MS – 50% (8 of the 16 cases), HS – 38% (11 of the 29 cases) and 
UG – 71% (10 of the 14 cases). 

Figure 1 examines the trajectory of students who completed both parts of Task 2, and for which 
none of their performances was indecisive (this reduced the total number of cases in Table 2 by 15). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Productive 
(P) 

Not-Productive 
(NP) 

NP P 

N=6 
(27%) 

MS 
2 

HS 
2 

UG 
2 

 

P 

N=6 
(27%) 

MS 
2 

HS 
2 

UG 
2 

 

N=16 
(73%) 

MS 
3 

HS 
10 

UG 
3 

 

N=22 
(100%) 

MS 
5 

HS 
12 

UG 
5 

 

N=8 
(36.5%) 

MS 
2 

HS 
5 

UG 
1 

 

N=8 
(36.5%) 

MS 
1 

HS 
5 

UG 
2 

 

 
PART 2 

Exp.by Int. 

 PART 1 
Exp. by St. 

Figure 1:  Paths of productive and non-productive uses of examples in Task 2 
(Excluding cases that were indecisive or incomplete; N – no. of students) 
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All of the cases that dealt with Task 2 were cases in which examples were explicitly used. In Part 
1, the examples were generated by the students, while in Part 2 – a generic example was provided by 
the interviewer. Not surprisingly, students who used examples productively in Part 1, on their own, 
were also able to use the generic example productively.  However, interestingly, half of the students 
who were not able to use examples productively in Part 1, were able to reason productively with the 
generic example provided by the interviewer in Part 2. 

Characteristics of Productive Use of Examples for Proving 
We turn to two cases that convey what productive use of examples for proving may look like. 
Case #1: A HS student’s use of his own examples productively. In Part 1 of Task 2, Sam tries 

three sets of examples: 1 + 2 + 3 + 4 +5 ; 2 + 3 + 4 + 5 +6 ; 3 + 4 + 5 + 6 + 7.  He calculates the last 
two sums, and immediately is able to make an argument in support of the truth of the conjecture for 
any five numbers with the following observation: 

“I tried a few examples, and then I realized that, well, if you add 1 to every number, then you're 
ultimately adding 5, because there's 5 numbers. And if the first- and the first- and if the first example 
1, 2, 3, 4, 5 is- equals a multiple of 5, then by adding 5 to- to every case, it'll stay a multiple of 5.” 
[10:43 - Time Stamp] 

In other words, Sam is able to present a pseudo-inductive argument that emerges from the 
observation that the conjecture is true for a base case (1+2 +3+4+5), and the mechanism by which 
this sum changes from this case to the “next” case (where “next” is defined as increasing each term 
in the sum by 1) does not change the divisibility property of the sum with respect to 5. By looking at 
the sequence of his three examples Sam is able to both see and utilize modular reasoning when 
considering the divisibility properties of this sum, as increasing a number by multiples of 5 does not 
change its remainder (in this case, zero) upon division by 5. As Sam puts it: “if you subtract 5 from a 
multiple of 5, it'll still stay a multiple of 5.”[13:00] 

Sam is able to take advantage of the generality of this observation by answering a question that 
he himself had posed earlier in the interview, namely, whether negative integers were allowed in 
Tyson’s conjecture.  He is able to leverage his reasoning about the modular distribution of integers 
that are divisible by 5 into a correct claim that Tyson’s conjecture works just as well for negative 
integers as it does for positive. In other words, Sam was able to extend the domain of the conjecture 
by creating an argument that relied solely on three numerical examples. In this case we do not 
consider each one of his three examples in isolation as “generic,” as that clearly does not reflect his 
thinking. However, we consider all three seen in conjunction with each other as one generic example, 
as the insight that Sam gained from these examples was located in the relationship between them.  

Sam is able to use this insight to create a legitimate argument for why Tyson’s overall conjecture 
is incorrect for four consecutive integers. He reasons:  “I thought of a number like 4, which is 1, 2, 3, 
4, which adds up to 10. And then it's not a multiple of 4, so, and… even if you add or subtract from 
that, it'll always be uh, it won't be a multiple of 4.”[16:40] In effect, he argues that his base case is a 
counter-example, and this counter-example does not just hold for the particular example of 1 + 2 + 
3+4, but in fact holds for any four consecutive integers. Although he does not explicitly discuss 
remainders, we can interpret his argument as noticing that the remainder upon division by 4 is 
invariant under increasing a number by multiples of 4. 

Case #2: A HS student’s use of an interviewer’s example productively. In Part 1 Isaac is 
clearly operating empirically, as he chooses a wide range of examples and uses them for verifying 
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that the conjecture is true (e.g., for 5 numbers), without being able to offer a logically valid 
explanation of why it is. He explains that it is because “I did a bunch of trials that go really far into 
the depths of numbers, including negatives which kind of sealed the deal for me, because negatives 
are really different from positives.”[24:26] 

During the second part of this task, the interviewer presented Isaac with a generic example, 
rewriting 5 + 6 + 7 + 8 + 9 as (7-2) + (7-1) + 7 + (7+1) + (7+2). Immediately, Isaac is able to see the 
generality within this particular example and apply it to a generic argument. Isaac uses this argument 
to explain why it must work for any odd number of consecutive integers, and also why it must not 
work for an even number of consecutive integers. He also produces a parallel algebraic 
representation, which is the first time that he has done so within this task.  Perhaps this is due to the 
visual salience of the invariance of the 7’s in the representation provided by the interviewer. Isaac’s 
immediate response to the interviewer’s prompt is reproduced below: 

 “Okay, so I can see now- this is pretty good proof for why it's, uh, for why it has to be a multiple 
of 5 or just a multiple of an odd number in general. Or, uh, so um, um the thing with this is, what 
happens-- ... Um, these numbers cancel each other out. The 2 cancels the 2, the 1 cancels the 1. And 
you just end up getting 7+7+7+7+7 and, um, and the reason this wouldn't work with an odd- with an 
odd pair, like if you added- if you added a, uh, 10 [The interviewee wrote +10 at the end of 
5+6+7+8+9] to this and then you- and then you added plus 7 plus 3 [The interviewee wrote +(7+3) at 
the end of the (7-2)+(7-1)+7+(7+1)+(7+2)], then these would cancel out. Then you would be left 
with (7×5) + (7+3) plus... Yeah, plus (7+3), which would just give you, um, 3- 3 numbers off of what 
you want. So, yeah. And I guess you could do it with an equation, using x... (x-2) + (x-1) + (x) + 
(x+1) + (x+2) + (x+3). These cancel each other out, these do it as well, and this is just left there as a 
kind of like, almost like it ruins the party or something. So, yeah.” 

He later uses the word “symmetry” to explain this argument. In other words, Isaac was initially 
“stuck” and the generic example provided by the interviewer helped Isaac create a deductive 
argument as for why Tyson’s conjecture was only true for odd numbers of integers. 

Concluding Remarks 
While the vast majority of studies on students learning to prove focus on their difficulties and 

suggest ways to address these difficulties, our study identifies numerous cases of students treating 
examples generically on their own. Moreover, these cases capture shifts from not being able to 
explain why a mathematical statement is true (or false) to being able to see clearly why it must work 
in general. Thus, the findings add to our understanding of processes by which students may learn to 
prove, and at the same time suggest that for some students under certain conditions this may come 
(almost) naturally with minimal interference. In other words, these cases could be inspiring for 
teachers who want to build on students’ strengths. 
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In this paper we explore how students construe what it means for an informal argument to be the 
basis of a formal proof and what students pay attention to when assessing whether a proof is based 
on an informal argument.  The data point to some undergraduate mathematics students having 
underdeveloped conceptions of what it means for a proof to be based on an argument. These 
underdeveloped conceptions limit what students pay attention to during informal-to-formal 
comparison tasks and may have adverse effects on students’ ability to use their own informal 
arguments to construct proofs.   

Keywords: Post-Secondary Education; Reasoning and Proof 

Introduction 
The constructs we use throughout this paper revolve around the observation that proofs are 

expected to be written in a verbal-symbolic representation system but may not be generated wholly 
within that system. Following Weber and Alcock (2009) we refer to reasoning that stays solely 
within this system as syntactic reasoning, and reasoning that falls outside of it as semantic reasoning. 
Similarly, we conceptualize a formal proof as a deductive argument that establishes the result to be 
proven and conforms to the norms of the representation system of proof. This is a characterization of 
the end product, not the reasoning that led to it. Additionally, we conceptualize an informal argument 
as a deductive argument that establishes the result to be proven, but does not conform to the norms of 
the representation system of proof. We refer to the use of informal arguments to inform the 
construction of formal proofs, or more generally the process of using semantic reasoning to inform 
syntactic reasoning, as formalization.  

Research relevant to formalization can be partitioned into two non-disjoint categories. The first 
category focuses on the role of semantic reasoning in informing proof productions. The second 
category examines the semantic-to-syntactic formalization process needed to use semantic reasoning 
to generate a formal proof.   

Research falling into the first category has illustrated the important role that semantic reasoning 
can play in proof generation. Various types of semantic reasoning have been shown to inform proof 
generation (Gibson, 1998, Sandefur, Mason, Stylianides, & Watson, 2013, Zazkis, Weber, & Mejia-
Ramos, in press). This first body of work has perpetuated the recommendation that students should 
use semantic reasoning during proof construction. This recommendation has gained considerable 
traction in mathematics education (e.g., Garuti, Boero, & Lamut, 1998; Raman, 2003).   

A second set of studies has focused on the formalization process itself. This research has 
provided evidence that mathematics majors struggle to use semantic reasoning to inform proof 
generation  (Selden & Selden, 1995; Alcock & Weber, 2010; Zazkis et. al., in press).  

These two sets of studies point to a discrepancy between researcher recommendations (that 
students should generate proofs using informal arguments) and students’ behavior and abilities. In 
order to better understand this discrepancy we examine what mathematics majors pay attention to 
when attempting to determine if a formal proof is based on an informal argument and how these 
determinations compare to normatively correct interpretations.  

In order to operationalize these notions we consider a formal proof to be based on an informal 
argument if there is a mapping between these two chains of inferences that has two properties: (1) it 
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is meaning preserving to the extent allowed for by the rules of the verbal-symbolic system, and (2) 
corresponding inferences (or chains of inferences) appear in the same order. We use the acronym 
FBI-judgment, to refer to student judgments of whether Formal proofs are Based on Informal 
arguments.  

The Study 
We are interested in what it means for a proof to be based on an informal argument from a 

mathematics major’s perspective. Thus we create a model of what mathematics majors pay attention 
to when making FBI-judgments and use this model to create a plausible explanation for why these 
students may have difficulty with formalizing informal arguments. In particular, we want to illustrate 
how prioritizing a particular subset of attributes when making informal to formal comparisons 
influences how students view what it means for a proof to be based on an argument and by extension, 
affects their ability to formalize. 

Participants 
Participants were pursuing undergraduate degrees in mathematics at a large state university in the 

Northeastern United States and had completed a proof based second course in linear algebra, an 
introduction to proof course, and an introductory analysis course. Thus, the eight participants were 
familiar with reading and writing proofs in a variety of mathematical contexts. Participants were 
selected to have roughly equal amounts of A, B, and C grades represented.  

Procedure 
The second author conducted one-on-one clinical interviews with each participant that lasted 

between 90 and120 minutes. This involved presenting participants with both informal arguments and 
proofs and engaged them in a series of comparison tasks. More specifically, he presented participants 
with triples that consisted of one informal argument and two formal correct proofs, only one of 
which, from our perspective, was based on the argument.  

The informal argument in each triple was presented in the form of a video. Each video lasted 
approximately 30 seconds and involved the first author justifying the result with a combination of 
verbal argumentation, graph generation and gestures. The two correct formal proofs in each triple 
were presented in written form. 

At the beginning of each one-on-one interview participants were told that they would be shown 
triples. They were told that they were to understand and compare the three parts of the triples, but 
that they did not need to validate correctness. In the first round of the interview participants were 
shown each of the three triples one at a time. They watched the video and read the two proofs out 
loud. After participants verified that they felt they understood the result, they were asked to make 
side-by-side comparisons of what they noticed in terms of similarities and differences between the 
three parts of the triple. This was done with each of the three triples. Note that during the first stage 
only the participants’ impressions and what they noticed was elicited. 

The second stage involved revisiting each triple and judging whether each of the proofs in the 
triple was based on its informal argument, how confident they were in their assessment and on what 
information they based their conclusion. Students were not informed that, from the researchers point 
of view only one of the proofs in each triple was a formalization of the informal argument. This made 
it possible for participants to conclude that neither or both of the proofs in each triple were based on 
the informal argument. 

Analysis 
A set of minimum criteria, which was agreed upon prior to the interviews, was used to determine 

whether student FBI-judgments were consistent with mathematical norms. We were also interested in 
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what students paid attention to when making FBI-judgments. Each interview was transcribed and 
grounded theory (Strauss & Corbin, 1990) was used to categorize interviewee responses in terms of 
what they paid attention to during FBI-judgments.  

Materials  

We briefly mention that Task 1 involved proofs that sin3(x)dx =
−a

a
∫ 0 , for all real numbers a, 

and Task 3 involved proofs that the derivative of a differentiable even function is odd. For space 
reasons we discuss only Task 2 in detail.  To clarify our discussion each step in the informal 
arguments is labeled with an “I2,” each step in the formalization of this argument is labeled with an 
“F2,” and each step in the distractor proof is labeled with a “D2.”  
 

If a sequence (an) has a limit, it is unique. 
Informal argument Proof F2 (Formalization of informal argument) 
(I2-1) If the limit wasn’t 
unique then we could 
have two limits, say L1 
and L2. 
(I2-2) But we control the 
size of the ε-
neighborhood around 
these. 
(I2-3) and if we make it 
small enough these two 
ε-neighborhoods are 
going to not overlap. 
(I2-4) So when we get 
far enough down the 
sequence we’re going to 
be both in here [pointing 
an neighbor hood 
around L1] and in here 
[pointing an neighbor 
hood around L2]. 
(I3-5) But since we can’t 
be in two places at the 
once we get a 
contradiction. 

5

2. Proof: Uniqueness of a limit

Result to be proved: If a sequence (a

n

) has a limit it is unique.

Video Script:

(V-1) If the limit wasn’t unique then we could have two limits, say L1 and L2.

(V-2) But we control the size of the ✏-neighborhood around these.

(V-3) and if we make it small enough these two ✏-neighborhoods are going to not overlap.

(V-4) So when we get far enough down the sequence we’re going to be both in here and in

here.

(V-5) But since we can’t be in two places at the once we get a contradiction.

L1L2
x x

 

 

Proof D2 (Distractor) 

7

Proof F:

(F2 � 1) Toward a contradiction assume the sequence (a

n

) does not have a unique limit.

(F2 � 2) Then there exists L1 and L2 such that lim

n!1 a

n

= L1, limn!1 a

n

= L2 and L1 > L2.

�
(I2 � 1)

(F2 � 3) Let ✏ =

L1�L2
2 > 0. By definition there exists an N such that if n > N then

|L1 � a

n

| < ✏ and |L2 � a

n

| < ✏.

(F2 � 4) |a
n

� L1| < ✏ ) a

n

> L1 � ✏ =

L1+L2
2

|a
n

� L2| < ✏ ) a

n

< L2 + ✏ =

L1+L2
2

9
>>>>=

>>>>;

(I2 � 2/3)

(F2 � 5) But then for n > N we have that a

n

>

L1+L2
2 and that a

n

<

L1+L2
2 which is impossible.

 
(I2 � 4/5) 

6

Proof D:

(D2 � 1) Toward a contradiction assume the sequence (a

n

) does not have a unique limit.

(D2 � 2) Then there exists L1 and L2 such that lim

n!1 a

n

= L1, limn!1 a

n

= L2 and L1 6= L2.

(D2 � 3) By definition for every ✏ > 0 there exists a N such that if n > N then

|L1 � a

n

| < ✏/2 and |L2 � a

n

| < ✏/2.

(D2 � 4) Consider n > N .

|L1 � L2| = |L1 � a

n

+ a

n

� L2|
(D2 � 5)  |L1 � a

n

|+ |a
n

� L2| via the triangle inequality

= |L1 � a

n

|+ |L2 � a

n

|
(D2 � 6) < ✏/2 + ✏/2

= ✏

(D2 � 7) So |L1 � L2| < ✏. Since ✏ can be made arbitrarily small L1 = L2, contradicting

the assumption that the limit was not unique.  

Figure 1: If a sequence (an) has a limit, it is unique. 

Unlike F2, D2 is not intrinsically an argument by contradiction. The contradiction was artificially 
added to proof D2 to make D2 and F2 superficially similar. F2 starts off assuming, toward a 
contradiction, that the limit is not unique (I2-1 and F2-1) and because of this we may choose two 
limits, L1 and L2 (I2-1 and F2-2). Although the assumption that L1 > L2 (F2-2) does not explicitly 
appear in the informal argument, it is implied by the accompanying diagram. Next I2-2 and I2-3 argue 
that the ε-neighborhood around L1 and L2 can be made small enough to not overlap. In proof F2, this 
“not overlapping,” is achieved by choosing ε to be exactly half the distance between L1 and L2 (F2-
3), and then showing this choice of ε places an both above and below the midpoint (F2-4) for all n 
sufficiently large. Finally, both Proof F2 and the informal argument end by arguing that being in two 
places at once leads to a contradiction (F2-5 and I2-4/5). In the proof this is done formally by arguing 
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that a term in the sequence, an, cannot be both above and below the mid point. Proof D2 demonstrates 
that any two limits of a sequence can be made arbitrarily close to each other, and thus must be equal, 
but does not rely on the “two places at once” idea. 

Results 
A top-level view of the connections the participants made relative to our pre-agreed standards 

and hence, from our perspective, made normatively correct FBI-judgments for normatively correct 
reasons can be found in Table 1. As can be seen from the table, the first task was relatively 
unproblematic for the students in this study. The other two tasks were more difficult. Only 2 of the 
eight students met our minimum standard on both parts of task 2 and none of our students met our 
minimum standard on both parts of task 3.  

These data point to mathematics majors’ difficulties with FBI-comparison tasks. The ability to 
recognize the final product of formalization is crucial. Without this a student cannot recognize when 
the formalization process is complete and thus cannot effectively formalize. 

Table 1: Student FBI-judgments relative to the minimum standard  
 Task 1 Task 2 Task 3 

Met criteria for D-I judgment  7/8 5/8 2/8 
Met criteria for F-I judgment 8/8 3/8 1/8 
Met both F-I and D-I criteria 7/8 2/8 0/8 

A model of what students pay attention to when making FBI-judgments 
In our analysis we identified four different aspects of arguments/proofs that students focused on 

when making FBI-comparisons. Two of the foci outlined below are adaptations of Pedemonte’s 
(2007) structural distance and content distance constructs. The reframing of these constructs was 
necessary because the focus of Pedemonte’s research is different from our own. The four foci of 
comparison are described below: 

(1) Structural foci involve noticing global similarities and differences in which inferences follow 
from one another (i.e., structure). We conceptualize this as an adaptation of Pedemonte’s (2007) 
notion of “structural distance” to a FBI-comparison context. In a broad sense structural foci can be 
seen as an attempt to evaluate what kind of relationship exists between the structure of an informal 
argument and the structure of a formal proof.  

(2) Content foci involve noticing which specific elements (i.e., inferences, assumptions, data and 
claims) are present or not present within both an argument and proof. This can be seen as an attempt 
to evaluate the relationship between the content of an informal argument and the content of a formal 
proof. This focus can be seen as an adaptation of Pedemonte’s (2007) notion of “content distance” to 
an FBI-comparison context. 

(3) Methodological foci involve noticing the proof method used (e.g., contradiction, 
contrapositive, induction, construction, etc.) as well as the role this method plays in the proof. 

(4) Holistic foci involve noticing similarities and differences in terms of goals, style purpose or 
overarching idea. These comparisons focus on proofs and arguments as a whole and overlook 
specific structural, content and methodological details.  

Here we show that prioritizing one of the four foci of comparison in lieu of others has detrimental 
effects on students’ ability to make informal to formal comparisons. It is important to note that these 
foci are not necessarily static. Some students may shift foci when moving to a different task. 

Content foci. Next we discuss content foci. This involves paying attention to the assumptions 
and inferences within a proof/argument, but largely overlooking the roles and structure of these 
elements within a proof. Here the focus is localized to specific steps in the proof. In other words, the 
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details of a proof are examined, but the bigger picture is ignored. We illustrate this focus with an 
excerpt of S8’s work on Task 2. In the excerpt below S8 is asked to compare D2 and F2: 

 
Int:  Any… any other differences you can see? Looking at the proofs again?  
S8:  Umm… L1 is defined to just not be equal to L2 in proof D3 and in proof F3, they say L1 is 

greater than L2.  
Int:  I, I guess, … do you consider those significant differences? The ones that you mentioned? 
S8:  Yea, yea definitely. Those are significant differences. 
 
The assumption that L1>L2 is not explicitly made in the I2, however, it is implied by the 

accompanying diagram. Following the above excerpt S8 proceeded to use the fact that the L1>L2 
assumption is part of proof D2 and not F2 as a justification for why the distractor proof is based on 
the informal argument while the formalization proof is not. In focusing in on a particular piece of 
content which is present in only one of the proofs he overlooks the bigger picture and consequently, 
makes an FBI-judgment that is in conflict with the normatively correct interpretation. Hence, we 
contend that prioritizing content in leu of structure is also insufficient for making normatively correct 
FBI-judgments. 

 S8’s assessment is consistent with his content foci. He is looking for specific inferences that are 
present in the proofs in order to compare them to the informal argument. Thus, his expressed de facto 
conception of what it means for a formal proof to be based on an informal argument involves the 
formal proof using similar assumptions and similar inferences to the informal argument. Within this 
conception, a difference in assumptions used is sufficient evidence that a proof is not based on an 
informal argument.  

Methodological foci. It is useful to note that our anticipation of methodological foci influenced 
our task design. Methodological foci were the motivation for making proof D2 artificially a proof by 
contradiction. If we had not artificially made D2 a proof by contradiction students may have 
concluded that D2 was not based on I2 solely based on the fact that I2 is a proof by contradiction 
without working to make other connections. Thus our task design intentionally discouraged surface 
level methodological foci.  However, one participant did notice this feature of D2: 

S7: Wait, what? … There is no point in this [D2] being a proof by contradiction. That is 
completely redundant I could have just crossed this out here, “Assume it does not have a 
unique limit.” You can cross that out. 

Our task design intentionally prevented superficial methodology based assessments but left the 
tasks open to deeper assessments like the one in the excerpt above. Since only one of the participants 
noticed this feature of D2 , we argue that artificially adding or removing particular methodologies 
from proofs has the potential to lead students to make incorrect FBI-judgments. That is, if we used a 
direct proof as a second distractor in place of F2, we anticipate that the majority of students in our 
study would have incorrectly used “only one of these is a proof by contradiction” as a justification 
for why D2 was based on I2. This highlights the limitations of a strictly methodological foci. 

Holistic foci. The final foci we discuss involves examination of holistic traits. The word trait here 
is construed broadly and may include attribute such as elegance, efficiency, style, pedagogical 
purpose or overarching idea. In short, this is intended to capture any treatment of a proof as more 
than the sum of its parts. Proofs have purposes and can be qualitatively compared to both each other 
and to the general genre of proof writing. 

First we begin by discussing the work of S1 on task 1. The excerpt below begins after S1 reads 
proof D1 (He has already read proof F1). 
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S1: I feel like D1 was kind of lamer than the other one 
Int: Lamer? 
S1: This one [F1] was a little prettier, it was… I mean over here, we had uh, we were using that it 

was… this [D1] felt very… brute force 

S1 treats the two proofs in task 1 as aesthetic entities and does not solely focus on the internal 
(line-by-line) workings of the proofs. He expresses the belief that elegant proofs are more desirable 
than brute force proofs and judges D1 as less desirable. Later in his interview, when he was asked to 
compare F1 and D1, he discussed the two proofs relative to the genre of proof as a whole. 

S1: Okay, what do they have in common? Clearly they have the goal in common, but the guy on 
the left, proof D1, proof D1 felt more like uh… I don’t really know if there’s an actual 
distinction in the math world between a “prove something” and a “show something,” but if 
there was, this [D1] definitely feels like, you know, just show that it’s 0. But this [F1] was like 
a really… this felt like it had more behind it here… whereas this [D1] was like, let’s just 
evaluate it and see where that takes us. Okay? Which is fair, you know? It just doesn’t give 
you any insight into why that’s the case. 

S1 expresses the belief that proof D1, does not provide any mathematical insight regarding why 
the result holds. It is simply an exercise in implementing well-established calculation techniques. 
Implicitly, he expresses that he often looks for what insights he can gained from presented proofs, in 
this case he did not find any.  

However, one cannot effectively make FBI-judgments by focusing on holistic attributes of a 
proof in lieu of other attributes. For example, there may be multiple elegant arguments that justify a 
result. Thus, elegance alone is insufficient for making comparisons. 

Multi-focus comparisons. In the previous subsections we argued that prioritizing only one of the 
foci of comparison in lieu of others was insufficient for making normatively correct based on 
judgments. In this section we illustrate what comparisons that utilize all four foci look like and how 
they may yield normatively correct FBI-judgments. To clarify we are arguing that balancing ones 
attention to these foci greatly increases the likelihood that a student consistently generates correct 
FBI-judgments but does not guarantee normatively correct judgments. 

Below we examine S7’s immediate reaction after reading proof F2 for the first time: 

Int: General impressions. 
S7: F2 is just literally the proof version of I2…. Uh, so the idea behind this is that, okay if we are 

trying to show that this sequence has a unique limit, which we want to show that it can't have 
two limits. So we suppose there is two limits, basic proof by contradiction. So both are proofs 
by contradiction. And the contradiction occurs when epsilon is small enough. Here they show 
it intuitively but it's pretty clear from the picture that what they use was a number that's less 
then half way in between. Here [F2] is that function, the average. So once we have the. It's not 
the average it's close enough so that it doesn't even reach the average. And that way the two 
have no overlap. And then by definition of sequence it should eventually get far enough that 
it's in this region always and once you get far enough it's in this region always but then it's 
therefore always in both these regions once it passes that specific end that we defined. And 
that's the contradiction. Which is what they said here. When we get small enough down we 
can't be in both but it has to be in both.  

It is important to emphasize that S7 realizes that F2 is based on I2 before he is asked to make any 
kind of comparison. The above is simply his initial response. The part of the interview where he will 
be specifically asked FBI-questions occurred 30 minutes later. Also, he immediately jumps into the 
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comparison when he states that both the proof and the informal argument have the same idea behind 
them (holistic foci). He then shifts to discussing how this idea manifests itself in terms of structure of 
both I2 and F2 (structural foci). He notes that both the proof and informal argument are necessarily 
arguments by contradiction with the contradiction in both cases being that you cannot be in two 
places at once (methodological foci). This is then related to the specifics of the proof, with being both 
above and below the midpoint of L1 and L2 corresponding to being in two places at once in the 
informal argument (content foci). S7 makes all four types of comparisons, does this without any 
specific prompting to make a comparison and relates the four types of comparison foci in his 
discussion. 

We believe that the fact that S7 saw the relationship between I2 and F2 before he was asked to 
compare them to be particularly important. Mathematics is often discussed metaphorically as a 
language. Here S7 recognized that the informal argument and proof were metaphorically telling the 
same story. This is akin to being shown two paragraphs that tell the same story in two different 
languages, both of which one is fluent in. The fact that the same story has been presented twice, as 
well as the multitude of parallels between its two presentations is salient even without being asked to 
compare the two paragraphs. 

On the other hand, if one is learning the second language and is asked the same question the 
comparison is very different. The comparison becomes an exercise in finding parallels between the 
words and phrases used, as well as, the order in which these appear. In this case one is likely to grasp 
onto only a fraction of the similarities and differences between the two paragraphs and make a 
determination based on only this subset. This is analogous to what we observed students doing when 
they prioritized one of the foci over others. 

Discussion 
This paper contributes to the literature on proof and proving both methodologically and 

theoretically. First, from the perspective of theory, this paper introduced a four-part model of the 
aspects of arguments/proofs students focus on when attempting to determine whether a particular 
argument is based on a particular proof. The components of this model are content foci, structural 
foci, methodological foci and holistic foci. We illustrated that comparisons where students prioritized 
one of these categories of comparison in lieu of others were prone to incorrect or incomplete 
conclusions regarding whether a proof was based on an informal argument. Furthermore failure to 
see the rich connections between informal arguments and proofs point to students having under 
developed conceptions of what if means for a proof to be based on an informal argument. These 
underdeveloped conceptions account for difficulties students have with generating proofs based on 
informal arguments (e.g., Zazkis et. al., in press) and in understanding the connections between 
informal arguments and proofs presented in lecture (e.g., Lew et al., 2014). These underdeveloped 
conceptions also account for some of students’ resistance to generating informal arguments during 
proof production.  

Methodologically, the triples method introduced in the study is a valuable research tool for those 
interested in research on the connections between informal arguments and formal proofs. Examining 
how students compare and contrast ready-made informal arguments and formal proofs provides 
valuable insights regarding what they notice when making FBI-judgments. In turn, what students’ 
notice during FBI-judgments provides a valuable lens into how they conceptualize formalization and 
how they might view formalizing their own informal arguments. This method was able to reveal that 
students’ conceptions of what it means for a proof to be the basis of an informal argument are not as 
rich as an expert conception—often only encompassing a fraction of the connections that exist 
between informal arguments and formal proofs.  
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In this paper we report the interview questions used in a study of middle school students’ 
mathematical problem solving behaviors which were chosen based on Vygotsky’s concept formation 
theory and Berger’s appropriation theory. We discuss the task design/selection process along with 
the findings associated with the use of these tasks so to provide new direction for gauging research 
on mathematical problem solving. 

Keywords: Research Methods; Problem Solving; Geometry 

Introduction 
Improving the teaching and learning of mathematical problem solving relies heavily on 

development of a theory of mathematical problem solving, which is currently missing from the field 
(Schoenfeld, 2007). As Schoenfeld articulated, the focus of mathematics education researchers 
interested in mathematical cognition may need to shift on building theoretical capacity that may 
account for human decision making in the course of problem solving (2013). We posit that progress 
towards building such a theory might demand greater attention to theorizing instrument design and 
task development in conducting research on mathematical problem solving, an area currently absent 
from the field. Discussions surrounding tasks have frequently focused on defining problems: a 
question where an individual does not have a ready- to-use approach to find the answer (Wilson, 
Fernandez, & Hadaway, 1993). Agreement exists that whether a question is a problem depends on 
the individual working on the task (Schoenfeld, 1985). This description has imposed constraints on 
researchers’ ability to theorize specific principles of instrument design/selection when undertaking 
research on mathematical problem solving. Existing studies have generally selected questions based 
on the targeted subject area and whether the question is appropriate for the participants in the study, 
referring to the participants’ educational background as a standard to determine whether a question is 
beyond their capability or not (e.g. Elia et al., 2009; Kuzle, 2011).  These efforts, although useful in 
providing a profile of expert problem solvers, do not provide a coherent perspective on 
instrumentation as a methodology. 

In a larger study of middle school students’ mathematical problem solving behaviors, we used 
research-based assessment to capture students’ ways of knowing by unpacking the relationship 
among mathematical concepts, cognitive behaviors, and metacognitive behaviors as evidenced 
during clinical interviews. We reported the findings from the pretest instrument in the study, which 
suggested that Vygotsky’s concept formation theory could serve as an effective framework for 
designing novel assessments to provide researchers with more precise tools to articulate intricacies 
of students’ understanding of mathematical concepts (Zhang, Manouchehri, & Tague, 2013). In 
this paper we will report on theoretically based criteria for design of tasks to be used in our 
research on mathematical problem solving. We will report findings related middle school students’ 
performance on a selected sample of these tasks so to provide direction for future research on 
mathematical problem solving. 

Theoretical framework 
As a starting point in our task design, two issues were of particular concern: (1) establishing 

theoretical capacity that would allow us to document and analyze both cognitive and metacognitive 
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behaviors of the participants in the course of their problem solving; (2) selecting a specific 
mathematical concept so to develop appropriate tasks surrounding it. To address the first issue we 
incorporated two theoretical perspectives to design/select interview questions used in this study: 
Vygotsky’s (1962) concept formation theory and Berger’s (2004) appropriation theory. Vygotsky’s 
theory proposes a framework for an individual’s concept development within a social environment, 
while Berger’s theory proposes an interpretation of Vygotsky’s theory in the domain of mathematics 
by adjusting certain stages. Both theories break down any concept development into three phases: 
heap, complex, and concept. In the heap phase, the learner associates a sign with another because of 
physical context or circumstance instead of any inherent or mathematical property of the signs. In the 
complex phase, objects are united in an individual’s mind not only by his or her impressions, but also 
by concrete and factual bonds between them. In the concept phase, the bonds between objects are 
abstract and logical.   For the purpose of the study we also decided to focus on the concept of Area 
due to its critical role in school mathematics. Hence, research-based formation stages for the concept 
of area were assembled as illustrated in Figure 1. 
 

 
Figure 1. Developmental Stages of the Concept of Area 

This structural model served as our primary analytical tool for qualifying the students’ work as 
well as the tasks selected to be used in study. This model was further refined upon a short pilot study 
in which responses to tasks were obtained from 44 middle school students. The students were asked 
to responds to five items. Upon analysis of their responses we considered revisions of some of the 
tasks so to assure ambiguities that could lead to irrelevant answers were removed. Analysis of the 
relationship among mathematical concepts, cognitive and metacognitive behaviors emerged from the 
interview results based on our final selection of items which were used in in-depth interviews with 
five middle school students. The current report is based on our findings of these interviews. 
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Methods 

Participants 
Five individuals from a population of 44 sixth grade students were selected to participate in 

interviews. The original group of 44 were enrolled in three distinct class periods of an algebra course 
taught by the same teacher. All three classes had been observed by the lead author for 6 months prior 
to data collection. A pretest was administered to the 44 students. The process of determining and 
classifying the pretest responses is described as the following. 1) Two authors independently 
reviewed all responses to identify and document enacted approaches and coded developmental stages 
associated with each approach based on an earlier version of the developmental stages framework. 
Notes were compared for consistency in coding. 2) Students’ approaches that were ambiguous or 
non-anticipated were discussed. The framework was adjusted based on the analysis of these 
responses; five more stages were identified and added to the original framework. 3) Based on the 
analysis we built a reference list of detected stages for each student to inform participant selection. 
Each individual’s developmental status revealed in the responses was categorized as “overall low” 
(all responses were rated as Heap and non-Pseudo- concept Complex stages), “varied” (responses 
were rated across Heap to Concept stages), and “overall high” (Reponses were rated as Pseudo-
concept Complex and Concept stages). 

Participant selection was deliberate. The following criteria guided our choices: 1) willingness to 
be involved in the study and had signed the consent forms; 2) the participants would need to 
represent a range of different developmental attributes pertaining to the target concept.  This data was 
collected through the students’ pretest responses; 3) the participants would need to be comfortable 
with thinking aloud. Five individuals met these criteria: Shana exhibited a low status, Andy exhibited 
a high status, Sandy, Allen, and Ivan exhibited varied status. 

Data collection 
The five participants were interviewed individually. Each interview consisted of two parts: 

During the background interview part the participants’ mathematics background information, their 
beliefs about mathematics, and their views on the value of mathematics for their lives were elicited.  
The second part, problem solving session the participants worked on specific mathematical tasks. 
During the problem solving sessions, interviewer interventions were limited to eliciting clarifications, 
explanations, or justifications, when needed. 

Instrument design 
F ive problems were used during the interviews. All problems were related to the concept of area 

and allowed the participants to tackle the tasks from different stages of concept development. The 
problems could potentially cover a wide range of concept stages.  Peripheral concepts were integrated 
in several problems in order to enable some degree of interactions between different concepts (e.g. 
transformational reasoning and variable), since we believe authentic problem solving should involve 
more than one concept yet the number of concepts needs to be controlled for a deeper analysis on the 
behaviors acting upon them. When selecting tasks, concept stages along with the corresponding 
exemplar approaches that could be elicited by each problem were predicted by the authors. An 
example of this conceptual mapping is shown in Table 1. 



Mathematical!Processes:!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

390!

Table 1. Predicted stages and exemplar approaches 
Compare areas problem 
Which of the regions shown below has the largest area? How would you order them? 

 
Predicted stages Exemplar approach 
Surface Association Complex – Formula Using an incorrect area formula 
Chain Complex Fitting the circle and the triangle into the 

square 
Potential Concept - Formula Using a correct area formula 

 

Data analysis 
Data collection consisted of four phases. First, each participant’s key cognitive behaviors during 

each problem solving episode were mapped and documents. Second, a summary of observed concept 
stages and metacognitive behaviors during the episode were catalogued and noted. Detailed analysis 
of the individual’s problem solving behaviors according to the relationship among concepts, 
cognitive behaviors, and metacognitive behaviors was constructed. Finally, cross analysis of the 
observed concept stages, metacognitive behaviors, and the relationship between them concluded the 
analysis phase. This process was followed for each of the five tasks used. 

Results 
The larger study analyzed the participants’ performances on each interview question from four 

perspectives: 1) each participant’s point of entry, including identified task elements/objectives and 
his/her initial approach, 2) types of approaches the study participants used, 3) concept stages revealed 
when working on the problem, and 4) metacognitive behaviors revealed from the participants during 
the problem solving episode. 

To focus on the research question in this paper, we only report on: 1) each participant’s point of 
entry, including identified task elements/objectives and his/her initial approach, 2) types of approaches 
the participants used, and 3) concept stages revealed. The problem in Table 1, Compare Areas 
problem serves as an illustrative example of research-based tasks used in the larger study reported 
elsewhere (Zhang, 2014). 

Point of entry 
In the Compare Areas problem, one task element and one task objective are essential to solving 

this problem: the variable a that represents the equal length of sides and diameter, and the 
comparison of the areas, respectively. 

Table 2 summarizes the task elements/objectives (i.e. key conditions and goals to solve the 
question) identified by each participant and by the interviewer before each of the participants started 
solving the problem. Initial approaches adopted by each participant are also outlined. 
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Table 2. Summarization of initial response/approach adopted by each participant 
Participant Task elements or 

objectives 
identified by the 
participant 

Task elements or 
objectives 
highlighted by the 
interviewer 

Initial approach 

Shana Equal measure of 
sides and diameter 

NA The circle and the triangle 
could fit into the square. 

 
 

Sandy Just area The a meant equal 
measure of sides and 
diameter 

Computed the areas by 
formulas. 

Ivan NA NA The circle could fit into the 
square (verbal conclusion); 
the triangle had the same area 
as the circle since the three 
vertices of the triangle “pokes 
out.” 

 

 

Andy Around is the 
circumference. 

The a meant equal 
measure of sides and 
diameter 

Computed the areas of the 
square and the triangle by 
formulas. 

Allen The area inside NA The circle and the triangle 
could fit into the square. 

 

 
 

Among the five participants, Sandy’s understanding of variable greatly influenced her initial 
behaviors. She focused on the actual amount of area instead of the condition that the lengths of the 
sides and the diameter had the same measures. This prevented her from adopting either a visual or a 
numerical approach to start tackling the problem. Allen, whose understanding of variable was 
restricted, chose to ignore it so to avoid confusion. Ivan overlooked the variable; his later behaviors 
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were influenced by this element rather than at the beginning. Interestingly, Shana (who was assessed 
as low concept development) was the only participant who explicitly identified the task element of 
equal measure, whereas the others were either confused by the information, overlooking it, or needed 
to be reminded by the interviewer. 

Documented approaches 
Table 3 illustrates the approaches that the participants used when solving the Compare Areas 

problem. 

Table 3. Approaches adopted by the participants solving the Compare Areas problem 
 Approach Description Example from interview 

1 Fit into the 
square 

Showed the circle and 
the triangle could fit into 
the square. 

 
2 Formula Used area formulas to 

compute the areas. 
Assigned a number to a and used the 
measure of the side of the triangle as 
its height. 

3 Unit squares Drew and count unit 
squares to approximate 
the area. 

 

4 Compare leftover Transformed the 
leftovers of the circle 
and the triangle into 
manageable shapes for 
comparison. 

 

 
 

The third approach was adopted when a specific area formula (i.e. the area formula of circles) 
was not available to Andy who used the second approach as his initial heuristic. The fourth approach 
was usually adopted when the participants, who used the fit-into-the-square approach as their initial 
approach, were prompted to further compare the areas of circle and triangle. 

Revealed concept stages 
When designing the interview instrument, the researchers had predicted six concept stages that 

could be revealed in this problem: 1) Surface Association Complex – Formula wherein a student uses 
an incorrect formula, 2) Artificial Association Complex where perimeter is compared instead of area, 
3) Chain Complex - Non-measurement wherein the circle and the triangle can fit into the square, 4) 
Pseudo-concept Complex - Formula where visual reasoning contradicts to computational answers, 5) 
Potential Concept - Formula where a number is plugged into a formula, and 6) Concept – Formula 
where variable a is plugged into the formula to reach a generalized answer. Among these stages, 1, 3, 
and 5 were revealed during the interviews, while 2 was observed during the identification of task 
objectives prior to one participant’s initial approach. 

Table 4 summarizes the concept stages of Area concept revealed from the five participants when 
solving this problem. The approaches associated with each stage as used by them are noted as well. 
The stages listed in italic are the ones predicted to be revealed by the researcher. 
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Table 4. Concept stages of area and associated approach revealed by participants 
 Revealed concept stage Associated approach 
1 Surface Association Complex – Non-measurement Compare leftover 
2 Surface Association Complex – Formula Formula 
3 Chain Complex Fit into the square 
4 Pseudo-concept Complex - Non-measurement Compare leftover 
5 Potential Concept – Unit area Unit squares 
6 Potential Concept - Formula Formula 
7 Concept - Non-measurement Compare leftover 

 
All other stages were observed when the participants sought an alternative way to either refine or 

complement their initial approaches. The participants’ problem solving behaviors were much more 
novel during this process (thus less predictable) than their behaviors during the initial attempt (i.e. 
using fit-into-the-square or formula approach). 

Discussion 
The study results suggested that metacognitive behaviors of the participants are closely linked to 

their perceived level of complexity of the task and whether they found it appropriately challenging. 
That was the case regardless of the participants’ level of development pertaining to the concept under 
study (in our case, area, for instance) or their personal preferences for particular strategies. That is, 
when a task was perceived as too challenging, it was treated as enigma. This limited our capacity as 
researchers to access cognitive or metacognitive behaviors of the participants. The same occurred when 
the problem was perceived as trivial. Because of this, we argue that description of what constitutes a 
problem (in the context or problem solving) needs to be more precisely defined. The common 
description “whether a task is a problem depends on the individual” (Schoenfeld, 1985) too broad to 
inform research instrumentation when studying mathematical problem solving. We posit that 
benchmarks for selection/design/ development of appropriate problems, according to the concept 
formation stages specific to those embedded in the task, can enable researchers to more adequately 
elicit student problem solving. This issue is particularly critical if inferences are to drawn regarding the 
individuals’ understanding of a concept in presence of their mathematical problem solving 
performance. 

Since existing literature does not provide a guide that can inform task design/selection for 
research purposes, focused scholarly efforts towards construction of such a theoretical platform are 
needed. Towards that goal several key issues merit elaboration, among many include: 1) task 
elements and objectives that are essential to understanding the problem in light of learning 
progression, 2) specific concept stages as entry points to the tasks, 3) desired concept stages 
embedded in solutions, and 4) potential shifts/paths between concept and its associated concept 
stages. 

Discussion of task elements need to identify conditions under which a problem may suit different 
populations according to their experiences with the concepts involved. Naturally, if the problem solver 
has had limited or no experience with a particular concept their interpretation of the task or what is 
expected as an appropriate answer may not match those of the researchers. Discussion of specific 
concept stages as entry points granted by the tasks allows the researcher to use the same task with 
different populations who may not share the same concept developmental status. Such an elaboration 
allows us to determine whether the task might be too challenging/impossible to solve given a specific 
concept developmental stage. A description of potential shifts and paths can serve as an aid for the 
interviewers/researchers to gauge their interventions during the interviews (potential prompts/probing 
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questions when observing problem solving process). These descriptions mainly determine the capacity 
of a task. If a task allows only one entry point and one desired stage for the solution, it mostly assesses 
whether an individual knows the procedure or not, which is commonly used in proficiency tests. The 
development a detailed theoretical model of task design is a necessary tool towards development of a 
theory of mathematical problem solving. 
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This manuscript describes initial research on the process of vertically equating two problem-solving 
instruments: one for sixth-grade students and another for seventh-grade students.  We connect this 
study to research aimed at developing measures to assess students’ problem-solving performance as 
framed by the Common Core State Standards for Mathematics. Rasch modeling results indicated that 
three of the four anchor items worked as planned.  Thus, scores on the seventh-grade measure 
indicate students’ performance on seventh-grade content but also their performance on sixth-grade 
content-focused items.  

Keywords: Problem solving; Assessment and Evaluation; Middle School Education 

The Common Core State Standards for Mathematics (CCSSM; National Governors Association, 
Council of Chief State School Officers, 2010) highlight problem solving in some fashion across 
grade-level Standards for Mathematics Content (SMCs).  Furthermore, problem solving is found in 
several titles and descriptions of the Standards for Mathematical Practice (SMPs).  Assessments 
should address the depth and focus of instructional standards (Wiliam, 2011).  Thus, new 
assessments are needed that reflect the call for problem solving expressed in the CCSSM.  Our first 
objective for this study is to briefly describe psychometric results of a new assessment for seventh-
grade students.  The second objective is to explore the vertical equating process with respect to this 
assessment and a previous one for sixth-grade students. 

Related Literature 

Problem Solving and Problems 
We draw upon Lesh and Zawojewski’s (2007) notion of problem solving as a process including 

“several iterative cycles of expressing, testing and revising mathematical interpretations – and of 
sorting out, integrating, modifying, revising, or refining clusters of mathematical concepts from 
various topics within and beyond mathematics” (p. 782).  Problem solving occurs only when learners 
work on a problem.  Schoenfeld (2011) characterized a problem as a task such that (a) it is unknown 
whether a solution exists, (b) the solution pathway is not readily determined, and (c) more than one 
solution pathway is possible.  Problems are unique from exercises.  Exercises are tasks intended to 
promote efficiency with a known procedure (Kilpatrick, Swafford, & Findell, 2001).  The CCSSM 
emphasize problem solving in the SMCs and SMPs, hence teachers are expected to engage students 
in problem solving during everyday instruction.   

Researchers have suggested that students should experience non-routine word problems as part of 
their regular mathematics instruction (Boaler & Staples, 2008; Matney, Jackson, & Bostic, 2013; 
Palm, 2006; Verschaffel et al., 1999).  These word problems ought to be open, realistic, and complex 
(Matney et al., 2013; Verschaffel et al., 1999).  An open problem can be solved using multiple 
strategies and offer problem solvers numerous entry points to the task.  A realistic problem allows an 
individual to draw upon his/her experiential knowledge and also fosters engagement through a 
connection to the real world.  Finally, a complex task supports perseverance and sustained reasoning, 
which are highlighted in SMPs #1 and 3.  Our research draws upon established ideas for problems 
and problem solving, as well as prior published work in developing CCSSM-focused mathematics 
assessments (Bostic & Sondergeld, in press, 2015), to highlight the pilot testing process as well as 
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preliminary findings of a second measure, the Problem Solving Measure for seventh grade (PSM7).  
We used Rasch modeling (also known as one-parameter item-response theory) and vertical equating 
while developing the Problem Solving Measure for sixth grade (PSM6) and PSM7 in order to create 
a sound system for measuring students’ problem-solving of items addressing the CCSSM across two 
grade levels.  

Assessment: IRT and Vertical Equating 
Oftentimes assessments are delivered as incidents independent of future or previous testing. This 

is acceptable if the goal is to assess student skills at a single point in time.  However, if the purpose 
of testing is to measure student growth across grade levels then multiple assessments must be given, 
each related to their appropriate grade level content standards.  How then might teachers and 
researchers determine student growth in learning if the content is different at each grade level?  One 
solution is vertical equating (or scaling) (Wright & Stone, 1979).  Vertical equating can only be done 
when investigating a single unidimensional construct such as problem solving (Lissitz & Huynh, 
2003).  An attempt to measure student growth from one year to the next using two linked 
assessments requires common items (called anchors) on both measures (Wright & Stone, 1979).   
These anchor items are typically moderate in difficulty from the lower level assessment, and placed 
on the higher-level assessment to be evaluated for change in item difficulty (or displacement).  If the 
items remain at approximately the same difficulty level (within ±.40 logits – or log odds units) on the 
higher-level test then they are acceptable anchors that will work well in linking different grade level 
tests (Kenyon, MacGregor, Ryu, Cho, & Louguit, 2006).  There is no standard for the number of 
required anchor items when vertical equating.  It is more important to ensure anchor items are of high 
quality (displacement within range of ±.40 logits) than to have a greater quantity of poorly 
functioning anchors (Pibal & Cesnik, 2011).  In fact, Pibal and Cesnik showed that as few as three 
anchor items can work well to vertically link tests together provided they are of high quality.   

Method 
Building upon prior research related to developing the PSM6, we created a problem-solving 

measure to address the seventh-grade SMCs.  The aim of this paper is to provide evidence for 
vertical equating of scores between the PSM6 and PSM7.  Our research questions are (a) Is the 
PSM7 psychometrically sound?  (b) What psychometric evidence suggests that scores on the PSM6 
and PSM7 might be vertically equated?   

Instrumentation 
PSM6.  Previously peer-reviewed work by Bostic and Sondergeld (in press, 2015) discusses the 

validity and reliability of the PSM6.  It has 15 items, three from each domain of the CCSSM (i.e., 
Expressions and Equations (EE), Geometry (G), Number Sense (NS), Ratio and Proportions (RP), 
and Statistics and Probability (SP)).  Two sixth-grade classroom teachers, one mathematician holding 
a Ph.D., and two mathematics educators with terminal degrees reviewed the items for connections 
with the SMCs and SMPs, developmental appropriateness, and use of complex, realistic, and open 
problems.  This review panel was also tasked with considerations about bias on the measure.  Results 
of the review indicated that the items addressed the SMCs and numerous SMPs, were 
developmentally appropriate, all tasks could be solved with at least two strategies, drew on real-life 
contexts, and were sufficiently complex to be considered problems.  A group of sixth-grade students 
representing different ethnicities, socioeconomic backgrounds, and cognitive abilities (as measured 
by classroom grades) volunteered to serve on a second review panel to examine the PSM6 for 
potential bias.  The review panel consisting of adults and children found no bias that might impact 
students’ performance.   
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Data for the PSM6 were collected from 137 sixth-grade students located in a Midwest state.  
None of the respondents were English Language Learners.  Test administration took approximately 
75 minutes.  Students’ responses were scored as correct and incorrect.  These scores were used to 
examine the psychometric properties of the PSM6 using Rasch modeling for dichotomous responses 
(Rasch, 1980), which is also called one-parameter Item Response Theory (see Bond & Fox, 2007).   

PSM7. Development of the PSM7 followed a similar process as the PSM6.  The aim of this 
manuscript is to share the process of vertically equating scores across grade levels on the PSM6 and 
PSM7.  To meet that aim, we selected tasks from the PSM6 that represented core ideas of sixth-grade 
mathematics and were of moderate difficulty for sixth-grade students.  For our study, four total items 
from the PSM6 were selected as anchors on the PSM7: two items addressing the EE domain and two 
items addressing the RP domain.  These items were within one standard deviation of the mean item 
difficulty for the PSM6 as well as the one standard deviation of respondents’ mean (making them 
average difficulty items).  EE and RP draw upon the number fluency ideas that are central to support 
the progression pathway to algebraic reasoning and thinking that is at the core of CCSSM content 
development across grade levels (Smith, 2014).  Therefore, items addressing this content were 
deemed acceptable content for both grade levels. 

Data Collection and Analysis 
Four-hundred and eighty-seven students located in a Midwest state completed the PSM7.  

Seventh-grade students took approximately 80 minutes to complete 19 items, four of which were the 
items for vertical equating purposes.  Responses were scored as correct and incorrect.  These data 
fueled the quantitative analysis using Rasch modeling for dichotomous responses.  Rasch methods 
are often viewed by many social science researchers as the best method for instrument development 
and refinement because they convert ordinal data into conjoint, hierarchical, equal-interval measures 
that place both person abilities and item difficulties on the same scale allowing them to be directly 
compared to each other (see Bond & Fox, 2007).  Winsteps Version 3.74.0 (Linacre, 2012) was used 
for all Rasch analyses.  Psychometric evaluation of the PSM7 in terms of its reliability and validity 
evidence were conducted similar to that which was previously done for the PSM6. Assessment of 
anchor item functioning and displacement was also performed.   

Results 

Psychometric Findings 
 Unidimensionality is a fundamental quality of measurement.  Items with negative point 

biserial correlations, infit mean-square (MNSQ) statistics falling outside 0.5 – 1.5 logits, or outfit 
MNSQ statistics greater than 2.0 logits are not meaningful for measurement (Linacre, 2002), and 
should be removed from a test as they do not contribute to a unidimensional latent trait.  No items on 
the PSM7 had negative point biserial correlations (.06 – .65).  All items fell within Rasch MNSQ fit 
parameters for infit statistics (.76 – 1.25).  Only one item had an outfit statistic greater than 2.0 (.10 – 
3.13).  Item reliability was high at .98 suggesting strong internal consistency for items.  Further, item 
separation was high (6.90) and item measures ranged from 3.03 to 4.69 indicating a meaningful 
variable (i.e., problem-solving ability) was created.  Collectively, these statistics suggest all items 
worked together to form a unidimensional measure capable of assessing a wide range of problem 
solving abilities among seventh-grade students. 

Vertical Equating Findings 
 Of the four items used as anchors from the PSM6 to the PSM7, three fell within the 

appropriate range for displacement (-.06 – .18).  One RP item had a displacement of -.43 and was 
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thus deemed unacceptable for anchoring purposes.  Therefore, three of the PSM6 items will remain 
on the PSM7 assessment during further testing administrations for linking purposes.   

Conclusions 
Overall, the PSM7 showed acceptable psychometric properties during its first administration.  

We were able to develop a continuous construct of problem solving assessed across two grade levels 
by using Rasch modeling methods and vertical equating.  This construct aligns problem-solving 
items on two tests with appropriate grade level SMCs.  It allows evaluation of a student’s sixth-grade 
problem-solving skills while providing an opportunity to assess a student’s growth in competency 
when moving into grade seven.  Such linked measures like the PSM6 and PSM7 respond to calls for 
assessments to reflect the depth and focus of standards, especially new ones adopted across multiple 
regions of the USA. 
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This study explores how the records that students make during problem solving assist their cognition 
and communication. Grounded in the problem-solving literature and cognitive load theory, we 
examine the records that 14 middle grades students make as they solve geometry problems in one-on-
one task based interviews. We identify features of record keeping that assist the students with 
cognition and communication and discuss the implications of this work.  
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This paper investigates how records students generate during problem solving assist in their 
cognition and communication. Solving mathematical problems and communicating thinking are 
fundamental parts of learning and doing mathematics (NCTM, 2000; NGA & CCSSO, 2010). 
Helping students learn and use strategies for solving mathematical problems and communicating 
their thinking are essential elements of successful mathematics instruction. 

In this paper we describe a study of record keeping (RK) that middle school students used to help 
them think about a problem and then communicate their thinking. We were guided by the following 
research question: How do middle-grades students use record keeping during problem solving for 
cognition and communication? 

Record Keeping 
In reviewing the literature we found diverse terminology that intersected with our idea of record 

keeping. For our purposes, record keeping (RK) is the act of capturing pieces of information 
developed during the process of solving a mathematical problem in a manner that allows the problem 
solver to retrieve this information later. Such pieces of information include: important aspects of the 
problem statement, additional information possibly needed for solving the problem, characteristics of 
possible solutions, ideas about solution strategies, and/or partial solutions. The record could be 
physically inscribed or electronically captured, and it might take various forms including words, 
symbols, equations, drawings, or diagrams. Its defining characteristic is that RK secures information 
external to the mind of the problem solver; it does not take the form of a mental note. 

Theoretical Perspectives 
Our study was guided by foundations in problem solving (Polya, 1957; Schoenfeld, 1992) and 

Cognitive Load Theory (CLT) (Sweller, 2003). CLT is a learning and instructional theory based on 
the temporary and limited nature of working memory and the permanent and essentially unlimited 
capacity of long-term memory (Sweller, 2003). Working memory draws on long-term memory, but 
can only store about seven chunks of information and process only two or three chunks of 
information at a time. If these limits are exceeded, working memory gets overloaded. 

From a CLT perspective, problem solving can generate a high cognitive load for students due to 
the information that needs to be stored and processed simultaneously. Literature on problem solving 
suggests that a means of reducing this load is to offer heuristics that students can use, including 
writing an equation to describe the problem situation or drawing a diagram.  

Using equations, diagrams, and other external representations as records during problem solving 
can serve two purposes (1) bolster the capacity of working memory by offloading part of students’ 
thinking onto the environment (Tabachneck-Schijf, Leonardo, & Simon, 1997), and (2) focus 
attention on key quantities and relationships needed to solve the problem (Zhang, 1997). Successful 
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problem solvers are adept at working with a representation that captures the essential relationships 
needed to solve the problem (Diezmann & English, 2001; Nunokawa 1994). Expert problem solvers 
also construct many more visual representations than novices do during problem solving (Stylianou 
& Silver, 2004). Once created, diagrams can be useful for facilitating communication for students. 
Multistep explanations are generally challenging to describe, and also hard for listeners to follow 
(Hufferd-Ackles, Fuson & Sherin, 2004). 

Modes of Inquiry 
We conducted 14 one-on-one problem-solving and interview sessions with middle school 

students to understand how RK helped them in cognition and communication. The sessions lasted 
about 45 minutes each while the student worked on three challenging geometry tasks. The sessions 
were videotaped and the students’ written work was also collected. After the students worked on the 
problems, the researcher asked follow-up questions.  

Analysis of student work and interviews involved detailed examination of each student-generated 
record, specifically describing the record created, how it was used in problem solving, and the 
student’s reasoning related to the record. A combination of emergent codes and codes based on the 
literature were used to analyze data from the sessions. The research team together created and shared 
analytic memos describing how each student’s RK aided cognition and communication. Two main 
themes supported by multiple examples arose from this analysis – RK fosters exploration and 
supports persistence and RK for communication aids recounting and referencing. We discuss these 
two themes drawing on examples from one student’s work on the Shelf task (Fig 1). In this task the 
students were given a cross-section of Joseph’s bedroom with some pertinent measurements and 
were asked to find the length of the shelf.  

Results  

RK for cognition fosters exploration and supports persistence 
RK featured prominently during the initial stages of work on problems when the students did not 

seem to have a clear approach to a problem and were exploring various avenues. In such cases they 
drew on prior experiences like using the numbers provided to do some initial computation, and 
labeling or marking figures.  Based on these initial results, the students may have continued with 

their approach or may have abandoned it and 
tried something new, in either case gaining 
some traction on the problem. Below we 
illustrate how Carol, an 8th grader, initially 
engaged in exploratory RK which eventually 
led to a successful solution of the Shelf task.  

Carol began the task by marking a right 
angle (Record 1, Fig. 1) which prompted her to 
explore the use of Pythagoras’ theorem. She 
made several records to determine (incorrectly, 
due to computational errors) the length of the 
hypotenuse of the key triangle is the square 
root of 2728 (Record 2, Fig 1). After 
observing that evaluating this square root 

would involve further calculations, she explored other properties of the triangle. Using her pen as a 
measuring device she observed that the triangle in the figure was not equilateral and made a note – 
“not = lateral” (Record 3, Fig. 1). Returning to the Pythagorean approach, she tried to find a whole 
number square root of 2728 (Record 4, Fig 1). While making these calculations, she realized that no 

Figure 1: Record Keeping for Shelf 
Problem 
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whole number, when squared, could have 8 in the units place. Carol wrote “not = root” (Record 5, 
Fig 1) to remind herself of this fact. At this point she asked if the figure is drawn to scale and was 
told that it was not necessarily. After using her pen to make measurements near the 18 inches mark 
and a segment she had drawn before (Record 6, Fig 1), Carol wrote “not to scale” (Record 7, Fig 1).  

Carol next turned the paper over and proceeded to 
create a scaled drawing of the figure. She noted 4 as a 
common factor of 32 and 48 and made equally spaced dots 
representing 4 inch intervals along both the vertical and 
horizontal parts of the diagram (Record 8, Fig 2). She used 
this approach, making several additional records (Records 
9-12, Fig 2), to determine the length of the shelf as 20 
inches.  

In our analysis of the interview with Carol, we note that 
her RK supported two approaches – one numerical and one 
diagrammatic. In the numerical approach she used 
Pythagoras’ theorem and attempted to work out the length 
of the roof. Through her calculations she noted that this 
would not be a whole number and thus decided to try a 
diagrammatic scaling approach. Carol began by trying to determine if the original figure was drawn 
to scale. When she discovered that the figure was not necessarily drawn to scale, she was motivated 
to create a scaled figure, leading to an approach that yields the solution. At each step, her RK such as 
“not to scale”, “not = lateral”, and “not = root” acted as signposts that guided her towards another 
approach that eventually led to a successful solution. By offloading her work and keeping track of the 
dead ends, Carol was able to use her RK to attempt possible approaches to the task, but set them 
aside when she found them unproductive and considered other approaches.  

RK for communication aids recounting and referencing  
The records that the students generated usually mediated their interactions with the researcher 

during the session interviews. The records served to remind students of the work they had done and 
also grounded many comments and gestures that students used to communicate their thinking to the 
researcher.   

In Carol’s explanation of her work on the Shelf task, she used the records to walk the researcher 
through a chronology of her thinking, including all of the ultimately not successful work to find the 
length of the roofline of the shelf structure, and to find the length of the shelf via comparative 
measurement with known values. She gestured to each record to draw the researcher’s attention to 
the calculations she completed and parts of the diagram she had marked as she related each episode 
of her work. In this way, the records provided Carol a set of prompts for the chronology and points of 
reference for the researcher as the audience. 

Carol’s culminating diagram (Fig 2) served to ground her numerous gestures as she explained 
how she determined the number of dots that would represent the length of the shelf. Carol gestured 
repeatedly to Records 8-11 when describing the diagrammatic scaling method she used to solve the 
problem, using her pen as a pointer to indicate the dots and their meaning as measures used to count 
by 4 inch increments both vertically to locate the height at which the shelf would be set, and 
horizontally to determine its length. Pointing to the records also emphasized the estimating decision 
that Carol made about whether the end of the shelf that intersected the roof corresponded to 5 or 5.5 
dots (20 or 22 inches) horizontally.  

With the diagram as the background, Carol was able to point to various parts and combine these 
gestures with her speech to develop a coherent explanation that the researcher was able to follow. 
The diagram as a record was vital to this interaction; without access and reference to it the researcher 

Figure 2: Record Keeping for Shelf 
Problem 
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would not have understood the thinking behind Carol’s approach. 

Discussion 
In our data we found that RK effectively supported both the students’ cognition and 

communication. Based on the analysis of their records the students experimented with various 
approaches to the problem. In some cases, the records brought to the fore an approach that they used 
to successfully solve the problem. We conjecture that RK allowed the students to first offload their 
thinking onto the paper to free up more of their working memory. Further, by having the records in 
front of them, the students were able to draw on pertinent information from their long-term memory 
to solve the problem.  

Besides aiding the students’ cognition, RK proved useful in communicating their thinking. The 
students used their existing records or sometimes generated records to ground their interaction with 
the researcher. We conjecture that by providing a constant outlet for the students’ ideas, the RK 
prompted students to explore further, consequently exhibiting more persistence in their problem 
solving.  

Given the benefits we have outlined for RK, the larger goal of our study is to understand what 
features of mathematics task presentation promote RK that aids students’ cognition and 
communication. Further, we are interested in deriving principles for designing tasks to promote 
useful RK, and general development of students’ RK strategies for problem solving.  
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Optimization problems require students to use a combination of calculus and pre-calculus skills to 
solve word problems, which are historically challenging for students. Although they are often able to 
learn strategies for arriving at the correct answer, the goal is for students to understand how and 
why these strategies work. Using Tall and Vinner’s (1981) concept image as our theoretical 
perspective, we examine barriers to students’ understanding of the role of the optimizing function as 
they are in the orienting and planning phases of Carlson and Bloom’s (2005) Problem Solving 
Framework. 
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Most standard optimization problems in first semester calculus require students to read and 
interpret a problem, set up an appropriate function to model the situation, differentiate the function to 
find critical values, prove the critical values give a maximum or minimum, and answer the specific 
question from the problem. White and Mitchelmore (1996) observed that students were more 
successful at solving such problems when the function is already given than when they must 
construct the optimizing function first. Here we examine barriers to constructing an optimizing 
function and to understanding the significance and meaning of the answer. 

Literature Review 
As part of a larger study, White and Mitchelmore (1996) presented students with one of four 

versions of two standard optimization problems. There were significantly more correct answers to the 
versions given explicitly than there were to the versions given in the form of a word problem, 
requiring the students to define the variables themselves, supporting research stating that a weak 
concept image of variable often plays a role in students’ difficulties with calculus (Clement, 
Lochhead, & Monk, 1981; Kaput, 1987; Malisani & Spagnolo, 2009; Orton, 1983). There is a large 
body of literature devoted to student understanding of functions (Dubinsky & Harel, 1992; Sfard, 
1992; Vinner & Dreyfus, 1989). Eisenberg (1992) and Even (1998) found that students are often 
reluctant to consider the graphical representation of a function, and when they do, they frequently 
have trouble interpreting the information correctly. 

Theoretical Perspective 
Carlson and Bloom’s (2005) problem solving framework allows us to describe students’ activity 

as they solve optimization problems. The framework is divided into four phases: orienting, planning, 
executing, and checking. In the orienting phase, the student deciphers the problem and assembles the 
tools he or she thinks may be required. In the planning phase, the student uses conceptual knowledge 
to determine an appropriate course of action, which is then implemented during the executing phase. 
Finally, during the checking phase, the problem solver goes back to the original problem to see if the 
answer makes sense. 

In this paper, we will focus on the concept images that are evoked while the students are in the 
orienting and planning phases of Carlson and Bloom’s (2005) Problem Solving Framework. Tall and 
Vinner (1981) define concept image as “all the cognitive structure in the individual’s mind that is 
associated with the given concept” (p. 1). This cognitive structure may be incomplete, incorrect, or 
logically inconsistent and may have very little to do with the formal mathematical definition of the 
concept. Tall and Vinner (1981) address the possibility of logically inconsistent components of the 
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concept image by defining the “evoked concept image.” When the two conflicting parts of the 
concept image are simultaneously evoked, the individual experiences confusion known as cognitive 
conflict, often leading the student to resolve the conflict, developing a better understanding of the 
concept, and other times leaves the student feeling uneasy and frustrated but ultimately unable to 
address the conflict. 

Methods 
Data was collected through semi-structured interviews, which were video recorded and 

transcribed for analysis. We began with a small pilot study with three second semester calculus 
students during Spring 2014 (Arthur, Brent, Carl) and collected data two more times with first 
semester calculus students during the Summer 2014 (Franz, Sam, Tracy, Lars) and Fall 2014 (Ashod, 
Brandi, Cy) semesters. All three iterations of the interviews involved the students solving 
optimization problems and answering some questions about related prerequisite material. For the first 
interview, we gave three problems, but scaled back to two problems for the second and third 
interviews to allow time for more detailed, focused questions. In the second and third interviews, we 
explored students’ beliefs about the relationship between perimeter and area of rectangles (for 
example, does an increase in perimeter guarantee an increase in area?). 

In the interest of space, here we only present the results from Question 1, which was common 
across all interviews. The students’ responses to subsequent questions reflected reasoning similar to 
their responses to Question 1. Question 1 was: A rectangular garden of area 200 ft2 is to be fenced 
off against rabbits. Find the dimensions that will require the least amount of fencing if a barn 
already protects one side of the garden. 

Results and Discussion 
One of the three second semester calculus students and four of the seven first semester calculus 

students were able to solve Question 1 without intervention from the interviewer. Three of these five 
students solved the problem as though the barn did not exist, but when they became aware they had 
forgotten the barn, all three expressed surprise and disgust that they had neglected that detail, 
indicating that it was likely due to inattention. 

The other five students were eventually able to solve the problem as well, but they all needed 
help, in the form of leading questions, hints, or explicit suggestions to try a different approach. The 
assistance was given with the intention of continuing through the interview to assess the students’ 
understanding at as many phases of the process as possible. 

Why Do We Need This Function? 
All of the students were aware that they needed to construct some function that could be 

differentiated, and they all knew they needed to do something to eliminate one of the variables. 
Beyond that, seven of the ten students demonstrated that they did not have a well-developed concept 
image for the optimizing function. We would like their concept images to include the following: 1) 
The optimizing function should be a single variable function representing the quantity we would like 
to maximize or minimize and 2) Our goal is to find the absolute maximum or minimum of this 
function. 

Franz and Tracy had Property 1, but not Property 2; they knew they were supposed to 
differentiate a function representing perimeter, but neither knew why. Franz said, “It’s just a standard 
thing that we do,” and Tracy said, “I honestly don’t remember why that works, I just know that it 
does.” Arthur, Carl and Tracy all attempted to differentiate an expression for area at first, indicating 
that Property 1 was not part of their evoked concept image. 

Ashod, Arthur and Cy became very focused on the key word, “dimensions” in the problem and 
discussed using the perimeter only as a means for finding dimensions, not the maximum or 
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minimum. These three students did not display evidence that Property 2 was part of their evoked 
concept image; instead, they were simply using the perimeter equation because it provided a 
convenient way to find dimensions. Consider Ashod’s response, “Basically what we would do is we 
solve for either variable to plug it in to find the perimeter of this. That's, to find the perimeter which 
would give us the dimensions of it.”  We use the terms function and equation intentionally here, 
because these students were focused on the perimeter equation as something they could use to solve 
for something, rather than as something they would need to differentiate. Their initial evoked concept 
image for area and perimeter limited them to equations or formulas, rather than expressions that 
could be thought of as functions. 

Franz, Tracy and Lars demonstrated a lot of difficulty with thinking of these equations as 
functions, implying difficulty with Property 1. Franz wrote, “

€ 

2x + y = ” with nothing written to the 
right of the equal sign. When asked about it, he said, “I don’t know what it’s equal to now. I think, 
uh...” and then gave up. After moving on from her initial attempt to use the area equation, Tracy 
wrote “

€ 

minimize materials = 2y + x ” which seemed like a good first step, but when it came time to 
express perimeter as a function that could be differentiated, she did not know what to do. Even after 
the interviewer suggested she use the letter M to represent “amount of material,” she remained 
hesitant, saying, “Even then, I don’t think that’d help me. That’s just adding another variable.” Lars 
had a similar problem. 

How is This Function Related to This Graph? 
Only one of the ten students mentioned the graph without being prompted, supporting Even’s 

(1998) observation that students resist transitioning to different representations of functions. Cy said, 
“It’s weird to, like, make the jump from numbers into a graph sometimes. In some situations, the 
numbers are really just a stand-in for the work I’m doing in my head with graphs, but in this 
situation, it’s more, the numbers are all I really ever thought about this.” 

It is possible to solve optimization problems without considering the graph, so we do not fault the 
students for avoiding the graphical representation. However, we would like the students to be able to 
correctly interpret and identify key information on the graph of the optimizing function, even if they 
would not automatically use it. We noticed some of the pilot study students having trouble with this, 
so we asked pointed questions of the other seven students. 

 

   
Brandi solved Question 1, 

found 

€ 

y =10 2 , and marked 
it here. 

Franz solved a different 
question, found 

€ 

w = 2 3 , and 
marked it here. 

Ashod solved Question 1, 
found 

€ 

x = 200 , and marked it 
here. 

Figure 1: Students Labeling Graph 

When they marked the point in the domain corresponding to the critical point, these students did 
not place it below what was clearly the absolute maximum or minimum of the graph. Even though 
they were able to find the correct answer, being unable to correctly place it on the graph suggests that 
the students either do not know what the answer signifies or that the significance of the answer does 
not play a dominant role in their minds as they are solving the problem. When these students were in 
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the planning phase of the problem solving process, they did not plan ahead based on the goal of 
finding the absolute minimum of the optimizing function, rather, they were just looking for a 
function to differentiate without thinking about why. 

Conclusion 
All of the interviewees were eventually able to solve Question 1, generally considered to be an 

easy optimization problem, but their incomplete concept images for the optimizing function signal 
poor understanding of the optimization process. Variables, function notation, and the role of the 
optimizing function are important to the construction of an optimizing function. Several students did 
not display evidence of working towards the goal of constructing an optimizing function with 
Property 1, evidenced by their unwillingness or inability to use appropriate function notation. For 
many students, the evoked concept images of the role of the derivative when constructing an 
optimizing function appeared to be limited to the knowledge that the derivative was useful, and that 
setting the derivative equal to zero would somehow lead to the correct answer, demonstrating that 
Property 2 was not part of their evoked concept image for the optimizing function. We need to allow 
students to explore the role of the optimizing function while they are in the orienting and planning 
phases of the problem solving process to facilitate better understanding of the entire optimization 
process. We suggest an increased emphasis on constructing the graph of the optimizing function and 
activities exploring the optimizing function, such as sketching several rectangles with the appropriate 
area, but different perimeters. 
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This study examines students’ reasoning of logical equivalence between an implication and its 
converse. In particular, it focused on the cognitive schemes underlying students’ logical comparison 
of both implications. Past research found that students experienced difficulties in these tasks. From 
120 justifications written by 60 Singapore Secondary Three students, a hierarchical ordering of five 
types of logical comparison schemes was derived. The schemes ranged from disregarding the order 
of antecedent and consequent to comparing syntax, truth values, and counterexamples. Research for 
instructional support on logical equivalence is needed. 
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This study examines students’ reasoning of logical equivalence between two mathematical 
propositions, specifically, an implication and its converse since implication is at the heart of 
mathematical reasoning (Durand-Guerrier, 2003). Students’ competence in determining the logical 
equivalence between an implication and its variants (e.g., converse or contrapositive) is a key aspect 
of mathematical proving (Epp, 2003; Stylianides, Stylianides, & Philippou, 2004). It is the first step 
towards building their knowledge of proof strategies and ability to discern valid and invalid proof 
methods. However, little attention is given to this aspect in proof instructions. 

Research had shown that students experienced difficulties in understanding the logical 
nonequivalence between an implication and its converse (Hoyles & Küchemann, 2002). They 
encountered the most struggle in interpreting an implication as a bi-conditional (“if and only if”) and 
regarded the implication and its converse as equivalent. However, it remained unclear what cognitive 
schemes were underlying their reasoning about logical equivalence between implications. 
Understanding their schemes is a first step to inform the role of logical reasoning instruction in proof 
instructions (Epp, 2003). 

Theoretical Framework 
Reasoning of logical equivalence between propositions is grounded in logical reasoning of 

propositions. One aspect of logical reasoning in mathematics concerns the reasoning of mathematical 
objects in relation to the truth or falsity of mathematical propositions, and in particular, implications. 
A mathematical implication is an open sentence of the form “If P then Q” where the antecedent P 
and the consequent Q are propositions themselves. Since the counterexamples satisfy the antecedent 
but not the consequent, the order in which the mathematical propositions appear as the antecedent 
and the consequent in the syntax will determine what constitute as counterexamples. Variants of the 
implication can be generated by means of negating and/or changing the order of the mathematical 
propositions in the syntax,(e.g., “If not P then not Q,” “If Q then P,” and “If not Q then not P.” ) 

Durand-Guerrier (2003) proposed that students’ should adopt an understanding of the implication 
as generalized conditionals. Based on this epistemic stance, two propositions are logically equivalent 
when students determine mathematically that the set of example that satisfies and the set of 
counterexamples that falsifies each proposition are the same.  
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Logical comparison schemes 
Just as students hold schemes of mathematical proofs in proving conjectures (Harel & Sowder, 

2007), they also hold logical comparison schemes when determining the logical equivalence between 
propositions. A student’s logical comparison scheme is a cognitive scheme underlying one’s process 
of constructing mathematical justifications to determine whether two or more mathematical 
propositions are logically equivalent. One type of logical comparison scheme may be characterized 
as logical reasoning errors due to students’ interpretation of the “if-then” syntax based on its 
everyday meaning (Epp, 2003). However, other schemes that students may demonstrated remain 
unclear. The research question pursued by this study is: what types of logical comparison schemes do 
students use to determine the logical equivalence between an implication and its converse? 

Method 
The data of this study came from the written work of 60 Singapore Secondary Three (equivalent 

to U.S. 9th Grade, 14 to 15 years old) student, who participated in a larger study about logical 
reasoning and mathematical proving. The students in this study were taking double mathematics 
classes at that grade, one introduced basic contents in algebra, trigonometry, arithmetic, rate and 
proportion, and graphs while the other emphasized algebraic thinking and computations, quadratic 
and trigonometric functions and graphs, and basic calculus. 

Each student attempted one logical equivalence tasks for two separate occasions. In the logical 
equivalence tasks, students were presented with both an implication (e.g., “Joe says: If the product of 
two whole numbers is even, then their sum is odd”) and its converse (e.g., “Eva says: If the sum of 
two whole numbers is odd, then their product is even.”) spoken by fictitious characters and asked to 
decide whether both propositions were expressing the same mathematical idea and were logically 
equivalent. Two different versions of the tasks using similar implications were given to each student. 
In each version, one of the pair of propositions is mathematically true (Eva’s) while the other is 
falsifiable by counterexamples (Joes’). Every student attempted one version during the first occasion 
and the other during the second version. In between the occasions, students worked on a set of self-
paced training materials that provided work-examples of implications of different logical 
combinations and mathematical proofs. 

Coding and Analysis 
A total of 120 students’ written justifications were analyzed. A set of external codes was initially 

generated based on past research, for example, students’ scheme of interpreting an implication as a 
bi-conditional statement (Hoyles & Küchemann, 2002), by analyzing their writing and mathematical 
reasoning. Generally, students’ responses included use of examples and use of mathematical 
arguments based on properties and inferences followed by a conclusion about the logical 
equivalence. The type of justification used could be distinguished by its linguistic features. New 
codes were then generated and then refined based on emerging distinctions between students’ 
justification approaches. Based on the extent to which students demonstrated sophisticated reasoning 
and their consideration of the examples and counterexamples associated to the implications, a 
hierarchical order of the coded categories was also developed as a result. 20% of (n = 12) students’ 
written justifications were randomly selected for inter-rater reliability scoring. A second coder, who 
was a high school mathematics teacher, coded each justification. Seven justifications were coded as 
“others” since the students either misinterpreted the task or provided irrelevant responses (inter-rater 
reliability - 79.2%). 
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Findings 
Students' logical comparison schemes consisted of four types. Each scheme was demarcated by 

distinctive characteristics of logical reasoning. They were then ordered hierarchically based on the 
extent to which examples and counterexamples were considered in their logical reasoning.  

Table 1: Students’ logical comparison scheme for the implication and its converse 
Scheme (Level) Students’ justifications about a pair of an implication and its converse 

Order-irrelevance (0) Conclude that the pair of implications is the same because: 

• The order of the antecedent and consequent in the syntax did not 
matter  

• Both propositions are referring to the same pair of symbolic 
equations though in different order 

• Examples are constructed to satisfy the pair exist though one of 
them may be falsified by counterexamples 

Syntax Comparison (1) Conclude that the pair is different because different mathematical 
objects were referred by different antecedents 

Truth Comparison by 
examples (2) 

Conclude that the pair is different because one is shown true using 
examples and the other is shown false using counterexamples 

Truth Comparison by 
Proofs (3) 

Conclude that the pair is different because one is proved true using 
deductive proofs and the other is shown false using counterexamples.  

Counterexample 
Comparison (4) 

Conclude that the pair is different because their general counterexamples 
to the implication and its converse are different 

 
At level 0, students exhibited an “Order-irrelevance” scheme underlying their justifications in 

support of both the implication and its converse being logically equivalent. To that extent, an 
implication could be interpreted as either a bi-conditional statement (if and only if) or a conjunction 
proposition (“…and…”). They arrived at this logically invalid conclusion via three verification 
approaches: syntax, symbolic, or example. In the first approach, students compared the mathematical 
ideas expressed in the antecedents and consequents of both implications. In the second approach, 
students re-formulated the mathematical ideas expressed in the antecedent and consequent using 
systems of equations and variables for comparison. In the third approach, students justified that both 
implications were the same as if the task was demanding them to verify the propositions and 
constructed the same or different examples.  

At level 1, students exhibited a “Syntax Comparison” scheme underlying their justifications for 
concluding that both the implication and its converse are logically nonequivalent. They arrived at this 
logically valid conclusion by comparing the mathematical ideas in the antecedents of the pair and 
noted that they were different. At level 2, students exhibited a “Truth Comparison by Example” 
scheme underlying their justifications for concluding the implication and its converse being logically 
nonequivalent. They arrived at this logically valid conclusion by comparing the truth values of both 
implications to determine one was true and the other was false. Typically, students constructed a 
counterexample and concluded that Dewey’s (or Joe’s) implication was false but used only examples 
to reason that Gabriel’s (or Eva’s) implication was “true,” the latter of which exhibited an Empirical-
based proof scheme (Harel & Sowder, 1998). 
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At level 3, students exhibited a “Truth Comparison by Proofs” scheme underlying their 
justifications to reach a conclusion of logical nonequivalence. Similar to the “Truth Comparison by 
Example” scheme, students compared the truth values of the implication and its converse. Instead of 
using examples to show one of the implications was true, they constructed a deductive proof. 
However, such a scheme might be invalid for tasks involving two true but logically nonequivalent 
implications, such as an implication and its inverse. At level 4, few students exhibited a 
“Counterexample Comparison” scheme underlying their justifications to arrive at a conclusion of 
logical nonequivalence. Contrary to the prior two “Truth Comparison” schemes, students did not 
compare the truth values of the implication and its converse. Instead, they analyzed and compared the 
kind of counterexamples needed if each implication were false. This usually led to a description of 
different general counterexamples for each implication. Students would then conclude that the 
implication and its converse were logically nonequivalent. 

Discussions and Conclusions 
How do students reason about the logical equivalence between a mathematical implication and its 

converse? This study revealed various logical comparison schemes underlying students’ 
determination of their logical equivalence. These schemes involved students’ proof schemes reported 
in past studies (Harel & Sowder, 1998), which implied that students’ logical comparison schemes 
were closely knitted to their proof schemes. Also, the schemes assumed a hierarchical order 
according to the extent of validity in their logical reasoning in terms of the examples, 
counterexamples, and inferences made.  

The above findings exposed the superficiality of students’ logical reasoning of variants of 
implications: little emphasis is given to the counterexamples when analyzing the logical equivalence 
between implications and propositions. Students need instructional support on how to conceptualize 
logical equivalence by considering the different cases and the counterexamples related to the 
implication and its variants. It is important to teach logical reasoning from a semantic point of view, 
that is, to analyze the examples and counterexamples (Durand-Guerrier, 2003). This is the epistemic 
first-steps for understanding alternative but equally valid proof methods. Further research on 
students’ logical comparison involving contrapositive and other logical propositions are thus required 
towards this purpose. 
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There is little research on mathematicians’ assessment of mathematical proofs. The current paper 
contributes to this literature by reporting on professors’ assessment of two mathematical proofs 
depending on whether a student or colleague authored the proof. By interviewing nine professors, we 
investigate mathematicians’ perceptions of gaps in proofs depending on who authored the proofs. We 
also investigate whether mathematicians evaluate the gaps in the proofs differently depending on the 
author and their consistency in this judgment. 
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Proof plays a significant role in the advanced mathematics courses that mathematics majors 
complete. Proof is the dominant form of pedagogical explanation that professors use to convey 
mathematical insight to their students (Lai & Weber, 2014; Weber, 2004) and it is the primary way in 
which professors assess student performance (e.g., Weber, 2001). However, the important issues of 
how the professor chooses to present proofs in instruction and how they evaluate the proofs that their 
students present are under-researched areas in undergraduate mathematics education (Mejia-Ramos 
& Inglis, 2009 and Moore, 2014).  

In this paper, we address these issues by exploring the permissibility of gaps in a proof. As 
proofs would be impossibly long if every logical detail is included (Davis & Hersh, 1981), it is 
common for mathematicians' proofs to contain gaps (Fallis, 2003) and it is understood that the reader 
of the proof might have to construct a sub-proof to bridge these gaps when checking the proof for 
correctness (Selden & Selden, 2003; Weber & Mejia-Ramos, 2011). Mathematics majors' proofs may 
also contain gaps (cf., Selden & Selden, 2003), perhaps because mathematics majors are uncertain of 
what requires justification. The goal of this paper is to address four related questions: What are 
mathematicians' perceptions of gaps in proofs given by professors during lecture? What are 
mathematicians' perceptions of gaps in the proofs that their students submit for credit? Do 
mathematicians evaluate gaps differently in these two contexts? How consistent are mathematicians 
in their judgment? 

Related Literature 
There is evidence that mathematicians are not uniform in their judgment on how they evaluate 

gaps in students' and mathematicians' proofs. With regard to student proofs, Inglis and Alcock (2012) 
and Weber (2008) presented mathematicians with a student-generated proof that contained what 
Selden and Selden (2003) called “the gap” (because the proof was valid except for a large gap) and 
asked the mathematicians to judge if the proof was valid. Across the two studies, 14 mathematicians 
evaluated the proof as invalid, five as valid, and one said he could not judge without further context. 
Some participants in Weber's (2008) study remarked that the proof would be invalid for students but 
valid if it were written by a mathematician, as less justification is required in a non-classroom 
context. These results are consistent with the qualitative study by Moore (2014), who also found 
mathematicians were not consistent with their evaluations of student-generated proofs and further, 
that whether a gap in a proof was significant depended on the understanding of who wrote the proof. 

With regard to mathematicians’ proofs, Inglis et al (2013) presented 110 mathematicians with a 
proof containing a gap and found substantial variation in their judgment of how the gap affected the 
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validity of the proof. With proof presentation, mathematicians expressed a tension in deciding how 
much detail should be provided in a proof (Lai & Weber, 2014). Presenting too much detail can mask 
the more important ideas in a proof and deny students the learning opportunities that arise as they 
construct sub-proofs, but presenting too little detail can leave students' confused. In a survey asking 
if bridging a particular gap in a proof improved its pedagogical quality, about 40% of the 
mathematicians claimed it would while roughly the same number thought bridging the gap made it 
worse (Lai, Weber, & Mejia-Ramos, 2012). 

Methodology 

Participants 
Nine mathematicians in either pure or applied mathematics who currently work as members of a 

Research I level University near the East Coast agreed to participate in this study.  

Materials and Procedure 
Participants met individually with the first two authors for their interview. The interview was 

broken up into two phases: 1) assessment of three proofs and 2) general open ended probing 
questions. For the first phase, the interview was further broken up into to two contexts. In context A, 
we told the professor that a colleague had written the proofs in an introduction to proof class on the 
board during lecture or as a solution handed out to students, and in context B, the students in your 
introduction to proof class hand the proofs in for homework.  

The interview began with Context A. The participants were given the first proof and sufficient 
time to read the proof before discussing it with the interviewers. The interviewers asked the 
participants the following questions and to explain their reasoning.  
1) Do you think that this proof is correct?  
2) How would you rate the pedagogical quality or appropriateness of this proof? 
This procedure was repeated for two more proofs (third proof won’t be discussed for brevity). For 
Context B, the participants were given the proofs in same order. For proof 1, after sufficient time to 
re-read the proof, participants were asked two questions and to explain their reasoning. 
1) Do you think that this proof is correct?  
2) If grading this proof on a 10 point scale, how many points would you give it? 
If the participant stated that the proof was correct, but did not give it a score of a 10, then the 
interviewers probed further for their reasons. At this point, the interviewers gave the participant 
another student proof for proof 1 without any obvious gaps, and asked the same two questions as 
before. The participants were given an opportunity to reassess the way they scored the first proof that 
had a gap and, if the first proof was reassessed, the participants were probed about the reasons for the 
changes. Next the participants were given both student versions of the second proof and asked the 
same questions for each proof.  

The Proofs 
Proofs 1 and 2 from Context A (proofs with gaps) are: 
Proof 1. If !! + 1 is a prime number greater than 5, then the digit in the 1’s place of ! is 0,4,  

or 6. 

Proof: Suppose that !! + 1 is a prime number greater than 5. Thus !! + 1 is odd. Then ! is of 
the form 10! + 0, 10! + 2, 10! + 4, 10! + 6,!or 10! + 8. Then !! + 1 is of one of the 
following forms: 

10! + 0 ! + 1 = 100!! + 1 = 10 10!! + 1; 
10! + 2 ! + 1 = 100!! + 40! + 4 + 1 = 10 10!! + 4! + 5; 
10! + 4 ! + 1 = 100!! + 80! + 16 + 1 = 10 10!! + 8! + 1 + 7; 
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10! + 6 ! + 1 = 100!! + 120! + 36 + 1 = 10 10!! + 12! + 3 + 7; 
                  10! + 8 ! + 1 = 100!! + 160! + 64 + 1 = 10 10!! + 16! + 6 + 5. 

The only choices for !, then, are those numbers with 1’s digits of 0, 4, or 6. 

Proof 2. There exists a sequence of 100 consecutive integers, none of which is prime. 

Proof: We will show that 100 consecutive integers 101! + 2, 101! + 3, 101! + 4,… , 101! + 101 
contain no primes. Since both terms of 101! + 2 contains a factor of 2, 2 is a common factor of 
101! + 2 and thus 101! + 2 is not prime. We can do this for each number in the list. Thus, the 
sequence of 100 consecutive integers given above contains no primes. 

We refer the reader to the results to see the majority of the gaps in each proof.  

Results 

Context A  
 All but one of the participants evaluated Proof 1 as correct, but they had comments about the 
pedagogical quality or appropriateness of the proof. In referencing the pedagogical quality of the 
proof, many comments were directed that some of the gaps should be filled or time in class should be 
spent explaining how to bridge the gap. For example, if presenting this proof Professors A, C, F, and 
G said they would note the gap from !! + 1 being odd to ! being even and Professors B, D, E, G, 
and H stated that there should be some explanation of why ! can take on the stated forms. Professor 
C and G suggested that their colleague could have said something about why those cases exhaust all 
possibilities and Professors A, C, D and G pointed out that there should be some explanation of why 
we can dismiss the forms ending with a 2 and 8. 

All of the participants evaluated Proof 2 as correct, and participants had a variety of comments 
about the pedagogical quality of the proof. Several had comments about the statement that the 
numbers in the sequence has a common factor. For example, Professors A, F and H stated (or 
implied) that there should be a general formula showing there is a common factor for each term of 
the sequence, Professor B said there should be motivation on why we choose this specific sequence, 
Professor C commented that there should be a few more examples of why it can be factored and 
should be motivated, and Professor G emphasized that this sequence is only one possible sequence. 
Professor B thought that the pedagogical quality of the proof would be improved if it had stated a 
more general sequence involving !!. We see that participants focused on different aspects of the 
proof and there was not a consensus on any one aspect. Hence, at least for these proofs, the 
mathematicians noted that although gaps in a proof were not sufficient to render them invalid, in 
these contexts, they found them pedagogically undesirable and were reasonably consistent with their 
judgment. 

Context B 
In this context, participants were to assess the proofs with respect to their students producing them 
for an assignment. During the interview, the participants were asked to grade the proofs on a 0 to 10 
scale. All participants were given proof 1 (with gaps – proof 1(A)) and asked questions, followed by 
the same proof (without gaps – proof 1(B)). This was followed by giving both versions of proof 2 
(with and without a gap) and asking the participants questions. All participants assessed the proofs on 
a 0 to 10 scale (Table 1). 
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Table 1: Mathematicians’ Assessment of Proof with Gaps Authored by Students 
 Prof 

A 
Prof 
B 

Prof 
C 

Prof 
D 

Prof 
E 

Prof 
F 

Prof 
G 

Prof 
H 

Prof I Average 

Proof 1(A) 6 9 8 9 9 7 10 6 8 8.00 
Proof 1(B) 9 10 10 10 10 9 10 9 9 9.56 
Proof 2(A) 10 10 8 10 10 8 10 8 10 9.33 
Proof 2(B) 10 10 10 10 10 10 10 10 10 10 

The lower average grade and overall scoring on proof 1(A) reflected that this proof had a number 
of gaps at various places in the proof, causing participants to assess it more critically than proof 2, 
which only had one obvious gap. When the majority of these gaps were filled in on proof 1(B), most 
participants were convinced that the proof was completely correct by giving it a 10. This data 
provides evidence that professors are more critical of students’ proofs that have gaps in their 
reasoning, even if they are not large gaps. In contrast, the grading shows that mathematicians’ were 
not too concerned (grading wise) about proof 2(A) not having a general formula that !"!! + !!has a 
common factor of ! and were okay with the statement “We can do this for each number in the list.” 
Even though mathematicians’ did say that it would be better for the students to spell this out, they did 
not feel like they needed to take off points because it was evident from the written proof that the 
“student understood.”  We found that with Proof 1, most participants would deduct points from Proof 
1(A) even though they judged it to be valid. There was substantial variation with how many points 
they would deduct for this proof as well as if they would deduct any points with Proof 1(B). 
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Developing students’ understanding of proof has become an important task of mathematics 
educators (Hanna & de Villiers, 2008). Teachers’ competence in creating opportunities for their 
students and enhancing their experiences with proof is considerably affected by their own 
conceptions of proof (Knuth, 1999). Therefore, this study investigated junior preservice middle 
school mathematics teachers’ (PST) conceptions of proof through their responses on a written task 
where conceptions of proof referred to conceptions of what made an argument a mathematical proof 
(Knuth, 1999). 

Data were collected from 32 PSTs enrolled in Elementary Mathematics Education program at a 
Turkish public university. PSTs took algebra and geometry courses, however, geometry courses did 
not include proof practices. Two mathematical statements (one algebra and one geometry) and three 
mathematical arguments which were trying to prove these statements were presented for each 
statement. PST’s were asked to determine whether given arguments were valid proofs for the 
statements or not and explain their reasoning. Their responses were deductively coded according to 
Cobb’s (1986) sources of conviction as authoritarian or intuitive, where the former addressed an 
outside authority (such as a book) as the source and the latter  an individual’s “uncritical belief” 
(Almeida, 2001, p.56) for “a proposition [which] makes intuitive sense, sounds right, rings true” 
(Cobb, 1986, p.3). Participants’ emphasis on the distinction between empirical and general 
arguments was validated by the literature, as generality was considered as an important criterion of 
proof (Balacheff, 1988).     

Findings showed that PSTs mainly relied on intuitive and authoritarian reasons and general 
terms in the argument while explaining their reasoning for accepting an algebraic argument as a 
proof. Some participants stressed that mathematical proofs should not be exemplifying specific cases. 
PSTs employed intuitive reasons and idea of generality in geometry task. However, they did not 
mention authoritarian reasons. 

PSTs relied on similar reasons for evaluating both algebraic and geometric arguments. They were 
able to transfer their understanding of proof formed in algebra courses to the case of geometry. Not 
relying on authoritarian sources of conviction in geometry task might be due to the lack of 
experience of a geometry content course in which they would learn about authorities’ practices and 
preferences. Mathematics content courses could be enhanced to have more influence on PSTs’ 
conceptions of proof. 
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Due to perceived “convenience,” 100% online courses (synchronous and asynchronous) are 
progressively becoming more popular, particularly among professionals interested in advancing their 
education. In-service teachers are no exception. In asynchronous courses one of the most commonly 
used ways in which students interact with each other is via discussion board posts. Marttunen and 
Laurinen (2001) argued that since learners have more time and flexibility to formulate their 
arguments, asynchronous experiences such as discussion board posts might better facilitate 
knowledge construction.    

In this poster presentation, a partial report of a larger study, we will share one in-service 
mathematics teacher’s knowledge construction process based on the analysis of his posts on the 
discussion board in a graduate level online geometry course. In the larger study, we used Vinner’s 
(1997) framework to identify pseudo-conceptual and pseudo-analytical thought processes of 
participants in this course. Kevin (pseudonym), the focus student of this poster presentation, showed 
predominantly pseudo-analytical thought processes in his coursework through the 8-weeks semester. 
To better understand his knowledge construction process and identify repeated practices, we used 
Weinberger and Fischer’s (2006) framework to analyze his engagement on the discussion board. 
According to this framework there are four dimensions that may “extend and refine our 
understanding of what kind of student discourse contributes to individual knowledge acquisition” (p. 
73): participation, epistemic, argumentative, and social mode of co-construction. 

Our preliminary results show that in the participation dimension Kevin is one of the most active 
participants. However, in epistemic dimension his activities often fell into the category “construction 
of inadequate relations between conceptual and problem space” (Weinberger & Fischer, 2006, p. 74). 
He tends to argue “simple claims” and within social modes dimension he often “accepted the 
contributions of the learning partners in order to move on with the task” (Weinberger & Fisher, p. 
77). In this presentation, we will share excerpts in each category and propose some strategies to 
engage learners in focused activities that will enable them to develop relations between prior 
knowledge and problem space with grounded claims. 
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Past research has suggested that when two students who have partial but complementary 
knowledge of a concept work together, they can build a more advanced understanding of the concept 
(Ames & Murray, 1982). Schwarz, Neuman, and Biezuner (2000) suggest that this effect is most 
prevalent when the two students have different strategies and when they discuss their disagreement. 
The current study investigated how collaboration with more advanced peers and similarly skilled 
peers affects students’ problem solving in the domain of mathematical equivalence, specifically with 
problems of the form 3 + 4 + 5 = 5 + __.  

Eight pairs of second and third graders completed an individual pretest of four problems prior to 
working together to solve two additional problems. Finally, participants completed an individual, 
four-problem posttest. Of the eight pairs, four consisted of one partner who solved all pretest 
problems incorrectly (i.e., was nonequivalent) and one who solved most of the pretest problems 
correctly, and four consisted of two partners who were both nonequivalent at pretest.  

Three (75%) of the four participants paired with a more skilled peer solved at least one problem 
correctly at posttest. In comparison, four (50%) of the eight participants paired with a peer of similar 
ability solved at least one problem correctly at posttest. When a participant adopted a correct 
strategy, the generation of that correct strategy occurred during collaboration. In all nonequivalent-
nonequivalent pairs, if one student improved, so did his or her partner. This suggests that particular 
aspects of the interactions led to learning. 

We investigated how the sole equivalent-nonequivalent interaction that did not lead to learning 
differed from the other equivalent-nonequivalent interactions. We found that this particular 
interaction was unusual in that the two children barely spoke.  

Next we investigated how two interactions between two nonequivalent students led to learning 
for both partners. In three of four collaborations, one of the partners read all or part of the problem 
aloud, possibly highlighting the atypical location of the equal sign. This led to the generation of a 
correct strategy. In two of these partnerships, both students adopted the correct strategy, but in the 
third, the more dominant child dismissed the correct strategy in favor of an incorrect one. When 
neither student read the problem, the pair did not generate a correct strategy. 

In sum, pairing a nonequivalent student with a more advanced peer was more beneficial than 
pairing two nonequivalent students together, but two nonequivalent students frequently did generate 
correct strategies during collaboration when they read the problems aloud. Ongoing work examines 
whether this pattern holds in a larger sample. 
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According to the Common Core State Standards for Mathematics (CCSSM), mathematical 
modeling serves as an essential link between classroom mathematics and decision making in 
everyday life (National Governors Association Center for Best Practices & Council of Chief State 
School Officers, 2010). Learning to do mathematical modeling presents challenges to students and 
educators because it requires coordination of mathematical and real world knowledge sources. 
Successful modeling requires students to identify and prioritize unknown information when 
constructing a specific model, such as those presented by open beginning and/or open middle 
problems. As such, it is important to understand student thinking during mathematical modeling 
tasks, especially when they are open to interpretation. 

Open-beginning questions are defined as those which have no clear starting point and which do 
not cue a method of solution (Monaghan, 2009). Open-middle problems are those that can be solved 
in a variety of ways and which may have missing or ambiguous data (Sheffield, 2006).  Where 
standard word problems tend to begin with an idealized, real-world situation that is couched in 
mathematical terms (Gould, Murray, & Sanfratello, 2012), open-beginning and open-middle 
questions challenge the student to assemble a strategy using his or her own mathematical toolkit, 
problem solving skills, and knowledge of the real world situation. 

Using a process view of Mathematical Modeling (Blum & Leiβ, 2007), we explored how 
students identified and prioritized variables and conditions when solving open-beginning and open 
middle problems. We conducted task-based interviews with high school students. The students 
readily identified variables and constraints common to school mathematics (Watson, 2008) but had 
difficulty determining which or how they should be incorporated into a mathematical model and 
which should be ignored.  Moreover, sometimes authentic real-world factors were excluded 
altogether.  Analysis suggests that students may benefit from additional support in prioritizing 
variables, conditions, constraints, and assumptions so that they may be articulated in a mathematical 
representation.  

References 
Blum, W. & Leiss, D. (2007). How do students and teachers deal with mathematical modelling problems? The 

example Sugarloaf and the DISUM project. In C. Haines et al. (Eds.), Mathematical Modelling: Education, 
Engineering and Economics. ICTMA 12 (pp. 222-231). Chichester: Horwood. 

National Governors Association Center for Best Practices, & Council of Chief State School Officers. (2010). 
Common Core State Standards for Mathematics. Retrieved from http://www.corestandards.org/wp-
content/uploads/Math_Standards.pdf 

Gould, H., Murray, D., & Sanfratello, A. (2012). Mathematical modeling handbook. Bedford, MA: COMAP, 
Consortium for Mathematics and Its Applications. 

Sheffield, L. J. (2006). Developing mathematical promise and creativity. Journal of the Korea Society of 
Mathematical Education Series D: Research in Mathematical Education, 10(1). 

Watson, A. (2008). School mathematics as a special kind of mathematics. For the Learning of Mathematics, 28(3). 



Mathematical!Processes:!Poster!Presentations! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

419!

STUDENTS VACILLATE BETWEEN THE F-C-S LEVELS OF GENERALITY 

José Francisco Gutiérrez 
University of California, Berkeley 

josefrancisco@berkeley.edu 

Keywords: Algebra and Algebraic Thinking; Cognition; Equity and Diversity; Learning Theories 

Introduction & Background: Previous semiotic–cultural research on student mathematical 
reasoning (Gutiérrez, 2013; Radford, 2003) has identified three modes of action—Factual, 
Contextual, and Symbolic (“F-C-S”), representing different levels of generality—that students 
appropriate as means of dealing with pattern-generalization problems. The F-C-S framework, in its 
current formulation, might suggest that students monotonically progress from one mode to the next, 
yet recent findings indicate this is not necessarily the case. To help clarify the issue, this study asks: 
How do students navigate the F-C-S levels of generality? 

Methods: The empirical context is a year-long ethnography of a high-school classroom 
community, conducted over the 2013-2014 school year. This poster presents the analysis of three 
students’ situated reasoning during one particular pattern-finding problem involving geometric 
objects called Spiralaterals. Data consist of a 35 min. span of classroom video. I produced and 
analyzed a detailed transcription of students’ verbal, gestural, and other semiotic actions as they 
referred to mathematical objects and attempted to construct generalizations. All student utterances 
were coded for their semiotic mode, and I analyzed whether each utterance reflected a generalization 
to a particular mode or merely a reiteration in the mode (Gutiérrez, 2013). 

Results & Discussion: Students’ reasoning vacillated between the F-C-S modes (Figure 1). 
 

 
Figure 1. Juxtaposed Student Ostensive Semiotic Trajectories. 

Chi-square analysis of total student utterances revealed a difference between the students with 
respect to their participation within each of the semiotic modes (X2(4, N = 103) = 14.78, p<0.01). The 
Factual and Contextual modes made up the bulk of sense-making activity and were crucial for all 
three students’ articulating generalizations. However, only Xeni operated in the Symbolic mode, 
which in situ resulted in a social-mathematical status hierarchy; further studies closely examine this 
semiotic-linked power dynamic and its impact on student agency and identity. 
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STEM movement calls for a development of cross-disciplinary education integrating 
mathematics, science, technology, and engineering.  However, a critical issue is that there is no 
understanding on how each discipline relates to another in K-12 education (Dugger, 2010). Dugger’s 
discussion of STEM education necessitates further studies on interconnectedness between disciplines 
to build STEM curriculum.  This research investigated relationships of cognitive skills used in 
learning of mathematics and science. 

Table 1: Hypothesized relationships between cognitive domains 
Linear Regression 

Model 
Reasoning  Applying 

R1 R2 R3 R4  A1 A2 A3 
Dependent 

(Mathematics) Analyze Generalize/ 
Specialize 

Integrate/ 
Synthesize 

Integrate/ 
Synthesize 

 Select Represent Model 

Independent 
(Science) Analyze Generalize Integrate/ 

Synthesize 
Draw 

Conclusion 
 Find 
solution 

Interpret 
information Use model 

 
A data analysis began with establishment of theoretical relationships based on descriptions given 

by TIMSS 2011 assessment framework (see Table 1; Mullis et al. 2009).  Assessment data of seventh 
and eighth graders from 2006 to 2010 in Iowa Tests for Basic Skills (ITBS) were collected. 
Generalized DINA (GDINA; de la Torre, 2011) was used to generate individual students’ 
probabilities to master cognitive skills, which allows observing relationships of cognitive domains.  
Based on the results, correlations and linear regression equations were applied to describe 
relationships (see Table 2).   

Table 2: Results of linear regression models  
Grade  R1 R2 R3 R4 A1 A2 A3 

7 

N 11515 11515 5814 11515 11515 

N/A 

5701 
R .539 .399 .029 .221 .494 .205 
R2 .290 .160 .001* .049 .244 .042 

Unstandardized slope .504 .348 .025* .177 .560 .278 
Constant .360 .373 .514 .442 .245 .356 

8 

N 11596 11596 11596 11596 11596 5884 5712 
R .474 .272 .239 .216 .414 .247 .379 
R2 .225 .074 .057 .047 .172 .061 .144 

Unstandardized slope .473 .211 .233 .204 .478 .331 .373 
Constant .199 .404 .360 .328 .186 .263 .308 

*p>.05  
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Algebra has an important role for students’ mathematical learning. Expressions and equations are 
two algebraic contexts that students have to start learning from the 6th grade (CCSS, 2010). 
Reasoning and sense making about mathematical contexts, including algebraic topics, are very 
important habits that secondary level students should develop in Algebra classes (Rasmussen et al., 
2011). To understand students reasoning and sense making abilities on algebra problems, especially 
problems asking the behavior of variables in expressions and equations, the relationships between 
and among equations/expressions, and the effect of varying the value of the variable, I examined 9th 
grade students responses on conceptual measures. Results revealed several patterns in solution 
methods that give a clue about the nature of students reasoning and sense making on algebra 
problems, hence their understanding on the basis of why a computation or algorithm works.  

Participants were 300 9th-grade students from different high schools in three states in the U.S. 
Participants included students with and without disabilities. Data collection consists of assessment 
forms (concept of variable forms) that Algebra students took at the end of school semester. 
Conceptual assessments has been linked to the Common Core State Standards, from grade 6 through 
high school grades. Concept of variable form includes 19 probes with 11 multiple-choice and 8 open-
ended algebra problems. As an illustration, an example for multiple-choice item is “Carl simplified 
6h – h. He said an equivalent expression was 5h. Do you agree with Carl?  

A. Agree, because 6h – h can be factored as h(6 – 1) to simplify it.  
B. Disagree, because h is a common term in both so h – h is 0, that leaves 6.  
C. You cannot tell if he is correct because you do not know the value of h.  
D. Carl is only correct if h is a positive number.” and an example for open-ended item is “Bart 

said, ‘w + 3 is less than 5 + w.’ Circle one:  Always true        Sometimes true       Never true        
Explain your answer.” Students responses were scored based on their correct choices on multiple-
choice answers and their true, partially true or wrong explanations on the open-ended items. Data 
analysis focused on the open-ended items to investigate the nature of students’ reasoning and sense 
making on algebraic concepts.  

Findings show that students have a pattern of the misconceptions on open-ended algebra 
problems. For example, more than half of the students think that they cannot compare two 
expressions (in above question) because they do not know the value of the variable. This study 
identifies several misconceptions that students have on the concepts of variables, equations, and 
expressions. 
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Current reforms have called for a stronger emphasis on proof across content domains in 
secondary school mathematics (Common Core State Standards for Mathematics, 2010). However, 
many pre-service secondary mathematics teachers (PSMTs) have considerable difficulty determining 
an argument’s validity (e.g., Bleiler, Thompson, & Krajčevski, 2013) and constructing their own 
proofs (Ko & Knuth, 2009). To date, less attention has been given to PSMTs’ criterion used in 
evaluating the validity of their own arguments and given mathematical arguments for the same 
problems in the domains of algebra, geometry, and number theory. To address the research gap, this 
study examines criteria that PSMTs perceive for determining whether or not their own argument and 
a given argument are convincing and are mathematical proofs in these content domains. 

This study had 14 PSMTs from one Midwest University in the United States, all of whom had 
taken Calculus I, II, III, as well as an introduction-to-proof course. The instrument used in the study 
included three mathematical statements and six arguments adapted from the existing literature. The 
participants were asked to complete a two-part semi-structured interview. The first part of the 
interview focused on PSMTs’ own proof productions along with their validations. The second part of 
the interview focused on PSMTs’ validations of given arguments. Our data source included 
transcriptions of PSMTs’ interviews and their written work. To analyze criteria that PSMTs 
perceived for discerning the validity of their own work and given arguments, we used Knuth’s (2002) 
taxonomies of convincing arguments and mathematical proofs. The results of the study showed that 
some PSMTs tended to use different criteria to decide if their own arguments and given arguments 
were convincing and were mathematical proofs. Although all PSMTs had successfully passed an 
introduction-to-proof course, they still experienced difficulty identifying if a given argument was a 
mathematical proof across content domains. 
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Prospective Secondary Mathematics Teachers (PSMTs) have been typically required to take a 
significant number of collegiate mathematics courses to be qualified to teach school mathematics, but 
neither was there a strong positive correlation between student achievement and the number of 
collegiate mathematics courses taken by their teachers (e.g., Begle, 1979) nor did teachers seem to 
conceive the connections between collegiate mathematics and the mathematics they teach (e.g., 
Zazkis & Leikin, 2010). This contradictory evidence raises questions about the ways in which 
PSMTs develop their knowledge in collegiate mathematics. 

This study posits that engaging in abstraction process within the context in which PSMTs can 
actively reflect on their school mathematics knowledge is necessary for PSMTs to connect collegiate 
mathematics and school mathematics. By adopting a theoretical framework ‘Abstraction in Context’ 
(Dreyfus, Hershkowitz & Schwarz, 2015), tasks for teaching interviews were designed so that 
PSMTs can engage in abstraction process through successions of activities and continuous 
transformation of their knowledge. The purpose of this study is to investigate PSMTs’ abstraction 
process and their perceived connections in a series of teaching interviews. The data consist of 
teaching interviews with four PSMTs. Each PSMT participated in five 90-minute interviews in which 
they constructed and consolidated their knowledge of polynomial ring, irreducible polynomial and 
the prime factorization of polynomial building on what they had previously known about 
polynomials and factoring polynomials. The RBC+C model (Dreyfus et al., 2015) was used as an 
analytical lens to understand how PSMTs constructed abstract mathematical conceptions and 
connected collegiate mathematics and school mathematics. 

PSMTs in this study showed their initial tendency to restrict their conceptions of factoring to the 
‘factoring by hand’ rather than encompassing factoring over complex numbers as well. Through 
constructing their conceptions of an irreducible polynomial and polynomial ring, it seemed that not 
only were they able to recognize some applicability of these abstract mathematical notions to school 
mathematics context but also integrate and unify some school mathematics ideas in a vertically 
reorganized way. 
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Games have been recommended as a way for students to develop a meaningful understanding of 
mathematical ideas before they move toward abstractions (Diénès, 1971). Ernest (1986) identified 
three educational uses of games in mathematics class: gaining skill-based fluency, developing 
conceptual understanding, and refining problem solving approaches. Limited systematic research 
addresses the use of commercial board and card games that teachers and parents are already playing 
with their children, which contain opportunities to experience mathematical ideas. The poster 
addresses the research question: What mathematical learning do students demonstrate through their 
experiences with games and with each other? 

Using Deweyan-inspired action research (Stark, 2014), experience is viewed as activity 
transformed through thoughtful reflection (Dewey, 1938/1997). The aim, methodologically, is 
transformative practice by cyclically clarifying meaning of (inter)actions. Theoretically, the dialectic 
of students’ game play and encouragement to notice (Mason, 2002) their mathematical thinking in 
action contributed to understanding their growth in mathematical learning. 

Located in two urban elementary schools, 65 students in grades 4 to 6 volunteered to participate. 
Students explored games such as Gobblet Gobblers, Othello, Quartex, and Set. Students’ data 
included photographs, pictorial and written responses to reflective prompts, and individual 
interviews. Field notes and teacher interviews enriched the data analysis as multiple perspectives 
were included to assess fit between constructed meaning and experiences. 

 Results indicate an additional intention of incorporating commercial games in mathematics 
class: the crucial development of mathematical processes. Communicating mathematically was 
inherent in negotiating and defending specific plays, and was refined as students developed language 
for moves and saw their peers as an authentic audience. Reasoning through informal deductive 
statements emerged as students convinced themselves and others of best moves. Visualizing 
improved through first physically testing playing pieces on game boards toward an ability to predict 
moves in advance or find the best spot to place a game piece. Additionally, the students’ 
development within the three processes was interconnected as their ability to see logical moves were 
verbalized to peers. I will use photographs and children’s statements to illustrate these mathematical 
processes in the presentation. Opportunities for children to develop mathematical processes are 
imperative if these processes are to be used to understand specific mathematics content. Results of 
this project respond to two enduring challenges in mathematics education: 1) to provide opportunities 
for children to experience mathematical ideas so that they can build conceptual understanding 
through formal instruction; and, 2) to invite parents to re-engage in children’s mathematical learning 
through informal game play at home. 
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Introduction. In 2004, the MAA’s Committee on the Undergraduate Program in Mathematics 
(CUPM) recommended that all mathematics courses should help students develop “analytical, critical 
reasoning, problem-solving, and communication skills”. Calculus persists as a roadblock course and 
might be the first course in which some students are asked to conceptually reason. To investigate 
precalculus students’ preparedness for the type of reasoning required of them in calculus, this study 
examined precalculus students’ ability to reason given a mathematical modeling task based on 
calculus concepts which could be solved using previous knowledge and problem solving skills.  

Methods. Five STEM major precalculus students participated in the study. During a task-based 
interview, the participants were asked to graphically represent the height of water in a bottle as a 
function of the amount of water in the bottle without numerical values, units, and rates given. The 
interviews were open-coded to explore common themes in the students’ reasoning and their ability to 
work through the task, and coded according to Carlson and Bloom’s (2005) problem solving 
framework to illuminate how students progressed through the problem solving cycle.  

Results. Consistent with Carlson and Bloom’s (2005) framework, the students repeated the 
planning, executing, and checking cycle. However, the checking phase was weak, and their problem 
solving was not as refined as the mathematicians’ in Carlson and Bloom’s study. All five students 
recognized the increasing relationship between height and amount of water, and that the shape of the 
bottle would result in a non-constant rate of change in height. However, students struggled to 
correctly model the non-constant rate of change graphically; only one produced a correct graph. Two 
of the students drew concave up or exponential graphs, and the other two drew piece-wise linear 
graphs. The results show that students had difficulty understanding exactly how the shape of the 
bottle would affect the rate of change. This could suggest a lack of conceptual understanding, which 
could hinder the students’ success in a Calculus I course. Implications for teaching suggest a need for 
earlier activities exposing students to nonlinear rates of changes and covariation in order to prepare 
them for advanced mathematical reasoning. 
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Mathematical habits of mind are both a means and an end of mathematics education (Lim & 
Selden, 2009) and learning can be viewed as the process of coming to participate in these 
mathematical ways. In the U.S., certain Standards for Mathematical Practice (SMPs) have been 
codified in the Common Core State Standards (2010). To better understand the challenges of 
enacting these SMPs, we examined the relationship between teachers’ own engagement in SMPs and 
the ways in which they provide opportunities for their students to engage in SMPs. Results take the 
form of cases of two secondary mathematics teachers—Mr. Forrest and Mr. Mingley—who were 
similar in terms of exhibiting SMPs while working on mathematical tasks themselves but who were 
different in terms of the implementation of SMPs with their students. 

Data for the teachers’ engagement in SMPs consisted of written work and recordings of discourse 
from eight teachers (grades 5–12), including Mr. Forrest and Mr. Mingley, as they worked on 5 
mathematical tasks. Classroom data involved three lesson observations each for Mr. Forrest and Mr. 
Mingley. Analysis involved identifying instances of the SMPs in both data sets, followed by 
qualitative coding of patterns within those instances. Within the classroom data, tools from discourse 
analysis (Truxaw & DeFranco, 2008) were also used to identify the nature of students’ participation 
in the SMPs. The two cases were then constructed by looking across all instances of Mr. Forrest or 
Mr. Mingley engaging in SMPs during the teacher tasks and characterizing general themes evident in 
their classroom observation data. 

Findings reveal that Mr. Forrest and Mr. Mingley conjectured, generated arguments, and 
criticized others’ justifications. They also used some SMPs in conjunction, such as attending to 
precision as a way of refining conjectures. Although both teachers exhibited SMPs themselves, there 
were differences in their students’ engagement in the SMPs. In Mr. Forrest’s class, his mathematical 
tasks required students to explicitly engage in SMPs and, during the implementation, the students 
were held responsible for engaging in SMPs. In Mr. Mingley’s class, however, SMPs occurred 
regularly but typically involved Mr. Mingley preparing opportunities for the SMPs, only to end up 
directly modelling the SMPs for the students. 

This study contributes to the ongoing discussion about implementing the SMPs. Although 
teacher facility with the SMPs may be a necessary condition for successful implementation, the case 
of Mr. Mingley shows it is not sufficient. The study also prompts discussion about the potentially 
complementary opportunities of students (a) witnessing SMPs from a more knowledgeable other and 
(b) actually engaging in SMPs themselves. 
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A growing number of researchers have indicated that students’ quantitative reasoning is 
important for their engaging in modeling, problem solving, and generalizing (Carlson, Jacobs, Coe, 
Larsen, & Hsu, 2002; Ellis, 2007; Thompson, 2011). More recently, researchers have argued for 
increased attention to the images students construct when modeling and reasoning quantitatively. 
Moore and Carlson (2012) illustrated that students’ mental images of a situation influenced how they 
related quantities of that situation. Students often held images of the situation inconsistent with those 
the researchers expected, but the students’ solutions were compatible with the students’ images of the 
situation. Other researchers (Castillo-Garsow, Johnson, & Moore, 2013; Thompson, 2011) argued 
that students’ images of situations and their envisioning how quantities change in tandem are 
intrinsically related. Addressing the call for more attention to students’ images of dynamic situations, 
we used semi-structured task-based clinical interviews (Goldin, 2000) with 10 students to explore the 
images students constructed as they made sense of the relationship between the height and surface 
area of a cone as the cone’s height increased and decreased in a proportional relationship with the 
cone’s radius.  

In this poster, we characterize the images students relied on when imagining the cone growing 
and shrinking. Two of ten students solely relied on a general image of the cone changing ‘smoothly’ 
with respect to time. The other students developed more sophisticated images with four students 
using 3D-images, three students using 2D-images, and one student using a combination of the two. 
We also discuss the implications of the students’ images with respect to their determined solutions. 
Collectively, our results indicate that the students developed idiosyncratic images that greatly 
influenced how they solved the problem. An implication of our findings is that teachers need to be 
attentive to students’ images of situations in order to support students in reasoning quantitatively as 
they model these situations. 
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Calls for increased focus on mathematical argumentation in school mathematics are critical for 
teacher educators charged with preparing prospective K-8 teachers (PST) to foster mathematical 
argumentation in their future classrooms. This is because research suggests that middle school years 
are crucial for students to gain proficiency in creating and critiquing mathematical arguments. 
Supporting PSTs’ strong understanding of what it means to do mathematics necessitates that teacher 
preparation programs place an emphasis on mathematical and pedagogical preparation that facilitates 
PSTs’ strong understanding of mathematical argumentation and proving in school mathematics.  

Based on problem-based interviews with 22 K-8 PSTs, we report on PSTs’ ability to create 
mathematical arguments in the context of problems that involve reasoning and generalizing about 
patterns. The research question was: How do pre-service middle school teachers reason about 
change in problem situations that require analyzing patterns and what is the nature of the arguments 
they create? We selected this curricular topic because the reasoning about change and patterns is 
essential for learning concepts related to functions, algebraic thinking, and measurement. Records of 
the interviews were analyzed qualitatively (Strauss & Corbin, 1998) to first identify the specific 
problem solution trajectory. Then, using Toulmin’s argumentation framework (2003) as a guide, we 
examined the structure of arguments pre-service teachers generated. Due to the space limitation, in 
this proposal, we only report the selected results from one task where participants were asked to 
generalize about the number of matchsticks to make a rectangle made up of R-rows and C-columns. 

The vast majority of the PSTs reasoned about this task by first noticing the invariant 
characteristics of the given structure and focusing on horizontal and vertical change in the number of 
sticks. In the process of initially limiting the number of rows to only one and “unfolding” the 
consecutive numbers of columns they were able to develop the correct rule e.g., 4+3(c-1), or 4 + 3(r-
1) if reasoning about change in rows, and later account for change in the second variable arguing that 
the number of sticks in any figure could be determined by a rule 4 + 3 (c-1) + [3 + 2(c-1)] (r-1). 
Overall however, they demonstrated limited ability to justify why their rule works. Most of those 
PSTs who used this strategy did not articulate clear links between the context of the problem and 
their rules. Instead, they supported the validity of their claims with specific examples (43% used one 
example, 21% two or more specific cases). Only a few were able to contextualize their rules using 
specific characteristics of the problem they solved. While in this proposal we only highlight selected 
findings from one task, this study documents reasoning paths PSTs at the beginning of their teacher 
education program generate and contributes to the knowledge of PST’s ability to create mathematical 
arguments.  
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Building upon the work of Zieffler, Garfield, DelMas and Reading (2008) and others, we developed a 
framework for assessing informal inferential tasks in middle school mathematics textbooks.  The 
framework both embodies the key recommendations for developing informal inferential reasoning 
and captures common trimming attributes, which lower the cognitive demand and opportunities to 
learn.  Researchers believe that introducing inferential reasoning informally will assist students later 
in developing argumentation structures necessary for understanding formal methods (Wild & 
Pfannkuch, 1999).  Inferential reasoning has long been a key learning goal of statistics education 
and provides access to viewing knowledge of core statistical concepts and reasoning about data 
distributions.  Tools are needed to assess the fidelity of tasks in alignment with both national and 
research-based recommendations.  

Keywords: Curriculum Analysis; Data Analysis and Statistics; Middle School Education 

Background 
Inferential reasoning has served as a unifying theme and goal of introductory statistics courses at 

the tertiary level for a number of years (Konold & Pollatsek, 2002).  With the recent emphasis of 
statistics as a core component of the middle and secondary mathematics curriculum, the role of 
inference is gaining in prominence (NGA Center & CCSSO, 2010).  Current recommendations for 
middle and secondary statistics education outlined in the Guidelines for Assessment and Instruction 
in Statistics Education [GAISE] report support the introduction of informal inferential reasoning at 
the middle school level and formalizing inferential reasoning during the secondary years (Franklin et 
al., 2007).  These recommendations are evident in the articulation of the Common Core State 
Standards for Mathematics (CCSS-M) adopted throughout the United States (NGA & CCSS0, 2010), 
but not explained in an equally detailed manner.  In response, middle school textbook publishers 
quickly produced curricular materials intended to align with the need for informal inferential 
reasoning in grade 7.  Yet, many teachers, especially at the middle school level, do not have 
experience teaching informal inference. We argue that guidance is needed on how to assess the 
fidelity of inferential reasoning tasks contained within these curricular materials.  While this may 
seem to be a narrow focus, inferential reasoning is a key learning goal of statistical education and 
incorporates knowledge of core statistical concepts and reasoning about data distributions.  In this 
paper, we describe a framework we developed for characterizing informal inferential reasoning tasks 
based on recommendations of statistics education research, and then share how we analyzed tasks 
from three widely available seventh grade textbooks.   

Informal Inferential Reasoning 
In order to define and situate informal inferential reasoning for the purposes of this paper and 

framework, two broader concepts must be described: statistical inference and statistical reasoning.  
Statistical inference refers to moving beyond the data at hand to make decisions about some wider 
universe, taking into account that variation is everywhere and conclusions are therefore uncertain 
(Moore, 2004).  Statistical reasoning is defined “as the way people reason with statistical ideas and 
make sense of statistical information” (Garfield & Ben-Zvi, 2004, p. 7). Hence, inferential reasoning 
is the way people make sense of statistical ideas and information with the goal of generating a 
conclusion that extends beyond the data at hand.  
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Generally, two types of problems fall under the broad definition of inferential reasoning:  (a) 
generalizing from samples to populations, and (b) comparing samples to determine significant 
differences in populations (Garfield & Ben-Zvi, 2008).  While students can address these problems 
with formal hypothesis tests, they can also formulate responses based on informal approaches that do 
not involve set procedures, but rather coordination of prior knowledge, statistical concepts, and the 
context of the problem.  Informal inferential reasoning allows students in upper-elementary grades to 
engage and successfully draw inferences (Stohl & Tarr, 2002; Watson, 2002; Watson & Moritz, 
1999). 

Informal Inferential Reasoning Task Framework 
 Building upon the work of Zieffler, Garfield, DelMas and Reading (2008) and others, we 

developed a framework for assessing informal inferential tasks in middle school mathematics 
textbooks that both embodies the key recommendations for developing informal inferential reasoning 
and captures common trimming attributes, which lower the cognitive demand and opportunities to 
learn (See Table 1).  While the recommendations from leaders in statistics education and other 
disciplines provide a comprehensive list of requirements for inferential reasoning tasks, our 
framework acknowledges a spectrum within each task dimension (i.e., inference, ill-structured, open-
ended, context, and visual representation) that reveals nuances in tasks and ultimately pedagogical 
choices made by textbook authors and publishers that directly impact students’ opportunities to learn  

Table 1:  Informal Inferential Reasoning Task Framework 
 

Task Dimension 
Low (Deterministic) - 
Limited/No reasoning 
required 

Medium – Some 
inferential reasoning 
required 

High – Inferential 
reasoning required 

Inference  
 

A population is utilized 
or the type of the data is 
unspecified.  No 
requirement is needed to 
infer beyond data 
provided. 

Sample data is utilized 
with the 
acknowledgement of 
variation. 

 
 

Sample data is utilized 
with the 
acknowledgement of 
variation, and students 
are required to infer 
beyond the data at hand. 

Ill-Structured 
 

A prescribed procedure 
is desired with specified 
descriptive statistics 
computations.   

A procedure exists that 
can be adapted in order to 
coordinate core statistical 
concepts with a choice of 
statistical measures. 

Coordination of core 
statistical concepts is 
required to fully address 
the task without a 
prescribed solution path. 

Open-Ended 
 

Only one acceptable or 
“correct” solution exists. 

 

Multiple numerical 
solutions with similar 
interpretations are 
possible or limited 
numerical solutions exist 
with a variety of possible 
interpretations. 

Multiple numerical 
solutions are possible and 
a variety of conclusions. 

Context 
 

The task can be 
addressed fully by 
removing the context. 

The context is helpful for 
generating an inference, 
but not required. 

The problem context 
must be considered in 
order to generate a viable 
inference. 

Visual 
Representation 

 

Visual representations 
are neither provided nor 
encouraged. 

Visual representation are 
provided or created, but 
mask the original data. 

Raw data is provided and 
organized in graphical 
representations. 
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and reason about statistics. For each task dimension, we created a tiered set of categories based on 
the level of inferential reasoning required for the task: low (deterministic), medium, and high. 

Inference 
The first task dimension, inference, relates to how sample and population data are presented and 

utilized in tasks. Based upon a synthesis of research from educational psychology, science education, 
and mathematics education, statistics educators recommend informal inferential reasoning tasks 
require students to:   

1) make judgments, claims, or predictions about a population based on samples, but not using 
formal statistical procedures or methods, 2) draw on, utilize, and integrate prior knowledge 
(formal or informal) to the extent that this knowledge is available, and 3) articulate evidence-
based arguments for judgments, claims, or predictions based on samples. (Zieffler et al., 2008, p. 
46-47).   

A key facet of these recommendations relates to the need for students to experience and think 
about the differences between complete populations and samples.  If a complete population is 
provided or the source of the data is unknown, then the task does not require inferential reasoning 
and is reduced to simply computing the differences in measures of center or another statistic of 
interest to draw a concrete and certain conclusion.  Only through sample data is uncertainty 
introduced, which is the nature of statistics versus a deterministic mathematical problem.    

Ill-Structured 
Ill-structured tasks require informal reasoning versus applying formal approaches.  Reasoning 

effectively to generate informal inferences requires prior knowledge of core statistical ideas, such as 
measures of center, variation, skew, outliers, shape of data distribution, and sample size, and an 
understanding of the relationships between them (Garfield & Ben-Zvi, 2007).  Many statistical 
questions require coordination of both a measure of central tendency, such as mean or median, with a 
measure of variation such as range, interquartile range, or mean absolute deviation (MAD).  In 
addition, middle school textbooks include tasks that require coordinating and comparing two 
measures of center, two measures of variation, or other combinations.   

The second criterion for this dimension relates to the extent that the task is either well- or ill-
defined in nature. Informal approaches to reasoning are needed when problems either do not align 
with known solution methods or are presented before students possess the knowledge of such 
methods.  One would expect that students possess varying repositories of knowledge, which would 
result in a diversity of solution strategies when administered similar inferential reasoning tasks.  This 
knowledge might consist of prior statistical knowledge, life experiences related to the context, and 
informal reasoning skills. As Means and Voss (1996) state, “Informal reasoning assumes importance 
when information is less accessible, or when the problems are more open-ended, debatable, complex, 
or ill-structured, and especially when the issue requires that the individual build an argument to 
support a claim” (p. 140). 

When students approach ill-structured problems, they generally progress through four phases:  
problem structuring, preliminary design, refinement, and detailing (Goel, 1992).  As ideas are flushed 
out in more detail, students become more committed to their solution strategy.  The omission of one 
correct answer or lack of problem constraints is the key factor for encouraging informal reasoning.  
Watson and Moritz (1999) describe an iterative process that students embarked upon when 
comparing two data distributions involving:  comparing measures of center, then considering other 
characteristics of the data distribution such as skew or range, and finally coordinating all possible 
data comparisons together to produce a detailed and integrated response.  These steps provide a view 
into students’ statistical reasoning beyond traditional tasks that are highly structured in nature and 
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seek a predetermined solution.  The ranking for this category requires that no prescribed solution 
path is provided in advance and that students must compare at least two core statistical concepts.   

Open-Ended   
Open-ended tasks directly connect to the goal of eliciting informal approaches to inferential tasks 

(Bakker, 2004; Cobb, McClain, & Gravenmeier, 2003; Garfield & Ben-Zvi, 2007; Watson, 2002; 
Watson & Moritz, 1999).  According to Leathman, Lawrence, and Mewborn (2005), open-ended 
problems “elicit reasoning, problem solving, and communication” (p.  413).  Characteristics of high 
quality, open-ended tasks include the involvement of significant mathematics, the potential to solicit 
basic to sophisticated responses, and a balance between too much and too little information.  Clearly, 
the bounds of ill-structured tasks and open-ended tasks overlap to some degree as the descriptions of 
both include common characteristics. 

Many teacher-researchers initially introduce open-ended tasks to hone students’ thinking and 
reasoning about a situation.  Through whole class discussion, the open-ended tasks become closed as 
taken-as-shared meanings develop (e.g. Cobb, 1999).  In one study, students were asked to determine 
which of two ambulance service providers was better and provide justification for their reasoning 
(Cobb, McClain, & Gravenmeier, 2003). During a lengthy whole class discussion, students 
determined a process for reasoning about the information provided and agreed upon a final 
conclusion.  Hence, the initially open-ended task became closed through the instructional process of 
establishing norms for acceptable justification.   

By understanding this natural instructional sequence of tasks initially being open-ended in nature 
and over time becoming close-ended through the course of learning and whole class discussions, we 
anticipate not all tasks in a textbook would meet this requirement within an instructional unit.  As 
students see relationships between tasks and establish ways of reasoning, the variety of conclusions 
will decrease with experience.  However, if prescribed answers are provided for all inferential tasks, 
then the textbook is not allowing adequate room for students to engage in informal reasoning.  
Therefore, open-ended tasks require students to decide what is relevant and what constitutes 
acceptable justification without prior instruction.  For example, if a textbook supports a range of 
answers as acceptable or incudes a clause, such as “Answer will vary”, then the task is deemed to be 
open-ended in nature.  In addition, high quality, open-ended tasks require some level of justification 
or explanation to accompany the conclusion based on the selected relevant information.  Therefore, 
we attend to both the open-ended nature of the response and the need for justification.  

The Role of Context 
The authors of the GAISE recommendations (Franklin et al., 2007) state, “In mathematics, 

context obscures structure. In data analysis, context provides meaning” (p. 7).  Hence, the use of 
context is the norm in statistics education and instructors commonly introduce data sets in relation to 
some real-world phenomena or situation.  However, the way statistics educators use context in their 
tasks varies substantially.  On one hand, several have created problem scenarios familiar to students 
in an effort to increase accessibility and leverage prior knowledge and experiences (Bakker, 2004; 
Garfield & Ben-Zvi, 2007; Watson & Moritz, 1999; Watson, 2002; Watson, 2008).  For example, 
Watson created a sequence of tasks based on measures of actual students’ heart rates and arm-span 
lengths. Creating data sets close to the knowledge and experiences of students helps focus the tasks 
on the reasoning process.   

On the other hand, some researchers advocate tasks based on real-world contexts.  Cobb (1999) 
and Cobb, McClain and Gravemeier (2003) created a variety of real-world contexts such as 
ambulance response times, success of speed traps, effectiveness of AIDS treatments, battery life 
spans, SAT scores based on school expenditure, and response time versus alcohol intake. Cobb, 
McClain and Gravemeier (2003) state that students must find the context of the problem both 
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plausible and important before they will engage in reasoning about the data.  In our framework, we 
attend to the inclusion of context and the role it plays in terms of generating an inference.  Because 
we cannot be certain of which contexts will be either familiar or engaging to students, we focus only 
on the role of the context in the problem.  If the context can be stripped away and/or ignored, the task 
is coded as low on the framework.  If the context facilitates reasoning about the task, but is not 
needed to generate a response, then it is coded medium.  Tasks that require attending to the context 
and incorporating it are ranked high.  

Visual Representations 
Visual representations shift students’ thinking away from local attributes or summary statistics 

towards global characteristics and relationships.  Tasks involving small sets of data (n<50) encourage 
the use of dot plots and bar graphs to depict the data distributions (Bakker, 2004; Garfield & Ben-
Zvi, 2007; Watson 2002; 2008; Watson & Moritz, 1999).  In addition to shifting students’ thinking 
toward the entire distribution versus individual data values, visual representations facilitate 
coordination of core statistical concepts in a way that is extremely difficult with only summary 
statistics and little prior experience with statistical reasoning.  The most useful representations for 
novices are graphical displays that reveal the raw data, in addition to organizing it visually, such as 
dot plots (Franklin et al., 2007).  Therefore, we privilege representations that reveal the raw data and 
do not restrict the students’ reasoning.  

In the cases where only raw data is provided without a graphical display or a prompt to create a 
graphical display, the task is coded low.  If the task contains graphical displays that mask the original 
data values (e.g. box-plots), it is coded medium.  We acknowledge that box-plots serve an important 
role in inferential reasoning, by providing a lens in which to view the data that is useful.  However, 
reasoning is restricted to some degree, as characteristics of the original data distribution are hidden 
from view.  Lastly, if the data values are provided or generated by the students and visual 
representations are either provided or encouraged, the task is coded high.  

Application of the Framework 

Analysis of Teacher Materials 
We examined the teacher’s editions of three commonly used 7th grade textbooks and identified 

the chapter(s) on statistics. In the chapter(s), the textbooks often reference examples for students’ 
problems. Therefore, we analyzed the task based on the cited example.  We acknowledge that 
hypothetically the task could be solved in a variety of ways; however, the example implies a set 
procedure path.  In addition, if the answer key requires only a numerical answer, the task was 
classified as close-ended.  Finally, if the task could be completed fully without considering the 
context, we coded the task low.  The purpose of the following section is not to provide representative 
or typical tasks of the textbooks, but rather to demonstrate how the framework can be applied to a 
variety of informal inferential tasks found in CCSS-M aligned grade 7 textbooks.  

Applying the framework, the task in Figure 1(problems 1, 2, and 3 inclusive), does not meet the 
requirement for inference since the source of the data is unspecified.  One might assume this 
representation includes all the data of rental costs for each city, as there is no verbiage to the 
contrary.  In regard to the task being ill-structured, prior examples in the textbook provide an 
approach to this problem of comparing the inner quartiles and the ranges of the box-plots.  Since the 
inner quartile of CityB is smaller than CityA, yet the range of City B is larger than CityA, students 
will need to decide how to proceed.  Therefore, this task is medium in terms of being ill-structured.  
A specified path exists but can be modified to accommodate coordination of core statistical concepts 
based on student’s discretion.  Next, the task is high in terms of being open- ended in nature, as the 
textbook notes that answers will vary. Depending on the decisions made when comparing CityA to  
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To answer the following problems, use the box-and-whisker plots of apartment rentals in two 
different cities.  

 
       Rental Cost ($) 

 
1. Which city has a greater median apartment rental cost? 
2. Which city has a greater interquartile range of apartment rental costs? 
3. Which city appears to have a more predictable apartment rental cost?  

Figure 1:  Task adapted from Holt McDougal (2012) 

CityB, students may arrive at different justifications.  The context of the problem does not appear to 
be needed or facilitate reasoning, so it is rated low. Although a visual representation is provided, the 
original data is masked, leading to a medium ranking.  Overall, we conclude that this task provides 
some opportunities for students to engage in aspects of informal inferential reasoning, but falls short 
of requiring all aspects.  

 
The double dot plot below shows the quiz scores out of 20 points for two different class periods. 

Compare the centers and variations of the two populations. Round to the nearest tenth. Write an 
inference you can draw about the two populations. 

 
Figure 2:  Task adapted from Glencoe (2013) 

Applying the framework to this task, we conclude that it does not meet the requirement of an 
inferential task.  The task implies that the dot plots represent the population for the two groups of 
class periods.  In regard to the task being ill-structured, prior examples in the textbook provide a 
procedure of first comparing mean values and then comparing MADs.  Students are steered to 
conclude that periods 4-5 have a higher mean and a larger MAD or more variation. Therefore, 
periods 4-5 scored higher on average, but the scores varied more and were spread out.  In terms of 
being open-ended, the task is low because one correct answer is noted in the teacher’s edition.  In 
addition, the context is not needed for the problem and perhaps inhibits reasoning by grouping the 
data of two class periods.  Lastly, in terms of visual representation, the task ranks high with the raw 
data visible and organized in a way that facilitates coordination of core concepts and informal 
reasoning.  Overall, this task ranks low in terms of providing students opportunities to informally 
reason about inference.     
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Make a Conjecture The box plots show the distributions of mean weights of 10 samples of 10 
football players from each of two leagues, A and B. What can you say about any comparison of the 
weights of the two populations? Explain.  

Distribution of Means from 10 Random Samples of Size 10 
Means 

Figure 3:  Task adapted from Go Math! (2014) 

This task is different from the others as the box-plots are sampling distribution of means, a 
sophisticated statistical concept that has proven illusive to many tertiary students in introduction to 
statistics courses.  The textbook recommends inferential reasoning with distributions of sample 
means as a way to reduce variability and make better comparisons, since the means vary less than the 
original data.  Applying the framework to this task, we conclude this task meets the full requirements 
of an inferential task, as the data are labeled as samples of size 10 and students are asked to generate 
a conclusion that extends beyond the data at hand.  In regard to the task being ill-structured, prior 
examples in the textbook provide an approach to the problem of comparing the centers of the 
distributions and looking at the overlapping portions of the inner quartile.  Students may or may not 
understand why this approach works, but it is specified.  Hence, we would rank this as low in terms 
of being ill-structured.  Students will note that League B has a higher mean, but the overlapping inner 
quartiles create ambiguity in terms of which league has higher weight in general.  Therefore, the task 
is close-ended with one correct answer.  In addition, the context is not needed for generating the 
inference.  In terms of visual representation, the task ranks medium with a graphic display and no 
access to the original data.  Overall, we would conclude this task does provide some opportunities for 
students to engage in aspects of informal inferential reasoning, but falls short of requiring all aspects. 

Conclusion 
With the advent of many new mathematics textbooks claiming to align with national standards 

and research-based recommendations, tools are needed to assess the fidelity of tasks posed to 
students.  Further, to study the learning effects of first introducing inference through informal 
approaches followed by formalization, middle school students require authentic experiences with 
informal inferential reasoning.  Without the development and utilization of frameworks based on 
prior research and educational experiences, we will never know if students have the opportunities to 
informally generate inferences that later lead to a robust and connected understanding of formal 
statistics.  Finally, we need to hold textbook publishers accountable for providing students with 
authentic opportunities to sense-make and reason, as outlined by leaders in statistics education.  
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This study focuses on the development of four tertiary introductory statistics students' informal 
inferential reasoning while engaging in data driven repeated sampling and resampling activities. 
Through the use of hands-on manipulatives and simulations with technology, the participants 
constructed empirical sampling distributions in order to investigate the inferences that can be drawn 
from the data. Students’ developing reasoning of sampling and informal inference is reported as they 
move from repeated sampling methods to resampling methods, along with their reasoning of 
bootstrapping methods and how this reasoning was applied to make informal inferential claims. 

Keywords: Data Analysis and Statistics; Modeling 

Introduction 
Over the past few decades statistics education has become an integral part of the mathematics 

curriculum at all levels. Influential documents such as the National Council of Teachers of 
Mathematics standards documents (NCTM, 1989, 2000), the Guidelines for Assessment and 
Instruction in Statistics Education College Report (Aliaga et al., 2005), and The Common Core State 
Standards for Mathematics (National Governors Association Center for Best Practices & Council of 
Chief State School Officers, 2010) have emphasized the importance of statistics education at all 
levels. Prior to these documents, statistics at the K-12 level was often “the mere frosting on any 
mathematics program if there was time at the end of the school year” (Shaughnessy, 2007, p. 957).  

This relatively new emphasis on the learning of statistics brings with it a new emphasis on how 
statistics is taught. A trend in statistics education is the shift from a focus on theoretical distributions 
and numerical approximations to an emphasis on data analysis (Cobb, 2007). Cobb asserted that 
many statistics curricula are outdated and based on how statistics could be learned prior to the 
computing power of modern times. The use of probability distributions, such as the normal 
distribution, were once needed since the conceptually simpler approach of simulations by hand was 
far too tedious to perform. Technology now allows these simulations to be performed nearly 
instantaneously. New curricula for introductory statistics courses should emphasize the ideas of data 
creation, exploration and simulation.  

This study investigates students’ developing informal inferential reasoning while engaging in a 
data driven instructional unit. Activities in the unit use both hands-on manipulatives and computer 
simulations to construct empirical sampling distributions from which students made informal 
inferences.  

Related Literature 
Informal inferential reasoning has been defined as “the drawing of conclusions from data that is 

based mainly on looking at, comparing, and reasoning from distributions of data” (Pfannkuch, 2007, 
p. 149), “the process of making probabilistic generalizations from (evidenced with) data that extend 
beyond the data collected" (Makar & Rubin, 2007, p.1), and “the way in which students use their 
informal statistical knowledge to make arguments to support inferences about unknown populations 
based on observed samples” (Zieffler, Garfield, delMas, & Reading, 2008, p. 44). Synthesizing these 
definitions, this study examined the claims that students made about populations of data when 
examining empirical sampling distributions, and how the students used the distributions of data to 
support these claims. Researchers suggest the use of informal inference before the use of formal 
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inferential procedures (Zieffler, Garfield, Delmas, & Reading, 2008), such as employing the “three 
R’s: randomize data, repeat by simulation, and reject any model that puts your data in its tail” (Cobb, 
2007, p.12). This use of simulation to teach informal inferential reasoning can help students build a 
deep understanding of the abstract statistical concepts (Burrill, 2002; Maxara & Biehler, 2006). 
College curricula using simulations have indicated modest improvement in students’ understanding 
of inference (Garfield, delMas, & Zieffler, 2012; Tintle, Topliff, Vanderstoep, Holmes, & Swanson, 
2012).   

There are two forms of simulations in this study, simulations that construct an empirical 
sampling distribution by: 1) repeatedly sampling from an available population; and 2) resampling 
from a sample with an unavailable population. Research involving repeated sampling activities have 
indicated that some students develop “a multi-tiered scheme of conceptual operations centered 
around the images of repeatedly sampling from a population, recording a statistic, and tracking the 
accumulation of statistics as they distribute themselves along a range of possibilities” (Saldanha & 
Thompson, 2002, p. 261). However, many students do not focus on empirical sampling distributions 
for inference and instead compare a single sample statistic with a population parameter. Students 
have also shown difficulty distinguishing the difference in strength of conclusions made from a small 
number of samples versus those made with large amounts of samples (Pratt, Johnston-Wilder, 
Ainley, & Mason, 2008). 

The second form of simulation activities aimed to elicit and develop students’ ideas about the 
resampling method of bootstrapping. Efron (1979) introduced the method of bootstrapping and 
asserted that the bootstrap was more widely applicable and dependable than earlier resampling 
methods, while also using a simpler procedure. Bootstrapping begins with drawing one sample of 
data from a population. Bootstrap samples are then constructed by choosing elements from this one 
sample, with replacement, and creating resamples which are equal in size to the original sample. A 
statistic from these bootstrap samples is then aggregated to form an empirical bootstrap sampling 
distribution. If done with hands-on manipulatives, this sampling process using replacement can 
potentially provide insight into the approach, but it is also very time consuming.  However, 
technology can be used to simulate this procedure in a short period of time, but the use of technology 
may obscure the underlying sampling process. 

While limited research has been done on student learning of statistics with bootstrapping methods 
(Garfield, delMas, Zieffler, 2012; Pfannkuch & Budgett, 2014; Pfannkuch, Forbes, Harraway, 
Budgett, & Wild, 2013), researchers have asserted that bootstrapping may promote student learning 
of the logic of inference (Cobb, 2007; Engel, 2010, Hesterberg, 2006)). The bootstrapping method 
has already become part of introductory statistics coursework such as the CATALYST curriculum 
(Catalyst for Change, 2012). Some textbooks (e.g., Lock, Lock, Lock-Morgan, Lock, & Lock, 2013) 
introduce the method of bootstrapping to define confidence intervals well before discussing 
confidence intervals with normal approximation methods. Lock et al. claim that the bootstrapping 
method has become an important tool for statisticians and that it is also intuitive and accessible for 
introductory statistics students. The authors further state that bootstrapping capitalizes on students' 
visual learning skills and helps to build students' conceptual understanding of key statistics ideas. 
There is not yet research evidence to support these claims, which will be explored in this study. 

The research questions guiding this study were: 1) What student reasoning develops as they 
move from repeated sampling methods to resampling methods? 2) How do students develop their 
reasoning of bootstrapping methods and apply this reasoning to make informal inferential claims. 

Theoretical Framework 
The focus of analysis for this study was the models of sampling that the students created while 

engaged in a model development sequence (Lesh, Cramer, Doerr, Post, & Zawojewski, 2003). 
Drawing on Lesh and colleagues, in this study, we define models as “conceptual systems … that are 
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expressed using external notation systems, and that are used to construct, describe, or explain the 
behaviors of other system(s)” (Lesh & Doerr, 2003, p. 10). Teaching and learning from a modeling 
approach shifts the focus of an activity from finding an answer to one particular problem to 
constructing a system of relationships that is generalized and can be extended to other situations 
(Doerr & English, 2003). Students' mathematical models are useful for research since they provide a 
means for investigating students' developing knowledge (Lesh, Hoover, Hole, Kelly, & Post, 2000). 
Model development sequences consist of three forms of activities: model-eliciting activities that 
encourage students to generate descriptions, explanations, and constructions in order to reveal how 
they were interpreting situations; model-exploration activities that focus on the mathematical 
structure of their models and often use technology in order to develop a powerful representation 
system; and model-adaptation activities that transform the models created in model-eliciting 
activities in order to investigate more complex problems (Lesh et. al, 2003). By using a modelling 
approach to examine student reasoning, we can view reasoning as dynamic and developing over the 
course of instruction. Student reasoning may not only change from activity to activity, but many 
times during an activity. This framework allows us to examine the impact of the activities on the 
development of students’ reasoning. 

Design and Methodology 
In this qualitative case study, the first author collaborated with two introductory statistics 

instructors to create an instructional unit that consisted of two model development sequences 
(Figure 1). This study is part of a larger study that examined the development of informal inferential 
reasoning through simulation activities and the role of hands-on manipulatives versus technological 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1: Overview of the instructional unit consisting of two model development sequences 

Activity #4 

Students used TinkerPlots to 
simulate the likely outcomes 
for brands of sneaker purchases 
when randomly sampling 
groups of 20 students. 

Activity #5 

Students again used a bin filled 
with thousands of multicolored 
beads to simulate the likely 
difference in sneaker purchases 
between two brands of 
sneakers when randomly 
sampling groups of 20 
students. 

Activity #2 

Students used TinkerPlots to 
simulate the possible outcomes 
when an octopus predicts the 
winners of eight basketball 
games. 

 

Activity #3 

Students used a bin filled with 
thousands of multicolored 
beads, representing brands of 
sneaker purchases by university 
students, to simulate the likely 
outcomes when randomly 
sampling groups of 20 students. 

     Model Exploration Activities     Model Adaptation Activities 

Activity #1 

Students used a cup of coins to 
simulate the possible outcomes 
when an octopus predicts the 
winners of eight basketball 
games. 

  Model Eliciting Activity  

Activity #7 

Students used TinkerPlots to 
resample from their sample of 
mixed nuts to simulate the 
possible proportions of mixed 
nuts in other samples. 

Activity #8 

Students compared two 
samples of mixed nuts from 
different brands and used 
resampling in order to make 
claims about which brand 
contained the lower proportion 
of peanuts. 

   Model Adaptation Activity 

Activity #6 

Students then used only one 
sample of mixed nuts, 
represented by marked craft 
sticks, in order to make claims 
about the proportion of peanuts 
in the entire brand of mixed 
nuts. 

  Model Eliciting Activity 

       Model Exploration Activity 
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tools with four classes of students at the secondary and tertiary levels. For this study we focus on one 
group of four students at the tertiary level engaging in the instructional unit. During the unit, the 
group of students was videotaped and their written work was collected. One student from the group 
participated in three interviews to discuss her thinking during the instructional unit. The videos, 
student work, and interview were analyzed with qualitative methods in order to construct the 
development of the models of sampling used by the participants, and how they were applied to make 
inferential claims. 

The first model development sequence was intended for students to create models that allowed 
them to draw inferential claims from empirical sampling distributions constructed from repeated 
sampling from a known population. The second model development sequence no longer had an 
available population to repeatedly sample from. This put the students in a situation where they 
needed to extend their models for drawing conclusions by constructing resampling methods to use 
with the one available sample. Figure 1 provides an overview of the two model development 
sequences. 

Results 
We will report the main reasoning, and changes in reasoning, related to the ideas of sampling and 

informal inferential claims as demonstrated by the four students during the instructional unit. 
Changes in reasoning occurred both as students progressed through the activities in the unit and also 
during group and class discussion within the activities.  

The first activity in the instructional unit asked the students to determine the likely range of 
correct predictions made when guessing the winner of eight basketball games. A cup of coins was 
given to the group as an option to use to draw their conclusions. The group showed an aversion to 
using the coins to simulate guessing and attempted to calculate the probabilities of each outcome. A 
class discussion encouraged the group to use eight coins to simulate possible outcomes for the 
number of correct predictions. 

Initial Model of Sampling and Inference  
 The group simulated the outcomes by flipping eight coins five times. For each group of eight 

coins they counted the number of heads, which represented a correct prediction. They concluded that 
because of varying values in their simulations, there is “no definitive answer as to the range of 
possible outcomes”. This view of one definitive and correct range of possible outcomes was in line 
with their initial attempts to calculate the probability of each outcome occurring. One student in the 
group, Megan, was later interviewed to discuss her reasoning in the activity and was still not 
convinced on the value of using simulations to answer the original question. She had read ahead in 
the course’s textbook to determine a way of answering the activity through calculations, and 
constructed a 95% confidence interval with a normal approximation to the binomial distribution.  

Second Model of Sampling and Inference 
 The second activity continued in the same context as the first, but moved on from using coins 

to simulate outcomes, to the use of TinkerPlots (Konold & Miller, 2014). TinkerPlots was set up for 
the students using a spinner with half of the area marked ‘Right’, the other half ‘Wrong’, a window 
that collected the outcomes simulated by the spinner, and a dotplot that collected the number of 
correct predictions in each sample. A screenshot of the TinkerPlots setup is shown below in Figure 2. 
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Figure 2: TinkerPlots setup for activity #2 

Each group member first used TinkerPlots to simulate 10 samples. Together they determined that 
the outcomes that occurred the most often could constitute a range of likely values. The group 
discussed how each of their dotplots were slightly different and led them to have varying predicted 
ranges. After simulating 1000 samples, they discussed how more samples led to each of their dotplots 
looking very similar and yielding the same intervals of likely values. The group concluded that more 
samples lead to more accurate predictions. From their dotplots with 1000 samples they determined 
that between 2 and 7 correct guesses seemed likely. Megan continued to add samples and came to the 
conclusion that at some point, adding more samples did not change the look of the dotplot. She 
concluded that the plot was saturated with data.  

Third Model of Sampling and Inference 
 The next two activities involved sampling from a population of university students to 

determine what number of sneaker purchases out of groups of 20 students were Nikes. This was first 
done with a bin of thousands of multicolored beads, each color representing the purchase of a certain 
brand, and then continued in the next activity using TinkerPlots to simulate the outcomes. A similar 
TinkerPlots setup was given to the students as before. The spinner was replaced with a mixer 
containing the same distribution of balls as the beads used as hands-on manipulatives. The students 
were asked if it was reasonable for Nike to claim that 7 out of 20 student sneaker purchases by the 
university students were Nikes. 

 The group used the same methods to construct an empirical sampling distribution as the 
previous model but the change came with how they drew their conclusions. When using the hands-on 
manipulatives, all samples except for one showed more than 7 of 20 sneaker purchases were Nikes. 
A simulation with TinkerPlots also showed a majority of the samples falling above 7 out of 20. The 
students determined an interval of likely outcomes for Nike sneaker purchases and found 7 of 20 to 
be below the interval. They concluded that Nike should claim that more than 7 out of 20 sneaker 
purchases at the college were Nikes. They recommended Nike to claim that 10 in 20 purchases were 
Nikes, which was approximately the center of the distributions.  

Fourth Model of Sampling and Inference 
 The fifth activity was the first time that the students had to deal with the comparison of 

populations. The context was similar to the previous two activities. Students were asked to 
investigate if the difference in Nike and Adidas sneaker purchases at a university was the same as the 
difference in the global sales of 15%, or 3 in 20 students. The same bin of beads was used as in the 
previous activity, with one color representing Nike purchases and another color, Adidas purchases. 
The students decided that since they already constructed an empirical sampling distribution of Nike 
sneaker purchases, they would conduct the same number of samples and count Adidas sneaker 
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purchases. The group chose to calculate the mean values of each distribution and compare them. The 
means were approximately three purchases apart, which led the students to conclude that the 15% 
difference in Nike and Adidas global share held true for the college students.  

Initial Model of Resampling and Inference 
 The next change in the students’ models occurred during the beginning of the second model 

development sequence. The first activity put the students in a situation where they needed to extend 
their models for drawing conclusions by constructing resampling methods to use with the one 
available sample. The students were told that the manager of bulk food in a grocery store ordered a 
sample of a new brand's mixed nuts. She plans to order a large shipment of mixed nuts, but has 
determined that her customers prefer mixed nuts with fewer peanuts. Before she orders, the manager 
wants to know more information about the percentage of peanuts in this new brand. The students 
were given a bag of 25 sticks to represent the sample of mixed nuts. Seven sticks were marked with a 
'P' to represent peanuts. The remaining sticks were not marked and represented other types of nuts.  

 The group began by applying a method similar to the previous activities by taking seven 
samples of five mixed nuts and calculating the average percentage of peanuts. They chose the size of 
five since it would be easy to take many samples and also to calculate the percentage of peanuts. 
After some class discussion, they decided to try and take larger samples. Through interactions with 
the instructor, they found that if they took samples of size 10 in a similar manner to their previous 
samples, all outcomes were not possible. Since there were only seven peanuts in their original 
sample, the largest percentage of peanuts in their sample of size 10 would be 70%. After discussing 
this issue with the class, they decided to take samples of size 10 from their original sample of 25, 
with replacement. The process of sampling with replacement was more time demanding than 
sampling without replacement, so the group decided to collect only three samples. They found the 
average percentage of peanuts in the three samples and concluded that a likely interval for the 
percentage of peanuts in the population was that average plus or minus an arbitrarily chosen 4%. 
During an interview with Megan after the activity, we discussed her group’s choice of sample sizes 
of five and 10. She said that larger samples may have provided more accurate results, but would have 
taken too long to sample with the sticks. 

 The next activity worked with TinkerPlots and gave each group member a different sample of 
mixed nuts. From these new samples, each member used TinkerPlots to collect resamples of 25 
mixed nuts (as set up in TinkerPlots) and applied similar methods from the first model development 
sequence to construct a interval of likely values based on the height of outcomes on the dotplot. The 
group was told the true percentage of peanuts in the brand of mixed nuts, which was a value not 
included in all of their predicted ranges. Megan chose a much wider range of values than the other 
students. She concluded that if others did this as well, more of their likely ranges would capture the 
true percentage of peanuts. 

Second Model of Resampling and Inference 
The final activity gave the students two samples of mixed nuts from two brands and asked them 

to conclude which brand had the lower proportion of peanuts. The samples were each of size 25 and 
contained six and 10 peanuts. Unlike the previous activity comparing sneaker purchases, TinkerPlots 
was available for the students to construct sampling distributions. The group constructed two 
empirical sampling distributions with 200 samples in each and determined that the first brand likely 
had 16%-32% peanuts and the second brand had 32%-48% peanuts. These ranges were chosen based 
on the height of the dotplot for each outcomes. Since the likely interval for the second brand was 
higher than the other brand’s interval (except for the endpoint) they concluded that the second brand 
is likely to have more peanuts. 
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During an interview after the activity, Megan and the first author discussed the possibility that 
both brands had 32% peanuts. Megan concluded that it was unlikely for both brands to have 32% 
peanuts, but since that was the only value that overlapped between the two likely ranges, she still 
believed that the second brand was more likely to have more peanuts.   

Discussion 
The group’s model of inference from simulation developed from not drawing a conclusion from 

simulated data, to using data as evidence to make informal inferences. The first model development 
sequence was developed as a means for the students to build the necessary tools to draw these 
informal inferential claims and attempt to apply them to situations in the second model development 
sequence with an unavailable population. The group constructed some notion of the bootstrapping 
process by resampling with replacement from their original sample, but did not take resamples that 
were equal in size to the original sample. The time demanding nature of resampling by hand was 
noted as one reason for taking smaller sized samples. Immediately after these topics were covered in 
the class, the course instructor began topics in formal inference. She believed that the students were 
better prepared for the concepts of confidence intervals and hypothesis testing by participating in the 
instructional unit. Further research is needed to indicate the connections between the informal 
inferential models constructed in this study and students’ reasoning of formal inference. This study 
also has implications with the content and design of introductory statistics curricula, and the role of 
resampling activities on the development of informal inferential reasoning. 
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This paper explores the impact on teachers’ self-efficacy to teach statistics from a graduate course 
aimed to develop teachers’ knowledge of inferential statistics through engaging in data analysis 
using technology. This study uses qualitative and quantitative data from the Self-Efficacy to Teach 
Statistics Survey (Harrell-Williams et al., 2013) to provide data about teachers’ confidence to teach 
statistical topics. The survey was given to 27 participants from two different institutions before and 
after the graduate course. We found that participants’ self-efficacy to teach statistics increased after 
participation in the graduate course and references to specific course activities will be identified.  

Keywords: Data Analysis and Statistics; Teacher Education-Inservice (Professional Development); 
Teacher Beliefs 

Considerable research has addressed students’ statistical thinking (Shaughnessy, 2007), and 
statistics continues to receive attention in the secondary US mathematics curriculum (NCTM, 2000; 
Common Core State Standards Initiative, 2010). However, there is a lack of research on secondary 
teachers’ statistical reasoning and beliefs (Batanero, Burrill, & Reading, 2011). In fact, very little is 
known about teachers’ self-efficacy to teach statistics (Harrell-Williams, Sorto, Pierce, Lesser, & 
Murphy, 2013). This study is situated in self-efficacy for teaching within a graduate course aimed at 
developing knowledge of the teaching and learning of statistics.  

Researchers have investigated the statistical knowledge needed for teaching, using various 
frameworks (e.g., Groth, 2007). Each of these frameworks has identified teachers’ own statistical 
reasoning as a foundational aspect of their ability to teach statistics. Thompson (1992) argues that 
researchers should not separate the study of teachers’ beliefs from teachers’ knowledge since they are 
intertwined. Thus this study aims to look at self-efficacy to teach as another component of teachers’ 
readiness to teach statistical concepts to their students. 

Background and Research Focus 
Self-efficacy is often defined as “people’s judgments of their capabilities to organize and execute 

courses of action required to designated types of performance” (Bandura, 1986, p.391). Self-efficacy 
to teach can be defined as a teacher’s “belief to bring about student learning” (Ashton, 1985, p.142). 
Not only is self-efficacy to teach a central component of a teacher’s beliefs (Greshman, 2008; Smith, 
1996), it has been has been linked to positive influences on students’ learning, the use of more 
innovative teaching strategies, and time spent teaching certain topics (e.g., Czerniak & Chiarelott, 
1990). With these connections, it seems important to improve teachers’ self-efficacy to teach. 
However, it has been suggested that it is hard to impact self-efficacy after teachers enter the 
classroom (e.g., Smith, 1996). 

Bandura (1997) argued that there are four types of sources that may impact one’s self-efficacy: 
mastery experiences, vicarious experiences, verbal persuasion, and physiological responses. For the 
purpose of this study, the focus is on how mastery experiences impact one’s self-efficacy to teach. 
Mastery experiences are prior experiences in performing a task that are perceived to be a success 
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(Bandura, 1997). In terms of self-efficacy to teach there are two forms of mastery experiences: 
classroom teaching experiences and cognitive mastery (Palmer 2011). Arguably, classroom teaching 
experiences are the most crucial source of self-efficacy to teach because individuals can only assess 
their ability to teach by participating in the act of teaching (Tschannen-Moran, Hoy, & Hoy, 1998). 
Cognitive mastery refers to a teacher’s perceived success in understanding the content and pedagogy 
to teach a specific topic (Palmer 2011). The cognitive mastery framework underpins our study to 
measure the development of self-efficacy to teach statistics from a graduate course aimed at 
developing subject matter knowledge and pedagogical content knowledge.   

Our research is situated within the design and implementation of a graduate course that was 
largely influenced by Pfannkuch and Ben-Zvi’s (2011) recommendations for designing experiences 
to develop teachers’ statistical thinking, as well as the Guidelines for Assessment and Instruction in 
Statistics Education (GAISE) reports (Franklin et al., 2007; Garfield et al., 2007) and the 
Mathematical Education of Teachers II report (CBMS, 2012). Over two academic years, a team of 
four instructors from two institutions designed, and taught, a 15-week course which provided 
participants opportunities to develop a deeper understanding of a few statistical ideas.  Two 
instructors taught at one university while the other two taught at the other university creating as 
similar of a course as possible at both institutions through continuous co-planning and reflection.  

Throughout the semester-long course, participants implemented the cycle of statistical 
investigation (Friel, O’Connor, Mamer, 2006) as they engaged in with real data and tasks designed to 
develop their understandings of variation, distribution, samples and sampling distributions, and 
inferential statistics, especially randomization approaches using simulations. The course used 
dynamic software, Fathom (Finzer, 2005) and TinkerPlots (Konold & Miller, 2011), and online 
applets such as StatKey (lock5stat.com/statkey/). Assigned readings and discussions centered on (a) 
the nature of statistical reasoning and how it compares to mathematical reasoning, and (b) students’ 
learning and reasoning related to the aforementioned topics. The software tools, new to most 
participants, were used to support their learning by allowing them to flexibly explore graphical 
representations, easily compute statistical measures, compare data sets, and make changes to data to 
explore conjectures. The software also provided simulation tools necessary to create representations 
of a population, a sample, and an empirical sampling distribution. This study addresses the following 
questions: 1) To what extent is teachers’ self-efficacy to teach statistics changed from a graduate 
course focused on teaching and learning statistics? and 2) What learning experiences do teachers 
identify that influenced their self-efficacy to teach statistics? 

Methodology  

Participants 
Participants came from all the teachers participating in either course across the two institutions.  

The course served a variety of graduate students (n=27). Participants consisted of one undergraduate 
pre-service teacher, six pre-service teachers in a masters program; 11 in-service teachers enrolled in a 
master’s program; one full-time master’s student in mathematics education; and eight doctoral 
students in mathematics or mathematics education. Twenty-one participants were female and six 
were male. Six participants indicated that English was their second language. Most participants had 
completed the equivalent of an undergraduate degree in mathematics, and all but two had at least one 
prior course in statistics. Hereafter we refer to course participants as teachers. 

Data Collection and Analysis 
To examine changes in teachers’ self-efficacy to teaching statistics, the Self-Efficacy to Teach 

Statistics (SETS) survey was administered (Harrell-Williams, Sorto, Pierce, Lesser, & Murphy, 
2014). This survey was chosen because it collects both qualitative and quantitative data about 
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teachers’ self-efficacy to teach statistics. Researchers argue both data sources are needed within the 
self-efficacy research (Wyatt, 2014). SETS was administered prior to the first day of class and during 
the last week of class. The SETS survey contains 44 six-point Likert scale items and six open 
response items that are aligned with the GAISE framework (Franklin et. al., 2007). An earlier version 
of this instrument was validated for use in measuring changes in elementary and middle grades 
preservice teachers’ self-efficacy as a result of interventions, such as a course (Harrell-Williams et 
al., 2013). In addition to an overall score, the instrument provides sub-scale scores that correspond to 
Levels A-C in the GAISE framework. Although there are not explicit definitions given for each level 
in the GAISE report, each level is aligned to specific content. The content in level A is considered 
more concrete and level C is considered the most abstract. For example, in level A students are asked 
to compare groups without generalization while in level C students answer comparison questions and 
make generalizations (Franklin, 2007). There were 11 Likert items for level A, 15 items for level B 
and 18 items for level C. For all Likert items, the stem of the question was “Rate your confidence in 
teaching high school students the skills necessary to complete successfully the task given by 
selecting your choice on the following scale: 1 = not at all confident, 2 = only a little confident, 3 = 
somewhat confident, 4 = confident, 5 = very confident, 6 = completely confident” (Harrell-Williams 
et al., 2014). For the open-ended portion of SETS, in each GAISE level category, teachers were 
asked to identify an item which they felt least and most confident to teach to high school students and 
to explain their reasoning (total of six open-ended items). 

The analysis of the SETS data was completed in two phases. The first phase focused on the 
responses to the 44 six-point Likert scale items. For both the pre- and post-survey, each teacher was 
given a total score calculated as the sum of his/her Likert scores. Sub-scale scores were also 
calculated for each teacher. The totals were divided by the number of items, which resulted in a final 
score that corresponded to the six-point Likert scale. Additionally, a gain score was calculated for 
each teacher as the difference of pre- and post- scores for each item. Means were computed for pre, 
post, and gain scores and a Wilcoxon Signed Rank Test for Matched Pairs was conducted to test for 
the significance from pre to post. Finally, the gain scores were averaged for each teacher and for each 
item. The item averages were examined for highest average gains in relationship to course content. 
Teachers with missing values within specific calculations were removed from the sample for that 
calculation.  

The second phase of data analysis focused on analyzing the open-ended responses for ways in 
which the course influenced teachers’ self efficacy to teach statistics. The code “course” identified 
responses that explicitly referred to specific course activities.  

Results 
First, we report the extent of the change in self-efficacy to teach statistics through the quantitative 

data from the pre and post SETS survey. Second, we report our findings from the qualitative 
responses to identify the course experiences that the teachers identified as influencing their self-
efficacy to teach statistics.  

Influence of Professional Development on Self-efficacy 
We investigated the general influence of the course on self-efficacy to teach statistics by 

examining the mean scores for the pre and post survey and the mean gains by teacher and by item. 
Teachers began the course between somewhat confident (score of 3) and confident (score of 4) for 
each item; however, the teachers finished the course describing their self-efficacy to teach statistics 
as between confident and very confident (see Table 1). With the exception of one teacher, all 
teachers showed a positive average item gain in self-efficacy to teach statistics. The highest average 
item gain was 1.68 Likert points, which was recorded by two teachers. Figure 1 shows the 
distribution of average item gains by teacher. On average, teachers’ self-efficacy for to teach 
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statistics for each item increased one Likert point (0.95 increase). After accounting for missing 
values and using a Wilcoxon Signed Rank Test for Matched Pairs, the increase in self-efficacy 
between the pre and post surveys is considered statistically significant (see Table 2).  
  

 Table 1: Descriptive statistics of Likert scale items   
 Pre Post Gain 
Overall N 26 24 23 

Mean 3.62 4.65 0.95 
Standard deviation 0.82 0.64 0.49 

Level A topics N 26 27 26 
Mean 3.95 5.10 1.14 
Standard deviation 0.80 0.51 0.55 

Level B topics N 27 26 26 
Mean 3.75 4.70 0.94 
Standard deviation 0.81 0.71 0.55 

Level C topics N 27 25 25 
Mean 3.39 4.35 0.97 
Standard deviation 0.96 0.74 0.63 

 
Similar results were found for all three GAISE sub-scores. Level A had the highest pre score 

average of 3.95. This suggests that teachers started out confident in their ability to teach topics within 
that level. Interestingly, these topics are also the areas were teachers’ confidence grew the most with 
a statistically significant (Wilcoxon signed rank test, p>0.001) average gain of 1.14. Level B had a 
pre survey mean score of 3.75 and a post survey mean of 4.70. Accounting for missing values, the 
average gain for level B was 0.94, which was also statistically significant. Finally level C started at 
the lowest confidence at 3.39, implying that most teachers on average feel only somewhat confident 
in their ability to teach statistics. The post mean score was 4.35, which is a growth in confidence to 
teach the level C topics in statistics. The average growth for level C was 0.97 points. Similarly, 
according to a Wilcoxon signed rank test this growth was statistically significant (Table 2). In  
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Figure 1: Distribution of Each Teachers’ Average Likert Item Gain   
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Table 2: Wilcoxon Signed Rank Test for Matched Pairs 

 Test Statistic p-Value 
Overall  4.14 0.000 
Level A topics 4.44 0.000 
Level B topics 4.46 0.000 
Level C topics 4.07 0.000 

 
addition to average gains at all levels, the standard deviation decrease at all levels indicating a 
decrease in variability in post confidence ratings.             

Examining the average gain by item shed light on the specific content aligned to the teachers’ 
growth in self-efficacy to teach statistics. The items that showed the greatest gain on average across 
teachers related directly back to the course goals:  Item 44 (Determine if the difference between two 
population means or proportions is statistically significant using simulations) had an average gain of 
1.85 and Items 9 (Generalize a statistical result from a small group to a larger group), 37 (Evaluate 
whether a specified model is consistent with data generated from a simulation), and 43 (Compare 
two treatments from a randomized experiment by exploring numerical and graphical summaries of 
data) all had an average gain in self-efficacy to teach of 1.42 points. All four of these items address 
the course foci of inferential statistics using randomization approaches, sampling distributions, and 
variation. The item with the lowest overall gain (0.48) was Item 33 (Fit an appropriate model using 
technology for a scatterplot of two quantitative variables), which was not a topic explicitly addressed 
during whole-class activities or discussions within the course.    

Teachers’ Reflection on Learning Experiences 
In the open response items of the SETS instrument used at the end of the course, teachers 

identified course experiences when describing what, in each level, they felt most confident about. At 
both institutions, the course began with lengthy discussions on the cycle of statistical investigation 
(Friel et al., 2006). This cycle became a theme of the course as teachers gained repeated experience 
with posing statistical questions, collecting data, and data analysis and interpretation. Early in the 
course, teachers had opportunities to deepen their understanding of distribution through a series of 
tasks related to interpreting graphical representations. One such task asked teachers to match box 
plots to corresponding dotplots. This task revealed that a given boxplot could have underlying dotplot 
distributions that looked somewhat differently. About this activity, one teacher wrote 

“I feel most confident about working with box plots; the [activity] showed both the advantages 
and disadvantages of boxplots and [how] we can use them to describe data.”   

Based on research by delMas and Liu (2005), a second task teachers experienced was a game in 
Fathom designed to enhance teachers’ conceptualization of the relationship between a distribution 
and its standard deviation. Teachers remembered this game at the end of the course. For example,  

“After doing the activity of "What Makes the Standard Deviation Larger or Smaller", I noticed a 
couple of patterns for justifying the characteristics of normal distributions with different centers, 
shapes, standard deviation, and so on.” 

As the course progressed, simulations became a means by which teachers developed 
understanding about variability and sampling distributions. The SETS item (44), which showed the 
greatest gain in self-efficacy focused on simulations. In the open response items, teachers 
remembered learning from the simulations with and without technology:   



Statistics!and!Probability:!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

452 

“[Simulation] is something that we spent a lot of time on in the course. There are a lot of 
different ways to approach [it] with students such as hands-on simulations or technology 
simulations.”   

One hands-on simulation used physical devices, some of which did not have equiprobable 
outcomes. In the activity, each group had to describe a repeatable action that could produce an 
unpredictable result and the possible outcomes from this repeatable action. After the event(s) of 
interest was selected, for which results could be examined from the repeatable actions, each teacher 
in the group collected a sample of 10 trials. The activity continued with more samples being collected 
and a sampling distribution being created. While it is a familiar activity for statistics educators, it was 
not for the participating secondary teachers. One teacher wrote,  

“I liked the activity we did in class of having each person collect data for a sample of 10…I think 
I have a good conceptual understanding of the relationship between samples, distributions of 
samples, and populations.”   

The simulation focus continued as the course ended with randomization techniques. One teacher 
shared that she  

“already knew about randomization tests, but I feel more confident having multiple pieces of 
software that can perform the simulation for me. Before I was just using statcrunch and showing 
my students the output, but now I can actually have them do it!”   

A specific course experience referenced in the SETS open responses was the Dolphin Therapy 
task (Rossman, 2008). This task required a re-randomization technique to test the difference of 
proportions. Teachers were given index cards to use in the design and simulation of the problem. 
Eventually, they used StatKey and TinkerPlots for a greater number of samples.    

Another course experience that was highlighted by teachers in the open responses of the SETS 
survey was the course mid-term project. For the assignment, teachers self-assigned themselves to a 
working group. Each small group examined best practices for teaching learning a specific statistical 
topic. They applied research literature to create or adapt meaningful tasks and implemented one task 
with a group of students. Projects were shared through oral presentations and a course wiki. Topics 
for the midterm project included: Comparing Distributions, Sampling Techniques and Study Design, 
Sampling Distributions, Hypothesis Testing, Linear Regression/Covariation and Correlation, Using 
Probability to Make Decisions, Subjective Probability and Bayes Theorem.  

The course experiences described above were ones specifically linked by teachers to content in 
which they felt most confident. In the survey, teachers were also asked to identify particular areas 
where they felt least confident. Mostly, teachers responded with comments such as “these items were 
not specifically discussed in the course” or “I do not think I had a lot of practice … in the course.”  
Other times, however, teachers provided more insight into particular self-reported deficiencies (e.g. 
box plots, error, randomization, inference, sampling). Several teachers even suggested that they 
wanted more time with topics or would continue to refer to course materials to develop a deeper 
understanding. One teacher wrote,“Sampling!!! I don’t feel very confident teaching it yet. I began to 
develop a better internal understanding of it in class. I wish I could study it some more in a similar 
environment as was created in [my course].”  And, another teacher wrote, “I am confident that 
randomization is highly important but I still second guess myself...Since I second guess myself, I am 
somewhat confident because I at least know that I have resources that I can reread.”  Despite the 
fact that all teachers showed gains in self-efficacy overall, the open-ended responses provided details 
for instructors at each institution regarding potential pivotal experiences for teachers’ own 
development of statistical understanding during the graduate course that seem to influence their 
statistics teaching efficacy. 
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Discussion and Conclusions 
The results indicate that the course had a statistically significant positive impact on teachers’ self-

efficacy to teach statistics. These results were seen on the overall level and at all three GAISE levels. 
This suggests that a graduate course focused on the teaching and learning of statistics can impact a 
teachers’ self-efficacy to teach statistics, and furthermore suggests that teachers can gain in self-
efficacy to teach statistics from focusing on content knowledge and pedagogical content knowledge 
for teaching statistics. Additionally, our data also show that teachers have decreasing confidence to 
teach from level A to level C. This result holds for both the pre and post surveys and suggests that 
more abstract material corresponds to lower self-efficacy to teach. This result is similar to results 
found by Harrell-Williams et al., (2013) with pre-service teachers.  

In addition to an overall gain in self-efficacy to teach statistics by the teachers, specific gains 
related to the course and its objectives were seen. After examining the data by SETS items, large 
gains were seen on topics related to the course objectives of inferential statistics, sampling 
distributions, and variation. Additionally, many teachers’ mentioned course activities as reasons for 
their increase in self-efficacy to teach these topics. This speaks positively to the design of these 
activities and suggests that some course activities can have powerful impacts on teachers’ confidence 
to teach statistics. These seem to be serving as a key mastery experiences. 

However, not only did the areas that were emphasized in the course get impacted. There was an 
average increase on all items on the SETS survey including those that were not specifically stressed 
in the course. One possible source for this growth could be the course projects that allowed students 
to investigate topics of their choosing.  

In general, these results point to specific activities that work to increase self-efficacy to teach 
statistics with teachers. Further research needs to be conducted to better understand what type of 
activities and how these activities are impacting teachers’ self-efficacy to teach.   
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A METHOD FOR DESCRIBING THE INFORMAL INFERENTIAL REASONING OF 
MIDDLE SCHOOL STUDENTS 
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A primary obstacle in the study of how students’ informal understandings of statistical inference can 
be developed and leveraged into formal statistical understandings has been the lack of a method for 
describing and categorizing student thinking.  In this research an adaptation was made to the 
Structure of Observed Learning Outcomes (SOLO) taxonomy to focus on Informal Inferential 
Reasoning (IIR).  The adaptation evolved through two iterations of refinement and validation that 
included classroom observations and task-based interviews as part of a larger project that also 
developed an assessment for the purpose of eliciting students’ IIR. 

Keywords: Data Analysis and Statistics; Middle School Education 

Focus of the Study 
Statistical literacy has become an integral part of being an informed citizen, making informed 

personal choices, being a professional in the modern workplace, and working in the sciences 
(Franklin et al., 2005; Zieffler, Garfield, Delmas, & Reading, 2008).  In response to this, there has 
been an increased emphasis on statistics education both in the US (National Council of Teachers of 
Mathematics, 1989, 2000; National Governors Association Center for Best Practices [NGACBP] & 
Council of Chief State School Officers [CCSSO], 2010), and internationally (Leavy, 2010; Makar & 
Rubin, 2009; Shaughnessy, 2007).   Informal Inferential Reasoning (IIR), defined by Zieffler et al. 
(2008) as “the way in which students use their informal statistical knowledge to support inferences 
about unknown populations based on observed samples” (p. 44), has emerged as a foundation on 
which students can build their formal statistical understandings.  Research has shown that IIR does 
not develop with maturation or increased content knowledge (Jacob, 2013; Zieffler et al., 2008), but 
it can be intentionally developed (Jacob, 2013; Langrall, Nisbet, Mooney, & Jansem, 2011; Makar, 
Bakker, & Ben-Zvi, 2011).   

Underlying Framework 
  Research suggests that statistical literacy is a hierarchical construct (Watson & Callingham, 

2003).  The SOLO taxonomy is a neo-Piagetian model of looking at hierarchical learning from a 
cognitive perspective (Shaughnessy, 2007) developed by Biggs and Collis (1982).  Because of its 
strength in describing hierarchical learning it has received a significant amount of attention in 
statistics education research. 

SOLO cycles represent progress in a student’s ability to reason with increased complexity about 
a topic, and are comprised of the following levels: Pre-structural (P), Uni-structural (U), Multi-
Structural (M), Relational (R), and Abstract/extended abstract (A). The taxonomy is based on 
identifying how many methods for accessing a topic a student has.  At P, the student has no cognitive 
structure through which they can access the objective.  At U a student has a single relevant way of 
accessing the objective, and at M the student has more than one (though they are not coordinated).  
At R the student is able to coordinate different ways of accessing the objective, and at A they can 
make abstract statements about the objective (Watson & Moritz, 2000).  In looking at the 
development of a concept, P is the beginning point and A is the ending point; however, as the 
concepts being looked at grow more complex it becomes necessary to use more than one cycle.  
When this occurs, the A level of one cycle can be considered the U level for a cycle that looks at 
more complex thought, resulting in the structure of P-U1-M1-R1-U2-M2-R2-A for what is referred to 



Statistics!and!Probability:!Brief!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

456 

as a two-cycle model (note that the letter remains the same but a subscript is used to denote which 
cycle is being referred to).  These two-cycles are used widely (see Reading & Reid (2006), Watson & 
Moritz (2000)), and in response to a question at a conference presentation Reading suggested that a 
two-cycle SOLO-based framework could be used to describe the development of IIR (Zieffler et al., 
2008),. 

In order to apply the SOLO taxonomy there was also a need for clearly articulating the types of 
understandings that would be investigated.  Zieffler et al.’s (2008) assessment framework was 
selected for this purpose.  In this framework, IIR is identified as having three components: making 
judgments or predictions, using or integrating prior knowledge, and articulating evidence-based 
arguments (Zieffler et al., 2008).  It also identifies three types of IIR tasks: Estimating and Drawing a 
Population Graph (EPG), Comparing Two Samples (CTS) of data, and Choosing Between Two 
Competing Models (CBM) (Zieffler et al., 2008), which were used in building the assessment and 
became important in classifying student reasoning.  

Methodology 
This research was conducted at a rural Midwestern middle school (grades 6-8) with 

approximately 900 enrolled students, 11% minority students, 16% qualified for the free or reduced-
price lunch program. The study involved three cooperating teachers and 188 students.  The research 
progressed through four phases: an initial development and modification phase, two modification 
phases, and a validation phase. 

In the initial development phase a theoretical SOLO adaptation was constructed based off of the 
frameworks.  Eight students were selected from the first teacher’s classes using striated random 
sampling in order to ensure students at various levels of mathematics achievement were represented.  
The students completed an assessment designed to elicit their IIR, and subsequently participated in 
task-based semi-structured interviews to further explore their IIR abilities.  Open coding was done on 
the responses from both the interviews and assessments, and the results were used to refine the 
cycles, cycle definitions, and assessments. 

The first modification phase occurred at the beginning of the next school year with a separate 
group of students and the two remaining teachers.  The assessment that was modified during the 
initial development was administered to 180 students as a pre-test to a unit on statistical inference, 
and student responses were used to ensure saturation of the codes from the initial development.  The 
results were used to further refine the cycles, cycle definitions, and assessments.  The results of the 
coding were also used to identify key examples that would be included with the framework. 

The second modification phase occurred two weeks later, during the unit on inference.  Sixteen 
students were selected using striated random sampling to include students of diverse IIR ability 
levels as identified by the pre-test.  Students were placed into mixed-ability groups and data was 
collected using LiveScribe pens and by retaining written and digital student work during a six day 
unit on inference.  Student conversations and artifacts were used to ensure saturation of the codes 
from the first modification.  The results were again used to further refine the cycles, cycle definitions, 
and assessments, and to refine the list of key examples. 

The validation phase occurred during the two weeks after the second modification phase, at the 
end of the unit on inference.  The 180 students from the first modification phase took the final 
version of the assessment, and the 16 students from the second modification phase also participated 
in task-based semi-structured interviews.  The results were used to identify whether any further 
modifications were needed to the SOLO adaptation or the assessment. 

Results 
During development a SOLO adaptation was posited that aligned with Reading’s 

recommendations of a two-cycle model with one cycle dealing with naïve IIR and the second with 
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appropriate IIR.  Assessment and interview data was collected on eight sixth-grade students, and six 
of the eight students were classified as P, meaning their IIR ability was insufficient to place them into 
the Naïve cycle.  However, amongst those six students there was a clear pattern; while they were all 
incapable of reasoning at the Naïve level, structures to their reasoning did emerge in the open coding.  
Those structures were compatible with the three components of IIR posited by Zieffler et al. (2008), 
and it became clear that there was value in extending the framework to lower levels of reasoning.   

The data from the two modification phases supported the idea that the three question types tested 
three distinct concepts in IIR that students had developed at different rates.  The impact on the SOLO 
adaptation was that it needed to be flexible enough to be applied to these three distinct concepts 
within IIR while still having level indicators that were defined clearly enough for inter-rater 
reliability.  The bulk of the modifications in these phases involved balancing the specificity and 
generalizability of the cycle indicators. The resulting framework is presented in Table 1.  Examples 
from EPG are presented in Table 2, while examples from CTS, and CBM question types were 
omitted for space but are available on request. 
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Table 1: Final SOLO Cycles and Indicators 
Construct 

Cycle Use of Variability Use of Context Certainty and 
Argumentation 

Pre-Stuctural 
No Cycle  Modifies context to 

answer question  

Pre-IIR 
Cycle 1 

No concept or use of 
variability 

Answers based solely 
on context. Deterministic language 

Naïve-IIR 
Cycle 2 

Limited conception or 
use of variability 

Over-use of context 
over data or vice-versa. 

Probabilistic language 
with minimal impact on 
conclusions 

Appropriate IIR 
Cycle 3 

Appropriate use of 
variability 

Considers both context 
and data in strategies 
and solutions 

Probabilistic language 
with uncertainty 
expressed in solution 

Table 2: Solo Taxonomy Examples and Codes for EPG Question Type 
SOLO Code Estimating a Population Graph (EPG) Structure example Structure 

Code 

Pre-Structural 

Expanding/personalizing context to provide answers. Personal-
context 

Student selects numbers from the context and/or problem and 
combines them arithmetically in an inappropriate or unfocused 
way 

Undirected-
arithmetic 

U1 

Increasing all data values by a fixed amount. Linear vertical-
only 

Increasing all data values to level off the graph Leveling-off-
data 

M1 Using both strategies in U1 independently  
R1 Coordinating both U1 strategies.  

U2 

Doubling existing data value frequencies Doubling 
Proportionally increasing existing data values without including 
data at new values 

Proportional 
vertical-only 

M2 Using both strategies in U2 independently  

R2 
Coordinating the use of a U2 strategy with consideration to the 
context  

U3 

Growing the sample proportionally both vertically and by 
including appropriate additional data values. 

Proportional 
vertical-
horizontal 

Student explanations include appropriate statements of uncertainty 
that reference (explicitly or implicitly) measures of spread or 
center. 

Appropriate 
variability 

M3 Using both strategies in U3 independently  
R3 Coordinating the use of U3 strategies.  
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PRE-SERVICE TEACHERS’ UNDERSTANDING OF ASSOCIATION AND 
CORRELATION IN AN INQUIRY-BASED INTRODUCTORY STATISTICS COURSE 
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To teach statistics at the K-12 levels with success requires that preservice teachers (PSTs) to not only 
understand the statistics concepts, but also to make connections among them. Statistics educators 
call for the use of real data, technology, and active learning in an introductory statistics course for 
PSTs. But these components do not ensure desirable learning outcomes. This presentation provides 
an exemplar of such an content course, and presents a preliminary framework and qualitative 
analyses of pre-service teachers’ activities related to the concepts of association/correlation in an 
inquiry-based and technology rich environment.  

Keywords: Teacher Education-Preservice; Technology; Teacher Knowledge; Post-Secondary 
Education 

The education community has recognized the importance and challenges of preparing future 
teachers to teach statistics (Committee on the Undergraduate Program in Mathematics, 2004; 
Conference Board of the Mathematical Sciences, 2001). Accordingly, the Guidelines for Assessment 
and Instruction in Statistics Education (GAISE) Project have produced the college report (GAISE, 
2005) to provide six recommendations for educators to teach the introductory statistics courses and 
described 23 desirable student outcomes. This paper presents a snapshot of a content course for pre-
service teachers (PSTs) that is designed to echo the call from the GAISE college report: 
incorporating a variety of data sets that are relatable to teachers’ professional life and school life, 
using an educational software package that is relevant for teaching, and fostering active learning by 
engaging PSTs in statistical inquiries. By exploring PSTs’ activities and their understandings of 
statistical concepts resulting from using real data and technology in an active learning environment, 
the realization of this content course and PSTs’ learning outcomes in the light of the goals of 
statistics education as delineated in the GAISE college report is examined, which help fill in the gaps 
between the standards and their enactment.  

In this paper, I present a case study of two groups of PSTs, and scrutinize the ways in which they 
use technology to engage in a small group activity related to the statistical concepts of 
association/correlation. Statistical Association is about the general relationship between any two or 
more variables, while correlation is specific to measuring the association between two quantitative 
variables to see the strength and direction of the relationship. The former concept is more inclusive 
than the latter one. In the existing literature, there are more studies on the (mis)conceptions of 
association in general, with seldom discussion of correlation explicitly.  

In the literature, however, the problems used are mostly about finding the association between 
two or more categorical variables in a contingency table rather than quantitative variables, and the 
type of variables and its connection to the type of relationship one should look for are not explicit 
and highlighted. Moreover, these studies only asked the participants to find the statistical association 
between given variables in different problem settings, rather than asking them to pose a statistical 
question first and then to select the variables to answer the question. This study can also fill in the 
gaps of literature on the conceptions of association and correlation by connecting these two concepts, 
and to other statistical concepts, such as the type of variables.  

Based on the literature and the vision of an introductory statistics course described above, I asked 
two research questions:  
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• What are the characteristics of PSTs’ small group activities with the use of real data and the 
use of TinkerPlots (Konold & Miller, 2005) in an inquiry-based statistics content course? 

• How well do PSTs understand and reason about the concepts of correlation/association as a 
result of learning, given such a context? 

Method and Data Analysis 
Statistics for Elementary Teacher is a 4-credit course for PSTs in the elementary teacher 

preparation program at a mid-west research university. The course in this study consisted of 28 
sophomore and junior PSTs from social studies, literature, science, mathematics, and special 
education. The course was a mix of lectures and activities. Data include videos of students’ on-screen 
activities and their talks recorded by a software package installed on the computer, and PSTs’ written 
work. Video recordings were transcribed, and screen-shots were taken to serve as figures in the 
transcript for illustrative purposes. For this paper, two groups of four PSTs working on a 40-minute 
task were selected to illustrate the characteristics and patterns of PSTs’ activities using technology 
and a real data set.  

The Australia Student Data Task 
Pre-task Instruction. The task happened in the second lesson of data analysis. The instructor 

had introduced graphing and using numerical indicator in regression as two ways to explore the 
relationship between two variables. The instructor elaborated on “correlation does not imply 
causation”, and the idea that association can also mean a non-linear relationship between two 
variables. Also, he discussed other possibilities of the observed association such as chance or the 
existence of a lurking variable.  

The Activity. The PSTs were given a data set with 29 attributes of 159 students in south 
Australia. They were asked to explore the data and formulate three questions that they could answer 
with these data, including one that compared two or more groups, and one that examines the 
associations between two quantitative variables. They were also encouraged to support their 
conclusions with the representations that they generated and with descriptions of statistics, and to 
discuss the possibilities of whether the correlation could imply a causal relationship.  

Theoretical Framework 
The characteristics of PSTs’ classroom activities with the technology are operationalized by 

adapting the Model of Learning in Exploratory Data Analysis framework (Fitzallen, 2013). The 
framework consists of dimensions with key behaviors within each dimension. The dimensions are 
Generic Knowledge, Being Creative with Data, Understanding Data, and Thinking about Data, 
which come from previous research on statistical representation comprehension (Friel, Curcio, & 
Bright, 2001; Kosslyn, 1989; Moritz, 2004) and statistical thinking and reasoning frameworks 
(Shaughnessy, 2007; Wild & Pfannkuch, 1999). As a result, this framework is closely aligned to the 
GAISE report in terms of how the statistics community envisions the statistics education. In the 
coding process, new and repeatable key behavior that exemplifies each dimension was added to the 
list, and the descriptions of such codes were provided for iterative coding. I used the framework to 
code the transcripts, and themes related the student outcomes (of the lack thereof) in the GAISE 
report were surfaced. More analysis is underway for a wider scope, studying more activities across 
the spectrum of statistical topics. With more activities analyzed, a more comprehensive framework 
with new codes will be developed to capture the activities of PSTs in a technology-rich and inquiry-
based statistical content course. 
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Results 
The two groups of recorded PSTs engaged with the data at many different levels. Most of the 

time, they were (a) using their generic knowledge of the context and their technology knowledge of 
the software; and (b) engaging in basic transnumerations, including changing the scale of the axes, 
and color coding the icons in the plot by the third variable. The table below is a comprehensive 
account of these characteristics of their interactions: 

Table 1. Percentage Of PST’s Interactions At Each Dimension And Key Behaviors Within 
Each Dimension In The Australia Student Data Activity 

Dimensions Counts Percentage The two most frequent Key 
Behaviors 

Percentage of 
The Two Key 
Behaviors 

Generic 
Knowledge 

N=26 45.61% Speaking the language of the data 
and the graph 

65.38% 

Understanding how to use the 
features of software and 
technology environment 

19.23% 

Being 
Creative with 
the Data 

N=16 28.07% Describing data from graphs 50.00% 
Constructing different form of 
graph 

25.00% 

Understanding 
the Data 

N=8 14.04% Making sense of data and graphs 62.50% 
Answering questions about the 
data 

37.50% 

Thinking 
about the Data 

N=7 12.28% Interpreting the data 57.14% 
Recognizing the limitation of the 
data 

42.86% 

 Total 
= 57 

   

In addition, patterns emerged from the quality of the salient key behaviors. In the next section, 
some salient characteristics of the activities that are astray from the goals of statistics education (as 
portrayed by the GAISE reports), and the misconceptions of association/correlation are described.  

Anecdotes Mask Data as Opposed to Data Beats Anecdotes 
The PSTs brought their own contextual knowledge extensively into their interactions, particularly 

when the task had open-ended questions (e.g., when a task did not specify which variables to 
analyze). Some anecdotes put forward by the PSTs were relevant to the discussion. These anecdotes 
helped the group choose attributes to consider, contributed to explanations of the variables as 
displayed on the graph, or helped them make sense of the data. But often the PSTs began sharing 
personal anecdotes irrelevant to the data, and got distracted by the extreme value in the data set 
without raising any question about the potential mistake in the data collection process. For example, 
one group spent quite some time to discuss a data point (30 hours of exercises per week) and their 
own exercise habits. Also, the PSTs did not persist in examining representations when the 
representations did not conform to their preconceptions of the relationships between the variables 
based on their contextual knowledge. For example, one group generated 27 different representations 
without scrutiny, and none of them “can be presented”, according to them, in the whole class 
discussion that followed.  
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Misuse of Variables in Finding Statistical Relationships  
The PSTs showed robust misunderstanding of association/correlation and the type of variables 

that they should be looking for. Both groups used correlation and association interchangeably in their 
discussions. As a result, they did not look among quantitative variables consciously to find potential 
correlation between variable pairs. It was evidenced in their discussion that they had many 
misconceptions on the variable types, and how types relate to the relationship between variables. 
Accordingly, even when they were instructed to look for quantitative variables, they would select a 
qualitative variable, or they tried to convert a qualitative variable to a quantitative one just by 
modifying the label on the axes to be numeric. Some features of TinkerPlots also emerged to 
contribute to PSTs’ confusion about the variable type. For example, regardless of the variable types, 
the data points were put into bins in the graph by TinkerPlots after the PSTs selected the variables, 
which sometimes let the PSTs see visually how “qualitative” data could be “transformed” into 
quantitative ones by spreading out the points. 

Discussion 
The PSTs did not display most of the misconceptions discussed in the literature (e.g., Batanero, 

Estepa, Godino, & Green, 1996; Batanero, Estepa, & Godino, 1997). But it is evidenced in these two 
groups of PSTs’ discussion that they could not consciously choose the right type of variables to 
explore the possible relationship, and they seemed to confuse correlation and the more inclusive 
concept association, and sometimes even equate them. Continuous variables can be transformed into 
categorical ones (e.g., age), if needed, but vice versa does not always hold (e.g., race). The lack of 
experience in collecting and cleaning data may render PSTs less knowledgeable in this statistical 
concept of variables, and eventually hinder their profound understandings of other related statistical 
concepts. The presence of technology and statistical inquiry using real data as advocated by the 
research community does not automatically ensure desirable learning outcomes in PSTs. By studying 
PSTs’ understanding of various topics in statistics in such an environment, we can refine the process 
of the implementation of an introductory content course by making explicit the necessary 
connections among certain statistical concepts, and by refining our statistical discourse to make 
distinctions among different concepts during class discussions.  
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The purpose of this qualitative case study was to provide rich descriptions of mathematics teachers’ 
approaches to statistical investigations using technology.  Twenty participants completed parallel 
statistical investigations individually at the beginning and end of a course on teaching and learning 
statistics.  Additionally, participants completed two group investigations during the course. The tasks 
provided different opportunities for participants to engage in statistical investigations using 
technology. A hybrid qualitative analysis including both deductive coding and inductive coding was 
used to characterize teachers’ approaches.  

Keywords: Data Analysis and Statistics; Technology; Teacher Education-Inservice; Teacher 
Education-Preservice 

Introduction 
New school mathematics standards in the United States have an increased focus on statistics and 

data analysis (Common Core State Standards Initiative, 2010), while statistics education researchers 
have called for an emphasis at the secondary level on statistical investigations (Franklin et al., 2007).  
Dynamic statistical software developed specifically for teaching and learning statistics exists, but has 
not yet been widely adopted in schools. There is general consensus regarding the lack of teacher 
preparation and professional development to teach statistical investigations (MET-II, 2012; ASA & 
NCTM, 2013) as well as the need to ensure that teachers have adequate statistics content knowledge 
and opportunities to engage in all stages of a statistical investigation (Franklin et al., 2010).  
Recommendations included in the MET-II report include a statistics and probability course for 
teachers emphasizing active learning with hands-on devices (middle school) and technology (high 
school) focused on a four-step process of statistical investigation.  

Since few teachers have had such a course or experienced learning statistics in the ways 
recommended by the GAISE and MET-II reports, research is needed to understand how to best 
prepare teachers to teach new statistical standards utilizing the recommended pedagogical 
practices.  Literature in mathematics and statistics education has addressed student and teacher 
knowledge related to various statistical concepts, but there is a need for a study that examines 
teachers’ approaches to an entire statistical investigation cycle while using technology. The purpose 
of this study is to describe and characterize teachers’ approaches to statistical investigations with 
multivariate date sets using technology throughout a graduate level course on teaching and learning 
statistics. 

Theoretical Background 
There are many descriptions of statistical investigations in the statistics education literature.  All 

agree the process is non-linear and involves going back and forth between various phases. Wild and 
Pfannkuch’s (1999) statistical thinking framework included an investigative cycle adapted from 
MacKay & Oldford’s (1995) PPDAC cycle (Problem, Plan, Data, Analysis, Conclusions). 
Additionally, Wild and Pfannkuch’s (1999) description of five types of statistical thinking, (a) 
recognition of the need for data, (b) transnumeration, (c) consideration of variation, (d) reasoning 
with statistical models, and (e) integrating the statistical and contextual, guided the evaluation of 
teachers’ work during a statistical investigation. 

Recognition of the need for data to make decisions refers to acknowledging the inadequacy of 
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personal experiences and anecdotes for drawing conclusions and making decisions (Wild & 
Pfannkuch, 1999).  Snee (1999) described recognizing and collecting appropriate data as knowing 
which data are relevant. Chance (2002) added the key question, “Have we collected the right data?” 

Transnumeration is a dynamic process of collecting, forming, and changing data representations 
to engender better understanding of a process or system (Wild & Pfannkuch, 1999). Transnumeration 
is involved in selecting appropriate measures, displays, and statistics for presenting and describing 
data. Chick (2004) described transnumeration as choosing the most appropriate representational 
technique. Shaughnessy (2007) suggested that different representations of data could reveal new 
information about the data that were previously hidden.  

Consideration of variation means anticipating and recognizing the role of uncertainty and 
randomness in all processes (Wild & Pfannkuch, 1999). This consideration includes recognizing 
potential causes and sources of variation as well as knowledge of how to act on variation (Noll, 
2007). Shaughnessy (2007) and Pfannkuch and Ben-Zvi (2011) also highlighted the centrality of 
variation to statistical thinking. Snee (1990) defined statistical thinking as “thought processes, which 
recognize that variation is all around us and present in everything we do, all work is a series of 
interconnected processes, and identifying, characterizing, quantifying, controlling, and reducing 
variation provide opportunities for improvement” (p. 118). 

Reasoning with statistical models includes reasoning with tables and graphs as well as more 
complicated models (Wild & Pfannkuch, 1999). This includes reasoning with distributions or 
viewing data as an aggregate (Konold & Higgins, 2003). Moore (1999) described the importance of 
looking for overall patterns and deviations from patterns in data, choosing appropriate numerical 
descriptions of aspects of the data, and seeking compact mathematical models for sufficiently regular 
overall patterns in data. 

Finally, integrating statistical and contextual reinforces the notion that statistical analysis cannot 
be divorced from context.  Where, why, and how data are collected all play a role in decisions 
regarding data analysis (Wild & Pfannkuch, 1999).  Chance (2002) described this type of thinking as 
constantly relating data to the context of the problem and interpreting conclusions in non-statistical 
terms. 

Methods 
This study examined twenty participants’ responses to a pre- and post-task assigned in a graduate 

level class focused on teaching and learning statistics. The graduate course is considered an 
intervention because it was specifically designed to improve teachers’ knowledge of statistical 
investigations from posing questions to making inferences. The course engaged teachers as learners 
in completing statistical investigations, reading relevant research on teaching and learning statistics, 
and designing statistical tasks for students. The instructor expected that teachers would learn to use 
dynamic statistical software during the course and assignments provided opportunities to both read 
about and engage in statistical investigations. As such, it was expected that teachers would 
demonstrate more evidence of statistical thinking at the end of the semester.  This was not an 
experimental study and there was no control group, therefore no causal claims related to the course 
and changes in teachers’ approaches can be made. However, information about the course provides 
useful context for understanding possible influences on teachers’ approaches. 

The participants consisted of one undergraduate in the last year of a secondary mathematics 
education program, fourteen current or pre-service mathematics teachers enrolled in masters’ 
programs, and five PhD students in Mathematics Education. Sixteen participants were female and 
four were male. Five of the participants had no teaching experience, two had middle-school teaching 
experience only, and thirteen had secondary and/or post-secondary teaching experience.  Those with 
teaching experience had between 3 and 15 years of experience with a mean of 6.9 years. Six of the 
participants had taught a statistics course at the secondary or post-secondary level.   
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Tasks for Assessment 
Two parallel tasks were used for the purpose of describing participants’ approaches to statistical 

investigation with a given multivariate data set using technology. The initial task, completed in the 
first week of the semester, was modified from Connected Mathematics: Data about Us (Lappan, 
2004, p. 40).  Participants were given data about sixth grade students’ jump roping that included 
three variables, two of which were categorical (class and gender) and one quantitative (number of 
consecutive jump ropes). Participants were asked to generate questions, explore one of the questions 
using technology, describe their exploration and findings, and note any new questions that 
arose.  They were provided with data files for Excel, TinkerPlots, and Fathom.  Most participants had 
used these technologies in earlier courses.  

For the final task, given in the last week of the semester, participants were provided with a new 
data set and asked to complete the same process. The data set was parallel in structure to the initial 
task including a quantitative variable (students’ scores on the PSAT math section), as well as two 
categorical variables (grade level, and class). 

In addition, two group investigations were completed during the course.  In the first 
investigation, groups posed their own questions based on Census at School survey data 
(http://www.amstat.org/censusatschool/) and downloaded samples of data from the Census at School 
Random Sampler.  The second group investigation involved planning how to collect and analyze data 
to determine whether different sets of dice were fair. Groups had to evaluate each other’s claims and 
decide which set of dice they would recommend to a game manufacturer. 

Coding 
All initial and final tasks were blinded and initially coded using deductive, open coding, similar 

to a grounded theory approach (Strauss & Corbin, 1990). The researcher noted types of questions 
asked, the order and types of representations and calculations, descriptions of analysis, conclusions, 
and how technology was used during the investigation. After noting general similarities and 
differences in approaches, the researcher used inductive coding and identified evidence of Wild and 
Pfannkuch’s (1999) five types of statistical thinking.  For example, including multiple 
representations was considered evidence of Transnumeration when the participant described the new 
information gleaned from each representation. Multiple representations were also considered 
evidence of Reasoning with Statistical Models when participants used representations to make 
decisions about choices of statistical tests and measures.  Results of the deductive and inductive 
coding were synthesized to create rich descriptions of teachers’ approaches. 

Findings 
Participants’ approaches to investigations varied more at the beginning of the course than at the 

end of the course.  Most participants were able to ask appropriate statistical questions and draw 
appropriate conclusions on both the initial and final tasks as well as in the group investigations. On 
the initial task, participants were more likely to engage in either informal analysis or formal analysis, 
while on the final task most participants engaged in both informal and formal analysis, using the 
informal analysis to guide the formal analysis. On the initial task and first group investigation, 
participants used a wide variety of representations and approaches, while on the second group 
investigation and final task participants tended to use more similar approaches and representations. 

Conclusion & Summary 
This study examined teachers’ approaches to statistical investigations using technology 

throughout a graduate level course on teaching and learning statistics.  There was evidence of an 
increase in statistical thinking exhibited between the initial and final tasks. Additionally, various 
approaches to statistical investigations used by participants throughout the course were documented 
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through an in-depth hybrid qualitative analysis. Detailed descriptions of these approaches and 
documentation of the statistical thinking evidenced in these approaches should prove valuable for 
planning experiences designed to engage teachers in statistical investigations. 
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The aim of this research study is to explore students’ reasoning concerning variation when they 
compare groups and have to interpret dispersion in terms of risk. We analyze in this paper the 
responses to two problems from a questionnaire administered to 82 ninth-grade students. The first 
one composed of losses and winnings coming from a hypothetical game; the second is about medical 
treatments. The results show the difficulty students had in interpreting variation in a risk context. 
Although they identify the data group with more variation, this is not enough for interpreting the 
variation in terms of risk and making a rational decision. The categories of risk-seeking and risk-
aversion are used to explain the behavior of students. As a conclusion, it is suggested that more risk 
context situations should be studied. 

Keywords: Data Analysis and Statistics; Middle School Education 

Introduction 
Variation is the underlying reason for the existence of statistics (Watson, 2006, p. 217). Moore 

(1990) emphasized the omnipresence of variation and the importance of modeling and measuring it 
in statistics; Wild & Pfannkuch (1999) included the perception of variation as part of the fundamental 
types of statistical reasoning. Burrill and Biehler (2011) proposed a list of seven fundamental 
statistical ideas in which variation is the second idea after data. Several researchers have explored 
contexts and problems to encourage students from different scholar levels to perceive, describe 
or/and measure variation in data. For example, variability in sampling (Watson & Moritz, 2000), 
chance (Watson & Kelly, 2004), repeated measurement (Petrosino, Lehrer & Schauble, 2003), 
weather (Reading, 2004). In this paper we propose two problems in risk contexts where dispersion is 
relevant and we explore the reasoning of middle school students in front of these problems. 

Conceptual Framework 
Four concepts constitute our conceptual framework: tasks or problems, risk context, reasoning 

and the SOLO model. An important part of research is to seek problems that promote the capacity to 
think and reason, about and with the fundamental ideas of the study area. Problems should be 
formulated in an appropriate context and encourage students to engage with the concept to be 
learned. Tasks on making decision under uncertainty are common in statistics and have been widely 
used to promote and analyze important aspects of the statistical reasoning of people. In addition, 
problems on comparing groups are frequently used to engage students in reasoning about data since 
in many statistical studies are used this kind of problems. In the present work two problems on 
decision making and comparing groups of data are proposed, in these problems variation is 
significant and their solution implies some risk preferences. 

The interpretation of dispersion depends on the situation from which the data come. One kind of 
elemental problems where variation could emerge can be formulated in risk context. These situations 
appear when there are potential and unwanted results that, as a consequence, lead to losses or 
damages. A paradigmatic task in risk context consists in making a decision about two games where 
gains and losses are at stake. Consider the following problem:  

The gains of realizations of n times the game A and m the game B are: 
Game A:  
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Game B:  
Which of the two games would you choose to play in? 

The solution is reached by following a flow diagram: 1) Compare  and , 2) if  then chose 
the Game whose mean is the greatest; 3) if  then there are two options: 3a) Choose any game, 
3b) Analyze the dispersion of data in each game and choose according to risk preferences. These 
preferences can be defined as generalizations of the attitudes to reject or seek the risk identified by 
psychologists:  

 …a preference for a sure outcome over a gamble that has higher or equal expectation is called 
risk aversion, and the rejection of a sure thing in favor of a gamble of lower or equal expectation 
is called risk seeking (Kahneman & Tversky, 2000, p. 2). 

It is worth noting that in a game the dispersion of gains can be considered a measure of risk. A 
preference is motivated by risk aversion when an option whose data have less dispersion over another 
whose data have greater dispersion is preferred. The decision is motivated by risk seeking when the 
option whose data have greater dispersion is chosen. 

This study is located in the area of statistical reasoning; the purpose of the research on it is to 
understand how people reason with statistical ideas (Garfield & Ben-Zvi, 2008). When students try to 
justify their responses, elements that they think are important to the situation are revealed; in 
particular, the data they choose, operations made with these and knowledge and beliefs on which 
they rest for doing that, are important in reasoning.  

The Biggs and Collis (1982) Structure of Observed Learning Outcomes (SOLO) model is based 
on the assumption that development can be represented in hierarchical structures. Five levels are 
postulated in SOLO model: Prestructural level, the responses only show that students engage to task 
but do not use any relevant aspect to its solution. The Unistructural level, responses have one 
relevant aspect to the task solution. The Multistructural level present more than one relevant aspect 
but without integrate them. Relational level responses integrate in a coherent way more than one 
relevant aspect to the task. Finally, at the Extended Abstract level responses would show a higher 
abstract response. Applying these levels to analyze the answers to the tasks allows us to create a 
hierarchy that describes levels of students’ reasoning of increasing complexity.  

Method 
The participants were 82 students (aged 14 to 16) belonging to two different ninth grade 

groups in a private school in Mexico City (last year of middle school).Two problems (which are 
presented below) were designed to explore the reasoning of the students: 

Problem 1. In a fair, the attendees are invited to participate in one of two games, but not in 
both. In order to know which game to play, John observes, takes note and sorts the results of 10 
people playing each game. The cash losses (-) or prizes (+) obtained by the 20 people are shown 
in the following lists: 

Game 1: 15, -21, -4, 50, -2, 11, 13, -25, 16, -4  
Game 2: 120, -120, 60, -24, -21, 133, -81, 96, -132, 18 

If you had the possibility of playing only one of the two games, which one would you 
choose? Why? 

Problem 2. Consider you must advice a person who suffers from a severe, incurable and 
deathly illness, which may be treated with a drug that may extend the patient’s life for several 
years. It is possible to choose between three different treatments. People show different effects to 
the medication: while in some cases the drugs have the desired results, in some others the effects 
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may be more favorable or more adverse. The following lists show the number of years ten 
patients in each treatment have lived after being treated with one of the different options; each 
number in the list corresponds to the time in years a patient has survived with the respective 
treatment. The graphs corresponding to the treatments are shown after. 

Treatment 1: 5.2, 5.6, 8.5, 8.5, 7.0, 7.0, 7.0, 7.9, 8.7, 9.1 
Treatment 2: 6.8, 6.9, 6.9, 7.0, 7.0, 7.0, 7.1, 7.1, 7.2, 7.4 
Treatment 3: 6.8, 6.8, 6.9, 7.0, 7.0, 7.1, 7.1, 7.1, 7.2, 7.4 

[There were graphs with values shown above] 
What kind of treatment would you prefer (1, 2 ó 3)? Why? 

Results 
In this section we present examples of responses to questions: If you had the possibility of 

playing only one of the two games, which one would you choose? Why?, and What kind of treatment 
would you prefer (1, 2 ó 3)? Why? In order to show answers that were classified at each SOLO level.  

Prestructural. In this level one option is chosen but without justification. For example, a student 
chose game 2, “because you win more”, but there is no evidence of how the data are used. This kind 
of responses provides no progress in understanding the situation. 

Unistructural. In this level the maximum, minimum or mode of each data list are observed and 
compared to give the response; for example, a student chooses Game 1 “because you can also lose as 
in game two but fewer and you risk less”. The student provides an indication that shows he compares 
the minimum of both games. Indeed, it is possible that the way in which the student approaches the 
problem is influenced by risk aversion, since he skews his attention toward the losses, ignoring the 
information that provides positive gains. 

Multistructural. In this level the sums of the data lists are compared or both the maximum and 
minimum are considered and, in this case, risk is perceived. For example, a student chose the 
treatment 3 “Because maybe I will not live nine years but I have secured from 6.8 to 7.4”. Although 
not mentioned, it appears that the student perceives the risk involved in the first treatment (the 
possibility to live only 5.2 years) because he gives up the opportunity to live 9, "ensuring" live at 
least 6.8 years. 

Relational. In this level the mode of the data and its range are considered; the final decision is 
influenced by preferences about risk. Only two cases were included in this level. For example, a 
student chose treatment 3 "because it is more likely to live 7.1 years or less, but the results are not so 
far apart and are more likely to live from 6.8 to 7.2 years".  

In general, predominate Prestructural responses (76 %); students whose answers are classified at 
this level understand what is asked them and they make a choice but fail to use the data to support 
their preferences. However, there are students who see in a single value of each data set (maximum, 
minimum or mode) a key to make a decision. These responses have been classified in the 
Unistructural level (15 %); they prefigure the valid scheme of solution. The value chosen is one that 
students consider a representative of the set. In responses of Multistructural level (7 %), a step 
forward towards the solution scheme is given, since more than one value of each data is considered. 
Two main strategies were identified: 1) compare the sum of values of each set data, 2) take into 
account the maxima and minima. Each of these strategies is an early or primitive form of the two 
main statistical tools of the case: the mean and dispersion. The second strategy led some students to 
perceive the risk. Finally, In Relational level responses (2 %), both strategies are used and the 
decision is made according of attitude towards risk. In these responses a scheme of solution is 
complete. 
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Conclusions 
Our main result is a SOLO hierarchy which describes the students' reasoning patterns. Such 

hierarchy is the next: Prestructural level, one option is chosen but without justification.  
Unistructural level, the maximum, minimum or mode of each data list is observed and compared. 
Multistructural levels, the sums of the data lists are compared or both the maximum and minimum 
are considered. Relational level, the sums or modes of the data lists are compared and the range is 
considered; the final decision is influenced by preferences about risk. 

In the problems that we have reviewed may be not convincing that the choice of a game or 
treatment is not completely determined by the behavior of the data, but also depends on the solver 
attitude towards risk. This relativity can disturb those who believe that science must give absolute 
and conclusive answers to the problems that arise on it. Relativity of the responses may obscure the 
main point which is that the analysis of the ranges, and more generally the analysis of variation, that 
provides information about the risks involved in the situation and therefore helps to make rational 
decisions. The use in teaching of problems as those treated in this study can help the students to 
construct schemes for assessing the results of the statistical analysis and help them to retreat from 
certainty in a profitably way. 
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As a result of the recent increase of statistical topics in the school curriculum, there is a need to 
study the attitudes and beliefs of secondary mathematics teachers with respect to statistics since 
research has shown that teachers’ affect is connected to student learning (Estrada & Batanero, 
2008; Shaughnessy, 2007).  Because the attitudes, beliefs, and emotions (affect system) of practicing 
secondary mathematics teachers toward statistics are not known, an initial inventory of these 
constructs was conducted via a survey instrument.  This introductory study explored the connection 
between affect and statistical teaching and learning experience by examining teachers’ responses to 
several items on the survey. Based on the responses to the survey items, experience teaching a stand-
alone statistics course did influence teachers’ confidence to teach and learn statistics, while 
undergraduate courses in statistics had less impact. 

Keywords: Teacher Beliefs; Data Analysis and Statistics; Affect and Beliefs 

Introduction 
Over the last few decades there has been a growing concern that large numbers of secondary 

mathematics teachers “have backgrounds in mathematics with little or no training in statistics,” with 
no teaching certification available or required for statistics (Gould & Peck, 2004, p. 1).  This 
emphasis on mathematical topics in pre-service teacher programs has contributed to teachers’ 
deficiency in statistical literacy, which may impact student learning of statistical topics (Pierce & 
Chick, 2008).  Because of inadequate formal training in statistics, many teachers may feel anxiety at 
the prospect of teaching the subject and may elect to exclude statistical topics from their courses 
altogether.  In other cases, teachers’ anxiety towards statistics can contribute to a dislike of the 
subject or a feeling that statistics is not valuable (Estrada, Batanero, & Lancaster, 2011), feelings that 
may later be transferred to students from their teacher (Estrada & Batanero, 2008). 

Secondary mathematics teachers (SMTs) who teach statistics as a stand-alone course gain 
important experience despite any possible deficiencies in their formal university training in the 
subject.  It is possible that this population of SMTs may have more positive attitudes towards 
statistics than those teachers who lack any experience teaching statistics.  However, the exact nature 
of any possible differences between the attitudes, beliefs, and emotions (affect system) of those 
teachers who have taught statistics and those who have not is unknown at this time.     

Unfortunately, practicing teachers who have no special preparation or education in statistics may 
exhibit negative attitudes towards statistics (Estrada, et al., 2011).  Not surprisingly, in research 
conducted with prospective teachers it was found that with more courses taken in statistics and more 
knowledge of statistics, attitudes tended to be more positive (Estrada, et al., 2011).  In addition, 
research with in-service elementary teachers indicated that their earlier education of statistics (and 
positive learning experiences with statistics) was a major impact on their attitudes (Estrada, et al., 
2011).  Hence knowledge of statistics alone does not predict one’s attitudes towards statistics, but 
personal experiences that one has with statistics are influential.  

In this initial study, teachers’ formal educational experiences with statistics were defined by the 
number of undergraduate statistics courses they completed.  The teachers also shared information 
related to their teaching experiences by responding to survey items related to number of years 
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teaching high school mathematics and whether they had taught statistics as a stand-alone course (or 
not).  In fact, teachers’ experience with teaching statistics as a stand-alone course provided a useful 
framework for considering their responses to the other survey items.  Differences in responses 
between the two groups of teachers (defined by experience teaching statistics versus those without 
such experience) provided the structure for exploring their formal experiences with statistics, both as 
a teacher and as a student. 

A teacher’s affect toward teaching statistics is connected to the teacher’s experience:  it connects 
to the teacher’s beliefs about statistics, mathematics, statistics and mathematics in relation to one 
another, and about teaching practice in general.  Pierce and Chick (2008) stated that “teachers’ 
beliefs about statistics itself will contribute to both their attitude towards teaching statistics and their 
[teaching] practice” and “such beliefs will depend on their own experiences of learning and using 
statistics” (p. 4).  Therefore, examining teachers’ personalized beliefs about statistics itself was 
critical, and two survey items were designed to gauge teachers’ assessment of their own ability to 
master statistical content (general versus introductory coursework). 

Purpose of the Study 
Since the teaching and learning of statistics is influenced by the teacher’s affect system toward 

statistics, this introductory study focused on the teachers’ own participation within the teaching and 
learning cycle.  Some of these personal experiences have likely shaped the teachers’ affect toward 
statistics as well as the teachers’ views of themselves as students and as teachers.  Because of this, 
the role of the teacher’s attitudes, beliefs, and emotions becomes increasingly important as one 
considers the connection to teaching practice and student learning.   

Thus the purpose of this study was to begin to examine the affect system of the population of 
SMTs toward statistics by focusing on the teachers’ experience with teaching and learning statistical 
topics.  The study focused on the following research question:  What are the key differences in 
teaching and learning experiences related to statistical concepts between practicing SMTs who have 
taught a statistics course versus those who have taught statistical concepts only as part of a regular 
mathematics class, and are there related differences in affect?   

Methods 
The SATS-36 (Survey of Attitudes Toward Statistics) was designed to capture the attitudes and 

beliefs of university students taking an introductory statistics course (Schau, Stevens, Dauphine, & 
del Vecchio, 1995).  Because the attitudes, beliefs, and emotions of SMTs was expected to be similar 
to this population (Pierce & Chick, 2008), the existing instrument provided the best basis on which to 
begin studying this new population.  Thus, the SATS-36 provided a basis for the survey instrument 
that was used for the present study.  Some additional items were constructed in order to provide 
demographic information regarding the experience of the teachers with teaching and learning 
statistical topics. 

The teacher response data was collected by using an online survey system which emailed the 
survey to a random sample of SMTs from a Midwestern state.  The survey was initially emailed to 
502 teachers.  Of the 502 who were emailed the survey, 92 filled out the survey giving a response 
rate of 18.3%.  Based on this response rate, the survey was emailed to an additional random sample 
of 276.  Of the 276 who were emailed the survey, 49 filled out the survey giving a response rate of 
17.8% for the second mailing.  Thus, the overall response rate was 18.1%.  The results for six survey 
items related to teaching experience and education is found in Table 1; responses were broken down 
by experience teaching statistics. 
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    Table 1:  Statistical Teaching and Learning Experiences 

Have you ever 
taught a stand-alone 

high school 
statistics course? 

How good at 
mathematics 

are you?* 

How many 
years have you 

taught high 
school 

mathematics? 

How many 
undergraduate 

statistics 
courses did you 

complete? 

How 
good at 
statistics 
are you?* 

How confident 
are you that 

you can master 
introductory 

statistical 
content?* 

NO 
n=112 

Mean 6.3 3.4 2.4 4.7 5.7 
Std. 

Deviation 0.6 1.7 0.9 1.1 1.2 

YES 
n=27 

Mean 6.5 4.6 2.4 5.7 6.4 
Std. 

Deviation 0.5 1.7 0.9 1.3 1.2 

 

P-value for 
difference 
between 

means for 
two groups 

0.108 0.001 0.944 0.000 0.007 

      
*Starred items originated on SATS-36 (Schau, et al., 1995) 

Discussion of Results 
For each of the five survey items, means and standard deviations were calculated for those 

teachers who had taught statistics as a stand-alone course and those who had not.  Two-sample T-
tests were run to determine which items showed significant differences in responses between the two 
groups of teachers.  The resulting p-values from the two-sample T-tests are shown in Table 1.  At the 
0.05 level, significant differences were found for three items.   

There was a significant difference between the two groups of teachers for the total number of 
years teaching high school mathematics.  The mean number of years was 4.6 years (s=1.7) for the 
group of teachers who had taught statistics as a stand-alone course, and the mean for those without 
experience teaching a statistics course was 3.4 years (s=1.7) (p-value for difference=0.001).  This 
result suggested meaningful differences in overall mathematical teaching experience and provided a 
context for evaluating the other survey items.   

The differences between the two groups of teachers were also statistically significant for the 
survey items in the last two columns in Table 1.  Both of these items related directly to teachers’ 
confidence in learning and applying statistics, and it was not surprising that the teachers who had 
taught statistics as a stand – alone course had higher mean responses to these items than teachers with 
no experience teaching statistics as a stand-alone course.  The SMTs who had taught statistics as a 
stand-alone course generally agreed that they could master introductory statistical content.  The 
difference in level of agreement with this statement was significantly higher for the group who had 
taught statistics compared with those who had not taught statistics (p-value=0.007).  This group of 
SMTs with experience teaching statistics also reported a higher level of proficiency for their own 
statistical skills.  The difference in level of ability reported by the two groups of teachers on the item 
“How good at statistics are you?” was significant (p-value=0.000).  Based on the responses to these 
two items, confidence to learn and apply statistical content is strengthened with teaching experience 
in the population of SMTs.   

The SMTs with experience teaching statistics reported higher levels of personal confidence 
regarding mathematical abilities, but the difference between the two groups of teachers was not 
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significant on this item (p-value=0.108).  The teachers who had never taught a stand-alone statistics 
course had a slightly higher mean value, although the difference between the means on this item were 
not statistically significant (p-value=0.944) so a difference cannot be assumed for the two 
populations of teachers on this item.  In fact, one could not exclude the possibility that the number of 
undergraduate statistics courses completed was the same for the two groups.  

Based on these introductory results, SMTs who teach statistics as a stand-alone course have been 
teaching high school mathematics longer than teachers who have not taught statistics as a stand-alone 
course, their confidence in their ability to employ statistics is generally more positive, and they are 
more secure in their ability to master introductory statistical content.  Taken together these findings 
are not surprising, but future work involving classroom observations and interviews will delve more 
deeply into the mechanisms driving the differences. 
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A common theme in the study of math education is that students do not necessarily reason 
normatively through uncertain probabilistic situations. Instead, they rely upon heuristics as a means 
of reducing the mental strain necessary for normative probabilistic thinking (Kahneman & Tversky, 
1972). This study explores use of heuristical reasoning by fifth grade students on probabilistic tasks 
related to game spinners. Reasoning classified by the representativeness heuristic was found to be 
utilized by eleven out of the fourteen students interviewed across four series of questions. Their 
reasoning, however, was inconsistent and vacillated between normative and heuristic. 

Keywords: Probability; Elementary School Education; Cognition 

Literature Review 
The use of heuristics within statistical reasoning refers to thinking that deviates from the 

stochastically accepted norm, and is employed in uncertain stochastic situations as a means of 
mitigating mental strain (Kahneman & Tversky, 1972). Heuristics exist, then, in staunch contrast to 
normative reasoning, which is considered to be the standard and expected reasoning accepted by 
stochastic experts. Heuristics are commonly applied in probabilistic situations, and are not 
exclusively used by students. For example, they have also been found to be employed by seasoned 
professionals trained in research (Kahneman & Tversky, 1972). 

The use of heuristics, although non-normative, can be intermittently successful, as heuristical 
reasoning will at times provide sufficient information to make reasonable decisions (Shaughnessy, 
1992). The sporadic success achieved through non-normative reasoning makes the elimination of 
heuristical reasoning difficult (Kahneman & Tversky, 1972). These difficulties in eliminating and 
identifying non-normative student reasoning has become the focus of much research in the teaching 
and learning of probability (Jones & Thornton, 2005). 

The representativeness heuristic is one type of non-normative reasoning which plagues student 
reasoning. Kahneman and Tversky (1972) identify the application of the representativeness heuristic 
in the following manner:  

A person who follows this [representativeness] heuristic evaluates the probability of an uncertain 
event, or a sample, by the degree to which it is: (i) similar in essential properties to its parent 
population; and (ii) reflects the salient features of the process by which it is generated. (p. 431) 

This definition describes two distinct ways in which the representativeness heuristic may be 
relied upon by those who do not have a deep understanding of probabilistic concepts.  

Konold, Pollatsek, Well, Lohmeier, and Lipson (1993) asked students to select which outcome 
from five coin tosses was most likely, or whether all choices were equally likely. Reasoning that 
THHTH is more likely than HTHTH because it appears more random represents a limited 
understanding of randomness, therefore indicating reliance upon the representativeness heuristic. 
Reasoning that THHTH is more likely than THTTT because it is closer to an equal proportion of 
heads and tails would demonstrate reasoning characteristic of the representativeness heuristic due to 
insufficient understanding of sample size. Reasoning characteristic of the representativeness heuristic 
has additionally been identified in a range of ages beginning in second grade (Davidson, 1995) and 
continuing through both pre-service (Chernoff, 2012) and in-service (Wilkins, 2007) teachers. This 
research across various ages indicates that the representativeness heuristic is developed prior to the 
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onset of formal instruction in probability and continues to plague normative reasoning into 
adulthood. 

Additional research has identified non-normative reasoning related to a game spinner. Green 
(1983) found that students ages 11-16 overwhelmingly struggled to reason about game spinners with 
noncontiguous sections. This inability to reason normatively may be due to students’ use of a 
subcategory of representativeness known as recency (Jones & Thornton, 2005). Recency may 
manifest itself visually when students become hyperaware of whether the sections of a 
noncontiguous spinner are contiguous or noncontiguous (Green, 1983).  

The present study specifically seeks to determine: 1) whether upper elementary students engage 
in use of the representativeness heuristic to reason about game spinners, and if so, 2) whether the 
representativeness heuristic is consistently applied across questions. 

Methods and Procedures 

Sample 
The participants in this study include 14 fifth grade students in a rural elementary school in the 

south eastern United States. This age range was selected due to the recommendation of the National 
Council of Teachers of Mathematics (2000) that formal probabilistic instruction not begin prior to 
third grade. Students selected were chosen from three ability categories, as determined by the 
teacher; Level 1 being most advanced, Level 2 being intermediate, and Level 3 being least advanced. 
One of the participant’s responses were uninterpretable in terms of normative and non-normative 
reasoning, so analyses are based on only 13 of the 14 participants. 

Procedures 
Participants were engaged in a semi-structured clinical interview during which they manipulated 

three distinct game spinners and were asked a series of questions about the likelihood of different 
events. The semi-structured interview was video and audio recorded so as to allow the researcher to 
retrospectively analyze the students’ reasoning with each spinner. 

The first two game spinners contained equally proportioned, colored sections, with each color 
represented once (Figure 1). The third game spinner contains six sections and four colors. Each 
section covers a different portion of the spinner, and yellow is represented by three sections. The 
three yellow sections are noncontiguous and the yellow sections represent the smallest overall 
portion of the spinner. 

 

   
Spinner 1 Spinner 2 Spinner 3 

Figure 1: Spinners used in the clinical interview 

Results 
In the first of four series of questions, students spun Spinner 1 (Figure 1) and were asked if the 

resulting color was more likely to be spun again on the next spin, less likely, or equally likely. Seven 
out of 13 students answered in a manner which suggested use of the representativeness heuristic (see 
Table 1). One student reasoning normatively indicated understanding that the second spin was 
independent of the first by remarking that the second spin “might land on either because it’s half and 
half.” Many students demonstrating reasoning characteristic of the representativeness heuristic either 
reasoned that a second spin was more or less likely to result in the same color; this type of reasoning 
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is termed recency and is a subset of the representativeness heuristic (Jones & Thornton, 2005). One 
student explained that after spinning red the second spin was more likely to be “red again because it’s 
easier to spin.”  

In the second series of questions, students spun two of Spinner 1 at the same time. Prior to 
spinning, they were asked if it was more likely for both spinners to result in the same color or 
different colors, or if both outcomes were equally likely (note: it is equally likely to be the same or 
different). Eight out of 13 students gave responses consistent with the representativeness heuristic by 
indicating that it was more likely for the spinners to land on different colors (see Table 1). Common 
responses from students engaging the representativeness heuristic included an explanation that 
because each color had a 50% chance of being spun, two spinners were more likely to land on 
different colors.   

The third series of questions mirrors the first by asking students to spin Spinner 1 and observe the 
result, and then spin a second but identical spinner. Only after knowing the result of the first spinner 
are they asked to determine if the same color is more likely, less likely, or equally likely to be spun 
on the second spinner. Seven out of 13 students answered in such a way as to indicate their use of the 
representativeness heuristic (Table 1). Six out of 7 students identified with representative thinking 
also employed the representativeness heuristic in the second series of questions. Five out of the 7 
students identified also employed the representativeness heuristic in the first series of questions. 

 Table 1: Comparison of Students’ Reasoning in Similar Series of Questions 
 Q2   Q3   Q3 

R N Total  R N Total  R N Total 
Q1 R 6 0 6  Q1 R 5 1 6  Q2 R 6 2 8 

N 2 5 7  N 2 5 7  N 1 4 5 
Total 8 5 13  Total 7 6 13  Total 7 6 13 

*Series of questions are denoted Q1, Q2, Q3. R denotes representative reasoning and N denotes 
normative reasoning.**All comparisons sum to 13, as one student’s reasoning was not 
interpretable on the second and third series of questions. 

 
In the fourth series of questions students predicted the results of spinning each spinner ten times, 

then were asked whether this represented a sufficient sample to expect results representative of the 
total population. Four students out of 10 consistently engaged in reasoning consistent with the 
representativeness heuristic by indicating the results should equate with the theoretical probabilities. 
One student in particular was unable to predict the outcome of ten spins on Spinner 2. Theoretically, 
each section of Spinner 2 would be spun 2.5 times out of ten. Practically, this is an impossibility. 
This student’s trouble with this mismatch was verbalized when she answered, “It… well… I’m not… 
it can’t.” When this student was instead prompted to make a prediction for spinning Spinner 2 eight 
times, she readily answered that each color would be spun twice. Students reasoning normatively 
arbitrarily selected each section to be spun two or three times and did not seem confused when the 
results did not match their prediction. 

Conclusion 
The results of this study answered the first research question by indicating that fifth grade 

students do engage the representativeness heuristic when reasoning about game spinners. Of the 13 
students, 10 used the representativeness heuristic predominantly to reason through at least one series 
of questions. The three remaining students reasoned normatively throughout the interview. In 
response to the second research question, three groups of students emerged. Students in Group 1 
reasoned normatively throughout the interview. Students in Group 2 reasoned both normatively and 
non-normatively. Students in Group 3 consistently using the representativeness heuristic. 
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In addition to providing evidence of the use of the representativeness heuristic by fifth grade 
students, this study further provides evidence that in statistically equivalent situations, students do 
not necessarily reason in the same way. Series of Questions 1, 2, and 3 were statistically equivalent. 
However, students did not necessarily reason consistently throughout. Five students engaged the 
representativeness heuristic in these situations, and conversely, four students reasoned normatively in 
these situations. The remaining five students reasoned both normatively and non-normatively. This is 
indicative of the inability of students to view the two situations as identical and further may relate to 
students’ notions of event independence (Konold et al., 1993). This finding lends itself to further 
investigation of what other statistically identical situations and models exist which students may not 
be prepared to distinguish between. 

The procedural context of situation 2 was not identical to situations 1 and 3, although the 
probabilities of each outcome are identical. The difference lies in the timing of the spinners, and the 
inability of the students to know the outcome of the first spinner prior to predicting the outcome of 
the second. Eight students used the representativeness heuristic as a predominant part of their 
reasoning on this question, which represents a higher percentage than any other question. Of those 
eight students, five engaged the representativeness heuristic on Questions 1, 2, and 3. 

The current research contributes to the breadth of understanding related to the types of questions 
to which fifth grade students may apply the representativeness heuristic. This brings relevance to the 
type of questions which must be considered in upper elementary curricula and in future research. 

References 
Chernoff, E. J. (2012). Recognizing revisitation of the representativeness heuristic: An analysis of answer key 

attributes. ZDM Mathematics Education, 44, 941-952. 
Davidson, D. (1995). The representativeness heuristic and the conjunction fallacy effect in children’s decision 

making. Merrill-Palmer Quarterly, 41(3), 328-346. 
Green, D. R. (1983). School pupils’ probability concepts. Teaching Statistics, 5(2), 34-42. 
Jones, G. A., & Thornton, C. A. (2005). An overview of research into the teaching and learning of probability. In G. 

A. Jones (Ed.), Exploring probability in school: Challenges for teaching and learning (pp. 65-92). New York, 
NY: Spring Science+Business Media. 

Kahneman, D., & Tversky, A. (1972). Subjective probability: A judgment of representativeness. Cognitive 
Psychology, 3, 430-454. 

Konold, C., Pollatsek, A., Well, A., Lohmeier, J., & Lipson, A. (1993). Inconsistencies in students’ reasoning about 
probability. Journal for Research in Mathematics Education, 24(5), 392-414. 

NCTM (2000). Principles and standards for school mathematics. Reston, VA: NCTM. 
Shaughnessy, J. M. (1992). Research in probability and statistics: Reflections and directions. In D. A. Grouws (Ed.), 

Handbook of research on mathematics teaching and learning (pp. 465-494). New York: Maxwell Macmillan. 
Wilkins, J. L. M. (2007). Teachers’ probabilistic thinking related to the representativeness heuristic. In T. Lamberg 

& L. R. Weist (Eds.), Proceedings of the 29th annual meeting of the North American Chapter of the 
International Group for the Psychology of Mathematics Education, (pp. 158-166). Reno, NV: University of 
Nevada-Reno. 



Statistics!and!Probability:!Poster!Presentations! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

479 

HOW STUDENTS NAVIGATE STEM-INTEGRATED DATA ANALYSIS TASKS 

Aran W. Glancy 
University of Minnesota 

aran@umn.edu 

Keywords: Data Analysis and Statistics; Elementary School Education; Measurement 

In recent years, the increased attention of policy makers, educators, and researchers on education 
in science, technology, engineering, and mathematics (STEM) has resulted in various reforms aimed 
at improving student performance within these disciplines.  One approach to this that is gaining in 
popularity is the integration of the disciplines through rich problem-solving situations.  According to 
a report from the National Research Council’s Committee on Integrated STEM Education (2014), 
research on the impact of STEM integration indicates that this approach has promise both with regard 
to learning outcomes and attitudes toward the STEM disciplines, but as of yet, the evidence for this is 
limited, and the benefits are less pronounced with regard to mathematics learning outcomes.  More 
research is needed to identify the mechanisms by which integration can enhance learning, 
specifically in mathematics.  This multiple embedded case study begins to address this by examining 
the ways students apply statistical concepts and engage with data in integrated settings. 

The data analysis techniques used in science and engineering contexts are built on mathematical 
ideas making data analysis tasks ideal for studying the interactions between these disciplines.  In this 
study, I document the work of eight groups of fifth grade students as they navigate data analysis tasks 
and attempt to reason from data in science and engineering contexts.  The tasks ask students to 
collect, organize, interpret, and ultimately make decisions or draw conclusions from their data in the 
context of scientific inquiries or engineering design challenges.  Previous literature has argued that 
tasks such as these that focus on authentic problems with real data and encourage students to 
generate their own questions (Franklin et al., 2007; Moore, 1998; Watson, 2006) are successful 
strategies for supporting statistical reasoning, and the results of this study conditionally support those 
findings.  One key observation in this study, however, was that in many cases, students’ informal 
understanding of the phenomenon being tested helped them make sense of the data rather than their 
analysis of the data allowing them to draw conclusions about the phenomenon.  Additionally, 
students’ general number sense and difficulty making sense of measurement error and uncertainty 
were significant barriers to their success.  These findings have implications for the design of data 
analysis tasks in science and engineering contexts if they are to support statistical reasoning. 
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Framework. Heuristic and Biases theory (e.g. Tversky & Kahneman, 1974) has been used to 
study people’s cognitive processes by mathematics educators and psychologists (e.g. Fischbein, 
1999; Shaughnessy, 1981). The theory was updated to include dual process theory –System 1 
(intuition) and System 2 (reasoning)- that may explain biased results when people, unaware, use the 
attribute substitution process linked to System 1 thinking (e.g. Kahneman & Fredrick, 2002). 

Purpose. The aim of this paper is to share a particular phenomenon observed from a larger study 
(Mistele, 2014) that explored eighth grade students’ probability problem solving strategies using this 
updated framework. Focusing on this particular phenomenon required a more targeted research 
question using the same data. The revised research question is: “In what way was a participant’s 
problem solving strategy influenced by System 1 thinking or slow intuition?” 

Participants. There were six eighth grade students from a rural, predominantly white, middle 
class school located in a mid-Atlantic state. Purposeful sampling (Patton, 1990) was used to identify 
these students that had strong probability knowledge and prone to using heuristics.  

Research design. This was a basic exploratory research study. Data was collected from two, 
multiple choice, questionnaires and two, tasked based, interview sessions that used the think-aloud 
protocol (Van Someren, et al., 1994). The questionnaires were analyzed based on the literature. The 
constant comparison method (Glaser, 1965) was used to analyze the interviews. 

Findings/Results. At times, some students used the attribute substitution process as expected 
(Kahneman & Fredrick, 2002). Another process called, content substitution was identified (Mistele, 
2014) in which a person replaces probability knowledge with fraction knowledge when using System 
1thinking or a slower intuitive process called slow intuition. Fischbein (1999) also noted proportional 
thinking when exploring his notion of intuition that seems to differ from this.  

Conclusion. Some students were observed replacing probability knowledge with fraction 
knowledge, specifically, they used equivalent fractions procedures. Targeting instructional strategies 
to off-set the inappropriate use of fraction knowledge requires more research.  
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Variability has been recognized as an important concept in K-12 statistics curriculum (Franklin et 
al., 2007). It is recommended that pre-service teachers be prepared with an adequate knowledge of 
variability to describe and interpret data, and to use the results to draw conclusions about questions of 
interest (Conference Board of the Mathematical Sciences [CBMS], 2012). Elementary school 
teachers are expected to at least possess the concepts of statistics at the level that are expected of 
middle school students (Franklin, 2013). That is, elementary pre-service teachers (EPTs) should be 
prepared beyond knowledge about statstical graphs. Prior studies had focused on evaluating EPTs’ 
performance to find the variability in various types of statistical graphs (e.g., Cooper & Shore, 2008; 
Lem et al., 2013). However we still do not know enough about EPTs’ reasoning about variability 
when they encounter the tasks to compare variability in dot plots. Thus, this study aimed to answer 
the following research question: 

What strategies do elementary pre-service teachers use to compare variability in dot plots? 

This work is part of a larger study investigating EPTs’ understanding of variability. A task-based 
interview was used in the study to collect nine EPTs’ thinking about variability. Each interview 
lasted approximately one hour and eight tasks were designed to deeply explore participants’ 
understanding of variability. This study presented nine EPTs’ responses in five tasks that asked to 
compare variability in dot plots. Shapes were deliberately incorporated into the design of the tasks to 
challenge EPTs’ thinking of variability in dot plots. The results showed six strategies identified from 
the participants’ responses and discussed their misunderstanding of variability revealed in their 
interpretations of the strategies. Implications for learning from elementary pre-service teachers’ 
thinking in comparing variability in dot plots will be presented.  
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In the present US context, statistics represents a substantial component of the Common Core 
State Standards for Mathematics (NGACBP & CCSSO, 2010) in grades 6-12 and generally 
represents the trend of increasing statistical requirements for both students and their teachers. The 
expectation is that statistics content will be taught primarily by mathematics teachers, most of whom 
have limited statistical training. The growth that these teachers are being asked to undertake is 
complex and may require changes in their beliefs, attitudes, values, and practices germane to the 
teaching of mathematics and statistics. These and other affective constructs can be profitably viewed 
as subconstructs of a broader ‘identity’ construct (Philipp, 2007).  

Because statistics is a mathematical science and not a branch of math (Cobb & Moore, 1997; 
Moore & Cobb, 2000), the professional identity that mathematics teachers are expected to develop 
(NCTM, 1991) may not be directly applicable to teaching statistics. Instead, a professional identity as 
a statistics teacher may be required to ensure that students learn statistics at the level expected of 
them. What precipitates such a statistics identity is not currently known. 

The purpose of this study is to understand how exemplary statistics teachers developed their 
professional identities by answering the following research question: What learning trajectories help 
to explain the identity of exemplary statistics teachers? Exemplary statistics teachers will be 
identified by experts in the field of statistics education. 

The identity framework used in this study synthesizes work from communities of practice (Lave 
& Wenger, 1991; Wenger, 1998) and Gee’s (2000) identity framework. This framework is further 
informed by Social Cognitive Career Theory (Lent, Brown, & Hackett, 1994) and Philipp’s (2007) 
summary of the various aspects of identity. Because of the multi-faceted nature of identity, multiple 
data sources will be used, including two semi-structured interviews and surveys that foreground 
specific aspects of identity (such as attitudes and beliefs). Data collection and analysis will begin in 
June 2015 with findings to be presented in November 2015.  
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MATHEMATICAL AND FINANCIAL LITERACY WITH FAMILIES 

Lorraine M. Baron 
University of Hawai‘i at Mānoa 

baronl@hawaii.edu 

There is a strong link between citizens’ quantitative literacy abilities and their financial prosperity. 
This study applied a social justice perspective to describe families’ personal flourishing within the 
context of numerical, mathematical, and financial literacy (NMFL) education. Four families 
participated in a weekly community program with mathematical and financial literacy goals. The 
data showed that participants gained confidence and skills and felt empowered to teach/transfer that 
knowledge to their children. The author proposes a conceptual framework linking personal 
flourishing with NMFLs, and suggests the framework be used to investigate and describe quantitative 
and financial literacy in future empowering pedagogies research. 

Keywords: Equity and Diversity; Informal Education; Policy Matters; Affect and Beliefs 

Numerical, mathematical and financial literacies (NMFLs) are pressing economic, social, and 
cultural challenges. There is a strong link between citizens’ basic numerical or mathematical abilities 
and their financial prosperity and civic engagement (Human Resources and Skills Development 
Canada, 2012). It is becoming evident that NMFLs are increasingly necessary for fully contributing 
citizens of tomorrow (Steen, 2001). This study applied a qualitative research approach to describe 
personal flourishing (Grant, 2012) which includes participants making meaning and sense of 
important aspects in their lives, having a sense of agency, and participating in activities of financial 
literacy. Personal flourishing was investigated within the context of numerical, mathematical, and 
financial literacy (NMFL) education.  

Four families participated in a weekly evening program (eight consecutive weeks). The Count On 
Yourself (COY) project was designed to inform participants about NMFLs. Count On Yourself 
provided a parallel program for adult and child NMFL literacy: while parents were involved in a 
financial literacy course, their children participated in a Math Camp led by teacher candidates from a 
local university. The goal of the project was for both adult and child participants to become more 
mathematically empowered. Analysis of the individual and focus group interview data showed that 
adult participants described a sense of personal flourishing, gained confidence and skills, and felt 
financially empowered enough to teach/transfer that knowledge to their children.  This initiative 
integrated research and practice and addressed the practical needs of a community. 

Based on a research study that sought to analyze how participants would express their ideas of 
financial literacy and express their personal flourishing, I propose a conceptual framework designed 
to study programs that promote Numerical, Mathematical and Financial Literacies (NMFLs) and to 
describe the participants’ voices. A robust social justice research vision (Grant, 2012) was applied to 
offer numerical, mathematical and financial literacies in a community. The research asked: 1) How 
did the adult participants describe their learning about financial literacy? and 2) How did this impact 
them and their families, and what, if any action did they take? 

On Numerical, Mathematical and Financial Literacies (NMFLs) 
Innumeracy, or “an inability to deal comfortably with the fundamental notions of number and 

chance, plagues far too many otherwise knowledgeable citizens” (Paulos, 2001, pp. 3-4). Numeracy 
was determined by Smith, McArdle, and Willis (2010) to be “by far the most predictive of wealth 
among all cognitive variables” (p. 18). Behrman, Mitchell, Soo, and Bravo (2010) worked to isolate 
the causal effect of financial literacy on wealth accumulation, and found that the largest effect was 
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financial literacy. In these studies, numeracy and financial literacy were both found to be predictors 
of wealth.  

This study is set in a Canadian community, and though North American data was sought and 
utilized, the issues surrounding Numerical, Mathematical and Financial Literacies are not unique to 
the North American context. As defined by the Human Resources and Skills Development Branch 
(2012), quantitative literacy or numeracy is “the knowledge and skills required to effectively manage 
the mathematical demands of diverse situations”. The 2003 study found that over half of respondents 
(55 %) scored only Level 1 or 2 [of 5 levels] on the numeracy proficiency scale. These low results 
are significant because numeracy and problem solving are linked to financial prosperity and civic 
engagement (Behrman et al., 2010; Human Resources and Skills Development Canada, 2012; Smith 
et al., 2010). Similarly, a Canadian report (Statistics Canada, 2008) found that 49 percent of all adults 
say they do not engage in household budgeting. 

There is also substantial evidence that financial literacy programs “can make an important 
contribution to the well-being of vulnerable groups” (McFayden, 2012, p. 1). Gutstein (2006) wrote 
that “[r]eading the mathematical word is equivalent to developing mathematical power” (p. 29) and 
included that “opportunity to learn, access, and equity all demand that marginalized students get the 
chance to develop” the tools for mathematical empowerment (p. 30).  This study engaged grassroots 
community resources to support NMFLs, and applied a qualitative research approach for the purpose 
of improving awareness, access, and quality of programs available to the participating school 
community.   

School Community 
The elementary school involved in the Count On Yourself project is located in a smaller urban 

community adjacent to a larger city. The community elementary school involved had been identified 
as a low-literacy school. The school Principal was an administrator in the larger community for more 
than 20 years.  The school historically had poor academic performance, and data indicated that 
students had poor achievement in intermediate grades and were less likely to graduate than their 
peers (British Columbia Ministry of Education, 2006). The school Principal was highly trusted and a 
consistent and dedicated member of the community, and I had been a district consultant. Given these 
predetermined trusting relationships, the Parent Council for the school was quick to approve the 
program and the research.  

The project was announced at a community forum, and four families chose to participate in the 
Count On Yourself quantitative and financial literacy program. Though all members of the school 
community were invited to participate, it was fortunate that a fairly small group signed up for the 
first iteration of this program.  A trusting environment could be built with a smaller group. The four 
families who participated were (aliases assigned) Valerie and Brent, parents of two children in 4th 
and 5th grade. Ema and Phil, parents of one 2nd grade child and three not yet in school, Anna (whose 
husband did not participate) with children in 1st and 6th grade, and Carolyn, whose husband and 
children did not participate. 

Theoretical Framework 

Reading and Writing the World  
Freire wrote about the fallacy of teaching the technical skills of reading as disconnected from 

social and political contexts.   Mathematics is also typically taught as apolitical, and contexts are 
often imposed rather than the mathematics naturally emerging from situational problems.  Freire 
rejected this technocratic method with respect to teaching literacy, and aimed to teach  “adults how to 
read in relation to the awakening of their consciousness… [he] wanted a literacy program which 
would be an introduction to the democratization of culture, a program with men [sic] as its Subjects 
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rather than as patient recipients” (Freire, 1973, p. 43).  
Similarly, this study sought to deepen participants’ “understanding of society [leading] to 

engagement in social movements, at whatever level people are capable of participating given the 
daily struggles for survival” (Gutstein, 2006, p. 25). Gutstein (2006) viewed “writing the world with 
mathematics as a developmental process, of beginning to see oneself capable of making change, 
and…developing a sense of social agency (gradual growth)” (p. 27). The research sought to identify 
how participants described their gradual growth of understanding and engagement with mathematical 
and financial literacies. 

On Personal Flourishing 
 Grant (2012) explained how to cultivate a more robust social justice vision of education, and 

argued for a democratic education for a flourishing and whole life. Brighouse (2006) and Grant 
(2012) described how, in order to make meaning and sense of important aspects of their lives, 
individuals should experience personal flourishing and personal autonomy. They must also develop 
the confidence and skills to contribute to society and to the (broadly defined) economy, democratic 
competency, and the facility and desire for cooperation (Grant, 2012).  Personal flourishing also 
includes living and doing well, having a positive identity, having family and friends as support 
mechanisms, financial stability, education, and a commitment to children’s flourishing minds.  

On Quantitative Literacy 
 Steen (2001) described elements and expressions of quantitative literacy (QL) that included 

confidence with mathematics, being able to use mathematics in context, expressing quantitative 
literacy through citizenship (e.g., understanding data, projections, inferences etc.), the application of 
mathematics in one’s educational trajectory, the application of quantitative literacy in one’s personal 
finance and management, and the ability to make quantitative decisions with respect to one’s 
personal health (e.g., options, dosages, risks, nutrition and exercise data etc.). Quantitative Literacy 
“empowers people by giving them tools to think for themselves, to ask intelligent questions of 
experts, and to confront authority confidently.  These are skills required to thrive in the modern 
world” (p. 2). 

Table 1: Framework for NMFL Educational Research 
Assessing NMFL 

Educational Research  Description 

Theme 1) Financial 
Knowledge 

Data were coded this way when participants indicated a shift in 
financial knowledge or skills, or described their financial knowledge. 

Theme 2) Re-Imagining 
Self and 
Possibilities  

Data were coded this way when participants examined their 
assumptions and either realized that things should change, that things 
could change, or that they were not alone in the struggle for change.  
This theme represented a shift in beliefs about what was possible and 
about their agency. 

Theme 3) Taking Action Data were coded in this category when participants felt so strongly 
about the possibilities for change that they took action. These shifting 
practices were realizations of their beliefs about their agency. 

Theme 4) Impact on 
Family 

Data were coded in this theme when participants described the impact 
of the COY project on their relationships with other members of their 
family, including their ability to communicate with their children and 
impact their children’s financial futures. 

Theme 5) Features of the 
COY Program 

This theme includes data that described how and why the structures 
of the COY program were beneficial. 
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Conceptual Framework 
 Though Grant (2012) did not write about mathematics education in particular, he advocated 

for core practices that would help cultivate flourishing lives while describing a robust social justice 
vision of education.  I applied Grant’s work to educational research, and in particular, to a Freirean 
approach and empowering pedagogy, attending to quantitative literacies that I refer to as NMFLs. I 
invoked some of Steen’s Elements and Expressions of Quantitative Literacy to connect both Grant’s 
and Steen’s works together to create a framework through which I could study NMFL educational 
research. Table 1 shows some of the parallel ideas in both authors’ works. This framework was used 
to analyze the data collected in this study. 

Methodology 

On Freirean Research and Pedagogy 
The theoretical and methodological grounding for this study is decidedly Freirean. Freire’s 

(2000/1970) work originated in an historical place and reality that required emancipatory action in 
order to free the oppressed from their illiteracy, and his works became symbolic for many 
marginalized people around the world. Educators and educational researchers have used Pedagogy of 
the Oppressed, and its liberatory practices, in situations that were not necessarily as political, but that 
arguably required a similar research approach. Freire described the ideas of human agency and 
empowerment as being essential to worthwhile learning and research practice. Critical social theorist 
were to take an ethical and political position using theory of education as a “practice of freedom” 
(Glass, 2001, p. 22) to shape a just and democratic society. Grant (2013) reminded us that social 
action is “individual or group behavior that involves interaction with other individuals or groups, 
especially organized action towards social reform” (p. 926). The goal of this project was to act to 
make financial decision-making and numerical empowerment accessible for the participants in this 
community of families. 

The COY Project – Resources 
A series of children’s books on Financial Literacy were provided (e.g., Phillips, 2010) as well as 

adult and teen financial literacy books by Gail Vaz-Oxlade. The adults’ Financial Literacy course 
was based on Momentum (see Table 2 below), a curriculum that was developed in Calgary, Canada 
(2010), and was provided free of charge by a local non-profit community partner.  I designed and led 
this research project; however, it resulted from the collaborative efforts of several groups including 
the local university’s Faculty of Education and four non-profit community partners. 

Table 2: Financial Literacy Curriculum Materials – Momentum (2010) 
Topic Content 

Assets set short- and long-term goals for 5 types of assets (human, personal, social, 
physical, and financial) 

Credit take charge of it, develop an awareness and understanding of advantages and 
disadvantages of credit, wise use, and consumer credit tools 

Budgeting learn the difference between needs and wants, identify and track spending 
habits, build a budget and set short- and long-term goals 

Consumerism awareness of effects of consumerism and advertising, and develop ability to 
control consumerism, and live more simply 

Banking become aware of banking account options and benefits, learn how to use 
banking services, and access banking tools and resources 
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The COY project consisted of eight meetings on Wednesday evenings in the school’s library. A 
meal and refreshments was available for participating adults and children. Funds for purchasing and 
preparing meals were raised by a group of college students from a local institution. The Math Camp 
curriculum was designed and implemented by the volunteer teacher candidates who participated as 
Math Camp Leaders. Various mathematics and financial literacy activities were personalized for the 
school-aged children who attended. Pre-school-aged children attended a child-care service provided 
free of charge by the school community. Adults participated in a Financial Literacy course; the 
facilitator was associated with a non-profit agency whose mission was to provide instruction in 
financial literacy at no charge. 

Data Collection and Procedures 
The proceedings of the adult financial literacy course were digitally recorded, as were individual 

pre- and post-interviews. Adults were asked three questions at the beginning of the program in an 
informal interview setting that was selected by each participant (either at their homes, in the school, 
or at a coffee shop). They were asked six questions at the end of the program. These were digitally 
audio-recorded. Each participating adult was interviewed for approximately 35 minutes at the 
beginning and at the end of the program. The semi-structured interview questions asked early in the 
program (pre-survey) dealt with the perceived quantitative needs for the families involved and the 
immediate community, the kind of mathematical learning and support the participants would 
appreciate, and the predicted benefits of the program. Near the end of the program, similar questions 
were asked (post-survey), including what kind of support was preferred, what were the benefits and 
disadvantages, and which specific teaching strategies, advice, structures, or “technologies” were 
believed to be of most benefit. 

Data Analysis 
After transcription and multiple readings of the text, the data were coded and classified into the 

framework’s themes, as shown in Table 1. After initial data coding, the results were analyzed with 
respect to the research questions and the literature using systematic combining (Dubois & Gadde, 
2014), and the data categories were clarified. Theory building involved the development of a 
research framework by critically evaluating emerging constructs against ongoing observations 
refining and re-combining theoretical ideas with empirical data.  

Results and Analysis  
This research study sought to determine whether participants could express personal flourishing 

within the context of numerical, mathematical, and financial literacies. As evidenced from the 
participants’ responses, their beliefs, skills, knowledge, and actions could be classified into five 
themes that are supported by Grant’s (2012) description of cultivating flourishing lives, and Steen’s 
(2001) quantitative literacy, and are supported by literature (e.g., Freire, 2000; Gutstein, 2006). The 
five themes discussed here, and reflected in the participants’ voices are 1) Financial Knowledge, 2) 
Re-Imagining Self and Possibilities, 3) Taking Action, 4) Impact on Family, and 5) Features of the 
COY Program. 

Theme 1 Sample) Financial Knowledge 
For this theme, participants made sense of important financial aspects of their lives, and 

described their financial knowledge:  

Consumerism, everything that you see out there is an ad. You are bombarded on television, 
media, print, advertising: “You deserve it, it’s about you! You’re entitled to this. You’ve worked 
hard. Enjoy it! Spend it!  Here’s a way that we can make it more affordable to you. People are 
sucked into this, and they are really not aware of it until it’s too late, and that’s for me, what I 
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think this community, city, province, country, nation, I’m not going to say the world, it’s North 
America that’s got the problem. (Brent’s Post-Interview) 

Brent described his place in the larger picture of consumerism (one of the topics in the 
Momentum course). He understood and interpreted consumerism in his world. 

Theme 2 Sample) Re-Imagining Self and Possibilities 
For this theme, participants described beliefs of agency and confidence. During Valerie’s post-

interview, she described how she now felt that she had the ability to accomplish something of value: 

I finally felt that I had hope for the future and less of a defeatist attitude, because of what we had 
learned, we can make as small or as big of a change as you want, and any change would be better 
than where we were at. (Valerie’s Post-Interview) 

Theme 3 Sample) Taking Action 
For this theme, participants engaged in, participated in, and contributed through personal agency 

in society. This theme describes adults who take action on their beliefs. During Carolyn’s post-
interview, she described how the COY program gave her the skills and understanding to run her 
household budget as well as the family’s business budget. She explained:  

I got the financial support that I needed to start and maintain a budget. My household budget – I 
run my business budget as well.  It will have an impact on my husband because I do run the 
household budget.  It will have accountability impact on him.  Instead of going with the flow, 
there will be more proactive planning involved. (Carolyn’s Post-Interview) 

Theme 4 Sample) Impact on Family 
This theme describes adults who have the dispositions and communication skills to make 

decisions or take social action to contribute to society and participate in the democratic process. 
During Brent’s post-interview, he described his parenting role as also the role of being a teacher for 
his children:  

I’ve always believed that I’m not just raising my kids but I’m teaching my kids to be a good 
parent, so there’s a responsibility and there are tools in the program that now I can use to explain 
finances to them. (Brent’s Post-Interview) 

Theme 5 Sample) Features of the COY Program  
This theme describes features of the Count On Yourself program that the participants felt were 

beneficial. This included specific topics and the content of the Momentum curriculum, and mostly 
the structure of the program including the importance of providing a safe, trusting, and inclusive 
environment for all members of the family: 

The researcher and facilitators were willing to be there, to be involved and share in personal 
experiences. It was obvious to everyone that you were excited about what you were doing and, 
because of your enthusiasm it’s easier for us to be excited about it when we see your enthusiasm 
because we can see that it matters to us, and your ability to educate us, and to see the children all 
excited about learning?  That’s priceless! (Ema’s Post-Interview) 

Discussion 
The participants were able to make meaning and sense of numerical, mathematical, and financial 

literacies in context. They developed knowledge from each other and made sense of those ideas 
throughout the process of the financial literacy course and curriculum. Guba and Lincoln (2005) 
reminded us that, as critical theorists, we continue to seek the active construction and co-construction 
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of knowledge by human agents. As a group and individually, the participants made sense of financial 
knowledge and stresses in their lives and in each other’s. Guba and Lincoln (2005) also stated that: 
“Critical theorists, especially those who work in community organizing programs, are painfully 
aware of the necessity for members of the community, or research participants, to take control of 
their futures (p. 202)”. One of the participants used this very language to describe how she felt that 
the COY program helped her take control of her live and give herself a future.  

In other data gathered, participants demonstrated their financial literacy by indicating that they 
successfully managed their money by paying their bills on time, making sure they didn’t spend more 
than they earned each month, and paid their debts when they owed money. They became more 
knowledgeable about credit scores, being more in control of finances, and budgeting. Participants 
also displayed more agency and self-confidence with finances. Being heard was essential for this. 
The practice of “letting research participants speak for themselves” (Guba & Lincoln, 2005, p. 209) 
allowed them the voice to tell me they felt empowered themselves, in their ability to speak to their 
children, and that their children also felt empowered as individuals.  
 Guba and Lincoln (2005) discussed the validity of a study as catalytic authenticity when the 
researcher creates capacity in participants for positive social change and forms of emancipatory 
community action. Grant (2012) also spoke of the researcher’s ability to encourage social action. In 
this study, there is evidence that the participants appreciated the community aspect of the project, and 
took action by visiting banks and credit unions, investment groups, and mortgage brokers. They 
began budgeting processes online and using software, contacted credit companies to ask for a 
reduction in their interest rates, opened separate bank accounts to better keep track of their expenses, 
consolidated their debt, and applied for loans. The exit survey supports this data indicating that all of 
the participants not only felt comfortable getting help, but also did get help with their finances. 
Taking action is powerful evidence of emancipation, and by taking action in the ways that they did, 
the participants showed evidence of practicing democracy. 
 Perhaps the most significant result of this project was the belief from participants that they had 
influence upon their children. Though not all families participated as complete units, those who had 
children in the COY program felt more able, and did discuss financial information with their children 
when appropriate. All participants agreed that they found value in the program and would 
recommend it to someone else. The implications for this result is that programs such as Count On 
Yourself, that involve the whole family, might possibly help break cycles of poverty in communities 
in which they are implemented.  As I continue to consider Grant’s (2012) vision, I am struck by his 
statement that:  

…you learn about how the practice of democracy can be made to work for you or against you 
and that it is important that you understand the differences as well as you know what you can do 
to influence an outcome that befits those who are marginalized. (p. 925) 

Grant’s intent was to clarify what it means to practice democracy. I find that this statement is 
reflected both in my practice as a researcher and in the evidence that was produced from this study 
through the voices of the participants. I entered this work to make a difference and to provide a 
learning space for families who could participate more democratically in society because they chose 
to learn to be more financially literate.  I have learned that I can make a difference, and they have 
learned that they can make a difference in their own life situations. This most certainly reflects 
Grant’s “practice of democracy” (p. 925). 
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The ideology of whiteness has received little attention in mathematics education. In this paper, we 
develop a framework for documenting how whiteness shapes mathematics education as a racialized 
space. Drawing on the sociological concept of “white institutional space” (Feagin, Vera, & Imani, 
1996; Moore, 2008), the framework examines mathematics education across institutional, 
interpersonal, and individual levels of analysis. The authors argue that this framework captures how 
ideological discourses of whiteness and colorblindness (Lewis, 2004) and racialized hierarchies of 
mathematics ability (Martin, 2009) are perpetuated through institutional structures and 
interpersonal relations in mathematics education. 

Keywords: Equity and Diversity; Instructional Activities and Practices; Learning Theory 

Introduction 
Lipsitz (1995) states that “a fictive identity of whiteness” appeared in law as an abstraction and 

became actualized in everyday life. Much like ‘black’ is a cultural construction based on skin color, 
not biology, whiteness developed out of the reality of slavery and segregation, giving groups unequal 
access to citizenship, immigration, and property. By giving whites a privileged position in relation to 
the “other”, European Americans united into a fictitious community. Whiteness is a constantly 
shifting boundary separating those who are entitled to certain privileges from those whose 
exploitation is justified by not being white. However, the boundaries of whiteness have shifted 
substantially over time (see Brodkin, 1998). 

Recently, the ideology of whiteness and its material benefits has been sustained more covertly. 
Whiteness is supported by a colorblind ideology, a form of maintaining the social order, covertly, 
institutionally, and with the appearance of not being racial. Bonilla-Silva (2003) connects 
colorblindness with the resistance to framing, defining, or pathologizing whiteness and the ways that 
race plays out in the United States since the civil rights movement. While racism often calls forth 
overt practices such as slavery, the Jim Crow era, and lynchings, but the more recent avoidance of 
explicit racial discourses signifies colorblind racism, the dominant racial ideology since the civil 
rights movement (Bonilla-Silva & Forman, 2000). 

Under colorblindness, it does not matter whether whites are racially conscious. Whites benefit 
from an external reading of themselves as white (Lewis, 2004), whether or not they identify as white. 
In other words, whites benefit not from their own realization of being white, but by others treating 
them as white. This distinction is important in understanding whiteness as an ideology rather than an 
identity. Therefore, a felt identity is not a prerequisite to reap unearned privileges. Whiteness 
functions within structures, deciding how resources, labor, and space will be distributed by means of 
housing segregation and educational and financial stratification. These structures are in place to 
benefit future generations, whether those generations adopt an intentional white identity. The point is 
not that all whites benefit the same, as this would be essentializing a very diverse group of people, 
but that one’s racial position is constructed in relation to a racial history that has distributed space, 
resources and labor, and reproduced racist discourses (Lewis, 2004). 

Connecting Whiteness to Mathematics Education 
Whiteness plays out in very real ways through the divvying up of resources such as earnings, 

homes, wealth, and health (Lipsitz, 1995). Sewell (1992) and Lewis (2004) discuss racism both 
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ideologically and concretely through considering its dual nature: symbolic (ideological) and material 
(structural resources) (Sewell, 1992; Lewis, 2004). Whiteness and colorblindness produce symbolic 
and material consequences within mathematics education (Battey, 2013a). 

There are common symbolic narratives about who is better mathematically – whites and Asians. 
These perceptions are then made materially real in terms of how African American and Latin@s are 
treated in mathematics classrooms, the forms of instruction available, and course offerings, which in 
turn lead to different testing outcomes or “achievement gaps.” Through impoverished instruction 
quality, tracking, and reduced funding, society makes the racial ideologies concrete. Therefore, 
“achievement gaps” in mathematics education reify the idea that whites and Asians are better at 
math, and African Americans are Latin@s are innately inferior. 

Martin (2009) acknowledges the need for further research on race in mathematics education as a 
social construction shaped by existing sociopolitical contexts. More specifically, Martin (2009, 2013) 
calls for research on whiteness operating in mathematics education to address forms of racism in 
relation to achievement, participation, and student learning. Sociological work (Feagin, Vera, & 
Imani, 1996; Moore, 2008) informs Martin’s (2008, 2009, 2013) conceptualization of mathematics 
education as a white institutional space based on four tenets: 

(a) numerical domination by Whites and the exclusion of people of color from positions of power 
in institutional contexts, (b) the development of a White frame that organizes the logic of the 
institution or discipline, (c) the historical construction of curricular models based upon the 
thinking of White elites, and (d) the assertion of knowledge production as neutral and impartial, 
unconnected to power relations (Martin, 2013, p. 323) 

Using these tenets, Martin (2008) highlights how the National Math Advisory Panel is an 
example of mathematics education policy as white institutional space resulting in “e(race)sure” – the 
exclusion or ignoring of race – that perpetuate notions of whiteness and white supremacy in 
mathematics. We similarly draw upon these four tenets in the next section to propose a framework 
that assesses the extent to which mathematics education is a white institutional space. 

Theoretical Framework 
Our framework in assessing the impact of whiteness on mathematics education presented in 

Table 1 considers three dimensions: institutional, interpersonal, and identity. Martin’s four tenets cut 
across these three dimensions. The first tenet of white institutional space, racialized patterns of 
representation, aligns with parts of both division of labor and physical space. This directly relates to 
distribution of power, but also the representations of images symbols, and behaviors presented in 
schools. Therefore, it is not only about the distribution of people, but of the distribution of valuing 
and devaluing various ways of being as well. The second tenet also aligns with ideology and division 
of labor, but more in terms of the organizational structure. The organizational structure of the school 
determines behavioral sanctions and classroom norms that then shape interpersonal interactions and 
identity construction. The organizational structure also legitimizes certain ideologies over others, 
such as tracking supporting a fixed notion of mathematical intelligence. The third tenet of historically 
white curricular models is aligned with the section on history, but as students respond to this history, 
they take on varying identities in relation to the mathematics and schooling. Finally, the fourth tenet 
of white institutional space corresponds with how ideological discourses in mathematics 
differentially shape whites and students of color’s mathematics experiences. This, in turn, structures 
notions of competence and legitimacy in students’ negotiations of their mathematics identities 
including what it means be “good” at mathematics. These four tenets are threaded throughout the 
framework. 
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Table 1: Framework to Assess Whiteness in Mathematics Education 

Institutional 

Ideological Discourses 

• Racial hierarchy of math ability 
• Innateness of mathematics ability 
• Mathematics as neutral 
• Abstract individualism 
• Meritocracy 

History  

• Histories of schools  
• Patterns of inclusion and exclusion 
• Curricular perspectives 
• Multiple perspectives  

Organizational Logic 
• Distribution of power and work 
• Organizational structure 
• Positioning of Stakeholders  

Physical Space 

• Physical representations  
• School messages 
• Visibility of students 
• Control of physical expression 

Labor 

Cognition 

• Differential cognitive demand 
• Distribution of classroom and 

mathematical authority 
• Academic expectations 

Emotion 

• Management of emotional 
experiences  

• Regulation of emotion 
• Range of emotional experiences 

allowed 

Behavior 

• Discipline 
• Management of Behavior 
• Language Norms 
• Teacher praise/acknowledgment 

Identity 

Academic (De)Legitimization • Identification with mathematics 
• Legitimacy of intellectual ability 

Co-Construction of Meaning 
• Hierarchy of mathematics ability  
• Peer perceptions of each other 
• Hypervisibility/invisibility  

Agency and Resistance 
• Relationship with deficit discourses 
• Forms of (dis)engagement 
• Association with peer group 

Institutional 
Institutional spaces constrain or afford different access to people, resources, and work. In 

distributing this access, they legitimize certain ideologies through the physical space, positioning of 
different groups, and presentation of history. The institutional level is responsible for framing the 
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levels of labor and identity since it is responsible for the organization of labor and determines the 
ideologies and people in which individuals will develop relationships. 

Ideological Discourses. As noted in the introduction, broad discourses such as colorblindness 
and abstract individualism often accompany whiteness. Within mathematics education, whiteness 
takes the form of racial hierarchies of mathematics ability (Martin, 2009) as well as the innateness of 
mathematics ability (Ernest, 1991). The racial hierarchy of mathematics ability benefits the identities 
that white and Asian American students can construct with the domain, but accompanying discourse 
around the innateness of ability makes the racial hierarchy stable. Evidence for these discourses come 
in teachers’ and schools’ stable notions of high and low mathematics students that are then 
institutionalized in forms of tracking and subsequent differential access to cognitive demand. In 
terms of privilege, the discourses are evidenced by the automatic attribution of Asian Americans and 
whites as being good at mathematics and/or surprise when these student struggles. 

History. Schools have histories that are inseparable from issues of exclusion, segregation, and 
differential resources in the United States. These historical issues contribute to current educational 
inequality. For instance, a school may have been segregated, then bussed in African American 
students, only to see white flight result in home prices dropping and the tax base that determines 
school funding collapse. Therefore, a history of inclusion or exclusion has an impact on teacher 
retention, school demographics, and school funding. Curricula also present who has been involved in 
constructing history. The inclusion or exclusion of groups within curricula communicates to students 
whose perspectives matter and who is important. Finally, the perspective within curricula 
communicates notions of exclusion, assimilation, resistance, or valuing regarding different cultures 
and values.  Martin (2008), for example, describes how the National Math Advisory Panel’s curricula 
recommendations focused on algebra and other mathematical content to advance white elites’ agenda 
of international competitiveness. 

Organizational Logic. Schools are organizations that situate people in different ways and 
distribute power accordingly. How that power is distributed and who it is distributed to matters. The 
power distribution between administrators, teachers, parents, and students says a lot about who is 
included and valued within schools. For instance, parents who are viewed as over-involved with the 
influence to determine curriculum, positions them as having power in contrast to those framed as 
oppositional in defending their children, uninvolved, or not caring. In these differing logics, parents 
are granted varied power. The same can be true for teachers and students. Organizational logic is 
what determines who has power, who does what work, and who evaluates whom. In this distribution 
of power, there is the potential to have different races in more privileged and more subservient roles 
leading to inequitable racial representation in positions of power. This distribution determines 
different forms of labor including the labor that is required of students and the extent to which this 
prepares them for future success. 

Physical Space. Images, charts, symbols, and objects are concrete representations that 
communicate central aspects of institutions. Pictures that designate notable people in history, student 
recognition, and school history pass on messages about who is accepted, welcomed, and who can 
excel academically. Images, histories, and perspectives of African American and Latin@ students 
can be invisible at times (Moore, 2008). This can contrast with the hypervisibility (Higginbotham, 
2001) when students are asked to speak for their race or teachers hyper focus on the misbehavior of 
students of color. Aligned with this, charts about acceptable behavior can be ways of controlling 
students. For instance, behavioral norms that promote militaristic rules of order or student “uniforms” 
are clear messages that the school sees students as needing to be controlled. Repeated school slogans 
in schools such as “I’m smart! I know that I’m smart” found in Kozol’s  (2005, p. 36) work 
communicate just the opposite. If students were assumed to be smart, there would be no need to 
repeat these types of mantras. Similarly, the lack of these messages in predominantly white contexts 
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is an implicit transmission that students are expected to be intelligent, under control, or that these 
students do not need to see representations of current and historical figures that do not look like 
them. This is also a way to perpetuate whiteness, by communicating that there are such a limited 
number of significant African Americans or Latin@s that white students do not need to know about 
them. 

Labor 
How labor is divided in classrooms can reflect the presence of whiteness. Normative expectations 

of emotional and behavioral work can restrict students to being certain types of students - controlling 
them to fit unquestioned cultural expectations.  When forms of labor are restricted in such a way that 
students of color’s contributions and behaviors are not seen as valid, it can be a sign that whiteness is 
operating in a context. We use three dimensions of labor to detail how whiteness can operate within 
classrooms: cognition, behavior, and emotion. 

Cognition. Cognition is interpersonal in the sense that the kinds of mathematical work students 
are asked to do sends messages about what students are capable of. A number of researchers have 
documented the lower levels of work that African American and Latin@ students are asked to do in 
classrooms. Classroom settings that only ask students to replicate procedures, follow worksheets 
page by page, and lack the opportunity to engage in cognitive depth permeate the literature for 
African American and Latin@ students (Ladson-Billings, 1997; Lubienski, 2002). Additionally, how 
authority is distributed, both for classroom procedures and the mathematics, also speaks to whether a 
teacher holds expectations that students can self-monitor their behavior and gain command of the 
mathematics. If these ways of parsing classroom cognition are coupled with ideologies of a racialized 
hierarchy of mathematical ability, then they are signs that whiteness is at play. But it is also more 
complex than this. For instance, even in a mostly African American classroom, some students may 
have more access to content and authority than others. If the students who are seen as more capable 
fit norms for white behavior, then whiteness is still at play. Patterns as to which students have access 
to which cognitive tasks can be quite telling. 

Emotional. Coping with discrimination and racism in everyday experience requires significant 
emotional labor in terms of sadness, frustration, and anger (Moore, 2008). However, schools and 
classrooms often do not provide the time, space, or support for students to process these experiences 
and emotions. When students do process or exhibit these emotions, they can be seen as angry, 
aggressive, or violent rather than struggling with a complex and unfair world.  Moore (2008) 
discusses how law schools continue to ignore and undervalue this emotional labor: 

Coping with everyday racism in the law school frequently produces frustration, anger, or sadness, 
but the institutional logic of the law school does not recognize expressions of these emotions as 
legitimate.  Students are thus forced to manage their emotion in order to avoid further 
marginalization… This demands that students of color perform invisible and emotional labor that 
their white counterparts are not required to perform.  Both in the law school and in the profession 
of law, this labor is expected of law students of color, yet it goes unrecognized and unrewarded 
(p. 31). 

Additionally, students must manage the ways in which they express emotions to avoid deficit 
discourses about being perceived as argumentative, angry, aggressive, and a multiple of other 
negative associations. When students of color are expected to relate experiences they consider unfair 
in a calm, dispassionate, and disconnected way, then whiteness is restricting acceptable ways of 
grappling with the emotions of discrimination and racism (Moore, 2008). Finally, this emotional 
labor places an undue cognitive burden on students as well. Dovidio and Gaertner (2008) found that 
when solving mathematics problems, African American students within groups that made them 



Student!Learning!and!Related!Factors:!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

499!

process emotions related to discrimination more, performed work slower when compared to those 
who did not. Steele and Aronson’s (1995) work on stereotype threat can also be seen as the result of 
the added emotional labor due to priming race during cognitive tasks. 

Behavior. One way in which labor is handled is by deeming certain student behaviors 
appropriate and others not. This has immense consequences in classrooms as harsh and frequent 
discipline has been found to frequently lead to missed instructional time and expulsion from school 
for African American and Latin@ males in particular (Gregory, Noguera, & Skiba, 2010). Within 
mathematics, this can take the form of deeming certain ways of language use as inappropriate for 
mathematical argumentation or by requiring students to sit still in seats in regimented ways (Battey, 
2013b). Further, whiteness can function by valuing behaviors of white students over others in subtle 
ways of how language and behavior are perceived to align with understandings of appropriate 
classroom actions. When students align with white ideals about behavior, their actions will likely be 
praised or sanctioned. When students do not align, maybe through being too argumentative, too 
quiet, too excited, or abrasive, we would expect to see behavior to be called out, positive behaviors to 
go unnoticed and a hyper-focus on misbehavior leading to increasing discipline and eventually 
suspensions and expulsions. When teachers employ such behavioral control despite substantive 
mathematical contributions in classrooms (see Battey, 2013b), it is evidence that a broader ideology 
is at play. 

Identity 
Martin (2009) defines mathematical identities as “dispositions and deeply held beliefs that 

individuals develop about their ability to participate and perform effectively in mathematical contexts 
and to use mathematics to change the condition of their lives” (p. 326). The construction of 
mathematical identities, however, is not a strictly personal, internal process as it is constantly 
negotiated with institutional influences and interpersonal encounters. More specifically, the 
organizing white frame relegates African Americans and Latin@s as mathematically incapable and 
innumerate and thus grants unquestioned legitimacy to whites in mathematics education spaces. This 
aligns with Martin’s (2009) notion of mathematics as a racialized such that the social construction of 
whiteness is maintained in mathematics classrooms through the inequitable learning opportunities 
and academic de-legitimization experienced of marginalized students. 

Academic (De)Legititmization.!Mathematics classrooms that function as white institutional 
spaces require students to negotiate academic legitimacy across a racialized hierarchy of ability based 
on white norms and values.  Understanding mathematical identities, therefore, can only be attained 
by detailing processes of negotiation within racialized discourses as opposed to traditional analyses 
of achievement gaps between different races (Martin, 2009). With whites and Asian Americans – 
considered “honorary whites” (see Bonilla-Silva, 2003) – at the top of the hierarchy of mathematics 
ability, whiteness in mathematics classrooms operates in ways that they are assumed or assume 
themselves that they are mathematically intelligent. Conversely, students of color’s legitimacy is 
always under question so that they need to prove themselves mathematically capable by subscribing 
to white views of success that structure the academic spaces. Deficit perspectives on students of 
color’s mathematics ability stem from these ideological discourses and in turn position these students 
as illegitimate members of mathematics classrooms resulting in poor relationships with teachers, 
lower-quality instructional experiences, and expressed disidentification with the mathematics subject 
(Spencer, 2009). Therefore, whiteness can be seen in students’ stable identification or dissociations 
with the mathematics domain, consistent with racial hierarchies. 

Co-Construction of Meaning. Students construct mathematical identities in relation to the 
people and the institutions in which they participate. Therefore, the explicit and implicit ways in 
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which people and institutions pass on messages are critical for how students develop mathematical 
identities. For instance, ability grouping or tracking along racial lines send messages to students 
about the racial hierarchy of ability (Lewis, 2004). Teacher comments about low and high students or 
needing to learn the “basics” pass on messages more overtly (Battey & Fanke, 2015). Within school 
contexts, students construct what being good at mathematics means. Maybe being good means the 
student who finishes first, but cannot explain their thinking. Additionally, Moore (2008) discusses 
peer perceptions of academic support programs in law schools such that some students think that 
students of color in the programs were admitted to the school based on race rather than earning it. 
This anti-historical view ignores the reasons for programs that remedy institutional racism. This view 
also perpetuates whiteness by not recognizing the material racism that produced and continues to 
produce differential access to educational quality. However, as institutions leave these perspectives, 
programs, and racism unaddressed, they participate in limiting spaces for students to construct 
identities that counter the racial hierarchies contained by whiteness. 

Agency and Resistance. Despite racial oppression, it is important to also consider African 
Americans and Latin@s agency in negotiating their racial identities and mathematics success. 
Although Martin (2009) uses African Americans’ experiences to illustrate racial struggles in 
mathematics, his discussion can be extended to other marginalized student populations as they 
“negotiate and resist the racialization processes that attempt to position and confine [them] within an 
existing racial hierarchy” (Martin, 2009, p. 325). This illustrates the importance of inclusion of the 
voices and experiences of those marginalized. Martin (2009, p. 315) states: 

Moreover, because little attention has been given to resistance, contestation, and negotiation of 
these meanings, disparities in mathematics achievement and persistence are often inadequately 
framed as reflecting race effects rather than as the consequences of the racialized nature of students’ 
mathematical experiences [emphasis in original]. 

Therefore, examining unchallenged racialized discourses in mathematics classrooms is making 
plain whiteness as taken for granted. Unchallenged racial discourses keep individual experiences of 
race internal for both whites and students of color. However, for students of color, this is more 
detrimental because unchallenged, they may either disassociate from their race, community, and 
history to succeed mathematically, or internalize the discourse. For mathematically successful 
African American students then, they may disassociate from peers or downplay their success. For 
mathematically unsuccessful Latin@ students, they may disassociate from mathematics or schooling 
through resistance by active challenging of educators views of students, purposeful disengagement, 
or dropping out. 

Conclusion 
Whiteness is a widespread ideology in society. While it is getting more attention in the broader 

education literature, mathematics educators have been slow to research it’s impact on African 
American and Latin@ students (Battey, 2013a). However, its impact on white students is just as 
important in making unearned privileges visible to the field. We hope this framework supports the 
field in identifying the effects of whiteness at different levels of the educational system. The goal for 
us it to support the development of a mathematics space that builds collective consciousness of 
racism in order to prevent students of color from internalizing deficit ideologies (Feagin, 2006; 
Moore, 2008). This in turn would open more space for student identities that challenge existing racial 
hierarchies. 
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In this study, we surveyed 570 Calculus I and Calculus II students at two large public universities in 
the Northeastern region of the United States.  We explored the relationship between these students’ 
career goals in mathematics and other STEM fields, with their mathematics identity and self-
identified personality attributes. Our findings suggest that mathematics identity can be used as a way 
of explaining persistence in mathematics and other STEM fields.  We also found certain personality 
attributes to be correlated with persistence in these fields and these personality attributes varied 
based on gender. We conclude with a detailed analysis of our findings and some implications.    

Keywords: Affect and Beliefs; Gender; Post-Secondary Education 

Introduction 
There is a shortage of individuals entering STEM (Science, Technology, Engineering, and 

Mathematics) careers in the United States (Langdon, McKittrick, Beede, Khan & Doms, 2011; 
National Academy of Sciences, 2010).  For the past 50 years, there has been a notable decline in the 
number of college students choosing STEM majors, and college students are more likely to switch 
from a STEM major to a non-STEM major than the other way around (Seymour & Hewitt, 1997).  
Furthermore, data suggest that there has not been notable increases in the percentage of students 
receiving STEM degrees in recent years, with only a 1% increase of bachelor’s degrees awarded in 
STEM fields between 2002 and 2012 (NSF, 2015). Given that the growth of STEM jobs was three 
times that of non-STEM jobs during the past decade or so, this shortage of citizens interested and 
educated in the STEM fields is of national concern (Langdon, McKittrick, Beede, Khan, & Doms, 
2011).  

In addition, there is evidence of a continued underrepresentation of women choosing a career in 
STEM fields. For instance, based on data reported by the National Science Foundation, in 2013 
although women made up 46.1% of the entire U.S. workforce, they were only 14.8% of those 
employed as engineers, 11.8% of those employed as physicists and astronomers, and only 25.4% of 
those employed as mathematical or computer scientists (NSF, 2015).  Furthermore, the percentage of 
women earning degrees in STEM fields has been declining.  For example, the percentage of women 
earning bachelor’s degrees in the mathematical sciences fell from 48% in 2001 to 43% in 2009. 
Other fields, such as engineering and computer science, have seen similar declines in women earning 
such degrees during the same timeframe (NSF, 2015). Though these results inform us of the 
underrepresentation of women in these fields, they do not provide insight as to why these trends are 
occurring. It is important to explore reasons why this underrepresentation is still persisting and why 
gender gaps in participation are increasing in some cases.  

Prior research has shown a connection between individuals’ mathematics identity and students’ 
persistence and commitment to mathematics and other STEM fields (Boaler & Greeno, 2000; Cass, 
Hazari, Cribbs, Sadler, & Sonnert, 2011).  Furthermore, in previous work, Piatek-Jimenez (2015) 
noted specific self-identified personality attributes common amongst women mathematics majors.  
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For this study we are combining these two constructs to determine what relationships exist between 
students’ mathematics identities and self-identified personality attributes with their intended choice 
of career. 

The following research questions were used to guide this study: 1) What is the relationship 
between students’ career goals in a STEM field with their mathematics identity and self-identified 
personality attributes?; 2) What is the relationship between students’ career goals in a mathematics 
field (mathematician and mathematics teachers) with their mathematics identity and self-identified 
personality attributes?; and 3) How do these models vary between females and males? 

Theoretical Framework 
Identity is a construct that is becoming increasingly utilized in mathematics education research 

when exploring students’ persistence and attrition in mathematics (Boaler & Greeno, 2000; Martin, 
2000; Piatek-Jimenez, 2008; Piatek-Jimenez, 2015).  Though different authors have conceptualized 
the construct in slightly different ways, we view “mathematics identity” as how individuals see 
themselves in relation to mathematics based on their perceptions and navigation of everyday 
experiences with mathematics (Enyedy, Goldberg & Welsh, 2006). We view this as being a part of 
an individual’s “core identity”, which is a more enduring sense of who an individual is and who he or 
she wants to become (Cobb & Hodge, 2011).  

Our framework for mathematics identity draws from prior work in the field of mathematics and 
science (Cribbs, Hazari, Sadler, Sonnert, 2012; Carlone & Johnson, 2007; Hazari, Sonnert, Sadler & 
Shanahan, 2010). In our framework, mathematics identity is comprised of the sub-constructs interest, 
recognition, and competence/performance.  Interest refers to an individual’s desire or curiosity to 
think and learn about mathematics. Recognition refers to how an individual perceives others view 
him or her in relation to mathematics.  Competence/performance refers to an individual’s beliefs 
about his or her ability to understand and perform in mathematics. It is the inclusion of these three 
factors that provide a better picture of an individual’s mathematics identity.  

While mathematics identity is a strong predictor for students’ career goals in certain STEM 
fields, such as engineering (Cass et al., 2011) and mathematics (Cribbs et al., 2012), other factors 
influence an individual’s choice whether or not to pursue a STEM career. Furthermore, Gee’s (2001) 
work related to identity indicates that an individual may have many different identities. For example, 
a woman mathematics major may identify as both a woman and a mathematics major. Potentially 
conflicting expectations about what it means to be a woman and what it means be a mathematics 
major may inform her decision whether or not to enter a career in mathematics.  

In particular, our study is concerned with the role that gender plays in the expectations and 
choices an individual makes. For example, gender stereotyping could play a role in how individuals 
view themselves and subsequently the choices they make. Research notes that parents (Furnham, 
Reeves & Budhani, 2002; Frome & Eccles, 1998) and teachers (Helwig, Anderson & Tindal, 2001; 
Li, 1999) hold different beliefs about males’ and females’ abilities in mathematics. In addition, many 
scholars have noted connections between individuals’ personality attributes and career choice 
(Ackerman & Beier, 2003; Buddeberg-Fischer, Klaghofer, Abel & Buddeberg, 2006; Schaub & 
Tokar, 2004).  Furthermore, Luyckx, Soenens, and Goossens (2006) found correlations between an 
individual’s identity and personality traits.  By exploring mathematics identity and students’ self-
identified personality attributes, we might develop a better understanding of how expectations and 
other identities interact to influence students’ career goals.  

Methods  
This study collected data from two different universities in the northeast region of the United 

States by administering surveys in the fall of 2014 with students enrolled in Calculus I and Calculus 
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II courses, yielding 570 completed surveys. The survey was developed to collect student 
demographic information, career goals, perceptions related to mathematics identity, and self-
identified personality attributes. Content validity was insured through: 1) pulling from literature 
related to personality attributes, gender, and mathematics identity (Cribbs et al., 2012; Piatek-
Jimenez, 2015; Ely, 1995; Jones & Myhill, 2002; Luhtanen & Crocker, 1992), 2) conducting a pilot 
test with survey items related to personality attributes and gender stereotyping in the spring of 2014, 
and 3) conducting a pilot test with the completed survey in the summer of 2014. The initial pilot test 
also included a series of focus group sessions with participants to further refine the survey items. 
Both pilot tests were done with college students enrolled in mathematics and mathematics education 
courses at the universities where the study was conducted.   

Logistic regression was used to address each research question because the outcome variable 
(career goals) was dichotomous. One regression model was created to examine students’ career goals 
in a STEM field and another was created to explore students’ career goals specifically in a 
mathematics field (mathematician or mathematics teacher). Table 1 details the possible choices 
available on the survey and corresponding number of responses.  We can see from the table that of 
the 53 participants with career goals in a mathematics field, just under 60% of them were interested 
in becoming K-12 mathematics teachers. 

Table 1: Number of Students Selecting each Career Goal 
Career Goal Number Percent of Sample 
Non-STEM (e.g. lawyer, business person) 197 35 
STEM   
Mathematician 22 4 
Math teacher 31 6 
Life/earth/environmental scientist 52 9 
Physical scientist 26 5 
Engineer 176 31 
Computer scientist, IT 53 9 
Science teacher 8 1 
STEM Total 368 65 

   
Because we were looking at mathematics identity in particular (and not STEM identity), we were 

also interested in how the results might differ when comparing students who have chosen a 
mathematics field to those choosing a non-STEM field. Therefore, in conducting the regression 
analysis for research question 2, all other STEM participants were excluded in order create a model 
that compared how participants selecting mathematician or mathematics teacher related to those who 
selected a non-STEM field. A proxy for mathematics identity was used based on results from a 
previous analysis (Cribbs et al., 2012). In addition, the following control variables were considered 
for the model: gender, age, class standing in college, and mathematics course enrollment. 

Results 
Table 2 details the results for research question 1: What is the relationship between students’ 

career goals in a STEM field with their mathematics identity and self-identified personality 
attributes?  Only significant control variables, with a significance level of p < 0.05, were included in 
the final models shown in this section. 

Table 2 shows that the only control variable remaining in the model was “current math class.” 
The results indicate that mathematics identity significantly predicts students’ career goals in a STEM 
field with an odds ratio of 1.5.  In other words, a one unit increase in the mathematics identity proxy 
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increases the odds of a student selecting a STEM career field by one and a half times. The results 
also indicate that several self-identified personality attributes are correlated with students’ career 
goals STEM. The positively correlated items are “I am able to be ‘one of the guys’” with an odds  

Table 2: How do mathematics identity and personality attributes predict STEM career goals 

(N=570) Estimate SE Odds 
Ratio 

Sig. 

Intercept 1.258 0.837   
Controls 
Current math class 0.280 0.081 1.323 *** 
Mathematics Identity 0.406 0.087 1.501 *** 
Self-Identified Characteristics 
I am feminine -0.143 0.051 0.867 ** 
I am forceful with my opinions -0.226 0.072 0.798 ** 
I earn good grades -0.543 0.121 0.581 *** 
I am able to be “one of the guys” 0.185 0.076 1.204 * 
I am academically motivated -0.250 0.113 0.779 * 
I show concern for people’s well-being -0.308 0.106 0.735 ** 
I am inquisitive 0.268 0.098 1.307 ** 
I am passionate about my major 0.315 0.087 1.371 *** 
*p<0.05 **p<0.01 ***p<0.001     

 
ratio of 1.2, “I am inquisitive” with an odds ratio of 1.3, and “I am passionate about my major” with 
an odds ratio of 1.4. The negatively correlated items include “I am feminine” with an odds ratio of 
0.9, “I am forceful with my opinions” with an odds ratio of 0.8, “I earn good grades” with an odds 
ratio of 0.6, “I am academically motivated” with an odds ratio of 0.8, and “I show concern for 
people’s well-being” with an odds ratio of 0.7. 

Table 3 details the results for research question 2: What is the relationship between students’ 
career goals in a mathematics field and their mathematics identity and self-identified personality 
attributes?   

Table 3: How do mathematics identity and personality attributes predict career goals in a 
mathematics field (mathematician or mathematics teacher) 

(N=250) Estimate SE Odds 
Ratio 

Sig. 

Intercept -2.684 1.355  * 
Mathematics Identity 1.340 0.248 3.819 *** 
Self-Identified Characteristics 
I am self-sufficient -0.375 0.176 0.687 * 
I am concerned about future career obligations -0.385 0.139 0.681 ** 
I cry easily when I am angry/upset 0.217 0.103 1.242 *** 
I have high career aspirations -0.931 0.240 0.397 * 
I am concerned about future family obligations 0.343 0.141 1.409 ** 
I do not mind sacrificing my personal time for my studies -0.441 0.153 0.643 * 
I have a strong work ethic 0.217 0.103 1.763 * 
*p<0.05 **p<0.01 ***p<0.001     

 
Table 3 shows that mathematics identity significantly predicts students’ career goals as a 

mathematician or mathematics teacher with an odds ratio of 3.8. The results also indicate that several 
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self-identified personality attributes are correlated with students’ career choice as a mathematician or 
mathematics teacher. The positively correlated items are “I cry easily when I am angry/upset” with 
an odds ratio of 1.2, “I am concerned about future family obligations” with an odds ratio of 1.4, and 
“I have a strong work ethic” with an odds ratio of 1.8. The negatively correlated items include “I am 
self-sufficient” with an odds ratio of 0.7, “I am concerned about future career obligations” with an 
odds ratio of 0.7, “I have high career aspirations” with an odds ratio of 0.4, and “I do not mind 
sacrificing my personal time for my studies” with an odds ratio of 0.6. 

Table 4 and 5 detail results for research question 3: How do these models vary between females 
and males?  

Table 4: How do mathematics identity and personality characteristics predict career goals in a 
STEM field for females 

(N=191) Estimate SE Odds 
Ratio 

Sig. 

Intercept   5.155 1.499  *** 
Mathematics Identity 0.731 0.152 2.088 *** 
Self-Identified Characteristics 
I am spontaneous -0.298 0.136 0.742 * 
I am forceful with my opinions -0.221 0.109 0.802 * 
I earn good grades -0.710 0.213 0.491 *** 
I am able to be “one of the guys” 0.292 0.128 1.340 * 
I am academically motivated -0.600 0.206 0.549 ** 
I am passionate about my major 0.352 0.167 1.422 * 
I care about my appearance -0.404 0.147 0.668 ** 
*p<0.05 **p<0.01 ***p<0.001     

Table 4 indicates that mathematics identity significantly predicts female students’ career goals in 
a STEM field with an odds ratio of 2.1. The results also indicate that several self-identified 
personality attributes are correlated with female students’ career goals in STEM. The positively 
correlated items are “I am able to be ‘one of the guys’” with an odds ratio of 1.3 and “I am passionate 
about my major” with an odds ratio of 1.4. The negatively correlated items include “I am 
spontaneous” with an odds ratio of 0.7, “I am forceful with my opinions” with an odds ratio of 0.8, “I 
earn good grades” with an odds ratio of .5, “I am academically motivated” with an odds ratio of 0.5, 
and “I care about my appearance” with an odds ratio of 0.7. 

Table 5: How do mathematics identity and personality characteristics predict career goals in a 
STEM field for males 

(N=378) Estimate SE Odds 
Ratio 

Sig. 

Intercept   -0.751 0.915   
Controls 
Current math class 0.312 0.103 1.366 ** 
Mathematics Identity 0.270 0.115 1.310 * 
Self-Identified Characteristics 
I am forceful with my opinions -0.198 0.100 0.821 * 
I earn good grades -0.358 0.139 0.699 * 
I do not mind sacrificing my personal time for my studies -0.281 0.107 0.755 ** 
I am inquisitive 0.303 0.120 1.354 * 
I am passionate about my major 0.378 0.104 1.459 *** 
*p<0.05 **p<0.01 ***p<0.001     
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Table 5 indicates that mathematics identity significantly predicts male students’ career goals in a 
STEM field with an odds ratio of 2.1. The results also indicate that several self-identified personality 
attributes are correlated with male students’ career goals in STEM. The positively correlated items 
are “I am inquisitive” with an odds ratio of 1.4 and “I am passionate about my major” with an odds 
ratio of 1.5. The negatively correlated items include “I am forceful with my opinions” with an odds 
ratio of 0.8, “I earn good grades” with an odds ratio of 0.7, and “I do not mind sacrificing my 
personal time for my studies” with an odds ratio of 0.8. 

Discussion 
Our findings provide evidence that mathematics identity can be used as a way of explaining 

student persistence in STEM fields. Specifically, a shift in the mathematics identity proxy of one 
standard deviation corresponds to a 1.5 higher odds of having career goals in a STEM field and a 3.8 
higher odds of having career goals as a mathematician or mathematics teacher. The odds ratio is 
much higher for career goals as a mathematician or mathematics teacher than for a general STEM 
field, as might be expected.  

Our results also suggest that certain self-identified personality attributes are positively correlated 
to students’ career goals in STEM. In particular, we found that “I am able to be ‘one of the guys’” is 
positively correlated with having career goals in a STEM field.  This finding might be a result of 
society’s stereotypical belief that scientists and mathematicians are generally male (Picker & Berry, 
2000).  Therefore, individuals who believe that they can fit in as “one of the guys” may be more 
likely to choose a career in STEM.  We also found that the attribute “I am passionate about my 
major” was positively correlated with choosing a STEM field.  This, too, many be related to the 
belief that scientists and mathematicians are obsessed with their field (Piatek-Jimenez, 2008; Picker 
& Berry, 2000).  Furthermore, we found that “I am inquisitive” was positively correlated with 
choosing a STEM field.  We believe that this finding could relate to the fact that the field of science 
is often affiliated with inquiry, and other STEM fields, such as engineering and mathematics, are 
often related to problem solving.  

There were also five negatively correlated self-identified personality attributes with choosing a 
STEM field.  One of these attributes was “I am feminine”.  This may not be a surprising result given 
that, as previously mentioned, STEM fields are often believed to be masculine fields.  This finding is 
consistent with that of Piatek-Jimenez (2015) who found that women mathematics majors often do 
not identify with being highly feminine.  Another attribute that negatively correlated with wanting a 
STEM career was “I show concern for other people’s well-being”.  This finding is consistent with 
Morgan, Isaac, and Sansone’s (2001) work that shows college students believe that the physical and 
mathematical sciences are less likely to have “people-oriented” careers.  Therefore, individuals who 
are highly concerned for other people’s well-being may be less likely to choose a STEM career.  Two 
items we found more difficult to interpret were “I earn good grades” and “I am academically 
motivated” as being negatively correlated with choosing a STEM field.  Initially these both seemed 
counter-intuitive to us, given that STEM fields tend to be viewed as more rigorous fields.  However, 
we believe this is the exact reason that “I earn good grades” did show up as a negative correlation.  
Because STEM fields are often seen as more rigorous, students in these fields may be used to earning 
lower grades than in other non-STEM fields. As of yet, we are still unable to determine why “I am 
academically motivated” was negatively correlated with STEM.  In future work, we intend to do 
qualitative interviews with students to learn more about this finding. 

In addressing our second research question, our results shown in Table 2 suggest that certain self-
identified personality attributes are correlated specifically with career goals in a mathematics field, 
and that these are slightly different than for STEM careers, in general.  In particular, we found that “I 
am concerned about future family obligations” was positively correlated with wanting a career in 
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mathematics while “I am concerned about future career obligations” and “I have high career 
aspirations” were negatively correlated with wanting a career in mathematics.  We believe that these 
findings may be a result of the fact that approximately three-fifths of the participants wanting a 
career in mathematics were intending to become a K-12 mathematics teacher.  Given that the societal 
perception of teaching is that it provides a schedule more conducive to fulfilling family obligations 
(Anthony & Ord, 2008) than possibly other STEM fields may be a reason for this finding.  
 In order to address our third research question, we ran the model with regards to choice of STEM 
career separately for females and males.  There were three personality attributes that remained 
consistent in all three models.  We found that “I am passionate about my major” was positively 
correlated and “I am forceful with my opinions” and “I earn good grades” were negatively correlated 
in all three models.  This finding shows that these personality attributes in predicting STEM career 
goals were not dependent upon gender.  However, there were personality attributes that did depend 
on gender.  Interestingly enough, the personality attribute of “I am able to be ‘one of the guys’” was 
found to be statistically significant for female students wanting STEM careers but not for male 
students.  We find this result to be important because it demonstrates the need for women to feel like 
they fit in as “one of the guys” when choosing a career in a STEM field.  This result suggests that 
there may still be an embedded societal belief that the STEM fields remain male-dominated and 
male-driven and that in order to enter these fields, one must be able to be “one of the guys”. 
 While having a strong mathematics identity is an important factor in choosing mathematics or 
other STEM career goals, it certainly is not the only factor influencing such decisions.  Many factors 
play a role in career choice, and our work suggests that personality attributes may be one of those 
factors.  Furthermore, we found that the personality attributes that correlate to choosing STEM 
careers differ slightly between males and females.  If our goal is to encourage more students, and 
specifically more women, to enter STEM careers, a better understanding of the role that these 
personality attributes play in such decisions will allow us to better recruit talented students into these 
fields. 
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Prospective teachers must be prepared for their role in providing equitable access for learning high 
quality mathematics. Therefore, it is imperative that mathematics teacher educators provide 
opportunities to develop an equity-centered orientation in teacher preparation courses. In this study, 
we begin to address this issue by identifying what prospective teachers attend to in a classroom 
vignette of an African American male student who is above grade level in mathematics and exhibits 
disruptive behavior during instruction. The results of the study indicate that while participants are 
beginning to attend to cultural influences, most responses are focused on classroom management 
strategies. 

Keywords: Equity and Diversity; Teacher Education-Preservice 

Introduction and Background 
The National Council of Teachers of Mathematics (NCTM) asserts that in order to teach in an 

equitable manner, teachers and schools must maintain “high expectations and strong support for all 
students” (NCTM, 2000, p. 11), meaning mathematics teachers must provide opportunities for 
students to learn challenging mathematics regardless of their students’ “personal characteristics, 
backgrounds, or physical challenges” (p. 12). For the past two decades, mathematics educators 
conceptualized what it means to teach mathematics for equity (Gutiérrez, 2002; Gutstein, 2003; Hart, 
2003; Matthews, 2005); yet only in recent years have mathematics teacher educators documented 
efforts to prepare prospective teachers (PTs) to teach mathematics while considering matters of 
equity (Bartell, 2010; Freitas, 2008; Wager, 2014). Unfortunately, many PTs and practicing teachers 
do not know how to make these necessary connections, especially with students who are different 
from their own culture and background (Futrell, Gomez, & Bedden, 2003; Turner, Drake, Roth 
McDuffie, Aguirre, Gau Bartell, & Foote, 2012). Therefore, within the current educational system, 
students from non-dominant backgrounds are often denied equitable opportunities to learn (Wager, 
2014). 

To further complicate the issue, many mathematics teachers dismiss issues of equity as relevant 
factors in the mathematics classroom because they view mathematics as a universal, culture-free 
subject (Rousseau & Tate, 2003). However, there is a growing body of mathematics education 
researchers who understand that mathematics and mathematical knowledge are neither universal nor 
culturally neutral, but are situated in a sociocultural framework (Ukpokodu, 2011). Moreover, Gay 
(2000) argues that if we “decontextualiz[e] teaching and learning from the ethnicities and cultures of 
students [it] minimizes the chances that their achievement potential will ever be fully realized” (p. 
23). Reducing the opportunity gap in mathematics education is possible by transitioning to an equity-
centered paradigm. With this goal in mind researchers, practitioners, and teacher educators in the 
mathematics education community must learn how to “value the cultural and lived experiences of all 
children…[and emphasize] the belief that all children possess strong intellectual capacity and bring a 
wealth of informal, out-of-school knowledge to the teaching and learning process” (Lemons-Smith, 
2008, p. 913). It is imperative that mathematics teacher educators begin this process by encouraging 
prospective and practicing teachers to critically examine their current beliefs while explicitly 
addressing the elements of teaching mathematics through an equitable lens. Attending to these 
practices in teacher preparation programs can help all teachers observe the actions that occur in the 
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classroom, and determine effective strategies that will enhance all students’ access to high quality 
mathematics instruction.  

The extant literature in mathematics education provides an initial glance into equitable 
mathematics pedagogy, yet there is a need to better prepare PTs for their role in creating 
opportunities that provide equitable access for learning high quality mathematics. It is imperative 
PTs are given the opportunity to develop an equity-centered orientation toward mathematics teaching 
and learning to effectively instruct all students. In order to accomplish this goal, we must first 
recognize what PTs attend to as they direct their attention to various classroom events and how they 
relate the events to broader principles of teaching and learning, including cultural contexts that 
contribute to students’ learning. In this study, we begin to address Wager’s (2012) call and Hand’s 
(2012) recommendation to assess how equity issues are perceived in classroom episodes by reporting 
what PTs notice about students’ mathematical thinking and its relation to culture, home, and 
community.  

Theoretical Framing for the Study 
Equity may be viewed as a process or as a product (Crenshaw, 1988; Gutiérrez, 2002; Martin, 

2003; Rousseau & Tate, 2003). Seeing equity as a process means treating all students equally, 
without regard to race, ethnicity, or economic background. On the other hand, seeing equity as a 
product means differentiating instruction based upon students’ needs in order to promote equal 
learning outcomes. We adopt the view of equity as a product, and define teaching mathematics for 
equitable outcomes as approaches that are respectful of students’ ethnic, racial, and economic 
background and promote equal learning outcomes.  

Classroom episodes are complex; therefore, it is inevitable that individuals choose, consciously 
or subconsciously, what they attend to and then use these events to make instructional decisions. 
Before defining an approach that develops PTs’ orientations toward teaching mathematics through an 
equity lens, we must first attend to how PTs perceive classroom situations and identify what they 
notice—or attend to—during the teaching and learning process. This process is referred to as the 
discipline of noticing. The ability to notice noteworthy classroom interactions or events among the 
plethora that occur in a complex classroom environment is a key component of teaching expertise 
(van Es & Sherin, 2006).  

van Es and Sherin (2010) emphasize the key in the process of noticing is identifying what is 
significant, and then reasoning about the situation to effectively contribute to mathematics learning. 
Furthermore, Wager (2006) argues that mathematics teachers must not only attend to students’ 
achievement, but also explore access, identity, and culture in order to provide students with equitable 
opportunities. Turner et. al. (2012) expand upon this sentiment in the context of noticing as they 
emphasize noticing critical elements within a classroom environment includes not only analyses of 
mathematical thinking, but also considers the impact of cultural knowledge as a foundation of 
students’ mathematical knowledge base. The process of noticing generally involves three 
components: (a) identifying noteworthy instances within a classroom situation, (b) relating classroom 
interactions or events to principles of teaching and learning, and (c) using the cultural context to 
interpret the events and make instructional decisions. In this study, we incorporate a noticing lens to 
explore what PTs attend to as they reflect on a teaching vignette and how the events they notice 
correspond to equitable practice. 

Method 
In this paper, we describe an activity used in our elementary mathematics methods course that 

was designed to encourage PTs to face existing (and often hidden) biases in order to alter 
unproductive beliefs and consequently broaden their ways of seeing. We view this as an essential 
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activity to help PTs: (a) develop an awareness of equity, (b) define what equity means in classroom 
instruction, and (c) implement equity practices within the mathematics classroom. Participants in the 
study were PTs from three different universities in the U.S. who were within a year of their student 
teaching experience. The demographics of the PTs reflected demographic patterns of elementary 
education majors at our universities and included 91.4% white females, 4.3% white males, 1.4% 
Asian female, and 2.9% African American females. A less diverse population of PTs is facing an 
ever increasingly diverse population of students in our public school systems.   

To access the PTs’ thoughts and ideas on issues related to equity in the mathematics classroom, 
we used classroom vignettes, each representing a different scenario that potentially challenges 
learners’ equitable access to high quality mathematics. The five authentic topics included one of the 
following teachers: (a) one who exhibits gender bias for class participation, (b) one with 
preconceived biases that cause him to withdraw from students who are from different backgrounds 
than himself, (c) an instructor who does not take time to develop relationships with her racially 
diverse students, (d) one who recommends a new English Learner with limited English proficiency 
for special education services without adequately assessing the child’s content knowledge, and (e) a 
teacher who is frustrated with a student who is above grade level in mathematics and exhibits 
disruptive classroom behavior. 

To help ensure all PTs fully participated in the discussion of the equity cases, each PT 
independently read and responded to corresponding reflection questions for each case (Data Source 1 
[DS 1]). Using a modified version of “jigsaw,” a cooperative learning structure, the PTs were divided 
into five groups, where each group was randomly assigned a specific case and asked to discuss their 
responses (DS 2), which were audio-recorded and transcribed. The PTs recorded their thoughts to the 
guiding questions that accompanied their case on chart paper (DS 3), and an expert was selected from 
each small group to share their results with other members in the class. Everyone from each group, 
except the expert, rotated from case to case and listened to the “expert” report the group’s analysis of 
the situation before the PTs shared their individual thoughts pertaining to the events in the vignette. 
At the conclusion of the discussion, the PTs recorded their thoughts and ideas on post-it notes that 
were placed on the chart paper (DS 4). Once the PTs finished rotating to each of the five groups, they 
returned to their original group where the expert shared what he/she learned from the discussions 
with the other groups. Finally, the PTs shared their thoughts and ideas on each case within a large 
group discussion.  

For the purpose of this paper, we focus our results on one case, Eric, in particular because of the 
dichotomy the PTs perceived between Eric’s mathematical knowledge and his exhibited behavior 
during a mathematics lesson. See figure 1 for the stated case and corresponding reflection questions.  
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Figure 1: The case of Eric and corresponding reflection questions. 

Data Collection and Data Analysis 
The first part of the classroom assignment with Eric’s case served as an opportunity to gain 

insight into what individual PTs highlighted as significant.  When students read the vignette and 
addressed the reflection prompts we could ascertain the three elements in the noticing process. First 
we identified what the PTs found noteworthy in the classroom situation with Eric. Secondly, we 
determined how the PTs related classroom interactions or events to principles of teaching and 
learning from their responses to the first, and particularly second, question. Finally, we thoroughly 
examined their responses for evidence of using the cultural context in the given situation to interpret 
the events and make instructional decisions. 

As PTs continued to work through the jigsaw activity discussing the scenario in small groups and 
with a follow-up large group discussion, the mathematics teacher educator in each of the three 
methods courses guided the conversations to further engage PTs in the second and third 
characteristics of noticing: (a) using contextual information to reason about witnessed events, and (b) 
making sense of the events through a contextual lens and using the knowledge to inform instructional 
decisions.  

The data generated from the individual reflections, group poster notes, and transcriptions from 
small group discussions served as evidence of PTs’ conceptions related to issues of equity. The data 
analysis process began by first making notes to identify PTs’ comments in the transcripts of the small 
group discussions and all written work. These notes served as indications of what the PTs noticed 
from the vignette. Then the margin notes were summarized into short phrases that emphasized the 
nature of the comment and were coded independently by three researchers for common themes. Any 
differences were resolved through refining the common themes. Finally, using Barnes and Solomon’s 
2013 observational categories as an initial analysis template, the common themes were clustered into 
the following four categories: (a) classroom management (i.e., classroom events—including 
disruptive events, pace changes, routines or procedures), (b) classroom environment (i.e., physical 
setting, equipment, demographics, grade level), (c) task selection (i.e., activities students do during 
the teaching episode), and (d) communication (i.e., interactions or dialogue between or among 
students, the classroom teacher, school personnel, or the family).  

Results 
Eric’s case provided an opportunity for mathematics teacher educators to engage PTs in a 

discussion on issues related to equity, which brought an awareness to and challenged their 
stereotypes, hidden biases, and unproductive beliefs about students from diverse backgrounds. The 
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results across the three classes (see Table 1) provided an interesting perspective on what the PTs 
noticed in the case. 

While the mathematics teacher educator guided follow-up discussions to the activity that 
emphasized principles of equity, throughout the three classes the PTs primarily attended to classroom 
management with 39.9% of the referring responses pertaining to strategies such as reward systems, 
punishments, or behavior plans. About one-third of the classroom management responses encouraged 
a classroom teacher in this situation to provide students like Eric with more leadership 
responsibilities. Specifically, one PT expressed,   

I would make Eric the classroom leader and give him jobs to do around the classroom. Like 
having him turn the lights on and off and having him sharpen the pencils. This will make him 
feel more like he is a part of the classroom and hopefully it will make him more of a helper than 
someone who disrupts other student’s work.  

Approximately 34% of the PTs’ classroom management responses focused on classroom 
behavior systems, with some students indicating that Eric was in need of a behavior intervention plan 
or an Individual Education Plan (IEP). In fact, one PT stated, “If he was put on an IEP for his  

Table 1: Summary of what prospective teachers noticed from the case of Eric 
 

 

BROAD CATEGORY CLUSTERED THEMES CODE CATEGORIES 

CLASSROOM 
MANAGEMENT 

39.9% 

Positive Reinforcement 
   11.8% 

Reward system (e.g., praise when  
   good) 
Positive rewards for class 
Special role (e.g., leader, peer  
   tutor) 

Negative Consequences 
   14.6% 

Punish Eric for his behavior 
Remove Eric from group 
Hold Eric back 

Behavioral Assessment 
   13.5% 

Document behavior 
Individualized Education Plan  
   (IEP) 
Firm, Clear Rules 
Set Goals 

COMMUNICATION 
29.7% 

Collaboration with Family 
   21.3% 

Contact Grandmother for ideas 
Speak with Student 1-1 

Collaboration with School 
   8.4% 

Contact Principal 
Refer to Guidance Counselor 
Refer to Special Education  
   Teacher 

TASK 
SELECTION 

22.5% 

Increase Rigor 12.9% 
 

Provide Enrichment Activities 
Challenge Eric More 

Increase Amount of Work   
   9.6% 

Provide “Busy Work” 

CLASSROOM 
ENVIRONMENT 

7.9% 

Culturally Relevant  
   Pedagogy 7.3% 

Home learning/Background 
Connect with Student 

Positive Influence/Support    
   System 0.6% 

Male Role Model 
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behavior, then maybe he could get instruction in a special education setting. This way he would not 
be disruptive towards his peers.” Another PT expressed her belief that the behavior was such an 
obstacle that Eric should not continue with his peers to the next grade. She articulated, “I believe that 
Eric would be a great student that could really benefit from being held back this year so that he could 
grow and learn to practice age appropriate behaviors.” These responses seem to imply that the 
student is at fault for the behavioral issues. The PTs who responded to the first reflection prompt 
whose solutions to the situation included behavior plans, IEPs, or retention were focused on Eric’s 
behavior without critically reflecting on how the teacher’s actions may be contributing to his 
outbursts.  

 While the PTs did indicate positive solutions to address Eric’s behavior, several identified 
classroom management strategies focused on negative consequences for Eric’s actions such as 
removing him from the group. One PT even noted, “Eric would be on an island far away from the 
rest of the class.” From these responses, it was evident the majority of PTs first noticed the 
behaviors, and initially directed concern to “deal with” Eric’s actions rather than attend to additional 
information that could provide insight to the source of these behaviors. These responses reflect a 
common perception or stereotype of black males as a menace to society, which can negatively impact 
the child and provides an obstacle for him (or her) in receiving opportunities for high quality 
instruction.  

Communication was the second most common category that the PTs responses aligned to with 
29.7% of the referring responses coded under this category. For example, in order to help subside 
Eric’s disruptive behavior, several PTs suggested speaking to Eric one-on-one or having Eric speak 
to a counselor, principal, or some other positive male role model. While collaboration with families, 
the school, and constructive influences in the community are integral to students’ successes, the PTs 
again first noticed Eric’s behavior and directed their contacts and references as resources for fixing 
the behaviors they found to be inappropriate for school. These actions seemed to indicate that the PTs 
did not feel comfortable or confident in effectively working with children who exhibit such 
behaviors, and also that they do not initially consider the whole child and how the classroom 
environment or teachers’ instructional methods may be a key factor in transforming behavior. 

One of the most interesting results under the task selection category was that in each of the three 
courses many of the PTs focused on giving Eric more work. Some PTs across the three groups, 
focused on providing more challenging work, with one even emphasizing the job of the classroom 
teacher is to “make sure that a student is being challenged and engaged on a level that is appropriate 
for them.” Several of the responses (12.9% of 22.5% of the task selection responses) PTs generated 
seemed to support the need to select appropriately challenging tasks for Eric and indicated that a 
strategy to quell his behavior could be to stimulate his thinking. One PT wrote, “I would gather 
different math problems that challenge Eric and meet his learning needs. If need be I would have an 
associate take Eric out during math to work on more challenging problems to keep him engaged.” 
However, others suggested Eric should be given additional work to keep him busy so he would not 
“distract” the other students. These students’ responses (9.6% of 22.5% of the task selection 
responses) seemed to overlook the possibility that Eric was bored with the current assignments, and 
rather than exploring opportunities to stimulate his thinking through high quality tasks that 
appropriately challenge Eric, the PTs merely indicated the need to increase the quantity of work 
rather than the rigor. Decisions such as these again serve as additional obstacles in providing access 
to high quality mathematics instruction. 

While many PTs did attend solely to Eric’s disruptive behavior, approximately 7.9% of the 
responses reflected an attempt to identify the source of the issue by focusing on ways they could 
establish a positive, caring classroom environment where students felt accepted as individuals. One 
PT claimed, “Students just want love and attention. This is why I think it is so important to create a 
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caring community in the classroom. I truly believe that when students trust and feel loved and 
accepted they will preform much better in school.” The PTs noticed the former abuse in the fictional 
child’s past and his current living situation being with his grandmother. Recognizing these events can 
negatively impact a child and can be exhibited through defiant or inappropriate behavior. 
Consequently, several PTs saw the need to create a place in which Eric could feel safe and secure. 
One PT articulated, “I think that the student is acting up because of his home life and I have seen this 
many times. Yes, you should have clear, set rules in class, but as an educator you should take the 
time to see where the student is coming from and maybe provide resources such as counseling.” One 
of the participants who commented on classroom environment recognized the need for a supportive 
environment and made connections to her field placement,  

This similar situation happened in my practicum classroom. The boy was African American and 
was constantly causing problems. His home life was very busy and his single mother had him 
and 7 other kids with another on the way so he did not get much attention at home. I do not think 
that he was abused, but he definitely was disruptive in the classroom. He did  not respect me and 
when I taught, he would do all of those things mentioned above with messing with other people’s 
papers and making noises during lessons…Eventually while I started to build a relationship with 
[him] he was really sad to see me go. It really is about making a relationship with the child and 
then showing them that you want to help them learn.  

Although classroom environment was the least referred response in the reflection assignment, it 
was reassuring that some PTs did notice the need to develop a positive classroom culture by 
connecting with their students and providing support systems. The attention to classroom 
environment in the large group discussion provoked PTs’ thinking on issues related to equity. In 
subsequent discussions, PTs began to uncover some of their stereotypes and unproductive beliefs 
related to Eric’s scenario. They recognized that initially many beliefs focused on Eric and his family 
situation as the root of the problem, rather than noticing that behavioral issues may stem from 
inappropriate instructional strategies. While more efforts are needed, these discussions seem to 
contribute to moving PTs into the other dimensions of noticing. 

Conclusion 
To provide opportunities for all students that will challenge the status quo, we must first identify 

what is salient to PTs by understanding what they attend to in complex classroom situations. With 
this knowledge, mathematics teacher educators can more effectively address PT’s philosophies and 
beliefs. We understand teachers cannot attend to everything that occurs in a classroom; thus they 
must make choices—whether consciously or subconsciously—about what they notice. Barnes and 
Solomon (2013) found that novices are often attracted to whatever is most salient or personally 
intriguing, such as evidenced in this study with classroom management strategies to address a 
student’s behavior.  

While classroom management is at the forefront of our PT’s thoughts, we must help them move 
beyond this surface layer of noticing. NCTM (2014) argues that effective mathematics instruction 
builds from students’ culture—their values, beliefs, language, and experiences. Therefore, the 
teaching and learning of mathematics is not void of cultural influence, but positioned within a social 
context. Noticing involves three components. From the results discussed above it is evident that PTs 
are attending to noteworthy instances in a classroom situation. However, mathematics teacher 
educators need to provide more explicit support and attention to the second and third aspects of 
noticing: (a) using contextual information to reason about witnessed events, and (b) making sense of 
the events through a contextual lens and using the knowledge to inform instructional decisions. 
Aligning teachers’ beliefs about equity and equitable practices in mathematics education with 
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productive beliefs (NCTM, 2014) and research-proven attitudes and practices (Jackson, 2010) is 
vital. Engaging PTs in classroom activities—such as the one described with Eric’s scenario—helps 
foster reflective discussions, which can positively contribute to developing an equity-centered 
orientation toward mathematics teaching and learning. 
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Conventions play an important communicative role in mathematics. Likely due to the complex 
relationship between conventions and school mathematics, few education researchers have 
questioned or investigated the consequences of instruction and curricula that primarily, if not 
unquestionably, maintain conventions. Drawing on Piagetian notions of abstraction and our work 
with students and teachers, we argue that students’ repeated experiences with instruction and 
curricula that maintain conventions likely constrain students’ learning opportunities. We hypothesize 
that by ‘breaking’ conventions, educators could better support students in differentiating those 
aspects of their activity essential to a concept from those that are unessential. We characterize 
student work on two tasks to illustrate potential relationships between the nature of students’ 
abstractions and what we perceive to be conventions.  

Keywords: Abstraction; Radical constructivism; Student cognition; Multiple representations 

…la mathématique est l’art de donner le même nom à des choses différentes. (Poincaré, 1908, p. 
29) 

Mathematicians and mathematics educators widely hold the study of mathematics as dependent 
upon abstraction. Said simply, abstraction is the process of coming to understand some sense of 
invariance among seemingly different activities, situations, or objects so that this understanding is 
not tied to particular features of any one activity, situation, or object; translating the Poincaré quote 
above, “mathematics is the art of giving the same name to different things.” Despite the central role 
of abstraction in the study of mathematics, students’ abstraction processes and how educators can 
support students in constructing productive (in the short- and long-term) meanings through 
abstraction remain pressing areas of research (Oehrtman, 2008; Simon et al., 2010). We agree with 
Thompson (2013), who argued that making fundamental improvements to U.S. mathematics 
education requires that educators at all levels take the meanings that students abstract more seriously. 

We draw on theoretical accounts of abstraction and our work with students (and teachers) to 
clarify students’ abstracted meanings. Namely, we argue that students’ actions and opportunities to 
abstract productive meanings for mathematical concepts are likely unintentionally constrained by 
educators who maintain conventions common to school mathematics (e.g., using the Cartesian 
horizontal axis to represent a function’s input). After discussing our motivation and background, we 
provide a theoretical framing of abstraction and examples of student activity that clarify how 
educators maintaining particular conventions might constrain students’ experiences and hence 
abstracted meanings. We also illustrate students operating productively in non-canonical situations so 
that we can clarify how experiences with such situations might influence the meanings that students 
abstract. We close with connections to related areas of research and ideas about lines of inquiry that 
can contribute insights into students’ abstraction processes. 

Background and Motivation 
The present work emerged from a collection of studies (e.g., Moore, 2014a, 2014c; Moore, 

Paoletti, & Musgrave, 2013; Thompson & Silverman, 2007). Our goal in each study was to 
understand students’ and teachers’ quantitative and covariational reasoning (Carlson, Jacobs, Coe, 
Larsen, & Hsu, 2002; Saldanha & Thompson, 1998; Thompson, 1993)–how individuals conceive of 
a situation as composed of measureable attributes and relationships between these attributes–
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including how teachers support said reasoning. Our research settings have included teaching 
experiments (Steffe & Thompson, 2000) and task-based clinical interviews (Goldin, 2000), with 
these settings sometimes occurring in the larger context of professional development projects. Our 
data analyses efforts have followed a combination of conceptual analysis techniques (Thompson, 
2008) and open/axial methods (Strauss & Corbin, 1998). Such efforts entail fine-grained, iterative 
analyses for the purpose of constructing viable models of individuals’ thinking. We direct the reader 
to our prior studies for more detailed explanations of the work that informed this theoretically 
oriented paper. 

Motivating our present focus, it was in trying to support students’ and teachers’ quantitative 
reasoning that we noticed their difficulty assimilating non-canonical situations in quantitative ways 
(Moore, Silverman, Paoletti, & LaForest, 2014; Moore, Silverman, et al., 2013). We found this 
outcome noteworthy for two reasons. First, the students’ difficulties assimilating situations that we 
had designed to be non-canonical often led to their (consciously or subconsciously) imposing 
conventions on situations. For instance, in cases that we had designed tasks to explicitly define–in 
spoken or written text–a Cartesian axis oriented vertically as representing a function’s input values 
(see the following section for task examples), students persisted in conceiving the axis oriented 
horizontally as a function’s input (Moore, Silverman, et al., 2013). Second, the students and teachers 
often exhibited actions within canonical situations that they were unable to relate to and re-present in 
non-canonical situations. As an example, students would describe a graph of a function in terms of 
how two quantities varied in tandem, but then be unable to describe a non-canonical graph of that 
same (to us) function in an equivalent way (Moore et al., 2014). Due to the frequency of these 
outcomes, we inferred from the students’ actions that what we perceived to be conventions were 
instead inherent aspects of students’ meanings (i.e., not conventions) (Moore et al., 2014). This 
inference has led us to question the relationships between students’ and teachers’ abstracted 
meanings and what we, as educators and researchers, perceive to be conventions. In addition to 
discussing our theoretical framing, we use student work on two tasks to clarify important differences 
with respect to these relationships.  

Abstraction and Student Illustrations 
A detailed comparison of theories of abstraction is beyond the scope of this work given space 

constraints, and thus we discuss those constructs most relevant to our focus: Piaget’s constructs of 
(pseudo-)empirical and reflective abstractions. The former type of abstraction, whether empirical or 
pseudo-empirical, concerns itself with the results of activity, whereas reflective abstraction concerns 
itself with internalized coordinations (Chapman, 1988; Piaget, 1980; von Glasersfeld, 1991). 
Empirical abstractions involve characteristics of experiential objects (e.g., color) including the results 
of sensorimotor activity on those objects. Empirical abstractions support repeated actions and motor 
patterns based in sensorimotor experience. Pseudo-empirical abstractions are similar to empirical 
abstractions in that they foreground abstraction from objects and results of activity, but they differ 
from empirical abstractions due to the individual introducing properties of these results into objects 
at the level of mental actions (Dubinsky, 1991). For instance, after working several problems 
graphing linear functions, a student might abstract rate of change or slope as an indicator of direction 
(e.g., all lines with a positive rate of change means slope upward left-to-right). Such an abstraction is 
not constrained solely to sensorimotor operations and observables (e.g., empirical abstractions), but 
the generalization does stem from patterns tied to the product of an activity (e.g., graphing linear 
functions) and conditions for this activity (e.g., having a rate of change and graph).  

Reflective abstractions involve re-presentation, symbolization, and the coordination of (mental) 
actions so that the locus of abstraction is on activity itself, as opposed to activity results (Chapman, 
1988; Piaget, 2001; von Glasersfeld, 1991). Relative to graphing linear functions, a student might 
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conceive rate of change as entailing the imagery of coordinating the relative change in two quantities. 
The student might also coordinate this process with graphs in several orientations or coordinate 
systems; the linear function and rate of change become a coordinated system so that each is a 
“pointer” to coordinating relative changes, but the process itself need not be carried out. In the case 
of pseudo-empirical abstraction, the rate of change value or slope signals executing an activity and 
obtaining a particular graph-as-picture; the linear function or rate of change symbolizes a structure of 
mental actions and associated representations all at once. In what follows, we provide student 
responses to two non-canonical tasks and then synthesize their activities with respect to these notions 
of abstraction. 

Student Illustrations 1 
We presented the graph in Figure 1 to undergraduate (secondary) mathematics education students 

(Student Quotes for Figure 1) with the claim that a hypothetical student deemed it a graph of the 
inverse sine function. We also provided a statement by the hypothetical student: “Well, because we 
are graphing the inverse of the sine function, we just think about x as the output and y as the input.” 
Among other considerations, we designed the task to incorporate a non-canonical representation of 
the inverse sine function and to capture fundamental aspects of the inverse relationship, namely the 
understanding that if y = sin(x), then x = sin-1(y) with appropriate restrictions on x.  

 
Figure 1: A Non-canonical Graph of the Inverse Sine Function 

Student Quotes for Figure 1 

Molly: I feel like he’s missing the whole concept of a graph…I know you can call whatever axis 
you know if you are doing time and weight or volume or whatever. You can flip-flop those 
and be OK. But not necessarily with the sine graph. Like a sine graph’s like a, it’s a graph 
like everyone knows about, you know. 

Rowena: I’m thinking this just kind of looks like the sine graph, like the plain sine graph 
[laughs]. Which is going to be different…I don’t know if, or like an inverse function, like the 
graph of an inverse function, like, can’t be the same as the original graph. 

Ariana: You could just like disregard the y and x for a minute, and just look at, like, angle 
measures. So it’s like here [referring to graph of sin-1(x) = y, see Figure 2, left], with equal 
changes of angle measures [denoting equal changes along the vertical axis] my vertical 
distance is increasing at a decreasing rate [tracing graph]. And then show them here 
[referring to graph of sin-1(y) = x, see Figure 2, right] it’s doing the exact same thing. With 
equal changes of angle measures [denoting equal changes along the horizontal axis] my 
vertical distance is increasing at a decreasing rate [tracing graph]. So even though the curves, 
like, this one looks like it’s concave up [referring to graph of sin-1(x) = y from 0 < x < 1] and 
this one concave down [referring to graph of sin-1(y) = x from 0 < x < π/2], it’s still showing 
the same thing [denotes equivalent changes on graphs, see Figure 2]. 

We contend that each student understood the given graph, and we interpret their actions to 
suggest differences in their meanings. Molly and Rowena understood the sine function to be uniquely 
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associated or in a one-to-one relationship with the given graph. An implication of this understanding 
is that “the sine function” or “inverse sine function” were, in the moment of their assimilating the 
graph, as much about associating a function name to a unique shape as about associating a function 
name and graph to a particular relationship. In contrast, Ariana understood “the sine function,” 
“inverse sine function,” and graphs in terms of a relationship between covarying quantities. 
Moreover, she was not constrained to reasoning about this relationship in a particular coordinate 
orientation. Hence, when we presented Ariana an alternative graph, she understood differences in 
shape did not imply a difference in the represented relationship; to Ariana, both graphs represented 
an invariant relationship associated with “the sine function,” written as y = sin(x), and “the arcsine 
function,” written as x = sin-1(y). 

 
Figure 2: Two Graphs, One Relationship 

Student Illustrations 2 
We presented a graph (Figure 3) to undergraduate (secondary) mathematics education students 

(Student Quotes for Figure 3) with the claim that a hypothetical student produced the graph to 
represent y = 3x. We designed the task to explore rate of change (or slope as rate of change) in non-
canonical axes orientations. The following student responses are in reply to our asking them to 
comment on the student’s solution including their interpretation of its correctness. 

 
Figure 3: A Non-canonical Graph of y = 3x 

Student Quotes for Figure 3 

Rowena:  Because if you turn it this way [referring to Figure 3 rotated 90-degrees 
counterclockwise] then this [traces left to right along the x-axis which is now oriented 
horizontally] and this [traces top to bottom along the y-axis] and it would be still not right 
though…this [laying the marker on the line which is sloping downward left-to-right] is 
negative slope. So I would…show them like the difference between positive and negative 
slopes also. Because that's something that, like, when I was in middle school we, like, learned 
kind of like a trick to remember positive, negative, no slope, and zero [making hand motions 
to indicate a direction of line for each]. Like where the slopes were…it’s important to know 
which direction they’re going… 

Rubeus:  They messed up the placement of x and y…They are looking at it like this [rotating 
graph 90-degress counterclockwise]…If you are looking at it this way, it’s a negative slope 
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[tracing graph] and it should be a positive slope [tracing imagined graph upward left-to-
right]…slope is wrong.  

Amelia:  I think it demonstrates understanding of the relationship…I don’t care what axis you put 
it on…[interview rotates graph and says a student claims it has negative slope] [The way we 
teach slope] is just a very visual thing and no understanding of like what slope means or 
where it came from…your negatives are over here and your positives are over here [referring 
to horizontal axis value orientations]…So if we look for like a change of x of one [identifies 
change with a segment], zero to one, we see that y changes by positive three [identifies 
change with a segment]…positive slope because you are looking at change…If you’re so 
obsessed with convention and the way things are supposed to be, you’re going to take more 
work to get it to the way that you are comfortable with…than to just interpret the graph. 

Rowena and Rubeus drew on meanings for slope rooted in visual queues including the direction 
of a line (e.g., “where the slopes are”). When they rotated the graph, which we interpret to be for the 
purpose of maintaining conventional x-y axes orientations, the students understood the “slope” to be 
different and hence they understood the line to represent a different relationship once rotated. In 
contrast, Amelia assimilated the graph in terms of reasoning about how two quantities vary in tandem 
while remaining attentive to how these quantities were represented with respect to the axes. No 
matter the rotation, Amelia understood the graph and slope in terms of a relationship such that the 
rate of change of y with respect to x is 3 (e.g., y = 3x). Amelia also distinguished between someone 
constrained to a conventional understanding of slope (e.g., “visual” understandings) and someone 
who is focused on interpreting the graph as a relationship.  

Looking Across the Illustrations 
Despite differences in the tasks and student responses, we interpret an underlying commonality to 

Molly, Rowena, and Rubeus’ actions and meanings. Likewise, we interpret there to be an underlying 
commonality to Ariana and Amelia’s actions and meanings. In the former case, the students 
primarily focused on observables or perceptual features of the given graphs in relation to particular 
topics (e.g., function name or slope). In the latter case, the students operated beyond the level of 
observables and perceptual features. They understood the graphs in terms of interiorized covariation 
schemes, and they drew on these schemes to make sense of the non-canonical representations and 
conceive invariance among perceptually different graphs. 

Returning to theories of abstraction, we interpret Molly, Rowena, and Rubeus’ actions to be 
compatible with meanings stemming from pseudo-empirical abstractions due to their focus on 
observables and the products or results of activity (e.g., produced shapes and associations with these 
shapes). One explanation for this result is that the students had experiences constrained to associating 
a function name with one particular graph or associating slope values with lines in one particular 
coordinate system orientation. Through repeatedly and habitually assimilating experiences to these 
meanings, the students abstracted function names and slope as essentially facts of perceptual shape. 
We interpret Ariana and Amelia’s actions to be compatible with meanings stemming from reflective 
abstractions. That is, their understandings of “the sine function” and slope entailed internalized 
coordinated actions that they re-presented to make sense of the non-canonical graphs. One 
explanation for this understanding, which we expand upon in the next section as a future line of 
inquiry, is that the students had sustained opportunities to make sense of functions, function 
properties, and function graphs (including those that are non-canonical) in terms of covarying 
quantities. Hence, the students came to understand slope (or rate of change) and function names in 
ways not restricted to visual shape, but instead as properties of internalized covariation schemes.  
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Connections and Moving Forward 
Mamolo and Zazkis (Mamolo & Zazkis, 2012; Zazkis, 2008) hypothesized that individuals face 

difficulties constructing sophisticated understandings of mathematical ideas when they only 
experience instruction that maintains particular conventions. Zazkis (2008) explained, “Of course, 
conventions are to be respected…but there is a need to become aware of them” (p. 138). Zazkis 
(2008) proposed that by becoming aware of conventions and structure specific to a representational 
system, individuals have an opportunity to develop “richer or more abstract schema” (p. 154). We 
agree with Mamolo and Zazkis, and we contend that students have said opportunities due to the 
nature of abstractions that can occur when students have experiences with both canonical and non-
canonical representations. These experiences give students the opportunity to abstract meanings that 
differentiate what is essential to a mathematical idea from what is a convention or structure of the 
representational system. Students who only have experiences with conventional representations (e.g., 
one graph in a particular axes orientation) do not have the same collection of experiences or activity 
to reflect upon and coordinate in order to differentiate aspects of their activity that are critical to an 
idea from those that are not.   

One area of research that the relationship between conventions and abstraction is most relevant to 
is that of multiple representations. Educators often frame a focus on multiple representations in terms 
of graphical, tabular, analytic, etc. representational contexts. We argue that it is productive to extend 
the ‘multiple representations’ perspective to incorporate the use of canonical and non-canonical 
representations within these representational contexts. Without offering students an opportunity to 
work with both canonical and non-canonical representations, we likely unintentionally enable 
students’ construction of meanings that take what we perceive to be conventions of a representational 
context to be essential or unquestionable facts of mathematical ideas. On the other hand, offering 
students experiences with both canonical and non-canonical representations in a multitude of 
representational contexts enable them to reflect on and coordinate their activity both within and 
among representational contexts. In doing so, students have a collection of experiences to reflect 
upon in order to come to understand an idea in terms of what is invariant among their activity within 
and among representational contexts; we envision that these experiences might address Thompson’s 
(1994) call for a focus on “representations of something that, from the students’ perspective, is 
representable” (p. 40).  

We also conceive relationships between abstraction and conventions to be relevant to researchers 
who explore students’ quantitative and covariational reasoning. Specifically, we have found it 
necessary to be more careful and nuanced in our claims about students’ covariational reasoning, 
especially in distinguishing between a student who is able to carry out a particular activity in one 
coordinate orientation versus a student who has internalized and coordinated their actions in a way 
that is not constrained to one coordinate orientation. For instance, despite students exhibiting actions 
in one coordinate orientation compatible with that of Ariana (e.g., drawing and comparing segments 
within a canonical representation of a function in ways that suggest covariation mental actions 
outlined by Carlson et al. (2002)), we have found that students encounter much difficulty extending 
their activity to other coordinate orientations and systems. We interpret such difficulties to highlight 
the importance of researchers identifying the extent that students’ meanings are tied to their activity 
and its results (e.g., pseudo-empirical abstractions versus reflected abstractions). With respect to 
characterizing students’ quantitative reasoning, researchers might explain students’ learning through 
constructing an increasingly abstract quantitative structure. By increasingly abstract quantitative 
structure, we mean a student constructing and reconstructing a quantitative structure that becomes so 
internalized and operational that the student is increasingly able to assimilate novel representational 
contexts and situations to that structure, as opposed to being dependent on activity tied to particular 
representational contexts and conventions. 
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We close by noting that we do not intend the reader to interpret that pseudo-empirical 
abstractions are not desirable, nor are we arguing for the dismissal of conventions. Pseudo-empirical 
abstractions are a critical part of the learning process and are the source material for reflective 
abstractions (Dubinsky, 1991). For instance, in the context of graphing, students abstracting shape-
based associations is a natural outcome (Weber, 2012). An issue arises when a student repeatedly 
assimilates their experiences to these shape-based associations so that the shape associations become 
nearly the entirety of her or his operating meanings. This outcome stands in contrast to a student 
coming to know graphical representations so well that they can operate at the level of shape 
associations while anticipating these associations in terms of internalized processes that can be 
carried out and adjusted if necessary. Despite the critical role of pseudo-empirical abstractions to the 
learning process, as educators we must look to support students in pushing beyond pseudo-empirical 
abstractions, lest the results of those abstractions become the entirety of their meanings. Simon et al. 
(2010) argued that gaining insights into nuances of students’ abstraction processes with respect to 
their activity is a promising area of research. In accomplishing this goal in the context of using 
canonical and non-canonical representations, we might come to better understand how to support 
students in experiencing mathematics as “l’art de donner le même nom à des choses différentes” 
(Poincaré, 1908, p. 29). 
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This paper discusses the importance of considering bilingual learners’ non-linguistic forms of 
communication for understanding their mathematical thinking. In particular, I provide an analysis of 
communication involving a pair of high school calculus bilingual learners, who interacted with a 
touchscreen-based DGE (dynamic geometry environment). The paper focuses on the word-use, 
gestures, and touchscreen dragging actions in student-pair communication.  Findings suggest that 
the students relied on gestures and dragging as multimodal features of the mathematical discourse to 
communicate dynamic aspects of calculus. This paper raises questions about new forms of 
communication mobilized in dynamic, touchscreen environments, particularly for bilingual learners. 

Keywords: Classroom Discourse; Equity and Diversity; Technology 

Introduction 
In British Columbia, Canada, “In 2011–12, one in four (23.8 %) of public school students spoke 

a primary language at home other than English. Almost double the number of [English language 
learners] (135,651) live in families where the primary language spoken at home is other than English 
[…]” (BCTF, 2012, p.11-12). Speaking from my own experience teaching mathematics in Canada, 
the home languages spoken in a typical mathematics classroom are very diverse, ranging from five to 
ten in any given classroom. This context is one result of globalisation and rapidly changing student 
demographics not only locally but worldwide. 

Currently, research focusing on bilingual learners’ mathematical communication has provided 
tremendous insight into the complexities of teaching and learning mathematics in multilingual 
contexts: the language dilemmas of teaching mathematics (Adler, 1999), the role of code switching 
in learning mathematics (Clarkson, 2007) as well as associating mathematics learning with socio-
economic and epistemological access (Setati, 2005). These studies, however, had not critically 
examined bilingual learners’ communication patterns and, in particular, addressed their competence 
in mathematical communication. As argued by Moschkovich (2010), future studies on bilingual 
learners must consider broader linguistic frameworks for understanding bilingual learning.  

Research on multimodality can shed light on bilingual learners’ communication as a multimodal 
activity that includes the use of language, gestures and interactions with diagrams (Arzarello, 2006; 
de Freitas & Sinclair, 2012; Radford, 2009). Aligned with the idea of multimodality in mathematical 
thinking, a small number of research studies have drawn on bilingual learners’ non-linguistic forms 
of communication such as gestures and diagrams (Moschkovich, 2009). Moreover, although 
numerous studies have discussed the effect of the DGE-mediated learning of calculus concepts 
(Yerushalmy & Swidan, 2012), research on the effects of touchscreen-based DGE is limited. It is 
hypothesized that a touchscreen-based DGE may offer additional affordances by providing tactile 
and kinesthetic modes of interaction—hence, further facilitate bilingual learners’ communication in 
calculus. 

In a previous study working with bilingual learners, I showed that certain dragging actions on a 
touchscreen-based DGE constitute a form of communication (Ng, 2014). Using a Sfard’s (2008, 
2009) communicational approach, my analysis showed that some dragging actions were not merely 
dragging, but also instances of gestural communication—to communicate dynamic features and 
properties in the sketch as obtained by dragging. The touchscreen-dragging modality allows the 
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dragging with one finger on the touchscreen and the gesturing with the index finger to blend together 
as one action. The importance here is that the dragging-gesturing action subsumes both dragging and 
gesturing characteristics, in that it allows the point to be moved on the screen (dragging), and it 
fulfills a communicational function (Sfard’s definition of gesturing).  

Building on this work, the current study examines the communication patterns that arise as 
bilingual learners interact with a touchscreen-based DGE. In particular, I investigate bilingual 
learners’ language, gestures, and dragging in DGE as they communicate a given calculus concept in 
their non-native language. My study concerns the non-linguistic resources utilized by bilingual 
learners in communication as they work with a DGE. Further, it is the goal of the study that this 
analysis will identify bilingual learners’ competence in mathematical communications. 

Theoretical Framework 
Sfard’s communicational framework (2008) is based upon the social dimensions of learning, 

which suggests that learning is located neither in the head nor outside of the individual, but in the 
relationship between a person and a social world. It provides a suitable theoretical lens for 
highlighting the communicative aspects of thinking and learning. For Sfard, thinking is part and 
parcel of the process of communicating. This non-dualistic approach, which disobjectifies thinking as 
a purely cognitive phenomenon, is helpful for examining the relationships between talking, gesturing 
and mathematical thinking. Sfard (2009) defines language in unrestrictive terms, as any symbolic 
system used in communications, and gestures as bodily movements fulfilling communicational 
function: “Language is a tool for communication, whereas gesture… is an actual communicational 
action” (p.194). In this sense, a gesture can be performed to communicate with others (interpersonal) 
or with oneself (intrapersonal). Sfard’s approach highlights the way in which thinking and 
communicating (for Sfard, this includes talking and gesturing) stop being “expressions” of thinking 
and become the process of thinking in itself.  

Sfard (2008) proposes four features of the mathematical discourse, word use, visual mediators, 
routines, and narratives, which could be used to analyze mathematical thinking and changes in 
thinking. For the purpose of this paper, the first three features will be used for analyzing the use of 
language, gestures, and dragging in one’s mathematical discourse. Word use is a main feature in 
mathematical discourse; it is “an-all important matter because […] it is what the user is able to say 
about (and thus to see in) the world” (p. 133). However, as a student engages in a mathematical 
problem, her mathematical discourse is not limited to the vocabulary she uses. For example, her 
hand-drawn diagrams and gestures can be taken as a form of visual mediator to complement word 
use. According to Sfard (2009), utterances and gestures inhabit different modalities that serve 
different functions in communication. Gestural communication ensures all interlocutors “speak about 
the same mathematical object” (p.197). Gestures are essential for effective mathematical 
communication: “Using gestures to make interlocutors’ realizing procedures public is an effective 
way to help all the participants to interpret mathematical signifiers in the same way and thus to play 
with the same objects” (p.198). Gestures can be realized actually when the signifier is present, or 
virtually when the signifier is imagined. Sfard (2009) illustrates how a student uses “cutting”, 
“splitting”, and “slicing” gestures to realize the signifier “fraction”. Since these gestures were 
performed in the air, where the signifier “fraction” is imagined, they provide an instance of virtual 
realization. Therefore, the same signifier “fraction” may be realized differently with different kinds 
of gesture or word use.  

Routines are meta-rules defining a discursive pattern that repeats itself in certain types of 
situations. In learning situations, learners may use certain words or gestures repeatedly to model a 
discursive pattern, such as looking for patterns and what it means to be “the same”. Drawing on Ng 
(2014), dragging is taken as a significant form of communication in this study; it is taken as both a 
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routine for defining a discursive pattern that repeats itself in activities with touchscreen-based DGE, 
and a visual mediator as a multimodal feature of the students’ discourse. A student may use dragging 
to explore (routine) and signify (visual mediator) the variation of the tangent slope. Using this notion, 
it is possible for students to incorporate dragging-gesturing to respond to each other in 
communications. Indeed, it was found that as one student suggested that the secant line will get 
“closer” to the tangent line, another student seemed to have responded by her dragging-gesturing to 
bring the lines “together”. These gesture-utterance correspondences were also noted in the analysis of 
other pairs of bilingual learners’ routine involving dynamic sketches (Ng, 2014). 

Methodology 
The participants of the study were three pairs of 12th grade students (aged 17 to 18) enrolled in a 

calculus class in a culturally diverse high school in Western Canada. All participants were bilingual 
learners and self-volunteered to participate from a class of 25, in which roughly half of the class were 
also bilingual learners. They were regular partners during assigned pair-work activities and were 
described by their teacher-researcher (also the author) as motivated and comfortable working with 
each other. The study took place at the end of the first trimester of the school year in the participants’ 
regular calculus classroom, outside of school hours. At the time, the participants have just finished 
learning key concepts in differential calculus where the iPad-based DGE, Sketchpad Explorer 
(Jackiw, 2011) was consistently incorporated into the lessons. During these lessons, students were 
invited to explore dynamic sketches in pairs for roughly ten minutes followed by teacher-led 
classroom discussions about the activities. Therefore, the participants were experienced with 
exploring and discussing, in pairs, concepts in differential calculus with dynamic sketches.   

 
(a) 

 

 

(b) 
 

 
Figure 1(a-b): Screenshots of the DGE used in the study (with all buttons, “Show function”, 

“Show bounds”, “Show Area under f”, and “Show Trace of A” activated). The bounds “a” and 
“x” are draggable; the green traces represent . 

The task used in this study invited the students to explore and discuss a sketch in Sketchpad 
Explorer that they had not previously seen. The sketch contains five pages all related to the concept 
of area-accumulating functions (Figure 1a, b). The participants were not told what concept the sketch 
was related to, but they were told that this concept was new to them (at the time of study, they had 
just spent one lesson related to integral calculus, that of indefinite integrals in their regular 
classroom). The participants were asked to “explore the pages, talk about what you see, what 
concepts may be involved” on all pages of the sketch before reporting back to the teacher as a pair. 
Before they began, they were ensured that their teacher would check in with them from time to time 
in order to make sure that they understood what they were expected to do and could ask questions 
that were related to the sketch. In total, 70 minutes of video data were collected in the study.  
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Analysis of Data 
In this section, I provide detailed analyses of one participant pair, Sam and Mario’s 

communications over the aforementioned task. Sam and Mario, whose home languages were 
Mandarin and Cantonese respectively, do not share a common home language. A 10-minute episode 
is chosen from the 30 minute discussion and analyzed in detail. The episode was chosen to highlight 
the different resources: language, dragging, and gesturing used by the student pair within the 10-
minute discussion.  

At the start, the students seemed unsure about what to do with the points “a”, “x”, and the green 
point in the sketch. They questioned the functions of the DGE with question markers “what” (eight 
times) and “how” (once) in the first two minutes of the episode. Most of these questions were 
formulated as Sam used the dragging modality to investigate the behavior of different points. For 
example, Sam asked “what” repeatedly as he tried to drag the green point which was not draggable. 
Although he had acknowledged that he had previously pressed a button which showed “an area”, he 
had not realized that the green point had plotted the area in terms of “x”, evident in his questions 
“what’s trace of A” and “how do we drag this trace”. Then, upon dragging “x” around, he finally 
concluded “oh, oh, it's this one. Ok, make sense.” His confusion seemed to have resolved perhaps 
because his dragging of “x” made the green point move; hence he realized the green point was a 
dependent and non-draggable object. However, it appeared that he remained unsure about what the 
green point meant, stating that he did not yet “understand this”.  

At 00:53, Sam and Mario took turns dragging-gesturing in a conversation-like manner, 
beginning with Sam’s dragging-gesturing, which spanned 30 seconds (Figure 2a). During this 
occurrence, Sam dragged “x”, then “a”, and finally “x” again. Observing the students’ word use and 
dragging actions, it seemed that both students made some progress in their learning of area-
accumulating functions during this span. For example, as Sam was dragging “x”, he uttered, “as we 
drag this, the area becomes…” This utterance-dragging combination suggests that Sam was thinking 
about area as having dynamic qualities. It shows how dragging mediated the way Sam thought of the 
area as a becoming. The use of “become” implies something is happening, in particular, the area was 
changing as “x” was dragged. Furthermore, Sam’s statement structure resembled an “if… then…” 
statement structure which calls upon a causal or functional relationship between “x” and the area. It 
was interesting to note that Sam never finished his sentence after uttering “become”, perhaps because 
he had yet to realize, in a Sfardian sense, the simultaneous change in the variables despite noticing 
the area is changing. Similarly, Mario used a hedge word in his utterance, “it's like the area,” 
suggesting a degree of uncertainty about whether or not the green traces meant the area. 

Following Sam’s prolonged dragging, different draggers and speakers were observed in the 
episode. For example, as Mario dragged “x” back and forth, Sam was responding verbally and 
simultaneously, “You see how this one moves? So it's like the area.” A similar exchange was also 
noted earlier, where Sam was the dragger, as Mario spoke, “is that the area?” These two instances 
where the dragger and speaker were different people seemed effective for having the students 
communicate mutually and simultaneously. Although it may seem impolite and unconventional for 
one student to “talk over” another student, the presence of “talking over someone else’s dragging” 
was not an issue here. Indeed, Sam’s utterance did not interfere with Mario’s dragging and vice 
versa; rather, from the way one talked about area while the other was dragging, they seemed to have 
made significant progress as a result of this concurrent communications.  

Also observed in the first two minutes was the consistent use of gestures by the students in 
mathematical communications. Namely, Sam used three types of gestures, which in Sfard’s terms, 
functioned quite differently in each usage. In the beginning, Sam used a pointing gesture as he talked 
about the bounds to make sure both interlocutors spoke about the same mathematical object (Figure 
2b). Later, he used his hand to signify the linear pattern of the green traces, an instance of actual 
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realization (Figure 2c). Finally, he flipped his right index finger left and right while uttering, “No 
you can't. You can only go like”, which was another actual realization of the possible movement of 
the green point (Figure 2d). Moreover, this gesture was not accompanied by any speech, which 
suggests that Sam relied on gestures as a visual mediator, or a multimodal feature of his 
mathematical discourse, to communicate in the absence of word use. 

 
Figure 2: Screenshots of Sam’s (a) dragging actions and (b-d) gesturing in the excerpt. 

From 02:00 to 05:00, Sam and Mario consistently utilized dragging and gesturing to 
communicate mathematically. For example, as Sam took on the role of dragging and asked the 
question, “is that how the area is changing?” Unlike earlier, Sam was able to describe exactly that the 
area is changing with no hedge words at the 02:02 mark in the episode. He continued to drag for a 
span of 9 seconds without speech before letting Mario also tried dragging for another 6 seconds 
without speech. The switching of draggers suggest that both students were communicating 
mathematically while dragging. If speech was analyzed alone, some important analyses about the 
students’ thinking in between speech would have been missed. 

At 03:02, Sam and Mario performed a series of hand gestures. Initiated by his own dragging of 
“x”, Sam suggested that “oh, wait a sec. This is actually, the derivative of the graph, function,” while 
he used a hand gesture to signify the shape of a linear function. To restate what he had said, he then 
used his index finger and traced a “U” shape in the air as he continued to conjecture that the line was 
“probably the derivative of x, x-squared”. Mario responded with a similar “U” shape gesture as he 
asked “is this x-squared”, suggesting that they verified Sam’s conjecture. These gestures and word 
use pairings, which provide strong evidence that the students were engaging in conjecturing about 
the shape of the green traces, help identify Sam and Mario’s competence in the mathematical 
activity. 

It was noted that the deictic pointing word “this” was used extensively, appearing five times in 
this part of the episode. Using deictic words, the speakers no longer need to refer to the mathematical 
objects by describing them verbally, but they can use deictic words along with different gestures to 
replace the descriptions completely. This was found in Sam’s “this is actually, the derivative”, “no 
matter how you move, this one always”, and “this is probably x, x-squared”. As Sfard explains, 
gestures help ensure that the interlocutors speak about the same mathematical objects.  Significantly 
for Sam and Mario, gestures served a complementary function to language in communication. The 
two students were able to use a combination of utterances and gestures to communicate about the 
mathematical objects effectively.   

The students’ realizations of the area-accumulating function could be observed in their discourse 
after the 05:00 mark of the episode. First, the questions posed hereafter were markedly different from 
before 05:00. Recall that previously, Sam had asked repeatedly, “what”, at times without finishing 
his questions. It is possible that Sam’s “what” questions reflected his uncertainty of what each point 
or button meant in the sketch. In contrast, having explored the sketch for some time, Sam asked three 
questions that began with “why”.  He asked, “why is there something to do with area” twice, and 
“why is it”. By asking these “why” questions, it seemed that Sam was looking for the reason as to 
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why the relationship of the two graphs were related to the area under a function. Considering Sam 
has only learned the topic of indefinite integral at the time of study, this was a valid question because 
Sam had yet to learn the idea of “definite integral as area” in his class. Regardless, asking “why” 
implies investigating the reasons of something that is clearly existential. In this case, Sam seemed to 
be investigating the reason why the area under a function had to do with its antiderivative. 

At 05:17, a prolonged dragging action was performed by Sam, while the two students exchanged 
comments verbally back and forth. In particular, by far the longest spoken sentence was said by Sam 
within his own dragging action: “Ya. So the graph we have here is specifically the derivative of 
the… what we just graphed here, like the function here is basically the derivative of what we just 
graphed here.” The sentence was very rich in a multimodal sense because it was spoken while the 
speaker was dragging, and gestures were used simultaneously as the speaker uttered “the function 
here”. Some interesting word use was also observed. For instance, the word “here” was used four 
times, and the words “specifically” and “basically” each once. In line with a previous analysis of the 
use of deictic words, the use of locative noun “here” accompanied by gestures allowed the speakers 
to talk about the same mathematical object. Although Sam used the same word “here” four times, he 
actually meant to refer to two different mathematical objects, the function and its derivative. This 
could be why Sam used different gestures to specify which object he was talking about as he said 
“the function here”. Secondly, the contrasting use between “specifically” and “basically” by Sam was 
also fascinating. Since Sam used the word “basically” quite frequently throughout the task, his word 
use “specifically” as opposed to “basically” in this sentence drew attention to the analysis. Consistent 
with his usage of “basically” in other parts of the transcript, it seemed that Sam used the word to 
suggest a generality or invariance that exists outside of the sketch. In contrast, it is speculated that he 
used “specifically” in the context of the specific page of the sketch to refer to the particular “graph” 
that was the derivative of another. According to this speculation, Sam was able to talk about area-
accumulating functions both in its generality and particularity, which is a highly valued practice in 
the mathematics community. 

Discussion 
The analysis provides strong evidence that Sam and Mario, both bilingual learners, utilized a 

variety of resources in communication, with visual mediators in the form of gestures and dragging 
taking on a prevalent role. These included gestures accompanying deictic words and gestures for 
communicating geometrical notions of calculus. Moreover, the dragging-gesturing action emerged in 
the touchscreen dragging action and fulfilled the dual function of dragging and gesturing. These 
actions were repeatedly demonstrated by both students for communicating temporal relationships in 
calculus as well as in their routine of developing the mathematical discourse. In the presence of a 
dynamic visual mediator, the students’ routine evolved from typical utterance-utterance sequences. 
Gestures-gestures and gestures-utterances sequences were observed in the conversation. Related to 
this, I observed one student dragging-gesturing simultaneously as the other spoke; this allowed two 
students to communicate simultaneously without interfering with each other. These observations 
support the claim that bilingual learners make use of gestures and dragging as important forms of 
communication. Using Sfard’s communicational framework to define gestures as communicational 
acts is especially useful for understanding the mutual communications involved in these new 
communication routines. 

The analysis shows that dragging and gestures transformed the students’ word use. Initially, the 
students seemed unsure of what to make of the sketch; they used dragging to formulate their 
questions about the behavior of the sketch. Then, they began to explore and conjecture the 
relationship of the two functions in both geometrical and algebraic terms through dragging and 
gesturing. Sam and Mario made extensive use of verbs such as “become”, “move” and “go,” which 
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imply change or motion while they used the dragging modality to change the area under a function. 
Moreover, gestures in the form of actual realizations were accompanied by the use of locative nouns 
“here” and deictic word “this”. These gestures and word use pairings could potentially reduce the 
number of words to be spoken in a sentence.  

The results of the study were encouraging not only in that the pair of bilingual learners was able 
to grasp quickly the functions offered by the touchscreen and DGE, but also in the way they 
communicated significant calculus ideas effectively incorporating linguistic and non-linguistic 
features in communications. These results have important implications towards the mathematics 
teaching and learning for all learners at large and bilingual learners in particular. For example, the 
study points to the use of DGE in pair-work activities for facilitating students’ communications. At 
the beginning of their explorations, Sam and Mario did not use the functions of the DGE 
purposefully. As they began to learn to use the functions of the DGE, they began to engage in 
calculus ideas, and the DGE began to take on an important role in the communications. This implies 
that the role of the DGE is not a static one, but rather dynamic that is constantly evolving during the 
activity. 

Also, it could be said that the design of the dynamic sketches played a significant role in 
facilitating the students’ mathematical communications. The Hide/Show buttons allowed the students 
to talk about their ideas gradually, one button at a time, while the dragging affordance enabled them 
to attend to dynamic relationships and connect algebraic with geometric representations of calculus. 
In tune with previous studies on DGE-mediated student thinking (Falcade, Laborde & Mariotti, 
2007), the students may have exploited these functionalities offered by the sketch and hence 
communicated about area and derivatives geometrically and dynamically as a result. Furthermore, 
the touchscreen-based DGE seemed to offer a haptic environment for learners to interact with 
dynamic relationships, where the nature of gestures and dragging is re-conceptualized (see Sinclair & 
de Freitas, to appear). 

This study argues for an expanded view of bilingual learners’ communication that includes 
utterances, gestures, dragging and diagrams. Due to their complementary functions, these elements 
must not be accounted for in isolation but as a full set of resources in mathematical communication. 
Although Sfard has not specifically addressed the distinction between dynamic and static visual 
mediators, the distinction is important for this study because of the potential for the dynamic visual 
mediators such as gestures and DGEs to evoke temporal and mathematical relations (Ng and Sinclair, 
2013), particular for the study of calculus (Núñez, 2006). As shown in my analysis, dragging-
gesturing emerged as a significant form of communication, and this was facilitated by the dynamic 
visual mediator presented on the touchscreen-based DGE. Future studies should consider extending 
the notion of visual mediators and routines to include gestures and dragging on touchscreen-based 
DGE. In particular, this paper calls for more studies in the area of DGE-mediated learning to 
investigate the role of dragging-gesturing in other types of mathematical activities and within other 
branches of mathematics. 
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This paper focuses on student learning in the context of a curricular module on pawnshops piloted 
with 15 students in an urban high school. The paper describes pedagogical frameworks guiding the 
development of the module and summarizes key features of its curriculum. Analysis focuses on 
student growth with respect to mathematical understanding of percent and opinions about 
pawnshops. Findings include student adoption of ratio strategies indicative of conceptual 
understanding of percent, and development of critical opinions about pawnshops as a lending 
system. 

Keywords: Equity and Diversity 

Introduction 
Percent is a concept fundamental to the middle school mathematics curriculum. The Common 

Core State Standards indicate that by 8th grade, students should be able to solve multistep percent 
problems and apply proficiency with percents to any array of marketplace applications. In addition to 
being a focal point of middle grades mathematics, the concept of percent undergirds a variety of 
topics in secondary school mathematics, like scaling, probability, statistics, and modeling. 

High school students are known to have difficulties with problem-solving related to 
percent (Lembke & Reys, 1994; Moss & Case, 1999; Parker & Leinhardt, 1995). Common errors 
include ignoring the percent sign; difficulties translating between decimals, fractions and percents; 
and confusion about multiplicative and additive relationships (e.g., Moss & Case, 1999; Parker & 
Leinhardt, 1995). Finding a given percent of a specific amount is considered the most straightforward 
for students; however, even at age 17, most students have difficulty with, for instance, finding 4% of 
75  (Parker & Leinhardt, 1995). 

Percent is prominent across an array of common marketplace transactions (Parker & Leinhardt, 
1995). Banking transactions routinely communicate percents, which is essential for any consumer. 
Beyond its importance in terms of functional literacy for borrowers, percent is necessary for critical 
literacy (Apple, 1992), enabling citizens to evaluate quantitative information or analyze quantitative 
relationships. For example, percent figures prominently and broadly as a mathematical tool in 
teaching mathematics for social justice (e.g., Gutstein, 2005). 

Despite its ubiquity in the marketplace, adults are known to have difficulty with percents. In an 
investigation of adult learners, while most knew that 100% represents the whole and 50% means half, 
their understanding of 25% was limited; fewer than a third of the adults could find the sale price of 
an $80 coat on a 25% off sale (Ginsburg, Gal, & Schuh, 1995). Pre-service teachers were successful 
at answering a multi-step word problem involving percents but had difficulty explaining why 
particular operations made sense in the task’s solution (Lo & Ko, 2013). 

An explanation for difficulty with percent tasks is that it has traditionally been taught strictly 
using procedural methods. Even though students with pictorial representations of percent are known 
to be more successful at problem-solving on percent tasks (Lembke & Reys, 1994), classroom 
instruction is traditionally unaccompanied by mathematical representations that can support 
conceptual understanding. Representations that can link procedures for solving percent problems to 
conceptual understanding of percent are area models (e.g., Haubner, 1992), halving or doubling 
models (e.g., Moss & Case, 1999), 100-board models (e.g., Wiebe, 1986) dual-scale number lines 
(e.g., Dole, 2000), or ratio tables (e.g., Middleton & Van den Heuvel-Panhuizen, 1995).  
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This paper explores the teaching and learning of percent within the context of a larger project. 
The larger project adopts perspectives that integrate culturally relevant pedagogy (Ladson-Billings, 
1994) and place-based education (Gruenewald, 2003). The next section briefly describes these 
frameworks and their correspondence with the project’s curriculum. 

Guiding Frameworks 
Culturally relevant mathematics pedagogy (CureMap, Rubel & Chu, 2012) is based on Ladson-

Billings’ (1994) theory of culturally relevant pedagogy and Gutstein, Lipman, Hernandez, & de los 
Reyes’ (1997) application of culturally relevant pedagogy to mathematics. CureMap is comprised of 
teaching mathematics for understanding, centering instruction on students, and providing students 
with opportunities to think critically about and with mathematics. The three dimensions are 
interrelated and guide this project’s curriculum design. The larger project, of which this study is a 
part, takes pawnshops as a familiar phenomenon from the city streetscape and uses it as a guiding 
theme for the investigation. Mathematics helps students to understand how pawnshops, as local and 
visible features of a spatial landscape, work. 

 Teaching for understanding denotes an emphasis on connections between mathematical 
concepts, procedures, and facts. Classroom instruction that supports teaching for understanding 
includes rigorous tasks, representational tools, and norms for participation (Carpenter & Lehrer, 
1999). Understanding the concept of percent is fundamental to interest and to being able to model a 
pawnshop loan. To build this understanding, 4% simple interest was organized as a $4 amount for 
every $100 dollars borrowed in a ratio table (e.g., Middleton & Van den Heuvel-Panhuizen, 1995). 
Figure 1 shows an example of tables used by the teacher in our project. The table sets up students to 
conceptualize percent as a ratio and use a ratio table to calculate 4% of various amounts. The table 
has multiplicative properties (i.e., 4% of 700 is 7 times 4) and additive properties (i.e., 4% of 150 is 
4+2). A ratio table can be used to calculate any percent of any quantity but is especially efficient for 
benchmark values. 

Organizing lessons for students to be central participants is an essential component of culturally 
relevant pedagogy. This module emphasized student participation, particularly emphasizing whole-
class discussions to build shared understanding. For example, in one of the beginning lessons, the 
teacher performed a skit to clarify with students the vocabulary and elements of a pawnshop 
transaction, and collectively defined the transaction as a collateral loan with a monthly, simple 
interest rate.  

Centering instruction on students can be accomplished in terms of content that connects to 
students’ lives (e.g., Moll, Amanti, Neff, & Gonzalez, 1992). There is an additional, place-based 
interpretation of centering: taking a spatially local phenomenon and studying it, at various levels of 
scale, in students’ local places. Focusing on a specific context, in place, and using mathematics to 
make sense of that context is an explicit stance that differs from focusing on percent as a theme with 
applications across multiple contexts. 
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Figure 1: Ratio table used in classroom (11/6/2014) 

Real-world contexts with social justice ramifications can motivate mathematics and mathematics 
enables better understanding of the real-world context (e.g., Gutstein, 2005). In this case, percent is a 
tool with which to model and compare loans toward exploring critical notions of pawnshop loans as a 
form of predatory lending or dominant notions of alternative financial institutions (AFIs) as 
important financial resources for low-income people. Drawing again on notions of local space and 
place, to investigate spatial patterns in the distribution of financial institutions in the local city, one 
lesson invited students to consider how to normalize the distribution to analyze which neighborhoods 
have more AFIs, since numbers of AFIs could be compared to households, land area, or to numbers 
of banks. Students explored data-rich spatial distributions on interactive, digital maps in the context 
of understanding the relative cost of different types of loans, set in terms of spatial representations of 
demographic statistics. Students conducted field research in the school neighborhood to explore the 
distribution of financial institutions and to interview pedestrians about their experiences as customers 
of these businesses. 

An assumption is that students will develop critical opinions about pawnshops and their role in 
students’ lives, the local community, and the broader city, and that this development is predicated on 
an understanding of the concept of percent. This paper explores that assumption by asking two 
research questions: 

• Did students develop conceptual understanding of percent through their participation in this 
project?  

• Did students develop critical thinking about pawnshops through their participation in this 
project? 

Research Context 
This module was piloted in a high school in a large Northeastern city in the United States. The 

school is located in one of the city’s lowest income neighborhoods and provides free lunch to 100% 
of its students. Students identify as “Hispanic” (75%) and “Black or African American” (25%). 
Despite an appearance of uniformity across just two broad categories, the student body includes 
recent immigrants from the Dominican Republic, second or third generation of immigrants from 
Puerto Rico or the West Indies, and African Americans. About 20% of the students are classified by 
the school district as English language learners, and about 20% as needing special education (data 
was obtained from the school district about the previous school year). 

Students are required to pass through metal detectors staffed by police personnel to enter school 
because of its district classification as “persistently dangerous.”  Incoming students test scores, on 
average, are “below proficient” and below city average, and the school has a six-year graduation rate 
just below the city average. The school suffers from low attendance; about half of its students are 
categorized as “chronically absent.”  Despite the statistics that portray the students and school as 
struggling, the school consistently receives high marks on its district progress report that factors 
parent and student surveys heavily in its metrics because parents and students express enthusiasm 
and positivity about the school and its teachers. 

The classroom teacher in this study was in her 8th year of teaching, all at this school, and 
identifies as a white woman. She collaborated on classroom implementation of another curricular 
module as part of the larger project and had been previously involved in two cohorts of professional 
learning communities around culturally relevant mathematics teaching. The teacher participated in a 
4-day summer training institute and collaborated with the design team to pilot the curricular module 
in the fall of 2014 in her advisory class, comprised of 16 tenth-grade students (who are in her 
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geometry class). Fifteen of these students participated in the research; one was present in the sessions 
but could not consent to participate in the research because of disability status. Seven of 11 students 
took and passed the state’s entry-level algebra test the previous year, but only three students’ scores 
exceeded the “college-ready” threshold. 

Data Sources and Methods 
All 10 class sessions of the module were observed and audiotaped by three researchers, and 

student written work was collected. Fieldnotes were taken during the observations and were 
coordinated with corresponding audio to enable detailed memos about each session. Engagement was 
rated independently by three researchers using a 5-point rubric from Kitchen, Depree, Celedon-
Pattichis, & Brinkerhoff (2006) and averaged. A post-focus group session was conducted with five 
student volunteers from the class and audiotaped. 

Analytical memos were produced for every class session and the focus group session. To answer 
the first research question, students’ written responses on assessment items were categorized in terms 
of correctness and strategy type. Three lessons that focused on percent as function to determine 
monthly interest and a 15-minute section of the post-focus group that focused on students’ self-
reflections about the mathematics they learned in this project were included in this analysis. 

To answer the second research question, fieldnotes and written work from an introductory class 
session and audio of whole-class discussion portions from six lessons, totaling 132 minutes, was used 
to create transcripts. A coding tree was created and used to code transcripts line by line in terms of 
speaker and reference to pawnshops. Dedoose, a software for coding qualitative data, was used to 
aggregate students’ ideas about pawnshops by speaker, date and in terms of whether the perspective 
expressed critical or dominant perspectives about pawn shops. 

Results 

Development of Conceptual Understanding of Percent  
On the written pre-assessment, nine of 14 students computed 4% of 150 correctly, but they were 

limited to decimal-based strategies, mostly with a calculator. During the class sessions, students who 
had computed 4% of 150 correctly using a decimal strategy demonstrated difficulty articulating a 
conceptual understanding of 4%. For example, several students who had used a decimal strategy and 
arrived at a correct answer on the pre-assessment conjectured in class that 4% might mean one-
fourth, or a quarter. 

Students readily took up the ratio-based strategy initiated by the teacher in the class session that 
introduced the ratio table. In written work during the lesson in which the table was introduced, eight 
of 12 students present showed that they could use ratio tables to compute given percents of multiples 
of 100. Some students could use ratio tables using doubling and halving to compute 8% of multiples 
of 50 (i.e., 8% of 50, 8% of 150), and few students computed 8% of 75, a slightly more challenging 
example. 

The next day, empowered with a conceptual understanding of percent, students were tasked with 
using mathematics to model a pawnshop loan in a story problem that required them to extend the 
monthly interest over 4 months and to factor in the one-time fees. This lesson’s engagement was 
rated at 4.33 (serious/widespread), one of only two lessons with highest student engagement. Our 
interpretation of this engagement is that students had been carefully introduced to the elements 
defining the transaction, possessed conceptual tools with which to approach the problem-solving 
task, and were interested in being able to interpret the mathematics of this pawnshop scenario.  

On the post-assessment with 11 students present, six correctly computed 6% of 800 and four 
demonstrated a ratio approach. Nine students attempted to answer a second question, which asked 
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them to model a pawnshop loan, and five had the correct answer. On this problem, five students used 
a ratio strategy toward computing 4% of 250. These results on the written assessments might seem 
underwhelming to readers, but should be considered in light of the context of struggling students. 
One student in the focus group described how her participation impacted her mental mathematics 
strategies and her confidence about those strategies. In response to the question, “Did you learn any 
math?”, Tacee declared:  

I learned a lot. Because, like, before, when I was finding percent, I would only know how to find 
50% like, oh -I’d be like- oh it’s half. But then like, now, I know how to find, like for any 
number (11/25/14). 

Use of ratio-table strategies became more efficient and sophisticated for some students by the end 
of the project. When asked to demonstrate how to compute 6% of 250, four of the five students in the 
focus group quickly arrived at a correct answer, in some cases without writing anything down. When 
asked how to accommodate this strategy to a problem like 6% of 280, two of the students in the focus 
group (the two students with the highest scores on the previous year’s state algebra test), 
demonstrated strategies that extended beyond the halving, doubling, and combining that had been 
worked on in class with the teacher. One student scaled 100 to 280 by a factor of 2.8, and 
correspondingly scaled 6 by a factor of 2.8. A second student first found 6% of 250 using doubling 
and halving, and then used the entry for 50 to scale to 5 by dividing by 10 and reasoned that “as the 
money increases by five dollars, the interest also increases by 0.3.” He then used this rate to scale up 
to 30 dollars toward finding the correct answer (see Figure 2). 

 
Figure 2: Sample ratio used by student to compute 6% of 280 

 

These examples demonstrate how the ratio table approach was effective as a remedial tool and 
functioned as a springboard for students with stronger mathematics backgrounds toward more 
sophisticated strategies. 

Development of Critical Thinking About Pawnshops 
Critical thinking with mathematics about pawnshops can refer to the phenomenon at increasing 

levels of complexity (see Figure 3). At the scale of individual transactions, it is possible to use 
mathematics to analyze a transaction in terms of its high interest rates compared to other loans, or the 
way that its appraisal system might undervalue items from the perspective of the borrower. Dominant 
perspectives might dictate that pawnshops are legal enterprises, with published interest rates and, like 
any business, need to make sufficient profit. 
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Figure 3: Levels of complexity for thinking about pawnshops 

Beyond individual transactions, pawnshops can be considered as a system within the financial 
landscape. A critical perspective might examine that system as one that, by virtue of its extremely 
high rates relative to other options and the quick access it provides to small loans, is a system that 
preys on low-income people. A dominant perspective is that pawnshops form one choice among 
many options and are a financial resource for those who have poor credit or need small sums quickly. 

A spatial perspective on pawnshops considers distribution across places. Patterns in that spatial 
distribution of mainstream and alternative financial institutions might provide evidence to suggest 
that the AFIs target geographical neighborhoods that have more unemployed people, immigrants, or 
low-income families. A dominant perspective about the spatial distribution is that pawnshops, with 
banks, are located in heavy shopping areas.  

On the first day with the module, students were asked to name associations with pawnshops, and 
the teacher penned contributions on a word wall. Forty-nine words or phrases were named; 34 were 
related to the pawnshop transaction, with most referring to the appraisal process (25). Students less 
frequently (12) offered associations that might be indicative of critical perspectives about pawnshops 
as a lending system, with statements like “advantage,” “power,” and “they get over on you.” One 
comment hinted at a spatial, critical perspective: “the ‘hood.” 

At the end of the module, in a whole-class discussion organized to elicit student opinions, 
students made 30 references to pawnshops. These 31 references (made by 8 students) mostly (20) 
were oriented toward pawnshops as a lending system, though some (8) referred to aspects of 
individual transactions, and few (3) referred to the spatial distribution. This demonstrates greater 
sophistication in the students’ thinking about pawnshops; prior to the module, their references were 
concentrated tightly around aspects of the transaction, and by the end of the module, their references 
had shifted largely to focus on pawnshops as a lending system.  

For example, when the class was asked to agree or disagree with the statement, “Pawnshops prey 
on our community by charging much higher annual interest rates than banks,” one student, Lina, 
disagreed, providing a dominant perspective about pawnshops as a system, explaining, “I don’t think 
they [pawnshops] do it intentionally, I think they just do it as a choice. Like, if you don’t have the 
credit then you, like, it’s their, like it’s someone’s fault if they have bad credit ‘cause it’s you’re fault 
if you didn’t pay all your debts or whatever… they’re helping you out by at least letting you borrow 
money…” Another student, Bo, disagreed, offering a critical perspective: “I only see pawnshops 
inside, like, poor neighborhoods. So I feel like they, like, preyin’ on the poor neighborhoods, 
because, like, they don’t have nothin’ so if they come, then they gonna take they money.” Bo 
continued, recalling examining the posted interest rates and fees inside a check-cashing store during 
the field research session, “since it’s so expensive, right, then like the people who can’t afford it have 
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to, like, do that because if they really need the money then they gonna have to raise all they money 
and then, to get that, then they gonna be broke” (11/20/14). In that summative whole-class 
discussion in general, more statements had critical orientations (18) than dominant (13).  

Discussions and Further Questions 
Findings include student interest in and adoption of ratio models for percent calculations. For 

struggling students, with weak scores on standardized tests, this topic remediated a central focus of 
middle school mathematics. At many points in the module, students pointed out that it is important 
for a consumer to be savvy in terms of the individual transaction, because “pawnshops get over on 
you.” Students felt that understanding mathematics would help them to better navigate an appraisal 
or loan process. One student, Sheeda, shared in the focus group that she found learning about the 
mathematics to be more useful to her than she had at first expected: 

But then when we started like, going more in deep into the project we was like oh that’s what 
they really be doing, so like we really have to have that skill of math to, you know, to, pursue… 
like, that. Like, if we ever went to a pawnshop. (11/25/14) 

In other words, mathematics would enable a position of strength instead of weakness for students 
as consumers. In response to a follow-up question as to whether the mathematics they learned was 
new, she elaborated: 

Sheeda: cuz basically we learned it, but basically we, didn’t, like pursue more into it. Like, we 
just like, oh that’s something that we learned in school, like, we-we like… 

Lina: to learn it, just to learn it… 
Sheeda: Yeah, it felt like, we felt like… 
Lina: ...we did, applied learning. 
Sheeda: yeah, it felt like — exactly, that’s like what I was saying — like, it felt like we really 

needed to, like, pursue it.”  

These two students made the point here that the context was not only motivating for them, but 
that learning this mathematics felt necessary. 

By the end of the module, students expressed points of view that demonstrated that the module 
had opened up space for thinking more broadly than about individual transactions in pawnshops. 
Those points of view became more critical in orientation, and it is our interpretation that that 
students' learning how pawnshops work, an element of which is how to use percents to calculate 
interest, was a key factor in this growth. Although the module included a focus on using maps and 
data to make spatial arguments, such arguments were rarely assimilated into students’ opinions. An 
interpretation of this finding is that the students’ map and data analysis was done individually or in 
pairs at laptops computers, without time for interpreting or layering those observations in whole-class 
discussions. Collectively building understanding in whole-class discussion competed for time with 
individual investigations that focus on single-user technologies.  

This investigation of pawnshops used mathematics of percent in different ways. This paper has a 
central focus of understanding how to use percent as a function and as a proportion to model a 
pawnshop loan and to compare loans. Yet percent was used in other parts of the module to represent 
demographic data as a statistic. Using percent as a function to model loan interest typically scales up 
from $100, while using percent as a statistic typically scales down to 100 people. Future research 
could focus on relationships between conceptual understanding of percent as a function, proportion, 
and statistic, in mathematical investigations that draw on data that pertain to demographics and place. 
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Studenting is comprised of the behaviors that students perform or exhibit in a learning situation, 
such as the mathematics classroom. These may or may not be intended to help themselves learn, and 
may or may not conform to the teacher’s goals and expected actions. In this paper I report on the 
case of a particular student, Maria. Observations, together with excerpts of informal interviews, are 
used to provide a preliminary analysis using activity theory as a theoretical lens. Initial results 
reveal that ‘good’ studenting behaviors do not necessarily result in mathematics learning, nor 
indicate a primary motive of learning. Analysis indicates Maria’s primary motive was to get a good 
grade and be seen as a good student.   

Keywords: Teacher Beliefs; High School Education; Affect and Beliefs 

Studenting 
The term ‘studenting’ was coined by Gary Fenstermacher in 1986. Initially, he describes this 

concept in terms of a cohort of student behaviors including “getting along with one’s teachers, 
coping with one’s peers, dealing with one’s parents about begin a student, and handling the non-
academic aspects of school life” (p. 39). In essence, Fenstermacher describes studenting as what 
students do to help themselves learn. A later definition encompasses other behaviors such as 
“‘psyching out’ teachers, figuring out how to get certain grades, ‘beating the system’, dealing with 
boredom so that it is not obvious to teachers, negotiating the best deals on reading and writing 
assignments” (Fenstermacher, 1994, p. 1) and other similar practices. 

Analyses have shown that the process of schooling produces a number of unintended 
consequences, some desirable, but also many that are patently objectionable (Engeström, 1991) and 
counterproductive to the goal of student learning. Preliminary studies have shown that across the 
board students are finding ways to subvert the expectations of the teacher in ways that the teacher is 
not aware of (Liljedahl & Allan, 2013a; 2013b).  

Theoretical Framework – Activity Theory 
Considerable research can be found looking at students’ motives and behaviors, but what is lacking is 
a catalogue of student behavior across activity settings in the mathematics classroom. This finding 
drives the first research question. 

Activity Theory was chosen as a framework for analysis for its ability to describe what is rather 
than what is ideal. Rather than categorizing students by their behaviors (e.g., on-task or off-task), 
presuming students behave rationally or ideally (e.g., game theory), or assuming the students’ 
primary goal is learning (e.g., didactic contract (Brousseau, 1997)), activity theory allows for a 
description of what is observed and said without overlaying preexisting assumptions or judgments. 
These observations, taken together, can then be used to develop a hypothesis for what is driving 
student action: their motive, which may be something other than a desire to learn. Individual 
behavior and motive within the classroom collective is best viewed through a theoretical lens 
primarily comprised of Leontiev’s Activity Theory (1978). 

For Leontiev, “[a]ctivity does not exist without a motive; ‘non-motivated’ activity is not activity 
without a motive but activity with a subjectively and objectively hidden motive” (1978, p. 99). The 
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object of an activity is its motive, and is something that can meet a need of the subject. Motives arise 
from needs, which are the ultimate cause of human activity. Figure 1, below, illustrates the 
relationship between the elements in Leontiev’s development of activity theory. 

 
Figure 1: Pyramid Representation of Leontiev's Three-Level Model of Activity (1974) 

Motives drive activity, and activities are directed at goals. People have many goals, which shift in 
importance and in content on the basis of both contextual and intrapersonal factors. At the very top of 
this hierarchy is the motive for activity. At any time an individual has a hierarchy of these motives, 
the order of which is determined through and as a result of one’s activity.  

Actions are the many steps that comprise an activity, although not all are immediately related to 
the motive (Kaptelinin & Nardi, 2012). Actions are directed towards specific targets, called goals. 
Goals are conscious; in contrast to motives, of which a subject is not usually aware.  

The fact that motive is often hidden from the subject suggests difficulty in determining the 
ultimate motive. This obstacle can be overcome by utilizing an “actions first” strategy (Kaptelinin & 
Nardi, 2012). The strategy begins at the level of goals, which people are generally aware of and can 
express, and the analysis is subsequently expanded up to higher goals and ultimately the motive. 
Given the primary interest of this study is the students’ actions/goals and activity/motive only the top 
two levels of Leontiev’s pyramid will be considered in this paper. 

Cataloguing the observable aspects of studenting (actions) and analyzing these together with 
students’ goals through the lens of activity theory can offer new insights into student motives and 
provide researchers and educators with evidence to better understand student behavior. 

Methodology 
The nature of the research questions requires a particular approach – an ethnographic study, 

though the study itself is not ethnography. In accordance with this approach, I spent significant time 
immersed in the classes under study observing and interacting with students, taking fieldnotes, and 
asking questions. Analysis occurred throughout the process of data collection whereby what was 
observed and recorded in one lesson provoked questions and shifted focus for the next 
observation/interviews. Both an etic and emic perspective were utilized. 

Participants 
The data for analysis are taken from a larger study conducted in three secondary school 

mathematics classes in British Columbia. Maria was in the Foundations 11 class.   

Data Collection and Analysis 
Data were collected during the 2013-2014 school year. Throughout the fall semester the class 

was observed for twelve periods, each period ranging from 60 to 75 minutes. Classroom lessons and 
informal interviews were audio recorded and transcribed for later analysis and comparison with field 
notes taken during the class. The data discussed here has been subjected to an initial analysis using 
Leontiev’s activity theory in order to determine the likely primary motive underlying Maria’s 
behavior.  
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Results and Analysis 
The analysis is influenced by all observations, interviews, and interactions with Maria, not all of 

which are provided here. A selection of observations and interview transcripts are provided to render 
a sketch of Maria’s behavior and justify the hypothesized motive.  

What Maria Did (Actions) 
Over the five-month period the class was visited the researcher observed Maria in many activity 

settings. Maria was always present, on time, and prepared for class. She tried every homework 
question and asked for help from neighbors or Mr. Matthews when it was needed. She was often the 
first to begin a new activity and remained focused for the duration of the task. She took notes during 
lessons and for example problems. She also stayed after class on occasion to do extra review and 
finish homework. Maria could often be relied on to supply answers (usually correct) if Mr. Matthews 
asked a question of the class during a lesson. She would follow the teacher’s explanations and, if she 
was able, provided explanations when asked ‘why’. These explanations were largely procedural. She 
asked questions when Mr. Matthews was doing example questions during a lesson, such as “If you 
gave us those two roots, how would you graph it?”. During group work she did not actively take a 
leadership role but often ended up leading group presentations. 

What Maria Said (Goals) 
The following is a summary of some Maria’s written responses to some prompts given to all 

students in the class regarding note-taking habits and review for tests.  
She takes notes when there is a lesson, even if she has done the topic previously, and writes them 

in her own words, rather than exactly what the teacher says because it “helps me remember the 
notes”. She wrote that she takes notes during class because it helps her “pay attention to the lesson” 
and it helps her “to study later on when there is going to be a test”. Maria thinks her teachers expect 
her to take notes because they know it will be helpful to students in the future.  

To review for a chapter test Maria wrote that she uses both her notes and her textbook to ensure 
she “fully understands the subject/topic”. She “looks over” her notes both at home and in class, 
reading them “to see if I can follow all the steps”. She does all the questions in the assigned textbook 
homework that “I know I’ll have trouble with” and also does “some of each type of question”. During 
class on the day before a test she’ll work on the assigned review and if she has difficulty “I’ll ask 
someone who might understand”. After a particular test she said she “should have done more 
practice on converting equations with the word problems”.  

Discussion and Conclusion 
Maria demonstrates the activity of a conscientious student. According to Mr. Matthews’, Maria 

“should” be achieving a high ‘A’ in the class, but when it comes to the test she doesn’t seem to have 
fully understood the material. This perplexing situation could be understood by examining Maria’s 
actions to determine what is driving her behavior.  

Figure 2 depicts the top two levels of Leontiev’s (1974) triangle as applied to Maria’s actions, her 
voiced and indicated goals and, extrapolated from these, her motive.  

In all aspects Maria demonstrates qualities of what she perceives to be a ‘good’ student. Maria’s 
actions demonstrate that her understanding of a what a ‘good’ mathematics student does includes: 
doing and submitting all the homework, asking for help (and being seen to do so), answering 
questions in class, participating, taking notes, doing practice for procedural fluency. 

Maria’s studenting is so successful that she seems to have fooled Mr. Matthews into thinking she 
is a good mathematics student – yet she seems to struggle with non-typical problems and relies 
significantly on ‘remembering’ how to do questions. Maria is very good at studenting, just not 
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mathematics. Since her actions align with the features that Mr. Matthews appears to consider a part 
of being a good mathematics student, Maria’s performance on assessments is puzzling. 

Figure 2: Using an ‘actions first’ approach to determine Maria’s motive. 

Although the teacher saw all of Maria’s actions as indications of learning, they were, in fact, just 
proxies for learning. Thus even when students are conforming to teacher expectations, as in the case 
of Maria, there appears to be a gap between actual student activity and learning, the ideal outcome 
associated with a primary motive of learning. Frameworks like the didactic contract (Brousseau, 
1997) may apply when the desire to learn drives student activity but when learning is not the primary 
motive, other approaches must be explored, such as activity theory. 

Other preliminary results show that are a variety of goals that manifest in similar actions, 
suggesting that considered alone, a students’ actions are insufficient to deduce their motive. Also, 
even when students do not conform to the teacher’s expected behaviors, from the student’s 
perspective there is a certain rationality to their actions. It is anticipated that extended analysis will 
provide further evidence to support this claim.  

What the case of Maria suggests is that a deeper understanding of the perspective of the student 
within the classroom unit could serve to provide teachers with cause for reflective thought on their 
policies and practices that influence student learning. 
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In this study we explored the connection between Algonquin ways of knowing and Western 
mathematics found in current math curricula. We used a cyclical research design of consultation, co-
planning, co-teaching, and co-reflection to explore the potential of grounding mathematical 
instruction in the traditional Algonquin activity of looming. Results suggest the activity supported 
students’ complex mathematical thinking including patterning and algebraic reasoning, proportional 
reasoning and spatial reasoning. The experience also resulted in a reconceptualization of 
mathematics learning for both Algonquin and non-Native students.  

Keywords: Equity and Diversity; Elementary School Education 

Objectives 
The activities in this paper come from an ongoing long-term project in which we collaborate with 

Elders and community members from different Indigenous communities across Ontario to explore 
connections between Indigenous and Western ways of knowing mathematics. The goal of this project 
is to explore connections between the mathematical content knowledge based on the Ontario 
curriculum expectations and the mathematics inherent in Indigenous cultural practices. We are also 
exploring connections among evidence-based teaching pedagogies founded on the principles of 
reform math instruction, Indigenous ways of teaching and learning, and contextual knowledge based 
on students’ lived experiences. The work outlined here was conducted in a Grade 6 classroom at a 
small public school near Pembroke, Ontario. The school population comprises approximately 20% 
Algonquin students from the nearby Algonquins of Pikwàkanagàn First Nation, and 80% non-Native 
students.  

Theoretical Framework 
Ethnomathematics is a theoretical framework that has generated a growing area of research of 

how math curricula can and should respond to local culture (D’Ambrosio, 2006). From the 
ethnomathematics perspective, school mathematics, which is derived from 15th century Western 
European traditions, is one of many diverse mathematical practices and is no more or less important 
than mathematical practices that have originated in other cultures (Mukhopadhyay et al., 2009). 
Ethnomathematics provides a foundation for developing culturally responsive education, which 
refers to efforts to make education more meaningful by aligning instruction with the cultural 
paradigms and lived experience of students (Castagno & Brayboy, 2008).  Research has shown that 
creating connections between math instruction and Indigenous culture has had beneficial effects on 
students’ abilities to learn mathematics (Cajete, 1994). Long-term studies by Lipka (2002, 2007) 
found that culturally responsive education in mathematics had statistically significant results in terms 
of student achievement. Recent researchers have also been exploring the insights Indigenous 
epistemologies and practices can provide into understanding diverse mathematical pedagogies (Barta 
et al., 2003). 
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Methods 

Research Design 
Our core research team for this project included two Algonquin teachers, and the operations 

manager of the Algonquins of Pikwàkanagàn Cultural Centre, Christina Ruddy, who is an expert 
loomer. The team also included three non-Native teachers from the school, including the Grade 6 
teacher, Mike Fitzmaurice, in whose classroom the study took place. We followed a cyclical 
approach (consult, plan, teach, reflect, share) as a framework for the project, which ensured that we 
continually cycled back to members of the Algonquins of Pikwàkanagàn community for guidance. 
The cycle includes a consultation phase during which we met with community leaders from 
Pikwàkanagàn. A key theme raised by community members was the importance of revitalizing 
Algonquin culture. One focus of this cultural revitalization has been beadwork, including loomwork, 
which has always had significance for this community. For this study we co-planned a unit of 
instruction based on Algonquin looming – a type of beading that is done on a loom, and involves 
stringing beads onto weft threads and weaving them through warp threads. Once the lesson sequence 
had been designed by the team, Mike 
and Christina co-taught the lessons 
over the course of two weeks in the 
grade 6 classroom. All lessons were 
videotaped and specific classroom incidents were transcribed. The team viewed video clips to co-
analyze students’ mathematical thinking and cultural connections. Finally, the results of the lessons 
were shared with community members though parent and community meetings. In this paper, we 
share some of the mathematical thinking from week 1 of the sequence, which focused on pattern 
design. 

Findings 

Looming in the Classroom 
Christina taught the students that looming pre-dates the arrival of Europeans to North America. 

Historically sinew and porcupine quills would have been used but currently plastic and sometimes 
glass beads and nylon thread is used. The pattern for each looming project is created on graph paper 
(see Fig. 1). The columns represent the weft threads, and the number of columns corresponds to the 
horizontal length of the beadwork. The rows represent the warp threads, and the number of rows 
corresponds to the width of the beadwork. The rows and columns of the design space are numbered. 
Below each column, the number of each colour of bead is entered (with the number representing the 
colour of the beads, in this case blue numbers for blue beads and red numbers for red beads). This 
helps the beader to know the order for stringing beads for each column, or line of beads on the weft 
thread. Each column should add to the total number of beads on each weft thread (so in the example 
in Fig. 1, each column should add up to 7).  

Patterning and Algebra 
Students were introduced to a pattern of 

chevrons that were two-beads wide and created 
using two alternating colours; a 2-colour 2-bead 
Chevron pattern (Fig. 1). To identify the unit of 
repeat (also referred to as the “pattern core”), 
some students focused on the numeric pattern 
and noted that even though the numbers repeated 
after the 2nd column, the colours were different 

Fig. 1: 2-Colour 2-Bead 
Chevron 
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so the first 4 columns made up the core. Others identified the visual pattern of the first 4 columns and 
described the central blue chevron surrounded by parts of red chevrons on either side. 

Students then created a 3-colour 3-bead chevron (Fig. 2) and found that column 10 was identical 
to column 1, and so reasoned that the core comprised columns 1-9. Students described imagining 
superimposing the first 9 columns onto the next 9 columns to see if they “matched.” Noticing that the 
pattern seemed to begin with a partial chevron, a few students wondered what would happen if they 
added a column “before” (to the left of) column 1 on the pattern (which they referred to as “column 
0”). This inquiry was explored by the rest of the class. They discovered that the core “moved” to the 
left by one column, and comprised columns 0 – 8 (Fig. 3). They continued to add columns to the left 
of column 1, and noticed the core shifted by as many columns as were added. However, they also 
noticed that the number of columns in the core did not vary. For a 3-colour, 3-bead Chevron pattern 
the core was always made up of 9 columns.  

 
 
 
 
 
 

 
 
 

Based on these experiences, the students generated an algebraic generalization to predict the 
number of columns in the pattern core of any Chevron pattern. The width of the core is determined 
by a multiplicative relationship between the number of beads that made up the chevron and the 
number of colours (chevron width x colour = core width). The idea of a “moving” pattern core was 
new to these students, as previously they had never considered that a pattern can extend to the left as 
well as the right of the given elements. This allowed them to recognize that the core of a pattern is 
not necessarily defined by the first element, however what remains constant is size of the core (in this 
case, the number of columns). 

The students were then asked to make predictions about columns in the pattern further down the 
sequence, for example, what the 35th column would look like. The students identified  the 
multiplicative relationship between the number of columns in the core, and the numbered columns of 
the design template. For example, if the core of a pattern comprises 4 columns, the 35th column 
would be the same as the 3rd column, since the core would be repeated 9 times to the 36th column 
(which would be identical to the 4th column) and the column before the 36th column would be 
identical to the 3rd column.  

Proportional Reasoning 
At the end of the first week, the students designed their own pattern to use as the basis of their 

bead creations. They learned that 5 columns on the pattern template equated to 1cm of beadwork. 
Students were asked to measure their wrists and calculate how many columns wide their bracelets 
would need to be, how many beads of each colour and in total they would need. 

Some students used proportional reasoning to estimate the total length of their finished bracelets 
using a fixed ratio of 1 cm = 5 columns. We also saw evidence of students using the pattern core as a 
unit, for example, considering the core as simultaneously one core and 4 columns. For example, 
Wyhatt with a wrist of 17cm worked with the relationship of 5 core units = 20 columns (or 4 cm), 10 
core units = 40 columns (or 8 cm), 20 core units = 80 columns (or 16cm) and one more core unit plus 
a single column (first column of the core unit) for 85 columns (17 cm). This is an example of using a 
composite unit (Lamon, 1996) for more sophisticated reasoning – the 20-column template 

Fig. 3: 3-Colour 3-Bead Chevron with Column 
0 

Fig. 2: 3-Colour 3-Bead 
Chevron 
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represented 5 pattern core units and 4 cm simultaneously. Students exhibited an ability to use single 
or composite units as the basis for multiplicative thinking (e.g., using the unit of 5 columns for 1 cm, 
or using the unit of the pattern core of 4 columns with an understanding that 20 columns = 5 cores 
and 4 cm).  

Spatial Reasoning. Numerous studies suggest that spatial reasoning skills, including mental 
manipulation and spatial visualization, are linked to mathematical achievement (e.g., Gunderson et 
al., 2012). We found that designing 2-dimensional patterns on a grid, and identifying components of 
the pattern (like the pattern core) provided an opportunity for students to engage in visuospatial 
thinking. As they worked to isolate the columns that made up the core of the pattern, the students 
were able to mentally visualize isolating the pattern core superimposing one core onto the next to 
determine whether it “matched”.  

Conclusion 
Ethnomathematics, and culturally responsive teaching specifies working within the mathematical 

systems established within a particular culture, in this case, the Algonquin culture of Pikwàkanagàn. 
The connections that we made between Western and Algonquin mathematics took the form of 
creating a “third space” (Haig-Brown, 2008; Lipka et al., 2007) in the classroom by exploring the 
potential of Algonquin activities for mathematics, and bringing Algonquin culture into the classroom. 
This third space, merging Algonquin and Western ways of knowing, is created when the knowledge 
and perspectives of traditionally excluded communities are privileged alongside the dominant 
society’s pedagogy and content.  
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Teachers in Korea have recently confronted new challenges as the population of linguistically and 
culturally diverse students increases. Ethnically diverse students as well as Korea-born students 
returning from long residences in foreign countries have great difficulties orienting themselves 
within Korean schools due to lack of Korean language proficiency and cultural differences. We 
named this student group as Korean language learners (KLLs) and investigated teacher perspectives 
on effective mathematics pedagogy for KLLs. Using two educational models for English language 
learners (ELLs)—Cummins’ Quadrant Model and the Sheltered Instruction Observation Protocol 
(SIOP) Model—we examined survey results of a small group of elementary teachers in South Korea 
in terms of effectiveness and feasibility of the ELL models. 

 Keywords: Equity and Diversity; Teacher Beliefs; Elementary School Education   

Research Objectives 
The classroom culture of Korean schools has recently changed as the population of linguistically 

and culturally diverse students increases. We associate immigrant students and Korea-born students, 
returning from long residences in foreign countries, in terms of their linguistic difficulty, and name 
them as Korean language learners (KLLs). Recent studies have found that students from 
international marriages and immigrant families tend to academically perform at lower levels than 
general Korean students (Cho et al., 2006; Song et al., 2010) and mathematics is one of the subjects 
they have the most difficulty with (Cho & Lee, 2010; Jang & Choi-Koh, 2009). Moreover, Korean 
public schools have failed to provide multicultural programs or linguistic supports tailored to the 
needs of KLLs (Kim & Kim, 2012), and teacher preparation programs have not prepared teachers for 
implementing multiculturalism in their instruction (Mo & Hwang, 2007).  

We investigated South Korean elementary teachers’ perspectives on the use of effective 
mathematical pedagogies for language learners, especially KLLs. We specified several pedagogies 
within two educational models designed for English language learners (ELLs) and examined survey 
results of how teachers considered implementing the ELL pedagogies in Korean school contexts. 

Frameworks 
One trend of ELL research has been to highlight the distinction between academic language and 

everyday language (Moschkovich, 2007) although they are not exclusively separated. Two ELL 
education models were chosen to address the importance of considering both language development 
and academic context: Cummins’ Quadrant Model (Cummins, 2000) and the Sheltered Instruction 
Observation Protocol Model (SIOP Model: Echevarria, Vogt, & Short, 2004). We adapted and 
connected these models in a mathematical context.  

Cummins’ Quadrant Model 
Cummins (2000) considered a degree of context and a degree of cognitive demand in language 

tasks or activities to create a two-dimensional model (see Figure 1). Quadrants A and B include 
instructions that may be appropriate for language learners because contextual clues help them 
overcome language barriers. In the context-embedded instruction, students actively negotiate 
meaning through scaffolding and feedback provided by their teacher (Cummins, 2000). Further, 
students need to be challenged cognitively as well as provided with appropriate contextual and  
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Figure 1: Four - Quadrant Model (adapted from Cummins 2000, p. 68) 

linguistic supports as emphasized in Quadrant B (Gibbons, 1998; Vincent, 1996). 

The SIOP Model 
We chose the SIOP Model as one of the approaches to be placed in Quadrant B. The SIOP Model 

was designed to teach content subjects for ELLs. The eight components of SIOP Model are: lesson 
preparation, building background, comprehensible input, strategies, interaction, practice/application, 
lesson delivery, and indicators of review/assessment (Echevarria et al., 2004). Because we were 
interested in the strategy component, we chose five strategies that have potential for teaching 
mathematics to KLLs: Higher-order thinking questions, visual/physical activity, scaffolding, graphic 
organizer, and group activity.  

Methods 

Participants and Setting 
We conducted a survey with 27 Korean elementary teachers in a large urban area where the 

population of multicultural students was relatively high compared with other places in South Korea. 
Due to the location, some participants had taken multiculturalism courses in various forms, although 
none of the trainings specialized in mathematics education. The survey asked them to evaluate a 
lesson plan designed by the SIOP Model developers (Echevarria et al., 2010) to teach geometric 
figures for second grade ELLs. Because the lesson included all five SIOP strategies mentioned 
above, we examined how Korean teachers identified and valued those strategies for teaching KLLs. 

Data Sources and Analysis 
The objectives of the survey were (1) to examine if teachers identify the strategies designed for 

language learners, (2) to examine whether they consider the cognitive demands and contextual 
aspects, and (3) to see how they would choose to implement the lesson for their students. The first 
part of the survey asked about previous experiences and beliefs on KLLs, and the second part 
included open-ended questions about teachers’ insights on the SIOP lesson plan. To analyze the data, 
we used the constant comparative analysis method (Fram, 2013), which employed open coding, axial 
coding, and selective coding (Strauss & Corbin, 1990). Finally, we built a map of all categories and 
found themes that emerged in and across categories.  
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Results 

Teacher Beliefs on KLLs 
Differentiation of mathematics instruction. More than 90% of respondents agreed that they 

should differentiate their mathematics instruction for KLLs. The more experiences teachers had with 
KLLs, the deeper and richer the insights in their responses were. For example, one teacher who had a 
long-term experience teaching KLLs pointed out the difficulty of teaching conceptual knowledge to 
KLLs rather than teaching procedural knowledge. In addition, there was no relation between the 
beliefs on differentiating instruction and the multicultural trainings they received. One reason for the 
small influence of training might be that the multiculturalism courses were not specialized in 
mathematics.  

Appropriateness of the storytelling mathematics textbooks. Recently, the Korean government 
issued storytelling mathematics textbooks, which included sufficient pictures and contextual clues. 
One of the survey questions asked how appropriate the storytelling textbook was for KLLs. The 
responses were prevalently negative. The teachers disagreed that the storytelling textbook was 
suitable for KLLs because it required teachers to use complicated discourse in order to make sense of 
the story contexts in the textbook. This reveals that teachers perceive language as a barrier for KLLs 
to understand mathematics. Even if pictures and contexts support word problems, teachers believe 
more sentences yield more difficulties rather than more contextual clues. 

Evaluation on the SIOP Lesson  
Most teachers responded that the SIOP lesson would be effective for KLLs. They identified 

various types of linguistic supports: linguistic objectives, graphic organizers, or practicing sentence 
patterns. They thought these strategies were different from their typical mathematics lessons. One 
teacher articulated that linguistic supports would be useful, not only for KLLs, but all students, as 
follows: 

I have seen many students who are capable in mathematics have great difficulty expressing their 
ideas in language. Particularly lower-grade boys have trouble with verbalizing an image in their 
head. This lesson is impressive in the sense that it guides students to learn how to express their 
understanding in sentences in concrete ways.  

Among the five strategies, teachers identified visual/physical activities, group activities, (verbal) 
scaffoldings, and graphic organizers. However, none of them noticed the higher-order thinking 
question, although it was written at the top of the lesson plan. The series of teacher questions that 
explicitly appeared in the lesson plan multiple times were not mentioned either. In short, they were 
able to identify the SIOP strategies and generally agreed that the lesson would be effective for 
teaching KLLs. However, little recognition was found on cognitively demanding aspects such as the 
higher-order thinking question. Moreover, it should be noted that the Korean education system or 
Korean teachers’ pedagogy has its own features and structures that could be an obstacle when 
implementing the ELL strategies in the classrooms in South Korea. 

Discussion 
Although the teachers in Korea had not received any official training to teach mathematics for 

KLLs, it was a positive sign that they could identify important strategies that support language 
learners. However, the results imply that their understanding is limited because they did not pay 
attention to the aspects of cognitive demand and they heavily focused on language difficulty rather 
than providing contextual clues or scaffoldings. This view might be related to the conception that 
language learners are deficit learners (Moschkovich, 2007).  
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This study provides an international lens on teacher perspectives and openness towards 
multicultural education. Diversity is becoming prevalent internationally, so it is important to 
recognize other countries’ situations and efforts in educating diverse learners because we can learn 
from their experience and also find some possible collaboration. This study contributes to teacher 
educators’ understanding of the needs of language learners in mathematics education and teachers’ 
adaptability of a linguistic education model in content areas. Based on the results of this study, the 
efforts of applying ELL education models can give a meaningful indicator for future education 
models for other language learners and teachers of language learners if there are adequate 
considerations about cultural and political situations. 
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FOSTERING LEARNING-BASED CONVERSATIONS IN MATHEMATICS 

P. Janelle McFeetors 
University of Alberta 
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Conversations can be communicative moments in which there is an interpersonal and intimate nature 
of turning round ideas for the purposes of growth. Interactions among grade 12 students 
demonstrates the possibility of learning to learn mathematics through conversation. In exploring 
opportunities for learning-based conversations, constructivist grounded theory sponsored the 
development of a Model for Fostering Learning-based Conversations in Mathematics. The four 
features of preparation, presence, mode, and pace represent a space where students engaged in 
talking about their learning through conversational moments. This report will use student data to 
demonstrate how conversations which focus on ways of learning mathematics empower students. 

 
Keywords: Classroom Discourse; Learning Theory; High School Education; Metacognition 

Purpose of the Study 
Mathematics education reforms (NCTM, 2000, 2014; Western and Northern Canadian Protocol, 

2008) have emphasized students’ personal development of mathematical ideas through conversation 
(e.g., Chronaki & Christiansen, 2005; Herbel-Eisenmann & Cirillo, 2009). As an enduring challenge, 
absent from these reforms and from many students’ experiences is explicit discourse about processes 
of learning–identifying strategies students use to learn (e.g., homework, taking notes) and how to 
adapt strategies. Current scholarship could respond by addressing how students engage in 
conversation about their processes of learning and how learning-based conversations support 
improved mathematical learning. 

The empirical research presented in this report is part of a larger study that addressed the 
question: What is the nature of students’ learning when they engage in conversations to shape their 
personal processes of learning mathematics? The purpose of the study was to understand how high 
school students learn to learn mathematics (McFeetors, 2014). This report focuses on one facet of the 
study: how students engaged in conversations about their ways of learning mathematics. The 
conversations were “learning-based” because they foregrounded learning in the students’ awareness 
(Polanyi, 1964/1969) and students improved their learning through discourse. In the presentation, I 
examine conversational features which afforded students opportunities to experience growth in 
awareness of their learning processes, improve their approaches to learning mathematics, and view 
themselves as capable learners of mathematics. 

Mode of Inquiry 
Constructivist grounded theory (Charmaz, 2006) returns to the symbolic interactionist root of 

grounded theory while looking through a constructivist lens as an interpretive process for inquiring 
into dynamic phenomena. Theory is constructed on a provisional basis and contingent to the context. 
The researcher moves from rich empirical data through abstraction toward developing a mid-range 
interpretive theory through guiding processes like coding, memoing, categorizing, theoretical 
sampling, saturation, and sorting. The researcher’s reflexivity results in theorizing as both process 
and product enabling other researchers to apply and extend the work. 

The study was situated in an academically-focused suburban school in a Western Canadian city. 
Thirteen grade 12 students who were taking a pure mathematics course volunteered to participate in 
the study. Students were enrolled concurrently in a course, Mathematics Learning Skills, that 
provided support for their mathematical learning. Within the Learning Skills course, I assisted the 
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teacher in coaching students to improve their approaches to learning mathematics while 
simultaneously collecting data. 

I recorded field notes after observing each class over four months. Students took part in: 1) bi-
weekly interactive journal writings (Mason & McFeetors, 2002) about how they were learning 
mathematics; 2) one of three small groups where they developed a learning strategy that supported 
understanding (three to five sessions of approximately 30 minutes each); and, 3) two informal 
interviews focusing on approaches to learning mathematics for understanding (each approximately 
30 minutes long). In addition to generating data, the interactions also afforded students moments to 
be in conversation about their approaches to learning mathematics. Using line-by-line coding and the 
constant comparative method (Glaser & Strauss, 1967), data analysis involved developing codes for 
characteristics of student conversations. Categories of analysis were constructed by grouping codes 
related by conceptual qualities of conversation. Category names, like “pace”, are descriptive of 
conversational features students valued and are abstracted from the data. I constructed the Model for 
Fostering Learning-based Conversations in Mathematics by exploring the interrelationship of the 
categories. 

Perspective 
Rather than using an interpretive framework, I adopted Blumer’s (1954) notion of sensitizing 

concepts to “merely suggest direction along which to look” (pp. 7-8). Conversation was used as a 
sensitizing concept in this study. Surveying the uses of conversation in curriculum inquiry (Bakhtin, 
1986; Belenky, Clinchy, Goldberger, Tarule, 1986; Gadamar, 1965/1975; Gee, 1996; Noddings, 
1994; Varela, Thompson, & Rosch, 1991) and mathematics education (Bauersfeld, 1995; Cobb, 
Boufi, McClain, & Whitenack, 1997; Davis, 1996; Ernest, 1993; Gordon Calvert, 2001; Sfard, 
Nesher, Streefland, Cobb & Mason, 1998) pointed to a particular form of communication in which 
there is an interpersonal and intimate nature of turning round ideas for the purposes of growth, as 
well as a way of being in the world. The related literature served to sensitize me as a researcher to 
five particular conversational features – including withness, listening, dynamic, uncertainty, and form 
– which guided my attention to the ways in which students were in conversation about their 
processes of learning and informed generating a model. 

Results 
The four features of fostering learning-based conversations include: preparation, presence, mode, 

and pace. The features represent qualities of providing opportunities for students to talk about and 
improve their learning strategies. It is more explanatory of the occasioning of learning-based 
conversations, rather than of the qualities of conversations themselves. As such, it demonstrates ways 
in which teachers could provide opportunities for students to talk about how they learn. The features 
were created by looking at the range of examples from the study and attending to what the students 
emphasized when they identified conversations about their learning and what I noticed in their 
conversations through interpretation of data that the students did not explicitly identify as 
conversational moments. Students’ quotes are included below. 

The preparation feature points to the varying degrees of advanced planning that took place in 
providing opportunities for the students to attend to their learning. This feature has a temporal 
dimension, from spontaneous to deliberate interactions. In offering help in class, I recorded a field 
note where Teresa “asked me if it was like a question in her notes … I encouraged her that she had 
used a great strategy” for getting unstuck—an example of being alert to a spontaneous moment to 
shift the focus to learning. When I deliberately showed students a list of learning strategies they used 
during an interview, Grace exclaimed, “That’s a lot! … I thought I only had two or three ways to 
learn math.” The deliberate planning for learning-based conversations allowed for deep exploration 
of the processes and meaning of learning for the students. 
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Pace

Presence

Preparation

Mode

 
 

The presence feature refers to the composition of members of a learning-based conversation, 
ranging from internal dialogue to including teachers and peers. While self-talk often focused on 
mathematical thinking, Danielle described “sitting on the bus, and I was thinking … how would I be 
able to separate my ideas and stuff” as a catalyst for a new learning process. In small group sessions, 
students suggested and considered different ways of learning mathematics content. Students valued 
different perspectives on learning processes, not looking for experts to inform them but rather a 
responsiveness to turning round ideas in conversation with fellow inquirers. 
 The mode highlights the dialogic nature of learning-based conversation through various forms, 
including spoken interactions, textual artifacts, and a hybridity of these two modes. Spoken discourse 
occurred mainly through one-on-one interactions and small groups. It required moving students from 
noticing content to identifying how learning occurred. Interactive journal writing, as a textual 
artifact, gave students time to pause and consider deeply their approaches to learning. It was a safe 
space to share emergent thoughts about learning and as I wrote back I could draw learning into view. 
Upon returning a journal, Kylee exclaimed, “This idea for the cue card is great! I’m going to try it 
tomorrow”—a hybrid of student, me, and text. 
 The pace feature indicates a shift in classroom rhythm that allowed for a suspension of time from 
content to explore issues of learning. When Shane explained that “sometimes I just think about how I 
learn”, it was within a relaxed feeling of learning-based conversations contrasted with the rapidity of 
mathematics content. Opening up brief moments mattered to students. For instance, Ashley identified 
“the [small] groups that we’re doing, it’s mostly concentrated there” for conversations where 
learning strategies were developed that helped her succeed in mathematics. The different intensity 
fostered students’ choice to engage in learning-based conversations where they inquired into ways of 
learning mathematics. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Model for Fostering Learning-based Conversations in Mathematics 

Discussion: Integrating the Features into a Model 
The Model for Fostering Learning-based Conversations in Mathematics, in Figure 1, represents a 

space highlighting the complexity of students’ opportunities to be in conversation about their 
learning. Pace, diagrammed as the exterior square, situates the other three features of preparation, 
presence and mode, in a particular moment. Each of the conversational moments within the study 
could be placed within the space created by the rectangles. The placing of the conversational 
moments is what creates the space in which the students were talking about their learning and 
shaping their learning strategies through conversation. By explicating features which identify ways to 
foster learning-based conversations with students, I hope to invigorate mathematics education 
research to draw learning processes into view to empower students to improve and succeed in 
learning mathematics.  
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The following paper is a description of a qualitative case study of a student as she attempted a 
course for the second time.  This study took place at a four-year university in the first of a three-
course sequence of mathematical content courses for preservice elementary teachers.  Data was 
collected over the course of a single semester using a combination of interviews and short-response, 
reflection questionnaires and was analyzed using an open-coding process.  A rich description of the 
student’s experiences includes a discussion of how the course curriculum, instructor feedback, ability 
to seek help, and having “the right team” contributed to the student’s negative and positive 
experiences in the course.   

Keywords: Teacher Education-Preservice; Affect and Beliefs 

Introduction 
The National Council of Teachers of Mathematics, in their Principles and Standard for School 

Mathematics, argued that preservice teacher preparation programs have a significant impact on 
school mathematics through their instruction of future teachers (NCTM, 2000).  Echoing that 
sentiment, Campbell et al. (2014) claimed that elementary teacher preparation programs have “a core 
responsibility for enhancing the content and pedagogical knowledge of prospective and practicing 
teachers as well as influencing their beliefs regarding mathematics teaching and learning” (p. 455).  
As a result, Clark et al. (2014) called for increased research to better understand potential influences 
on teachers’ beliefs and how experiences impact mathematical views.   

The research study presented in this paper took place a four-year university in the Rocky 
Mountain region.  At this particular university, all elementary education majors are required to 
complete a three-course sequence of mathematical content courses.  This research study focused on 
the first course of that three-course sequence.  To continue to the next course in the sequence, 
students must achieve a grade of 70% or higher in their current course.  Some students (henceforth 
called repeaters) fall short of this expectation and find it necessary to repeat at least one of the 
courses.  In order to explore ways to better serve these repeaters, the purpose and goal of this 
research study was to explore the experiences of current repeaters.  To achieve this goal, I sought to 
answer the following research questions:  from the student’s perspective (1) what circumstances 
contributed to the student needing to retake the course? and (2) what circumstances contributed to the 
student being successful in their current attempt at the course? 

Methodology 
The purpose of this case study was to develop a holistic view of the experiences and 

circumstances surrounding students as they attempted to repeat the entry-level mathematics content 
course for preservice elementary teachers.   

The Setting and Course 
The research study presented in this paper took place during the 2014 fall semester at a four-year 

university in the Rocky Mountain region.  The participants were enrolled in an entry-level 
mathematics content course for preservice elementary teachers and all were repeating for the first 
time.  According to the course description, the purpose of this course was to explore the real number 
system and basic arithmetic operations.  Specifically, the course focused on mathematical structures, 
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patterns, and properties through a format of problem solving and exploration.  All classes utilized a 
combination of direct instruction, whole-class discussion, and small-group exploration.   

Participants 
I administered a demographic questionnaire to approximately 230 students enrolled in multiple 

sections of the course.  From those surveys, I invited six repeaters to participate in the research study, 
three of which agreed to participate.  The case study presented in this paper will focus on one of the 
student’s experiences as she attempted to complete the course for a second time.   

Data Collection and Analysis 
I conducted semi-structured interviews and collected short-response reflection surveys over the 

course of the semester during which the students were repeating the course.  During the interviews, I 
asked the students questions about their experiences in their previous attempt to pass the course as 
well as their experiences in their current attempt.  To gather information for the interviews, an online, 
short-response self-reflection questionnaire was administered.  Each questionnaire included questions 
about the student’s current experiences in the course.  Administration of these questionnaires 
occurred the week prior to the second and third interviews.  I used an open coding process to separate 
the interview data into key parts:  (1) description of the case and (2) emergent themes.   

Results and Discussion 
In the following section, I will present a detailed description of the experiences of a single 

student, Quinn, as she attempted to repeat the course.  The choice to focus on this student was a 
result of the rich, illustrative nature of her case record.   

About Quinn 
During the semester of this research study, Quinn was a sophomore majoring in Special 

Education with an emphasis in English as a Second Language (ESL).  She moved to the United 
States approximately 8 years ago and attended an American junior and senior high school prior to 
attending the university.  While English was not her first language, she expressed enjoyment from 
studying the subject.  She also admitted that mathematics was her weakest subject.  She believed that 
she learned best when she had a clear procedure in front of her, that included clear pictures and 
diagrams, emphasizing that “the steps [are] really important to [her].”  When asked about questions 
that do not have a clear procedure, she argued that there is always a procedure to solve the problem.  
However, she blamed her language barrier for her difficulties in solving such problems.  She 
appeared to have a very procedural view of what it means to study mathematics. 

At the time of Quinn’s first attempt, the fall semester of her freshman year, the expectation to 
pass the course was that all students needed to achieve a 75% or higher.  Quinn achieved a low 70% 
which indicates that she almost passed the course the first time. In a study focusing on a course 
similar to the course in this study, Harkness, D’Ambrosio, and Morrone (2007) found that students, 
who struggled with the content of the course, “struggled to make sense of the mathematics, to value 
group work as an opportunity to socially construct knowledge, to understand the role the teacher 
played in shaping the learning through her enactment of teaching, and to change their self-concept 
and self-efficacy with mathematics” (2007, p. 251).  This did not appear to be the case for Quinn.  
She claimed that it was not the mathematics content that caused her problems, but rather the process 
of explaining of her reasoning.  She also valued group work and had a strong belief that her instructor 
and group members should help her learn the material.  However, she found that the situation in her 
first attempt at the course, was not a supportive learning environment and, therefore, not conducive 
to this type of learning.   
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Course Curriculum 
A key portion of the course curriculum is an expectation that students explain their reasoning 

when solving mathematics problems.  Additionally, students are expected to analyze examples of 
incorrect student thinking in order to practice dealing with student misconceptions.  As a result of her 
previous mathematical experiences, Quinn argued that she was at a disadvantage since she had never 
been asked to explain and justify her reasoning.  In addition, her language barrier resulted in a greater 
challenge to achieve the expectations of the course. 

After initially struggling, she eventually changed her perspective on the importance of explaining 
her reasoning as well as her role as a future elementary teacher.  She argued that there should be an 
emphasis on explanations in elementary mathematics curriculums.  She was motivated to emphasize 
this practice when she becomes a teacher.  Research has shown that the perceptions of mathematical 
learning held by teachers have strong influences on their students’ views of learning mathematics as 
well as their academic achievement (Campbell et al., 2014; Hadfield & McNeil, 1994; Bekdemir, 
2010; Clark et al., 2014).  Campbell et al (2014) found that, when teachers believed that mathematics 
learning consisted of focusing on procedural skills and the teacher had low mathematical abilities, 
student mathematical achievement decreased.  Therefore, while it is difficult for students to achieve, 
it is important the course curriculum continues to place high importance on student explanations of 
their reasoning. 

Instructor Feedback 
During her first attempt, Quinn claimed that she received very little feedback beyond simply right 

or wrong, on her work.  However, the feedback she received during her current attempt helped in 
several ways:  (1) it helped her understand what she did right and wrong, (2) it helped her better 
understand what she needed to work on, and (3) it helped her build her confidence with the material 
she did understand.  As a result, Quinn believed that she was better able to learn from her work.  This 
confirms the findings of Harks, Rakocsy, Hattie, Besser, and Klieme (2014) who found that students 
perceived process-oriented feedback positively contributed to student understanding and motivation.   

While receiving helpful feedback appeared to have a positive impact on Quinn’s success, she 
seemed to make a connection between receiving feedback on a problem with the importance of 
completing that problem.  She argued that if a problem was not going to be graded, then it was unfair 
to ask the student to complete the problem.  There appears to be a disconnect between Quinn’s belief 
that she obtained most of her understanding from completing the assignments and a lack of 
importance of a problem if no feedback was to be received.   

Ability to Seek Help 
During both attempts at the course, Quinn sought help from multiple places with mixed results.  

She admitted that she should have done a better job of seeking help the first time she took the course.  
However, she described a feeling of fear about having to ask for that help.  This perception of asking 
for help is common among students (Butler, 1998).  Butler suggested that students avoid asking for 
help because “they perceive help seeking as evidence of incompetence and thus as threatening to 
their perceptions of ability” (p. 630).  When she did ask for help, she did not find the type of help she 
needed to be successful.  For example, Quinn sought help by going to the on-campus, mathematics 
tutoring center.  She encountered a tutor who, according to Quinn, treated her poorly and made her 
feel like helping her was not worth their time.  She identified this as a key moment in her failed 
attempt at the course.  Quinn expressed fear when asked if she would ever return to the center.  She 
claimed that the experience rattled her confidence so significantly that she would never return.  This 
suggests that a single event outside of the classroom may have a significant impact on a student’s 
ability to seek help as well as on their mathematical confidence. 
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Having “the Right Team” 
According to Quinn, her cooperative classroom structure consisted of “the right team.”  Her first 

“team” consisted of members that she perceived as not supportive of her learning.  She expressed 
feelings of discomfort in asking them for help as well as decreased motivation and confidence in 
completing her mathematics as a result of interacting with her “team.”  This was in significant 
contrast to her second “team.”  During her second attempt she felt she had a supportive relationship 
with her instructor, small group members, as well as outside study partners.  Each of these “team” 
members played a key role in contributing to Quinn’s success. 

Conclusion 
Swars (2005) claimed that the previous mathematical experiences of preservice elementary 

teachers play an important role in shaping their current views of mathematics teaching and learning.  
As such, Swars argued that teacher preparation programs must provide preservice elementary 
teachers opportunities to reflect on and become more self-aware of negative mathematical 
experiences.  As demonstrated by Quinn’s story, it is clear that a course as well as outside 
experiences can have significant impacts on preservice teachers’ attitudes and motivation towards 
mathematics.  This is an important consideration for preservice elementary programs as they design 
and implement their programs. 
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Teachers’ views about mathematics greatly impact the way they teach. Research indicates that many 
teachers project mathematics as a linear subject, and view mathematics teaching as about teaching a 
set of formulated procedures concerned with developing skills. Teachers’ traditionally-held views of 
mathematics may constrain their ability to perceive and present mathematics as a human activity. 
Limited modes for curricular resources, professional development, or models exist to help support 
teachers to attend to the social, cultural, and political dimensions of mathematics education. In this 
paper, we draw upon the theoretical fields of ethnomathematics and its subset culturally responsive 
mathematics education to describe curricular efforts that were aimed to promote meaningful 
connections between mathematics content, context, culture, and the society.  

Keywords: Equity and Diversity; Teacher Education-Preservice; Curriculum; Classroom Discourse 

Introduction 
In a traditional school setting, mathematics is mostly perceived and presented as an elite body of 

knowledge stripped of its rich social, cultural, and historical connections. We oppose this view and 
argue for countering the narrow vision of mathematics that confines it to the school walls. When 
thinking about mathematics, seldom does one consider culture, context, diversity, history, or politics. 
Many individuals, including educators believe that there is no place for such constructs in 
mathematics classrooms. Thus, it is necessary to institute a change at the teacher education level to 
challenge teachers’ traditionally-held perceptions of mathematics and its pedagogy. We, the authors, 
are involved in a broader research project aimed to identify more meaningful ways to promote 
connections between ethnomathematics theory and practice as it applies to the preservice teacher 
education (PST) context. In this paper, we present part of the findings - in particular, we describe 
curricular efforts specific to two mathematics teacher education courses that were helpful in 
addressing the broader research goal. 

Theoretical Underpinnings 
The research field of ethnomathematics (D’Ambrosio, 1985) contributes to the theoretical base. 

The foundation of ethnomathematics rests in its “openness to acknowledging as mathematical 
knowledge and mathematical practices elements of people’s lives outside the academy” 
(Mukhopadhyay, Powell and Frankenstien, 2009, p. 75). An ethnomathematics curriculum with a 
critical perspective will help generate a meaningful dialogue centered on a culturally responsive 
mathematics education (CRME) (Gay, 2000), which is aimed to empower and transform learners. 
The key tenets include: helping students connect academic mathematics to other forms of 
mathematics, connecting school mathematics to the socio-cultural-ethnical aspects of home culture, 
enabling teachers to practice equitable practices that cater to all learners, and allowing both students 
and teachers to acknowledge and celebrate their own and each other’s cultural background (Gay). A 
critical ethnomathematics curriculum draws on the principles of a CRME and addresses the 
challenges that it poses to a traditional mathematics curriculum. It challenges the “Eurocentric 
narrative”, confronts “what counts as knowledge in school mathematics”, and attends to the 
disconnect between “mathematics education and social and political change” (Mukhopadhyay et al., 
2009, p. 72). 
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Methodology 
We chose narrative inquiry as a methodology to frame and present our research findings. It is our 

work as teacher educators and researchers that we find interesting and this is the story we are 
compelled to tell. From this perspective, our work shifts from a mere analysis of concrete data to an 
introspection and deep reflection of the complexities of our practices. In our narratives, we 
consciously choose and present episodes from our professional and practical knowledge base that 
will best help us attend to the central theme of this paper. The episodes are drawn from two distinct 
professional experiences aimed to challenge and broaden PSTs views of mathematics and teaching 
through a) Content-focused coursework offered in an on-campus setting and b) an immersive early 
field experience facilitated away from campus. 

Content-Focused Coursework 
The contextual setting for university A is a mathematics content course Patterns and Structures 

through Inquiry (PSI) for PSTs. This is a three credit-hour course, which a PST completes near the 
end of their program of study. PSTs pursuing licensure to teach middle school mathematics typically 
enrolled in this capstone course in their fourth year at the university. The PSI course is designed to 
foster critical thinking, solving complex problems, engaging with other learners, and communicating 
mathematical ideas. The course was designed in line with the principles highlighted in Presmeg’s 
(1998) ethnomathematics course “mathematics of cultural practices”. Course content was delivered 
using practical and research components. As part of the practical component, each week, PSTs 
participated in at least one content exploration activity set in a social/cultural/historical/political 
context. The research component required participants to identify and investigate a personally 
meaningful practice, which emphasizes that mathematics is a human activity. 

Practical Component (Content Explorations)  
For content analysis, participants (re) examined mathematical topics (while accessible to school 

students and teachers) that typically lie outside the focus of the traditional K- 8 mathematics 
curriculum. An overview of the content exploration tasks is available at http://bit.ly/17H2DiA. As 
part of content explorations on geometry, we studied the Kolam geometry of the women of South 
India (Siromoney, 1978).  Kolams are interesting and intricate art forms created in the threshold of 
their homes by women in South India. PSTs engaged in the art of Kolam drawing and investigated 
the potential it held for teaching and learning mathematics. Some of the student-identified teaching 
ideas include the following: a) Geometry– Polygons & Transformations (e.g., Identify and name 
polygons in a given Kolam, Identify the symmetries and transformation in a given Kolam) b) 
Algebra – patterns & sequences (e.g., Determine the patterns & sequences in a series of Kolams, c) 
Combinatorics (e.g., Decorate Kolams using a set of colors subject to specific constraints), and d) 
Discrete Mathematics (Investigating graphs, paths, circuits in a given Kolam). Prospective teachers 
enjoyed learning about (and doing) the mathematics inherent in the Kolams and socio-cultural 
activities of other cultural groups (e.g., Islamic Star patterns, Sona drawings).  In light of their 
exposure to such mathematical investigations, PSTs were more willing to look for and acknowledge 
forms of mathematics that exist outside the realms of the academia. Evidence to this fact was 
exemplified in the enactment of the research component of the course.  

Research Component (Course Project Investigations) 
All participants completed a course project that required them to identify and investigate a 

personally meaningful practice, which highlights the fact that mathematics is a human activity. Each 
participant developed a mathematical activity and engaged in both content and pedagogical 
explorations. Here is a quick overview of one of the projects: PST Heather’s late grandmother taught 
her the art of cross-stitching. Heather developed this activity as a tribute to her grandmother. She 
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incorporated technology to (e.g., geogebra) to replicate some of the patterns and discussed 
underlying mathematical ideas. She used this cultural art form to enhance students’ understanding of 
graphing on a Cartesian plane. This activity enabled students to create colorful and intricate patterns 
on a Cartesian grid and uncover the connections between art and mathematics.  

Early Field Experience in an International Setting 
Currently, teaching in the United States remains a homogeneous profession; the majority of 

teachers and PSTs are of European American descent; PSTs tend to be cross-culturally 
inexperienced, live within 100 miles of where they were born, and desire to teach in schools similar 
to those they attended with fewer than 10% hoping to teach in either an urban or multi-cultural 
setting (Cushner and Mahon, 2009). Heyl and McCarthy (2003) suggest that experiences in 
international education have the potential to be the most influential factor in developing cultural 
awareness in PST education. In order to gain a more global perspective and culturally responsive 
teaching of mathematics, an early field experience was developed at University B to address the 
PSTs inexperience relative to a CRME. 

Setting and Background 
At University B mathematics majors seeking teaching certification are able to fulfill their senior 

capstone requirement through a month long field experience in Arusha, Tanzania. (The fieldwork is 
completed in one month, while the coursework is completed over 8 months, 2 months prior to travel 
and 6 months post travel). Prior to departure, students attended six orientation meetings in which they 
read and discussed articles about Tanzanian culture, history, and education, and learned basic 
Kiswahili in preparation for the program. During their month long experience in Tanzania the PSTs 
taught mathematics in elementary and secondary English medium schools for 60-75 hours. The PSTs 
were responsible for developing the lessons, teaching the lessons, and designing assessments, often 
without textbooks, materials or resources. In the following discussion we provide an example of how 
this experience addressed some of the key tenets of a CRME.  

Parallel Lines and Kangas  
Over the course of the month long experience the PSTs had numerous opportunities to infuse 

African culture and mathematical context. However, at the onset of this experience the PSTs in an 
attempt to contextualize the mathematics they were teaching, provided contexts which were 
unfamiliar or irrelevant to the Tanzanian students. For example, one PST taught a lesson about 
parallel and perpendicular lines. She provided the context of roads “that run parallel to one another” 
and roads “that are perpendicular to each other”. It was evident to the PST that the students were 
confused by her explanation, and she attempted to provide another context which did not provide 
clarification for her students. When she debriefed with her peers at the conclusion of the day, she 
came to realization that her attempt to contextualize the mathematics was a meaningless (and 
western) context. In order to make the concepts of parallel and perpendicular lines meaningful to her 
students, she decided that it would be necessary to provide a context that was familiar and relevant to 
her students. She accomplished this by situating parallel and perpendicular lines with kanga fabric. 
(Kangas are brightly colored rectangular fabrics often with geometric patterns that African women 
wear as dresses, skirts, and headpiece). Using a familiar context to the students, they were easily able 
to see the meaning she was trying to convey of parallel and perpendicular lines. The PST then 
realized the power of situating her instruction of rotations, translations, and reflections using kanga 
fabric, rather than the pen and paper demonstration she originally planned. In this way, the PST 
connected school mathematics to the socio-cultural-ethnical aspects of her students’ home culture. 
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Discussion 
In both settings (on campus and away from campus courses), PSTs were provided ample 

opportunities to learn about the social constructions of mathematics that highlighted the contributions 
of people who were not necessarily from the mainstream academia, mathematical ideas of people 
from all walks of life. In their weekly journal entries and debriefing sessions PSTs noted that such 
activities greatly “challenged their perceptions of mathematics”, “enhanced mathematical 
understandings”, “offered a glimpse into cultures and societies and the mathematical activities that 
live and thrive in such contexts”.  

During class discussions and field experiences our PSTs examined questions such as: What is 
mathematics? If and how informal mathematics is different from formal mathematics? How are 
mathematical ideas exemplified in the activities of just plain folks? From a dominant Eurocentric 
view, which forms of mathematics is acknowledged and valued? Why might this be the case? What 
can we do about this? Many of the course activities were geared towards helping them think deeper 
about plausible responses to such questions. We readily acknowledge that some of these responses 
are at best emergent, yet powerful; we hope that, in their quest for deeper answers to these questions, 
PSTs will further broaden their perceptions of mathematics and its teaching. Consequently, we hope 
that they will be able to engage in a “two-way dialogue in which [the different forms of] knowledge 
(community knowledge, school knowledge) and their associated values are brought into the open for 
scrutiny” (Civil, 2002, p. 146).  
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In response to the global mobility of populations, there have been growing international interests in 
mathematics learning and teaching in linguistically and ethnically diverse classrooms. In order to 
better support mathematics learning at school for non-dominant students, I examined informal 
mathematical knowledge they accessed at home. Focusing on Filipino immigrant mothers and their 
children in Japanese schools, this paper highlights how these mothers’ informal mathematics 
knowledge attached to everyday practices can influence their children’s development of 
mathematical literacy at school.  

Keywords: Equity and Diversity; Informal Education  

Purpose of the Study  
There have been growing international interests in mathematics learning and teaching in 

linguistically and ethnically diverse classrooms (Barwell, 2009). Supporting linguistically and 
culturally non-dominant students in the current globalized mathematics classrooms is a multi-layered 
process to address languages, ways of knowing, and cultural practices. One of the central research 
agendas is to challenge the prevailing deficit views towards non-dominant students including English 
language learners (Moschkovich, 2007). This paper examines everyday mathematical practices 
unique to transnational families, who live across and beyond national borders (Kitchen & Civil, 
2011). Drawing from perspectives of parents and children, this paper considers whether and how 
participants’ everyday mathematical practices are connected with children’s development of 
mathematical literacy. 

Internationally, the Organisation for Economic Co-operation and Development (OECD) promotes 
mathematics literacy as “reasoning mathematically and using mathematical concepts, procedures, 
facts, and tools to describe, explain and predict phenomena” (OECD, 2013, p. 17). Providing access 
to mathematics literacy for all students is a pressing issue, especially in linguistically and ethnically 
diverse mathematics classrooms.  

Theoretical Framework       
Sociocultural theory maintains that learning and development are fundamentally social and 

cannot be reduced to the phenomenon closed within an individual (Vygotsky, 1978). One of the 
central tenets of sociocultural theory is to highlight capabilities and competencies that people exhibit 
in the cultural practices they engage in everyday lives (Saxe, 2012; Scribner & Cole, 1981). These 
competences are often neglected in the school contexts, especially for non-dominant students and 
families. One of the key concepts to highlight their resources is “funds of knowledge,” which is 
defined as “historically accumulated and culturally developed bodies of knowledge and skills 
essential for household or individual functioning and well-being” (Moll, Amanti, Neff, & Gonzalez, 
1992, p. 133). Drawing from the funds of knowledge perspective, Civil (2007) demonstrated ways in 
which Latino/a parents’ and children’s mathematical knowledge exhibited through their everyday 
practices (i.e., gardening) could facilitate academic mathematic learning. This paper builds on the 
sociocultural theory while carefully paying attention to the aspect of power dynamics, which is 
essential to interrogate the legitimacy of knowledge exchanged in school contexts (Nasir & Hand, 
2006). Examining the aspect of power is also essential in rethinking the relationship between school 
knowledge and knowledge gained through non-dominant students’ family practices.  
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Methodology 
Based on Vygotsky’s idea, Newman and Holzman maintain that method is simultaneously both a 

tool and a result and propose the tool-and-result methodology. Tool-and-result methodology 
conceptualizes the method as an activity or a search that simultaneously explores and generates tools 
and results that are “elements of a dialectical unity/totality/whole” (Holzman, 2009, p. 9). In this 
study, interview data with 12 Filipino mothers and 10 of their school-aged children was used to 
gauge the needs of Filipino mothers and their children (all the names used are pseudonyms). 
Workshops were organized subsequent to the interviews with mothers, as an attempt to address some 
of the issues raised in the interviews. 

In the interview, parents undervalued their mathematical knowledge, compared to the 
mathematical knowledge taught at schools. Parents expressed their feeling of powerlessness, to 
support their children for their school learning, due to a language barrier and also a perceived 
hierarchy between Japanese mathematics curriculum and Filipino mathematics curriculum (please 
see Takeuchi, in press). In order to address this issue, one of the workshop themes was set out to 
collectively reflect on their everyday practices involving mathematics. The workshop was video 
recorded, content-logged, and transcribed in part. For this paper, I will introduce narrative 
descriptions generated based on video-recorded interactions and interviews. 

In order to examine how children understood the concepts learned at home, in the children’s 
interview, I included a modified word problem used for PISA 2009 assessment on the international 
currency, which asked to convert 35,000 Japanese yen to the Philippine peso (at the exchange rate: 1 
YEN=0.52PHP).  

Results 
   In this section, I will first introduce transnational families’ mathematical practices focusing 

on calculating international currency conversion. I will then show how children applied the concepts 
learned at home, in order to solve a word problem.   

Parents’ Everyday Mathematical Practices: Calculating International Currency Conversion  
During the workshops with parents, the participants and I explored some of the mathematical 

practices that they engaged in their everyday lives. One of the commonly reported practices was 
calculating international currency conversions. Five Filipino mothers attended the first workshop and 
all of them stated that they would constantly engage in computing international currency 
conversions. All the Filipino mothers I interviewed said that they were from a big family of lower 
SES and financially supporting their family was the main reason they initially came to Japan. Many 
of them were still sending money back to their family members in the Philippines. 

When converting between the Japanese yen and the Philippine peso, participants had a strategy of 
doubling the Philippine pesos (to convert to yen) and halving yen (to convert to Filipino pesos), to 
get an approximate value. The following narrative description of the workshop shows this point. 

A researcher asked an average price of a picture book in the Philippines and participants 
answered “About 300 pesos. They are cheaper.” A researcher asked, “Then, how much would 
that be in Japanese yen?” Evelyn and Michelle in unison said “double it.” Iren said “600 yen.” A 
researcher said, “Then, can we say 1 yen = 0.5 peso?” Multiple participants immediately 
responded, “That was before.” Janice said “It’s now 1 yen = 0.45 peso.”  

The subsequent conversation addressed the meaning of this fluctuation. Filipino mothers used 
common sense reasoning, which is strongly connected to their everyday experiences. The 
conversation described in the following narrative depicts some of the ways in which Filipino mothers 
answered the question, “what does this change in conversion rate mean to you?” 
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Irene said, “For us, if the peso is 0.5, it’s good for us and it’s good for my family in the 
Philippines too.” Everlyn said, “In my case, I send 100,000 yen (note: approximately $1,000 
USD) but I need to add 10,000 yen to fill the loss. So, for my family in the Philippines, the price 
is the same.”     

As seen in this narrative description, participants presented the informal knowledge of doubling 
and halving to convert between the Philippine peso and Japanese yen. They also demonstrated an 
understanding of the concept of fluctuating currencies and the consequences of this fluctuation.  

Children’s Mathematical Literacy: International Currency Conversion  
Half of the child participants reported that they learned about calculating international currency 

conversions and talking about time differences since when they were young (as young as Grade 2), 
because they are the practices specific to transnational families. For example, one parent, Grace, 
explained, “When we went abroad, my son asked me how to calculate the currency. Because he’s 
very good at managing money, so he’s interested.” On the other hand, some parent participants said 
that they would not teach children these practices. A parent, Christine, said, “At home, I don’t teach 
my kids anything about the Philippines.” 

When given a word problem that requires understanding of international currencies, two Grade 6 
participants accurately solved the word problem. Four other participants reported that they knew the 
doubling and halving strategy to covert Japanese yen to the Philippine peso but could not complete 
the word problem. The majority of students (five out of six students) who demonstrated partial or 
complete problem solving were those who learned about international currencies at home, from their 
mothers.   

Grade 6 students who solved the problem performed beyond the grade level expectation, as the 
original PISA problem targeted for Grade 9 students. The following excerpt describes how a Grade 6 
student, Mary, engaged in this problem.  

 

Looking at the word problem, Mary was mumbling, “I know about the exchange rate but I don’t 
know how to solve this.” She looked at the problem for a while and suddenly said, “I got it.” She 
then wrote down vertically “35000 yen = ? 1 yen=0.52.” She stared at what she wrote for a while 
and said, “Got it.” She wrote “35000 x 0.52=” She then identified the answer, 182,000 pesos.   

 
This example implies that the informal knowledge of doubling and halving for converting two 

currencies could be used to solve a word problem used at school. In contrast, those who reported not 
having learned about international currencies at home tended not to be able to interpret the meaning 
of the word problem, even when they were able to decode its texts.   

Discussion and Conclusion  
This paper highlighted Filipino mothers’ mathematical understanding, attached to their everyday 

practices. By drawing from children’s interviews, I explored the possibility of connecting non-
dominant students’ mathematical practices at home with their development of mathematical literacy 
in school. This finding is particularly significant to the discussion on how to design educational 
practices which can meaningfully bridge out-of-school resources to in-school learning by considering 
non-dominant students’ and their parents’ positionality (Gutiérrez, 2013). These Filipino mothers 
raising children in Japan perceived their mathematical resources to be less valuable, compared to the 
school knowledge. This positionality was internalized to their children, who also perceived their 
mothers’ mathematical knowledge to be less valuable.  

As previously discussed, countering the deficit views toward non-dominant students will be an 
essential challenge to create more equitable learning opportunities in mathematics education 
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(Gutiérrez, 2007; Moschkovich, 2007). This study highlights the mathematical understandings of 
non-dominant parents and students, focusing on everyday mathematical practices that are familiar to 
them. As indicated through children’s interviews, there is a potential that informal mathematical 
knowledge can facilitate mathematical literacy, for instance, in PISA assessments. To further draw 
from non-dominant parents’ and children’s expertise identified in this paper, designing a school-
based lesson to bridge in and out-of-school practices will be necessary as global mobility increases 
worldwide.  
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In this paper, we discuss students’ images of mathematics constructed through their experiences of 
school mathematics learning. We draw from data collected within our project, which investigates 
students’ experiences learning mathematics in Canadian schools and the ways that these experiences 
contribute to students’ images of mathematics and their mathematical identities. In doing so, we 
point to the ways in which schools engender a particular image of mathematics for students. We 
conclude by positioning the students’ images of mathematics with respect to the mathematics 
curriculum and teaching practices in schools. 

Keywords: Affect and Beliefs; Curriculum; Elementary School Education; Middle School Education  

Purpose of the Study  
In this paper, we explore images of mathematics held by Kindergarten to Grade 9 students in 

Canada. We examine data collected in one Canadian province (Alberta) and relate our findings to 
different groups’ images of mathematics, as documented in the literature, and to the local curriculum 
guiding teaching practice in the participants’ jurisdiction. From this analysis, we examine ways in 
which particular images of mathematics are developed through students’ experiences in schools. 

Theoretical Framework 
The theoretical frame underlying this research is enactivism—a theory of embodied cognition 

that emphasizes the interrelationship of cognition and emotion in learning and that troubles the 
positioning of self and identity as purely individual phenomena (Kieren & Sookochoff, 1999; 
Maturana & Varela, 1992). Learning in this frame is seen as reciprocal activity—the teacher brings 
forth a world of significance with the learners within a cultural milieu (Maturana & Varela, 1992). 
Students’ mathematical images and understandings are therefore not determined solely by the teacher 
or by the learner; rather, they are dependent on the kind of teaching experienced and the 
(mathematical) culture within which students are immersed. Educators have focused on better and 
better ways to transmit content, all the while forgetting that the content is not primarily what the 
students have been learning. Instead, we suggest that they have been learning a culture of 
mathematics—a particular vision of, and way to be with, mathematics. Our frame, then, prompts us 
to seek to understand how students come to have particular relationships with mathematics and what 
mathematics means to them. 

Review of the Literature: Images of Mathematics 

Images of Mathematics in the Media 
Western media tend to portray mathematics as a difficult subject only understood by a select few 

who are often portrayed in negative, stereotypical ways, such as being socially inept, unattractive, 
and mentally ill related to their obsession with mathematics (Mendick, Epstein, & Moreau, 2007). 
Mathematics is usually portrayed narrowly, typically as numbers and arithmetic (e.g., basic 
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operations, counting) or as financial mathematics (e.g., money, consumerism) (Hall, 2013). Other 
researchers’ explorations of popular culture representations of mathematics and mathematicians have 
found mathematics portrayed as “a secret language, possibly a code, which is difficult to ‘crack’” 
(Epstein, Mendick, & Moreau, 2010, p. 49) and only occasionally as beautiful or utilitarian (e.g., 
used to solve crimes). 

Mathematicians’ Images of Mathematics   
Many mathematicians have discussed their views of mathematics. For instance, Furinghetti 

(1993) argues that people’s views of mathematics are almost wholly based on their in-school 
experiences, and that in-school experiences must therefore portray mathematics as a set of human 
activities that are highly related to “real world” experiences. The subtitle of Lockhart’s (2009) book, 
A Mathematician’s Lament, declares mathematics to be “our most fascinating and imaginative art-
form.” Similarly, Taylor (2014) notes that mathematics is that which is “eternal and has beauty and 
structure to die for” (p. 34).  

Elementary and Secondary Students’ Images of Mathematics  
Research regarding elementary and secondary school students’ views tends to focus on students’ 

feelings about mathematics, as opposed to their views on what mathematics is. Perkkilä and Aarnos 
(2009) addressed the latter topic by exploring the views of Finnish children, aged six to eight, by 
asking them to draw themselves in the “land of mathematics.” The findings indicate that students 
view mathematics as a solitary pursuit involving only certain types of mathematics. Young-
Loveridge, Taylor, Sharma, and Hawera (2006) found that students tended to view mathematics as 
being related to number and/or operations, as opposed to other topics. 

Methodology and Research Design 
The data on which we focus for this paper were gathered in the province of Alberta, which is 

located in Western Canada. The study’s participants are Kindergarten to Grade 12 students, post-
secondary students, and members of the general public, but we focus here on data collected in the 
first phase of the study, which includes students from Kindergarten to Grade 9. Forms of data include 
semi-structured interviews, drawings (that represent participants’ ideas about what mathematics is 
and their feelings when doing mathematics), and written and oral mathematics autobiographies 
(accounts of participants’ histories of learning mathematics). 

To date, 94 interviews with Kindergarten to Grade 9 students (41 girls and 53 boys) have been 
conducted. In order to reveal students’ images of mathematics, in this paper we focus primarily on 
data related to one of the interview questions: “When you hear the word mathematics, what images 
come to your mind?” These data are considered with supplementary data that further explain and 
explore participants’ responses. Elsewhere (e.g., Hall, Towers, & Martin, 2015), we explore other 
aspects of the data. 

All of the interviews were transcribed verbatim. To answer the aforementioned question, the data 
were analyzed through emergent coding, primarily using in vivo coding to stay as close as possible to 
participants’ own words. Then, codes with more than one response were entered into a Wordle, a 
visual representation of response frequencies (i.e., a larger font size indicates a more frequent 
response). To explain and contextualize this interpretation of the data, we supplemented our analysis 
by drawing on additional information from the student interviews.  

Findings 
As shown in the Wordle in Figure 1, the participants’ images of mathematics were narrowly 

focused on number sense and numeration.  
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Figure 1: Wordle Representation of the Students’ Responses 

Responses aligning with the top five categories of response—numbers and the four basic 
operations—were ten- to twenty-fold more common than most of the other responses. Even the next 
most common responses, such as “fractions” and “equations,” still align with this mathematical topic 
area. This pattern was observed from Kindergarten through to Grade 9 students. For example, 
Kindergarten students described mathematics as: “Numbers, five and six and stuff,” or “How many 
numbers makes more numbers.” Primary grade elementary students described mathematics as: 
“Adding and subtracting,” and “Counting.” Similarly, upper-grade elementary students depicted 
mathematics as: “Like, numbers and letters and, like, the adding and subtracting signs and, like, the 
multiplying and dividing signs and all that stuff,” and “Numbers and additions, subtraction, 
multiplication, division.” This tendency to associate mathematics with numbers and the basic 
operations was common across all grade levels.  

To investigate this pattern of restricted images of mathematics further, we considered 
participants’ responses to other questions about their earliest mathematics experiences. These 
recollections also tended to focus on learning about number operations, and in school settings. The 
majority of students described their earliest memory of learning mathematics in number contexts, 
such as: “Two plus two. It was one of the first things I was asked in math” and “I remember doing 
the math worksheets in I think it was Grade 1 about the simple addition.” A Grade 8 student 
recollected his earliest mathematics learning as “we were doing adding like one plus one equals two 
and stuff.” Other students commonly described reciting a multiplication table by repeatedly 
practicing the table or singing a song. Overall, for the majority of students, their first encounter with 
mathematics learning was described in relation to basic operations.  

Discussion 
We are concerned that students are developing, through their engagement in the culture of school 

mathematics, a very narrow vision of the nature of mathematics, one that does not include the full 
territory of mathematical ideas and topics that are described by mathematicians (and others, such as 
mathematics educators). While we acknowledge the ongoing scholarly debate about the relationship 
between school mathematics and the mathematics practiced by mathematicians (e.g., Watson, 2008) 
and agree that the aim of school mathematics teaching ought not to be entirely commensurate with 
generating the kind of images of mathematics that mathematicians hold, we do think that the 
artificially narrow view of mathematics being generated in schools is problematic. Recent research 
(Rapke, 2012) has shown the synergies that exist among creating and learning, mathematics, 
suggesting that the nature of school mathematics can (and should) be more like that of research 
mathematics, including creative exploration in the full scope of mathematical topics.  

In the Alberta Program of Studies (curriculum) document for mathematics, from Kindergarten to 
Grade 5, between 40% and 50% of the expectations align with the Number strand (Alberta 
Education, 2014). We believe that teachers are guided strongly by the mandated curriculum 
documents for their jurisdiction and consequently (over)emphasize number concepts in their teaching 



Student!Learning!and!Related!Factors:!Brief!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

573!

of mathematics, particularly in the early years. This (over)emphasis on number and operations may 
be contributing to students’ skewed images of mathematics. The mathematics education community 
has proposed alternative views of mathematics compared to the widespread notion of mathematics as 
number and computation. For example, Boaler (2008) suggests that, “mathematics is all about 
illuminating relationships such as those found in shapes and in nature” (p. 18). Such enhanced 
conceptualizations of mathematics have significant implications for mathematics pedagogy, implying 
consideration of a wider breadth of mathematical topics as being “basic” to mathematics education. 
The findings of our study demonstrate the significance of attending to the nature of students’ images 
of mathematics in relation to the culture of school mathematics in Canada.  
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This study examines the mathematical learning of an undergraduate student on the autism spectrum.  
I aim to expand on previous research, which often focuses on younger students in the K-12 school 
system.  I have conducted a series of interviews with one student, recording hour-long sessions each 
week.  The interviews involved a combination of asking for the interviewee's views on learning 
mathematics, self-reports of experiences (both directly related to courses and not), and some 
particular mathematical tasks.  I present some preliminary findings from these interviews and ideas 
for further research. 

Keywords: Equity and Diversity; Geometry, Post-Secondary Education 

Background on Autism-Related Research 
The Autistic Self Advocacy Network (2014) states that autism is a neurological difference with 

certain characteristics (which are not necessarily present in any given individual on the autism 
spectrum), among them differences in sensory sensitivity and experience, different ways of learning, 
particular focused interests (often referred to as 'special interests'), atypical movement, a need for 
particular routines, and difficulties in typical language use and social interaction.  Over the past few 
decades, there have been many research studies about learning in students on the autism spectrum, 
such as those reviewed by Chiang and Lin (2007).  A large portion of these studies focus on K-12 
students, and particularly elementary students, but some of the ideas and procedures in those studies 
lend themselves to use in a post-secondary context. 

While most mathematics-related research on people on the autism spectrum also takes place 
among younger children, there have been multiple reports, such as those from James (2010) and 
Iuculano et al. (2014) which indicate an association between autism and heightened mathematical 
interest and ability.  Due to the young age of the students, however, it remains to be seen whether 
those tendencies extend to university-level mathematics content. 

Interview Procedures 
I started out with the intent to find students who were on the autism spectrum and currently 

taking one or more mathematics courses at SFU.  I found help from a center for students with 
disabilities to recruit for students who would be qualified for the study, and was put in touch with one 
student who was willing and able to do the interviews.  It should be noted that this method will only 
identify those students who are both able to seek assistance from such a center and see the need to do 
so, and this constitutes only a portion of the fairly wide autism spectrum. 

The student I interviewed, Joshua (a pseudonym) was studying integral calculus and linear 
algebra.  I conducted interviews every week for this term.  These were scheduled for one hour, but 
were sometimes continued for a short time past the scheduled hour.  I typically started by asking the 
student to share any particular thoughts on the week's course materials.   I also asked various 
questions and assigned tasks related to the covered course material.  Some of these were tasks that 
have been used with typical student populations in the literature, such as the example-generation 
tasks used by Bogomolny (2006) and the Magic Carpet Ride sequence used by Wawro et al. (2012).  
I have also given other mathematical tasks not directly related to the material covered in the courses 
being taken, such as the paradoxes examined by Mamolo and Zazkis (2008); one reason for this was 



Student!Learning!and!Related!Factors:!Brief!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

575!

the interplay between visual and algebraic explanations seen in some student responses to these 
paradoxes. 

Theoretical Framework 
There were several reported characteristics of people on the autism spectrum which I thought 

could be promising for mathematics education research.  In particular, I was interested in details of 
prototype formation, special interests, and geometric approaches.  I will detail each of these with a 
comparison to the particular findings relevant to them in Joshua's case. 

Prototype Formation 
I started looking into prototype formation after reading a study by Klinger and Dawson (2001).  It 

suggested that people on the autism spectrum did not form prototypes of objects when given tasks 
asking about group membership, instead taking an approach based on lists of rules.  Although this is 
presented as a problem, like many other autism-related studies, I suspected that this approach could 
be helpful for more abstract or proof-based mathematics.  I have found many other students having 
trouble with mathematical questions that appear to result from a prototype-based approach, and this 
is particularly true when the course focuses on mathematical proof.  In fact, I found a very similar 
division reported in mathematics education research by Edwards and Ward (2004), phrased as lexical 
or extracted definitions versus stipulative definitions.  This did not appear to be the case for Joshua; 
he reported having this kind of thinking in the past, but was quite focused on “big picture” ideas 
today (this was, in fact, a recurring phrase in the interviews). 

Special Interests and Learning 
I found the idea of 'special interests' (variously known as circumscribed interests, splinter skills, 

savant skills, and a variety of other names with varying connotations within the autistic and research 
communities) to be applicable to some of my findings.  These are intense, focused interests occurring 
in people on the autism spectrum (often studied in children, like much autism-related research).  
Some of these are mathematically related, such as a focus on particular facets of arithmetic, prime 
numbers, or aspects of geometric shapes, as explored by Klin et al. (2007).  The development of 
these interests in later life is something that does not appear to have been studied much in previous 
research, however.  Unfortunately, research in this area (particularly from an Applied Behavioral 
Analysis framework) can discount these skills or even view them as detrimental to learning, as seen 
in Dawson, Mottron, and Gernsbacher (2008), and may even attempt to eliminate these skills.  From 
what I have seen, however, such interests can be very helpful in imparting motivation when viewed 
from the right perspective.  Joshua has reported a strong interest in chemistry, which he often used in 
analogies for mathematical concepts in our interviews.  There have been several instances where he 
has reported more enthusiasm, better understanding, and better performance when able to see 
chemical applications to the topics in the courses, and has sought out additional information outside 
the course materials in order to make these connections. 

Geometric Focus and Visualization 
Particularly due to the work of Temple Grandin, one of the most famous people on the autism 

spectrum, there is often an association between the spectrum and visualization or spatial reasoning 
(Grandin, Peterson, and Shaw, 1998).  While I would caution against being too broad with an 
association like that, I did find a strong preference for visual, spatial, or geometric reasoning in the 
interviews I conducted.  This was particularly successful with integral calculus, where the student 
independently thought about what three-dimensional integrals might be like.  The correct conclusion 
was reported for a 'flat' extension (of multiplying by a constant length), and the student did realize 
that this would not work for more complex three-dimensional shapes (although not to the point of 
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developing multiple integrals).  Reports of classroom progress continually reflected higher 
performance in areas that could be viewed in a geometric or otherwise physical way.  Comparing 
topics across the two courses, this leads to some surprising results, such as reported satisfaction with 
washer and shell rotations, but issues with algebraic formulas like dot products. 

I found the solution Joshua gave in one interview for the first Magic Carpet Ride task to be 
particularly notable.  I showed the problem setup from the paper by Wawro et al. (2012), giving the 
two modes of travel with vectors (3,1) and (1,2), and asking for a way to get to the house at (107,64).  
Since I asked this relatively late, Joshua had already seen the vector material that shows the 'standard' 
way to do this.  However, the solution he gave was instead done by drawing the vectors out on paper. 
He measured (30,10) and (10,20), plotted (107,64), shifted one of the vectors so that it would end at 
(107,64), and extended the vectors in order to find via measurement their point of intersection.  (I 
checked this, and it was accurate enough to provide the correct solution.)  When asked for an 
algebraic solution, he calculated the equations of the lines corresponding to those vectors and found 
their point of intersection, still clearly based on the same visualization. 

Paradoxes 
I have also presented several paradox tasks during my interviews.  I gave the Hilbert Hotel and 

Ping-Pong ball paradoxes from the paper by Mamolo and Zazkis (2008), as well as the Painter's 
Paradox (involving the volume and area of Gabriel's Horn obtained by rotating 1/x) and an 
'infinitesimal staircase' paradox.  The Ping-Pong ball paradox involves an infinite set of Ping-Pong 
balls (numbered 1, 2, 3, …) being inserted into and removed from a barrel over one minute. In the 
first 30 seconds, the first 10 balls are inserted, and the '1' ball is removed.  In the next 15 seconds, 11 
through 20 are inserted and the '2' ball is removed, and so on. The respondents are then asked how 
many Ping-Pong balls remain in the barrel at the end of the minute.  The last one involves a staircase 
being divided up into finer and finer steps (at each stage having perimeter 2) to approach an incline 
(of length √2).  Like many of the students in previous studies, the student I interviewed found these 
to be strange and paradoxical.  However, they also appeared to inspire a great deal of enthusiasm; 
through having a series of interviews, I was able to see that these paradoxes had inspired independent 
thinking outside of the interview sessions.  The response provided to the Ping-Pong ball paradox was 
something I also found particularly notable.  Joshua first said that there should be infinitely many, 
then decided that there should be none after being asked what the numbers of the remaining balls 
were.  However, the analogy he provided here was of slowing down molecules at extremely low 
temperatures in order to study them; it appeared as if this mental image was being used to 
accommodate the presence of the balls at times prior to the conclusion of the experiment.  I also 
found it notable that I did not see any tendency toward rejecting the mathematical facts after they had 
been presented, unlike in many of the students in the prior studies. 

Limitations and Suggestions 
So far, I have only been able to conduct interviews with one research subject, and thus it is 

important to be careful not to overly generalize the results seen in the interviews.  There are also 
considerations about the content that would apply to the courses that Joshua took, although I think 
that linear algebra is a fortunate course to have an interviewee from.  Some questions that have 
occurred to me: Would people on the spectrum with less clearly related special interests still use 
them for mathematical analogies? Is there a tendency for either (more specifically) a bias toward 
geometric processing or (more generally) a tendency to strongly prefer one type of processing?  Are 
people on the spectrum generally more inclined to accept conclusions that are viewed as paradoxical?  
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Counting is mediated by language – the language used for counting reflects people’s meaning and 
experience of the process, and their experience is impacted by the way language is used. We 
investigate children’s language repertoires for counting in English. With this, we aim to understand 
better the political nature of counting at the most basic levels. This is to extend the literature, which 
already identifies political aspects of counting on the macro scale. We theorize the politics of 
language in mathematics learning as applied to this situation and, as a way of setting up our 
investigation, we illustrate how counting at the micro-level can be political.   

Keywords: Classroom Discourse; Equity and Diversity; Number Concepts and Operations 

Introduction 
The understanding and experience of counting, like the understanding and experience of any 

mathematical idea, is mediated by language. Certain language repertoires are necessary to convey the 
ideas and perhaps even to perform counting action. At the same time, the language used to describe 
these ideas and enact the processes shapes the way people conceptualize them. 

This recursive nature of language compelled us to develop a research project to investigate 
children’s language repertoires in relation to conjecture. We began with contexts involving risk and 
prediction because we had noticed similarity in language repertoires between prediction and 
conjecture. We found political implications of the ambiguity in meaning of words that are used for 
conjecture, prediction, assessment of risk, and establishing authority (Wagner, Dicks, Kristmanson, 
2015). Now we extend this work to explore students’ language repertoires in contexts involving 
counting. Data collection will be complete in June 2015, and so we present here our theoretical and 
conceptual approaches along with some hypotheses that come from our experiences as mathematics 
teachers and mathematics education researchers. In the conference presentation, we will also present 
from our empirical results. 

The Politics of (Mathematical) Language 
Our interest in the experience of counting includes the way counting positions people in relation 

to each other. Positioning theory (Harré et al, 2009) points us to the distribution of rights and duties, 
or, in other words, the politics of counting, just as it did in our work that revealed the politics of 
prediction language (Wagner, Dicks, Kristmanson, 2015). Careful language analysis helps us 
produce warranted claims about the politics within our research contexts. 

[Politics] is about how to distribute social goods in a society: who gets what in terms of money, 
status, power and acceptance on a variety of different terms, all social goods. Since, when we use 
language, social goods and their distribution are always at stake, language is always “political” in 
a deep sense (Gee, 2011, p. 7). 

In this project we understand mathematical education as a number of created and re-created 
practices within social and cultural contexts. These practices are networked with other practices 
outside the mathematics classrooms (Valero, 2007). Thus they are political, indicating that power is 
distributed between the different networking practices. In line with Valero (2004), we understand 
power as situational, relational, and in constant transformation. Power works between these practices 
in the network as macro-level processes. However, power also works at the micro-level in the 
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immediate situational contexts between participants and (un)available materials. These micro-level 
actions are the focus in this project. 

The relations between the macro-level practices and participants’ micro-level actions are 
dialectical. Macro-level practices give meaning to micro-level actions, offering participants subject 
positions. However, the participants’ actions also give meaning to the mathematics practices and 
position themselves in ways that are reflexive, relational and contextual in relation to the discipline 
and to other individuals in their learning contexts (Wagner & Herbel-Eisenmann, 2009). Thus, 
participants are implicated in the construction and circulation of power within mathematical practices 
(Gutiérrez, 2013). We emphasize the importance of power relations between the macro- and micro-
levels, through positionings and discourses – in other words how we fluently relate to each other 
(Gutiérrez, 2013; Wagner & Herbel-Eisenmann, 2009).  In this project, the negotiation and 
distribution of power on the micro-level are foregrounded, while we acknowledge and connect to the 
related macro-level power distributions, discourses and negotiations (Morgan, 2006). Discourses are 
about “negotiating and maintaining relationships among its participants” (Morgan, 2012, p. 181) and 
hence establishing relations and positionings. These relationships also imply a need for us 
researchers to critically reflect on ethical questions about how we position ourselves and write about 
the Other, as suggested by Andersson and Le Roux (2015).  

We use a systemic functional linguistics framework (SFL) to help us identify the qualities of 
interpersonal interaction as they appear in the distinctions made through grammar and lexicon. SFL 
is built on the recognition that language involves the interconnectedness among construction of 
experience (ideational metafunction), relationships with others (interpersonal metafunction), and 
connection with other circulating text (textual metafunction) (Halliday, 1973).  

Number and Power 
At the macro-level, number is often associated with power. School curriculum is positioned as 

equipping children to be powerful in and outside of school, and number skills are generally taken as 
central to such numeracy. Bishop (1990) has gone so far as to show how advanced counting systems 
– exponential based number systems, in particular – made colonialism possible. With rudimentary 
counting it is hard to organize and hold control over vast resources. Historically, technologies of 
counting (quantification) are associated with certain political structures (Porter, 1995). 

We have not found research that focuses on the micro-level politics of number. When children 
count, who “gets what in terms of […] status, power and acceptance on a variety of different terms” 
(Gee, 2011, p. 7)? To illustrate the micro-level interactions in counting contexts, we suggest that, 
before you read further, you choose some friends and decide amongst yourselves who has been in the 
most countries. You will have to count the countries you visited of course. After engaging in this 
activity, the next paragraphs will be more meaningful. 

Counting countries seems quite straightforward at first, but it doesn’t take long to find 
controversy. For example, both of us have visited Yugoslavia before it was divided into smaller 
countries. Shall we count one for Yugoslavia because it was one country when each of us was there? 
Or can we count three or four (different for the two authors) for the current countries represented by 
parts we visited? We may decide it counts as one, because it was only one country when each of us 
was there; a clearer question would be how many national political entities we have visited. 
However, Germany complicates such reasoning. We have both spent time in East Germany, West 
Germany and modern, unified Germany. Shall we count all three of these entities that we have 
visited? Furthermore, one of us travelled through some countries by train. Does it count to travel 
through a country on a train if one doesn’t get off the train? What about flying over a country? Or 
landing in a country to refuel but staying on the plane? What about a one-hour stop that includes a 
passport stamp? Or crossing the border and being escorted out by police? And then there are disputed 
territories, like the West Bank (of the Jordan River), or First Nations (Aboriginal lands never 
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conceded to colonialist governments). These are just some of our political controversies when 
counting countries. You probably have your own.  

When we count, we have to decide what counts and what does not count. For example, what 
counts as being “in a country”, and what counts as “a country”? This is political because different 
people will have unique reasons for wanting the counting to be done in certain ways. Furthermore, it 
is possible that you have not travelled outside your country, which highlights yet another political 
aspect. The question of how many countries privileges people for whom travel has been possible, and 
thus excludes others. Someone has to decide what to count and that decision sets up certain people’s 
experiences as normative. For example, who decided that counting countries is a worthwhile 
endeavor (it was us, but you may have made the question your own as you started dialoguing about it 
with your friends)? Maybe it would be better to count our meaningful interactions with diverse 
people, or it may be even more appropriate to reflect on the qualities of those interactions instead of 
quantifying them. Indeed it is possible to travel to many countries and remain insular.  

Methodology 
As with our earlier work in this project, focusing on the language of prediction, we have students 

work in groups in class and subsequently interview them to extend the group work. We work with 
students with relatively limited repertoires and present them with situations that we expect to push 
them to the limits of their language resources. Thus we begin this work with 4- to 7-year olds, and 
engage them in counting in increasingly challenging ways. For these tasks, we draw on the tasks 
suggested by Wagner and Davis (2010), in their article distinguishing between quantity and number 
sense. We consider the micro-politics of quantification. We consider how participants construct and 
negotiate roles and responsibilities as they decide what counts (For example, how big does a tree 
have to be to be a tree? What kind of plant counts as a tree?), how to talk about a quantity when the 
numbers exceed individuals’ quantity sense, and what benchmarks they use for communicating their 
sense of quantity. Selecting benchmarks requires identifying something that has a taken-as-shared 
meaning by one’s interlocutors. We identify how these micro-political moves are manifested in 
language. At the end of the complementary interviews with the children we draw attention to things 
the participants have said and ask them to describe what they mean by these things.  

In the interactions with participants, we avoid using specialized mathematical language ourselves 
and refrain from suggesting to participant students how they might perform the tasks and/or 
communicate their ideas. We want to identify their strategies for communicating their counting, and 
consider what these language strategies say about the process of counting and the related politics. 
Thus, we avoid a deficit perspective that would rate the students on the basis of which skills and 
language they know. We have already noticed the problems with such deficit approaches – for 
example, we have evidence that a participant not using a language skill does not indicate inability 
(Wagner, Dicks and Kristmanson, 2015). 

Language is used to make distinctions that are relevant to the people in an interaction. For 
example, the prevalence of gender distinctions in personal pronouns in many languages signifies that 
people in those cultures consider it important to make such distinctions. An individual may find a 
way to avoid making such a distinction and find this a challenge because our language does not have 
some gender-inclusive personal pronouns – e.g. using ‘they’ instead of ‘he’ or ‘she’. Such practices 
may become acceptable to others and enter into a culture’s language repertoire. Just as we invent 
ways to avoid a distinction, we can invent ways to make distinction when no language strategy is 
established for that distinction.  This is a phenomenon at work in mathematical problem solving 
contexts (Wagner, 2009), and also in scholarship. Thus, in our research, we look for language 
strategies that enable the process of deciding what to count and what not to count (the process of 
establishing boundaries or categories). And we consider how these processes are political acts. 
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While access to higher education in the United States continues to improve, the success of 
historically underserved students in college, as measured by persistent degree completion, has not 
progressed in recent decades (Brock, 2010). Moreover, these students remain underrepresented in 
fields that depend on mathematics (Treisman, 1992; Engle & Tinto, 2008). As such, many 
universities offer federally funded Student Support Services (SSS) programs to address student 
success for historically underserved students including minority students, first-generation students, 
and low-income students. At the University of Maryland, the Academic Achievement Program 
(AAP) provides administrative and academic support including mathematics instruction and tutoring 
for historically underserved students. While quantitative research on these programs is common, our 
study uses qualitative methods including ethnographic interviews and in-depth classroom observation 
to explore affective responses of both students and teachers during mathematical learning in a SSS 
program.  

Interview participants included eight students and three AAP staff members. Each of the field 
notes from the interviews and observations were analyzed and coded using grounded theory 
techniques. Following this work, we considered Hackenberg’s (2005) definition for developing 
mathematical caring relations (MCRs): “ Establishing a MCR entails aiming for mathematical 
learning while attending to affective responses of both student and teacher” (p. 1). This conceptual 
framework provides a potential lens for examining if and how SSS programs develop mathematical 
caring relationships and whether or not they play a role in student success. Our study approaches this 
problem from both the student perspective and the perspective of mathematics instructors and staff in 
the SSS program to provide a more holistic picture. 

Our initial findings indicate students found positive relationships with their mathematics 
professor or AAP instructor as influential to their success. Students also bring in strong beliefs and 
attitudes about mathematics from past schooling experiences including experiences with former 
teachers. Finally, SSS programs may provide additional opportunities for students to form MCRs 
because of individualized and small-group instruction, but this is only the case if the instructors and 
students are invested in creating mathematical caring relationships.  
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Students’ self-efficacy influences the kinds of activities they are likely to engage in, how much 
effort they are willing to invest in a task, as well as how much they will persevere in the face of 
challenges and disappointments (Bandura, 1977).  This means that even if a student has the 
appropriate skills and incentive, they may still not be academically successful due to low self-
efficacy.  This makes self-efficacy an important research construct.  The focus of this study is to 
examine how the classroom environment that the teacher creates and the strategies the teacher uses 
can influence a student’s mathematics self-efficacy. 

Previous research suggests that there is a relationship between classroom environment and  
self-efficacy.  For example, Ebert-May, Brewer and Allred (1997) and Fencl and Scheel (2005) 
found that college students’ beliefs in their own ability to be successful in a college science class 
could be improved by the use of a variety of cooperative learning techniques.  However, the 
relationship between classroom climate and improvements in student self-efficacy is not well 
understood and little work has been done on this in the area of mathematics. 

In order to better understand the relationship between classroom climate and mathematics self-
efficacy, we conducted a qualitative study where we interviewed seven college students twice.  These 
college students came from education, pure mathematics, and a Calculus course in order to examine 
the development of self-efficacy in different populations.  Our aim was to look for factors within the 
classroom which may have influenced the development of a student’s math self-efficacy. 

Initial results suggest that students with a high self-efficacy in mathematics in all three categories 
describe their mathematics confidence being influenced by the perceived support and encouragement 
from their teacher.  Some characteristics that were mentioned as a way to create a supportive 
environment in the classroom included vocal support of the student, flexibility from the teacher, and 
opportunities for group work.  Results have implications for how we design mathematics classrooms 
that support and encourage productive mathematics self-efficacy.  
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Theoretical Background 
Beliefs are a powerful force in the behavior of people. If a person believed firmly that can do 

something, he or she will do it, and if instead believes it is impossible to do, nothing will change his 
mind and convince that it is possible. The beliefs that people have about themselves and what is or is 
not possible in the world around them have a great effect on the daily efficiency. All people have in 
turn beliefs that serve as resources and beliefs that limit them considerably in different areas of their 
lives (Dilts, 2004). As stated Kober (2015), students of all ages have understandings, skills and 
beliefs that significantly influence the way in what they remember, reason, solve problems and 
acquire new knowledge. Only the factor related to personal competence in mathematics is shown. 

Methodology and Results 
In the data gathering it was used as an expanded and contextualized version of the questionnaire 

on beliefs about mathematics (Mathematics-Related Belief Questionnaire, MRBQ) developed at the 
University of Leuven (Op 't Eynde & De Corte, 2003) and originally implemented in Belgium (Op't 
Eynde & De Corte, 2003, 2004). An additional element in this work was that some qualitative 
questions were asked, which allowed to obtain additional information about the beliefs in a more 
natural and spontaneous way from students. The sample consisted of 950 students (509 males and 
439 females, 2 unanswered) between 14 and 17 years of age of six public institutions. For all final 
responses (950 students) a reliability analysis using Cronbach's alpha was computed, obtaining an 
appropriate value of α = 0.933.Some of the responses to the qualitative and quantitative questions are 
shown in table 1. 

Table 1: Some responses to qualitative questions by gender 
Qualitative questions Quantitative items  

 M W Total (%)  Total mean 
Math is my favorite subject 85 45 13.7 Mathematics requires more memory 

than imagination and creativity 
2.45 

Career choice (engineering or 
related) 

97 20 12.3 If I have had any difficulty with math 
in school, I will surely have in college 

2.29 

Do you think your math skills 
could improve at some point? 
Yes 

250 183 45.6   
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As students continue to question teachers about the usefulness of mathematics, and the Common 
Core State Standards urges teachers to help students view math as useful, it becomes increasingly 
important to interrogate our conceptualization of usefulness. Currently, utility research primarily 
focuses on the usefulness of mathematics for everyday life now or in the future and for one’s future 
career, with emphasis on usefulness for the individual. However, I propose a more equitable 
approach that incorporates students’ developmental needs and values, as well as sociocultural 
context. This might be particularly important for groups of students that have been historically 
underserved in math education. For example, U.S. working-class contexts often promote 
interdependence, or connectedness and the needs of others (Grossmann & Varnum, 2011), rather 
than independence. Thus, students from working-class backgrounds might be more motivated by 
uses of mathematics for interdependent purposes, as some social justice research promotes (Gutstein, 
2006). Similarly, considering adolescents’ developmental needs also suggests the importance of 
one’s relation to others: Social responsibility is a main goal for early adolescents in the school setting 
(Wentzel, 1993). Since negative consequences can result from a mismatch between an adolescent’s 
developmental needs and features of her environment (Eccles et al., 1993), such values are especially 
important to consider.  

Preliminary findings presented are part of a larger project with four 7th grade math classes in a 
predominately Latino/a working-class suburb of a large Midwestern city. Survey results reveal that 
students have strong interdependent reasons for wanting to do well in school. Of twelve items, “make 
my family proud,” “help my family out after I graduate,” and “provide a better life for my own 
children” received the highest mean ratings of importance. Qualitative data from student interviews 
also corroborates this finding. However, students reported perceiving mathematics as more useful for 
accomplishing individual goals than for helping their families. This highlights a potential mismatch 
and suggests one way we might attack the broader enduring challenges of a) finding ways to make 
mathematics instruction more equitable and b) improving student motivation in mathematics. By 
broadening our conception of usefulness and leveraging students’ values and experiences, we can 
highlight uses of mathematics for valued domains and help underserved students feel more connected 
to the mathematics they are learning.  
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Despite calls for equity in school mathematics, major inequities along racial lines persist (e.g., 
Gutierrez, 2008). Although these inequities are well documented, race and racial identity have been 
under theorized in relation to mathematics learning and participation (Martin, 2009), and 
consequently mathematics is often framed as a neutral curricular domain (Battey, 2013). This is 
problematic because of the potential impact racial-mathematical socialization, mathematical identity, 
and racial identity have on mathematical learning and participation (English-Clark, Slaughter-Defoe, 
& Martin, 2012). While numerous studies have investigated mathematical learning, there is a dearth 
of research that investigates the intersection between racial identity development and mathematical 
learning. Addressing this issue is particularly important for middle grades students because identity 
formation is actively occurring then (Way, Hernández, Rogers, & Hughes, 2013). 

This poster outlines one way the intersection of racial identity and mathematical learning and 
participation can be studied with middle grades students. We use a radical constructivist framework to 
study mathematical learning (Von Glasersfeld, 1995) and draw upon racial identity development (e.g., 
Helms, 1994) and colorblindness (Bonilla-Silva, 2010) literature. The study included 18 racially and 
mathematically diverse 7th and 8th graders from an urban public school and, consisted of four 
interviews—three on mathematical generalizations, and one on racial identity and student experiences 
in mathematics classes. These interviews will be analyzed for mathematical generalizations (Ellis, 
2007) and the ways in which students’ and teachers’ racial identities impact these interactions. The 
following research questions guide this study: 1) what are themes regarding race and racial identity 
among middle grades students, particularly related to mathematics? 2) how might the racial identities 
of students and their teachers impact interactions aimed at supporting students to make mathematical 
generalizations? 3) what connections might be drawn between students’ racial mathematics identities 
and their willingness to participate in challenging mathematical problem solving situations?  
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Educational policy mandates access to challenging mathematics for students with learning 
disabilities (LD) (Confrey et al., 2012; No Child Left Behind, 2002). Rather than spending a 
disproportionate amount of time receiving procedural instruction, mathematics and special education 
researchers have recommended providing students with LD more opportunities to engage in solving 
challenging, conceptual mathematics tasks and justify their problem solving processes (National 
Council of Teachers of Mathematics, 2000; Woodward & Montague, 2002). 

To meet these expectations, students with LD will likely need key supports and strategies to 
minimize difficulties with memory and processing (e.g., working memory) while engaging with 
challenging mathematics (Keeler & Swanson, 2001). During the challenging task of justifying 
problem solving processes, gesturing can be a key support for students with LD as they manage the 
difficulty of this process (Goldin-Meadow, Nusbaum, Kelly, & Wagner, 2001). 

The researchers in this study conducted a qualitative case study to analyze the justification 
processes of ten students with LD enrolled in an Algebra I course working in the context of linear 
functions. We transcribed approximately eight teaching sessions for each participant, coded the data, 
and organized the data into emerging themes (Brantlinger et al., 2005). An independent rater 
monitored interpretive validity during data analysis (Maxwell, 1992). 

The findings indicated that gesturing often served as a support for memory and processing as the 
students with LD developed their justification skills. The students often used gestures to point to 
equations and coordinate planes during mathematical conversations. They also often used their 
forearms to demonstrate the slope of a line while describing their thinking processes. As the learners 
became more sophisticated at justifying their problem solving processes (as well as more 
knowledgeable of linear functions concepts), they relied less on gesturing and informal language and 
become more frequent users of formal mathematical language. More research is needed to describe 
how gesturing may provide support for students with LD as they engage in discussions about 
challenging mathematical topics. 
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Remediation is a long standing and growing phenomena in mathematics education and in the 
transition to higher education, but there has been limited attention to remedial classrooms and 
students’ learning experiences in these settings. Remedial mathematics courses offered in four-year 
universities “provide beginning college students with another chance to learn or (relearn) the 
mathematics supposedly taught to them in high school.” According to the National Center for 
Education Statistics (NCES), remedial mathematics courses are listed in 80% of four-year university 
course catalogs. Nearly 40% of all “traditional undergraduates” take at least one remedial course in 
reading, writing, mathematics or some other content area; this figure has risen considerably since the 
NCES report of 1989 (Lesik, 2006).   

The goal of this research project is to explore the effects of remedial mathematics courses on 
students. More specifically, we expect to uncover how students in mathematics remediation courses 
experience persistence in STEM related fields.  

The sampling procedures will ensure that the participant pool includes African American 
students pursuing a diverse array of potential major concentrations.  The selected participants will be 
African American students enrolled in remedial courses offered at a Midwestern university. 

Using a phenomenological approach, this study employs classroom observations, student surveys 
and semi structured interviews of  selected students enrolled in remedial courses. This research 
centers on theoretical frameworks developed to study mathematics learning as a narrative construct 
(Martin, 2000; Sfard & Prusak, 2005). Data analysis of interview transcripts will consist of coding 
and categorizing emergent themes to be used to recommend interventions and suggestions for the 
improvement of course administration. 

We expect to uncover students’ attitudes and beliefs concerning the effects of these courses on 
their persistence in their academic programs and offer suggestions for program improvement 
policies. 
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This study builds on both expectancy-value theory and Martin’s (2000) concept of sociohistorical 
contexts. Expectancy-value model suggests that parents’ expectations for their children serve as 
strong predictors of children’s expectations to succeed in their studies (Froiland, Peterson, & 
Davison, 2012). Froiland et al (2012) indicate that early parental expectations for children’s post-
secondary educational goals has a stronger effect on 8th grade achievement than assisting in doing 
homework. Also, Martin (2000) indicates that African American parents draw on sociohistorical 
accounts such as their own mathematics learning experiences in socializing their children into the 
subject and setting expectations for them.  

African American students suffer from the effects of having ‘spoiled identities’ namely; low 
quality instruction and overrepresentation in mathematics courses which lead to nowhere 
academically (Inzlicht & Good, 2006). This is due to a general belief, promoted by dominant 
narratives about African American students, that their parents do not value education. While some of 
these narratives may be true, Martin cautions that the school experiences of African American 
parents is much more nuanced than often reported. In order to account for the influence of African 
American parents on their children’s mathematics achievement, this study focused on parents’ 
mathematics learning experiences and their expectations for their children regarding the study of 
mathematics. The following research question guided the study; what is the nature of African 
American parents’ mathematics learning experiences and how do they draw on their learning 
experiences to set mathematics goals for their children? Using a case study design study, we report 
on two African Americans parents whose children were enrolled in mathematics tutoring and 
mentoring program based in a large Midwestern University. Both parents were interviewed lasting 
about 30 minutes. The interviews were transcribed by both authors and coded for themes using a 
grounded theory approach. Results indicate that both parents did not identify themselves as ‘math 
persons’ in school. A typical comment is: “I am not good at Math, I am English major (Grace: 
parent).” However, these parents expressed regret at not taking mathematics serious in school 
because they are unable to assist their children in doing homework. Contrary popular narratives that 
African American parents have low value for education, we found that these parents had high levels 
of expectations for their children. Both of them did not expect their children to obtain grades lower 
than B in mathematics. Grace, whose daughter is in an Advanced Placement class comments:” I 
expect her to be challenged so if her math becomes too easy I expect her to take math courses to 
challenge her.” Implications from this study regarding parent-teacher relationship will be shared 
during presentation. 
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In this poster, we explore images of mathematics held by Kindergarten to Grade 9 students. We 
draw on data collected within our project, which investigates students’ experiences learning 
mathematics in Canadian K-12 schools and post-secondary institutions, and the ways that these 
experiences contribute to students’ images of mathematics and their mathematical identities. To date, 
94 interviews have been conducted. In this poster we present examples of students’ images of what 
mathematics is, as explored through the drawings they created in response to prompts about what 
mathematics means to them. The theoretical frame underlying this research is enactivism—a theory 
of embodied cognition that views learning as reciprocal activity in which the teacher brings forth a 
world of significance with the learners within a cultural milieu (Maturana & Varela, 1992). Our 
frame, then, prompts us to seek to understand how students come to have particular relationships with 
mathematics and what mathematics means to them. 

Few studies have explored students’ drawings as a means to understand their perspectives on 
mathematics, however, in this genre, Perkkilä & Aarnos (2009) suggest that students view 
mathematics as a solitary pursuit involving only certain types of mathematics. These findings are also 
reflected in research involving the general public, which tends to show narrow, stereotyped views of 
mathematics as a subject area, a perspective also reflected in the popular media, which tends to 
portray mathematics narrowly as numbers and arithmetic or as financial mathematics (Hall, 2013). 
This narrow view of mathematics contrasts with the breadth of perspective on mathematics discussed 
by mathematicians and mathematics educators. For example, French mathematician, Claire Voisin, 
who specializes in algebraic geometry, has described mathematics as “movement trying to express 
itself” while Peter Taylor (2014), a mathematician at Queen’s University in Ontario, Canada, notes 
that mathematics is that which is “eternal and has beauty and structure to die for” (p. 34). 

Our findings, developed through thematic analysis of the drawings, overwhelmingly show that 
participants’ images of mathematics are narrowly focused on number and basic operations. We are 
concerned that students are developing, through their engagement in the culture of school 
mathematics, a very narrow vision of the nature of mathematics—one that does not include the full 
territory of mathematical ideas and topics. Our poster presents examples of drawings contributed by 
K-9 students, examines schooling structures that contribute to these images (e.g., narrow, number-
focused curricula in the early years), and discusses implications for teaching. 
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Background and Theoretical Perspective: This poster presents the components of a critical 
analytic essay on the state of mathematics education research and reform. Agreeing with Martin 
(2013) that mathematics education research “increasingly purports to be committed to equity for all 
children” (p. 323), despite the absence of clear evidence of progress made toward this goal within the 
past 30 years of reform (Martin, 2003), I consider what and whose other goals this rhetoric has 
served. As the mathematics education research community has been impressively successful in 
realizing what Wolfmeyer (2014) refers to as “national mathematics”—culminating in the Common 
Core State Standards—I take a critical look at this historical moment.  

This paper argues that equity rhetoric and increased curricular centralization are linked through 
the “common sense” (Gramsci, 1971) of mathematics education research and reform. Gramsci has 
used the concept of “common sense” to describe how ideas support an “elite” in winning and 
rewinning consent to rule. With this as a framework, I provide an analysis of processes by which the 
prevailing common sense of mathematics education research is informed by the set of racial (and 
racist) representations oft referred to as whiteness (Mills, 1997), as well as geared toward profitable, 
top-down measures of social control in corporate capitalism. 

Conclusions: I present and interrogate three ideas that are common sense to mathematics 
education research and reform. The first is the raced, classed, and spatially-located imaginary of the 
“urban child” apart from the imagined “white social body” and deemed in need of reform by way of 
school mathematics (Martin, 2013; Popkewitz, 2006; Leonardo & Hunter, 2007). Second is the 
scientific and moral authority of mathematics education researchers to decide what types of 
pedagogy benefit the “urban child”. This authority is constructed through theoretical paradigm shifts 
that appear to afford a more favorable view of “the child” through the gradual inclusion of additional 
dimensions of “context.” It is also constructed in juxtaposition to stereotyped representations of 
opponents to reform, which have included mathematicians and cultural conservatives but erased 
teachers and academics of color making critiques of process-oriented pedagogy (Delpit, 2006). The 
third common sense idea is that mathematics education reform should be linked to broader and 
profitable structures for top-down administration. Curricular standards are stamped with the values of 
reform pedagogy (e.g. problem-solving and mathematical practices), and thus enjoy a common sense 
association with equity. In turn, centralized standards to train teachers in, develop curriculum for, and 
assess understanding of expand both markets for these services and possibilities for “urban” school 
surveillance. 

References 
Delpit, L. D. (2006). Other people’s children: Cultural conflict in the classroom. The New Press. 
Leonardo, Z., & Hunter, M. (2007). Imagining the urban. In Foster (Ed.), IHUE (pp. 779–802). Dordrecht: Springer.  
Martin, D. (2013). Race, racial projects, and mathematics education. JRME, 44(1), 316-333. 
Martin, D. (2003). Hidden assumptions in mathematics for all rhetoric. The Mathematics Educator, 13(2), 7-21. 
Mills, C. W. (1997). The racial contract. Cornell University Press. 
Popkewitz, T.S. (2006). Hope of progress and fears of the dangerous. In Ladson-Billings and Tate (Eds.). Education 

in the public interest (pp119–141). New York: Teachers College Press. 
Wolfmeyer, M. (2014). Math education for America: policy, educational businesses, and pedagogy wars. NY: Routledge. 



Student!Learning!and!Related!Factors:!Poster!Presentations! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

592!

IMMIGRANT STUDENTS’ MATHEMATICS LEARNING EXPERIENCES IN CANADIAN 
SCHOOLS 

Miwa Takeuchi 
University of Calgary 

miwa.takeuchi@ucalgary.ca 

Jo Towers 
University of Calgary 
towers@ucalgary.ca 

Keywords: Equity and Diversity; Elementary School Education; Middle School Education 

Because of global mobility of populations, mathematics classrooms in many parts of the world 
are becoming linguistically and ethnically diverse. In the school district in which we conducted the 
research reported here, more than 25% of students are considered to be English language learners. 
Previous studies have found that teachers tend to assume that mathematics learning is universal, 
while immigrant students and parents can bring different expectations and norms (e.g., Gorgorió & 
Abreu, 2009). In order to better understand immigrant students’ trajectories of mathematics learning, 
we examine their lived experiences of learning mathematics as revealed through autobiographical 
interviews and artistic renderings.  

The broader study of which this is a part investigates students’ experiences of learning 
mathematics in Canadian schools, and the ways that these experiences contribute to students’ images 
of mathematics and their mathematical identities. To date, 94 autobiographical interviews have been 
conducted with Kindergarten to Grade 9 students. This project also utilized drawings in order to 
reveal students’ experiences that cannot necessarily be verbalized. In this poster, we focus only on 
students who had prior schooling in countries other than Canada. To interpret this element of our 
data, we draw from sociocultural theory, which seeks to understand how cultural practices and 
artifacts mediate human learning (Cole, 1996).  

Our results indicate that the majority of immigrant students in our study described differences in 
mathematics learning experiences between Canadian schools and schools in other countries. 
Differences were commonly identified in the following areas: practices of homework, individual 
learning and group work, the way teachers reward “good mathematics students,” and support and 
help from teachers. These differences tended to contribute to some immigrant students’ confusions, 
struggles, and frustrations in school mathematics learning in Canada. For example, some students 
reported how they were negotiating multiple norms regarding group work. Another significant 
common thread was pressure from parents to succeed in mathematics. Many immigrant students in 
our study were learning additional mathematics at home with their parents or supplementing school 
learning by afterschool mathematics learning programs. Some of the student drawings and narratives 
revealed how students conceptualized mathematics as a competitive, performance-oriented 
discipline, an orientation that seemed to be at odds with the educational cultures of the Canadian 
schools in which they found themselves.  

Despite the common teacher belief that mathematics learning is universal, our study unveils ways 
in which immigrant students are navigating different norms and practices of mathematics learning. 
Our research implies that language learning is not the only support needed, but negotiation of 
meaning attached to school mathematics practices is also necessary to better support immigrant 
students. 
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Purpose. It is well documented that relationships have profound effects on our well-being and 
quality of life (Landsford et al., 2005). The teacher-student relationship is no exception. While there 
is no consensus on effective teaching, it is clear that effective teachers focus both on content and 
caring (McEwan, 2002). However, in the field of mathematics education, we have little empirical 
evidence to show exactly how teacher-student rapport and students’ mathematics achievement are 
related. The purpose of this study is to use a large sample size to examine the relatedness of teacher-
student rapport and students’ mathematics achievement. The central research questions to be 
addressed in this study are: Are teacher-student rapport and students’ mathematics achievement 
related? If so, what is the magnitude? 

Method. A total of 6,916 third graders from Central China participated in the study. This study is 
part of a large research project at Beijing Normal University. Each of the third graders was asked to 
complete an affect questionnaire and a mathematics assessment. Four of the questions in the affect 
questionnaire involve teacher-student rapport: (1) When I have different views from my teacher or 
textbooks, I have an opportunity to explain my thinking; (2) When I face challenges, I am not willing 
to ask my teacher for help because I am worried about any criticism from the teacher; (3) When I 
make mistakes, the teacher encourages me to find the mistakes by myself and correct them; and (4) 
When I improve my mathematics achievement, the teacher gives me praise. The mathematics 
assessment involves items on number and algebra, geometry and spatial reasoning, and probability 
and statistics. These are three of the content strands in the Chinese curriculum standards. The data 
was analyzed by correlation analysis and regression analysis. 

Results. The results of the study showed that there are moderate correlations between teacher-
student rapport and mathematics achievement in each of the content strands. In particular, the 
correlation coefficient between teacher-student rapport and student achievement on number and 
algebra is .221, .159 between teacher-student rapport and student achievement on geometry and 
spatial reasoning, and .097 between teacher-student rapport and student achievement on probability 
and statistics. Regression analyses showed that, although the four items on teacher-student rapport 
can significantly predict students’ achievement in number and algebra, geometry and spatial 
reasoning, and probability and statistics, only less than 5% of the variance can be explained. 

Conclusions. This study shows that a good teacher-student rapport plays an important role in 
improving students' academic ability in terms of number and algebra. We will explore the reasons 
why a good teacher-student rapport can promote students' academic ability in the future. 
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The purpose of this research was to understand how lesson study participants in a teacher education 
program professionally noticed as they engaged in meetings as a component of the professional 
development cycle. Specifically, the focus was on how the context of lesson study provided 
opportunity for professional noticing, defined as attending to students’ mathematical thinking, 
analysing students’ mathematical thinking, and deciding how to respond when teaching on the basis 
of students’ thinking. Results indicated that the structured format of lesson study in the teacher 
education program both afforded and constrained the incidences of verbalizing professional noticing 
in a group setting. Findings provide perspective for structuring lesson study for use in teacher 
education programs to support professional noticing. 

Keywords: Elementary School Education; Teacher Education-Preservice 

Statement of Purpose 
Recent findings in mathematics education highlight the importance of focusing on students’ 

mathematical constructions for knowing how to support future learning and development (Norton & 
McCloskey, 2008). Professional noticing is a specialized practice that encompasses: a) attending to 
students’ thinking, b) analyzing students’ thinking, and c) deciding how to respond on the basis of 
thinking (Jacobs, Lamb, & Philipp, 2010; van Es & Sherin, 2008). From this point forward we refer 
to this type of professional noticing as noticing. Lesson study is a professional development process 
that provides context for noticing, but has most commonly been used with inservice teachers. While 
the use of lesson study with preservice teachers is limited, teacher education programs implementing 
this practice can provide opportunities for preservice teachers to notice through reflection (Murata, 
2011). Knowing more about supporting preservice teachers’ noticing through lesson study is 
important for structuring teacher education programs to focus attention on students’ mathematical 
understandings. This study seeks to answer the following research question: How do preservice 
teachers (teacher candidates who are presently in a teacher education program) professionally notice 
as they engage in the lesson study process? 

Theoretical framework 
In recent years, research studies have examined methods for teacher preparation related to 

teacher knowledge, effective teaching, and the relationship between knowledge and teaching 
(Cochran-Smith & Zeichner, 2005). Providing preservice teachers with opportunities to understand 
student-centered teaching and develop the pedagogical content knowledge necessary for effective 
instruction is essential for promoting high leverage teaching practices (Hill, Ball, & Schilling, 2008;). 
One method for developing this type of knowledge is through cultivating the ability to notice 
(Jacobs, et al., 2010). The notion requires attention to student thinking through “both observation and 
the medium through which observation takes place” (Mason, 2011, p. 45). During the process of 
noticing, effective teachers become aware of students’ thinking and are able to construct tasks that 
direct attention to relevant learning opportunities (Mason, 2011).  

The meaning of noticing has developed through literature on professional vision, which has 
explored nuances between varying stakeholder perspectives on classroom events and influencing 
factors that shape those viewpoints (Goodwin, 1994). Studies on professional vision commonly focus 
on teachers recording and studying their practice and researchers analyzing the noticing and 
reasoning of the teachers involved. Seidel et al. (2011) describe professional vision as the 
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intersection between noticing and knowledge-based reasoning with the assertion that this type of 
reasoning involves the ability to describe what was noticed, link observations to prior knowledge 
about teaching and learning, and connect to theory to predict future classroom events. A 
distinguishing factor between noticing (Jacobs et al., 2010) and professional vision is the difference 
with foreseeing future practices (Seidel et al., 2011). Considering the roots in professional vision, we 
focus on noticing as the guiding framework in our study because of the preservice teacher context 
and importance of basing teaching decisions on evidence. 

Related Literature 
The following describes lesson study as traditionally practiced with inservice teachers, followed 

by a review of the literature on lesson study with preservice teachers.  

Lesson Study Overview 
Teacher knowledge can be fostered through the process of lesson study, leading to improvement 

in instructional practice (Murata, 2011). Lesson study, originally termed Jugyokenkyu in Japan, 
means lesson and study or research (Fernandez, 2010). During the lesson study process, participants, 
usually a small group of 5-7, begin by setting a goal for the lesson study process and then working 
collaboratively to plan a lesson to teach in one of their classrooms. To plan the lesson, participants 
study research materials, curriculum guides, and other artifacts to decide on appropriate instructional 
methods and content for a mathematics lesson. Next, a teacher in the group teaches the lesson to his 
or her students while the other participants observe the lesson. Following the lesson, the participants 
meet together to reflect on the lesson and to revise the lesson for teaching in another classroom. Once 
the lesson is revised, the modified version is taught in another teacher’s classroom. This student-
focused process affords participants the opportunity to notice different aspects of the lesson (Murata, 
2011). 

Lesson Study with Preservice Teachers 
As lesson study has expanded beyond Japan to other countries and contexts, the process has 

begun to infiltrate teacher education programs (Fernandez, 2010). Recent research findings indicate 
that lesson study provides a context for preservice teachers to make connections between theory and 
practice as they take part in multiple components of the teaching cycle, including designing lessons 
and teaching (Murata, 2011). As a result, there is increased interest in knowing more about 
supporting preservice teachers’ professional practices in lesson study.  

Methodology 
This research focuses on the use of lesson study with preservice teachers as a component of a 

teacher education program at a public university in the Midwestern portion of the United States. Case 
study methodology was employed to analyze how these participants noticed during seven iterations 
of the mathematics lesson study process (Yin, 2009). 

Participants and Context 
Participants in the case study included one team, comprised of six preservice teachers, one 

classroom teacher, and a university facilitator who taught the university course. Consistent with case 
study research, we focus on this one team of participants, as opposed to a larger number of 
participants, to provide opportunity for an in-depth examination of the practices and understandings 
of these individuals (Yin, 2009). 

The format for the lesson study cycle was predetermined based on a university protocol. To begin 
the first cycle, the team met together to plan a mathematics lesson that would be taught by preservice 
teachers in the classroom teacher’s first grade classroom. Weekly, two of the preservice teachers 
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taught a whole-class mathematics lesson while the other participants (four other preservice teachers, 
one classroom teacher, and the university facilitator) observed the lesson and took detailed field 
notes. Following the teaching, the group met to reflect on the teaching with an aim toward discussing 
students’ mathematical thinking. The university facilitator led these meetings and followed a protocol 
that provided opportunities for all participants to share their ideas. Following these reflective 
discussions, the team made plans for the next lesson that would be taught and the iterative cycle 
repeated. For the purposes of this research, we focus on the reflective meetings that occurred in this 
cycle following the teaching. We refer to these meetings as the lesson study analysis meetings; each 
of the seven iterations of the process included one of these meetings. Therefore, data for this study 
are video recordings of these seven meetings and the accompanying transcripts. 

Data Analysis 
The purpose of data analysis was to: 1) Identify instances of noticing during the lesson study 

analysis meetings, and 2) Understand how preservice teachers were noticing based on conversational 
interactions with the other team members. Data were analyzed in two phases: Phase One and Phase 
Two. 

In Phase One, all data were coded by talk turn, signified by a change in speaker. Data were 
analyzed based on the degree of noticing as defined by Jacobs et al. (2010): attending (describing 
students’ actions or words), analyzing (interpreting student actions or words), or responding 
(describing pedagogical suggestions for future teaching). Across the seven transcripts, 809 talk turns 
were coded by each of two researchers. The researchers met to reconcile differences in codes. 

In Phase Two, data identified as noticing from Phase One were coded a second time to 
understand how preservice teachers were noticing based on conversational interactions. These 
instances were open coded (Corbin & Strauss, 2008). Identified themes included talk turns that were: 
based on a previous comment, initiated response, narrowed conversation, provided generalization, 
negotiated, asserting expertise, making a connection, addressed another issue, prompting participants, 
or provided context. These themes provided an explanation for how and why the noticing occurred 
within the context of the lesson study analysis meetings.  

Statement of Results 
Findings from this study indicate: 1) Noticing from the preservice teachers occurred in response 

to a prompt by the university facilitator, 2) When responding to this prompt, the preservice teachers 
commonly answered independently, meaning their conversation did not build on what others said, 
instead they reported one by one without continuity in the conversation topic, and 3) Preservice 
teachers noticed by attending and analyzing student thinking, but they rarely attended, analyzed, and 
decided how to respond on the basis of students’ thinking about the same subject. The following 
provides short excerpts of data to provide evidence for these themes. Further data will be presented if 
accepted for presentation.  

Response to Prompt 
The preservice teachers noticed in the lesson study analysis meetings when the facilitator gave a 

prompt eliciting a discussion on students’ mathematical thinking. The prompts encouraged the 
preservice teachers to respond about how students were thinking about mathematics, which resulted 
in noticing. Prompts included, “Let’s focus on evidence of students’ thinking,” and, “What were 
specific ways students were thinking?” Following these prompts, it was common for the preservice 
teachers to engage in conversation to answer the facilitator’s questions, during which they attended to 
students’ thinking or analyzed evidence of student understanding. As this occurred, patterns of 
initiating and responding took place, meaning the facilitator would initiate a conversation, and the 
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preservice teachers would respond. The following provides an example of a prompt, followed by 
noticing: 

Facilitator: Alright, what are some specific ways that student work, students were thinking that 
you saw, observed as you were walking around? 

Preservice 3: One thing I saw, Meagan, it was on the worksheet, and she constantly referred to 
the number line and I thought that was pretty neat because she’s using her tools, the tools 
around.  And like I said, I saw major improvement with Meagan, so I can tell that she’s able 
to, able to, now being able to use tools around her without saying hey, look at the number 
line if you get lost!   

Preservice 2: And I saw that with a lot of kids, actually while they were doing their worksheet, I 
know this is six oranges but how do I write six?  Have them look at their number line and 
then would count up to six, they’re like oh!  And then they would write the six down, like 
they knew the objects.   

In this instance, the facilitator asked a specific question, and even encouraged the preservice 
teachers to discuss students’ thinking in the prompt. Following the prompt, preservice teachers 
responded by specifically discussing how students were making connections between figures of 
pieces of fruit and writing the corresponding numeral. Thus, the preservice teachers responded to the 
prompt by providing evidence about how students were thinking as they were learning to count and 
abstractly represent quantity with numerals.  

Individual Response 
As the facilitator gave a prompt and the preservice teachers responded, it was rare for the 

preservice teachers to relate their responses to other responses (as was done in the aforementioned 
example when Preservice Teacher 2 continued discussing the same topic Preservice Teacher 3 had 
initiated). Instead, it was typical that the preservice teachers would independently report on what they 
had noticed instead of trying to make connections across the different types of students’ thinking that 
were noticed. Essentially, each preservice teacher responded to the prompt as if the other preservice 
teachers had not already responded, which resulted in a defragmented conversation in which the 
conversation did not build, but rather preservice teachers operated as individuals all responding on 
their own to the same prompt. The following provides a small excerpt to demonstrate this pattern: 

Facilitator:   Right we’re just going around and saying what went well. 
Preservice 4:  I thought the book was a really good way to launch off your lesson.  I think since 

they were familiar with the book that also helped.  You know they knew what the book was 
about and were excited about it.   

Preservice 5:  Um, I think… I liked that they were able to take something home.  The kids were 
really excited that they could keep this so you know, they were proud of what they did, which 
I thought was nice.  

Preservice 6:  I liked how you guys did the counting from like all the way up to twenty because 
they were doing five, ten and twenty.  There were some kids having trouble with the higher 
numbers so it was like as a group they got to explore the numbers.  

Preservice 2:  Um, I liked the little wrap up at the end and kind of liked the flashcard thing 
where you held up the numbers and they tell you.   

The preservice teachers each responded on their own to the facilitator’s prompt; their comments 
did not clearly connect to each other to create a cohesive conversation. Instead, each preservice 
teacher highlighted something she noticed and contributed to the discussion by responding to the 
prompt, but not necessarily responding to the other preservice teachers’ responses.  
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Attended and Analyzed 
Across the seven transcripts, the preservice teachers engaged in noticing by attending to students’ 

thinking, analyzing their mathematical thinking, and deciding how to respond on this basis; however, 
these three types of noticing did not commonly occur together. Instead, the preservice teachers 
engaged in dialogue that included attending to students’ thinking and analyzing students’ thinking, 
but did not make clear connections based on this evidence to verbalize noticing about how to 
respond. This does not necessarily indicate that they did not consider this connection mentally, 
however verbal evidence was rarely present in the lesson study analysis meetings. When the 
preservice teachers did make comments about how they would respond, they were often 
disconnected from conversation that attended to or analyzed student thinking. In other words, 
attending and analyzing occurred at points in the meetings and deciding how to respond occurred at 
separate times in the conversations. Therefore, incidences when all three identified types of noticing 
took place based on the same idea were rare. Within each meeting, it was common for attending and 
analysis to occur at the beginning of the meeting and for noticing that focused on responding to occur 
at the end; there was essentially a shift mid-way through the lesson study analysis meetings. Possible 
explanations for this are included in the discussion section.  

Discussion of Results 
The intent of this research was to describe how preservice teachers noticed as they engaged in the 

lesson study process. This information is critical for teacher educators to consider as it provides 
insight for knowing how to better support preservice teachers’ focus on students’ mathematical 
thinking through the act of noticing.   

Importance of Prompts 
As the preservice teachers engaged in the lesson study process, the prompts the facilitator asked 

were paramount in eliciting responses in which the preservice teachers noticed. The facilitator asked 
very pointed questions about students’ thinking, to which the preservice teachers responded. In this 
way, the facilitator encouraged routine noticing by providing a context that required preservice 
teachers to be reflective in their responses and consider students’ thinking (Miller, 2011). In doing 
this, the facilitator provided scaffolded support that is necessary for teaching others to notice (Star, 
Lynch, & Perova, 2011). Thus, the facilitator’s prompts supported noticing by scaffolding preservice 
teachers’ thoughts and directing them toward students’ thinking. This is an important finding for 
teacher education programs looking to provide a similar context for the development of professional 
practices. In this instance, it was the facilitator’s questions and prompts that often elicited noticing 
from the preservice teachers.  

Attending and Analyzing  
When noticing occurred, the preservice teachers commonly attended to students’ thinking and 

analyzed their thinking (Jacobs et al., 2010). This required the preservice teachers to observe 
classroom events and make interpretations based on these events (van Es & Sherin, 2008). Hence, the 
lesson study analysis meetings provided a focused and specific context in which this type of analysis 
could occur, indicating the plausible benefits of using lesson study in a teacher education program. 
Within the context of lesson study, the preservice teachers engaged in a structure that was focused on 
students’ thinking: as they taught or observed lessons, they were cognizant that they were going to be 
asked to report back on the basis of students’ understanding. Likewise, as they planned lessons, they 
were mindful that they would be held responsible for teaching and or observing the lesson and then 
reflecting on the lesson—this process provided them the opportunity to complete a cycle of formative 
teaching by engaging in the three components of noticing. These findings indicate that teacher 
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education programs should consider the possible benefits of lesson study for promoting the noticing 
practices of preservice teachers.  

Lesson Study Structure 
Despite the positive outcomes based on the noticing that occurred in the lesson study analysis 

meetings, findings identified segmented noticing responses in the meetings. Specifically, attending 
and analyzing student thinking was often separated from discussions about deciding how to respond 
on the basis of students’ thinking (Jacobs et al., 2010) One possible explanation for this findings is 
the structure of the lesson study analysis meetings, as designed by the teacher education course. With 
the course, the facilitator followed a protocol in which the group reflected on the previously taught 
lesson, then discussed changes they could have made to the lesson to improve student thinking, and 
concluded by planning the next lesson. Perhaps the structure constrained the inclusion of further 
discussion of implications of analysis of students’ thinking because preservice teachers and the 
facilitator understood the structure of the lesson study analysis meeting to progress along those three 
steps. This also could be related to the finding that the preservice teachers did not necessarily build 
their comments based on the aforementioned comments. These results indicate that a more fluid 
structure to the lesson study analysis meetings may provide for increased incidence of all three types 
of noticing occurring at the same time. For teacher education programs, this structure within lesson 
study may initially be helpful for encouraging noticing; however, facilitators or programs should be 
aware of this disconnect among the three types of noticing and perhaps reduce the stringency of a 
similar protocol for the meetings over time. Nevertheless, findings show promise for the use of 
lesson study in supporting preservice teachers to professionally notice.  
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The Common Core Standards require students to learn content and mathematical practices, and so 
teachers must have content knowledge and be able to engage in practices themselves.  This raises the 
question of how novice teachers learn to engage in mathematical practices.  I investigate pre-service 
secondary teacher learning of mathematical practices following participation in a mathematics 
content course for teachers using a pre/post design.  Four participants completed think-aloud 
interviews solving algebra tasks.  All participants increased their engagement in mathematical 
practices and began to engage in them in more nuanced ways.  Many changes in participants’ 
practice engagement were related to opportunities to learn in the content course around making sense 
of problems, justification, and attention to precision.  These results have important implications for 
teacher preparation and research on teacher learning.   

Keywords: Teacher Education-Preservice; Mathematical Knowledge for Teaching; Teacher 
Knowledge; Problem Solving 

What mathematical understanding is necessary for high school teaching, and when and how do 
teachers develop it? Recent research answers this question by considering mathematical knowledge 
for teaching (MKT) –mathematical knowledge entailed by the profession of teaching (Ball, Thames, 
& Phelps, 2008). This view of professional knowledge requires considering knowledge of school 
mathematics, knowledge of mathematics beyond the school curriculum, knowledge of how to unpack 
the mathematics of the school curriculum, and pedagogical content knowledge. Implicit in the 
definition of MKT is the relationship between knowledge of mathematics and engagement in 
mathematics. One way to describe the act of engaging in mathematics is through the lens of the 
mathematical practices. Thus, practices and mathematical knowledge for teaching must be 
considered jointly when investigating teachers’ mathematical preparation. In this paper, I explore 
pre-service teacher learning of mathematical practices. 

Teacher Engagement in Mathematical Practices 
Mathematical practices describe the tools needed to do mathematics. They include making a 

conjecture, justification, and attention to precision(Common Core State Standards, 2010). Because 
mathematical practices are a key part of the Common Core, a focus on teacher engagement in them 
has become a particularly salient issue for current research. Despite robust literature on teacher 
knowledge, teacher engagement in mathematical practices has not been explicitly incorporated into 
commonly used definitions of MKT. “Conceptions of teacher knowledge have seldom considered the 
kinds of mathematical practices that are central to teaching. For example, rarely do teachers have 
opportunities to learn about notions of definitions, generalization, or mathematical reasoning” 
(RAND, 2003, p.21). Attention to teachers’ engagement in mathematical practices matters for two 
reasons. First, teacher engagement in practices helps demonstrate what teachers do with the 
mathematical content that they know. Second, the ways in which teachers engage in practices 
themselves may affect how they teach students to engage in practices.  

I draw on the mathematical practices identified in the Common Core Standards to describe ways 
in which secondary novice teachers do mathematics.  I conceptualize teacher engagement in 
mathematical practices as being intertwined with MKT, just as the standards of mathematical 
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practice are necessarily embedded within mathematical content (McCallum, 2014). Teacher 
engagement in practices as mathematical problem solvers themselves is connected with subject-
matter knowledge. Similarly, understanding how to teach students to engage in practices is connected 
to pedagogical content knowledge.  

Much of the existing literature on teacher engagement in mathematical practices emphasizes 
proof. Overall, research on teachers and proof has endeavored to (1) understand teacher beliefs about 
proof and its role in the classroom (e.g., Knuth, 2002; Staples, Bartlo, & Thanheiser, 2012) and (2) 
investigate teacher knowledge related to the analysis of specific types of proof (e.g., G. Stylianides, 
A. Stylianides, & Philippou, 2007). However, there remains a gap in the literature about how 
teachers actually engage in proof themselves. Given the emphasis on mathematical practices in the 
Common Core Standards(2010), it is critical to investigate teachers’ engagement in proof, in addition 
to their knowledge about it.  

Equally important is research that investigates practices more broadly, looking beyond formal 
proof alone. Mathematical practices rarely occur independently of one another, making it critical to 
look at them in concert with each other and within a variety of mathematical content domains. 
Investigating teacher engagement in mathematical practices more broadly will contribute a great deal 
to understanding teachers’ MKT and its link to mathematical practices. Just as pedagogies of 
enactment support novice teachers in learning to teach (Grossman et al., 2009), teacher engagement 
in mathematics can support student engagement in mathematics.  This makes it essential to conduct 
research that focuses on teacher engagement in mathematical practices connected with teacher 
content knowledge. If we argue that teachers need to develop MKT and need to engage in 
mathematical practices, what then does it look like for teachers to be learning to engage in 
mathematical practices? 

Teacher Learning 
Following (Lave & Wenger, 1991),I take a situative perspective on teacher learning; that is, 

learning is described as a change in the way a teacher participates in a community of practice. In the 
context of teachers learning math content and practices, evidence of learning can come from changes 
in the way teachers interact with one another in the context of solving a math problem, but it can also 
come from changes in the way they individually reason about a math task (Cobb & Bowers, 1999). 
Focusing on mathematical practices in particular, learning means looking at the way teachers take on, 
or appropriate (Moschkovich, 2013; Rogoff, 1990), the mathematical practices and how they 
transform their engagement in those practices within a community of mathematics teachers. For 
example, a pre-service teacher might appropriate the practice of justification by utilizing more 
mathematically appropriate proofs or explanations (such as using examples to motivate a generalized 
proof, rather than using examples as proof). 

In this study, I consider the following question: What did participants in an abstract algebra 
course for future secondary teachers learn about mathematical practices?  In particular, I examine the 
extent to which their engagement in mathematical practices changed from the beginning of the 
course to the end of the course. 

Methods 
To answer this question, I conducted a case study of an abstract algebra course designed for 

future secondary teachers. The course took place at the beginning of a yearlong preparation program. 
I selected this site for my case study largely because of the program’s commitment to the deep 
mathematical preparation of future teachers. A mathematician taught the course; he tailored the 
course to attend to the needs of the teachers he was preparing. I observed all sessions of the abstract 
algebra course. The course met for ten weeks for three hours each session. 
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Participants and Data Sources 
Four pre-service teachers participated in the study. Though these participants are not a 

representative sample of all future secondary math teachers, their mathematical preparation is 
consistent with that of typical pre-service secondary math teachers. The participants each had 
different trajectories into teaching and as such represent different specific features of novice teachers. 
It is valuable to treat each participant as an individual case study. Daniel entered the teacher 
preparation program after a long career in engineering and business. He had an undergraduate degree 
in engineering. Laura was a paraprofessional for several years before pursuing her math credential. 
She had a math major, but expressed a lack of confidence in her math ability. Sam served in the 
military after high school and then got an associate’s degree in engineering. He later returned to 
school to finish his undergraduate degree in math and then complete his credential. Tim entered the 
teacher preparation program immediately after completing his undergraduate degree in math and 
physics.  

At the beginning and end of the abstract algebra course, participants completed in-depth task-
based interviews. Participants were asked to think aloud as they solved (Ericsson & Simon, 1980), 
and they engaged in “free problem solving” (Goldin, 1997). Though the interview tasks addressed 
high school content, the problems were non-familiar, that is, participants were unlikely to have seen 
any of the particular problems before. I investigate participant learning by comparing participant 
engagement in mathematical practices at both time points. Because of the think aloud structure, 
participants’ solutions were both oral and written. 

Data Analysis 
I coded each interview for engagement in mathematical practices, using the Common Core 

practice standards as a framework and dividing each standard into sub-codes. For example, during 
the pre-interview algebra task, Laura decided to test some specific values to make sense of a more 
general algebraic statement. She said, “I’m just going to put real numbers in this for a minute”. I 
coded this as trying a special case (MP1), because it was evidence trying a particular example while 
solving a general problem. Table 1 shows additional mathematical practice codes. 

Table 1: Sample mathematical practice codes 
Code name Code description Example 

Connect 
representations 
(MP1) 

Explain correspondences 
between equations, verbal 
descriptions, tables, and 
graphs  

Sam (pre): Your slope is going to be somewhere in 
the middle, and then when you add these together [(b 
+ d) in the equation (f + g)(x) = (a + c)x + (b + d)] 
the intersect is going to be somewhere in the middle 
[indicates origin of the graph].  

Test conjectures 
(MP3) 

Make conjectures and 
build a logical progression 
of statements to explore 
the truth of their 
conjectures. 

Daniel (post), after conjecturing that the slope must 
always be -1: So I will pick a point that’s at (1, 2) 
[plots (1, 2)]. That's one of the points. The other 
point should be at (2, 1) [plots (2, 1)]. Nicely, we see 
this slope is now going to be negative [connects 
points (1, 2) and (2, 1)].  

 
Using a multiple case approach (Miles & Huberman, 1994), I describe participants’ individual 

learning as well as investigate trends across participants. I used analytic memos to create problem-
solving cases for each task. I looked across the four participants at each time point to identify 
similarities and differences in their content knowledge and practice engagement. Finally, I looked for 
change over time by comparing the pre and post interviews. 
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Interview Tasks 
The algebra tasks used during both think aloud interviews required participants to prove a 

statement about linear functions. This makes them excellent sites to consider participant learning 
around proof and justification along with other mathematical practices. Both tasks focused on high 
school level content, though the particular tasks themselves were unfamiliar to participants. Both 
dealt with linear functions, a standard part of school algebra. Both tasks also required participants to 
prove a general statement about linear functions was true. The focus on the pre-task was on the sum 
of two functions at a particular point. The focus on the post-task was on the x- and y-intercepts of a 
particular line. Table 2 shows the pre and post algebra tasks. 

Table 2: Interview algebra tasks and key features 
 Pre-Interview Algebra Task Post-Interview Algebra Task 

Key 
features 

High school level content High school level content 
Linear functions Linear functions 
Prove a general statement is true Prove a general statement is true 
Focus on the sum of two functions at a 
particular point 

Focus on the x and y-intercepts of a 
particular line 

Tasks 

Prove the following statement: If the graphs 
of linear functions f(x) = ax + b and g(x) = 
cx + d intersect at a point P on the x-axis, 
the graph of their sum function (f+g)(x) 
must also go through P. (TEDS-M 
International Study Center, 2010) 

Take a point (p, q) on the Cartesian plane. 
Reverse the coordinates to obtain a second 
point (q, p). Prove that on the line between 
these two points, the x-intercept and the y-
intercept are the sum of the coordinates. 

Findings 
As a group, participants engaged in many of the mathematical practices, and the practices they 

engaged in were directly related to the nature of the tasks. All participants worked to make sense of 
the problems (MP1), create representations (MP2), construct arguments (MP3), and attend to 
precision (MP6); three participants engaged in making use of structure (MP7). Nobody engaged in 
modeling with mathematics (MP4), for instance, because the tasks did not entail mathematical 
modeling. All four participants showed changes in their engagement in mathematical practices, but 
the nature of the changes varied across participants. In this section, I explore these changes in detail. 
Additionally, I connect some of the observed changes in math practice engagement back to the 
opportunities to learn present in the abstract algebra class. 

Learning to Justify and Attend to Precision: Daniel and Tim 
Daniel and Tim both did very well on the pre-tasks. Daniel produced a complete and correct 

algebraic argument, providing his rationale aloud as he talked through his solution. He supported his 
argument with graphical examples (see Figure 1a). Tim produced a complete algebraic argument that 
was nearly correct except for an imprecise use of mathematical notation (see Figure 1b). Tim did not 
show substituting a point P into the equation, though that seemed to be his intention based on what 
he said. So his final line reads as though the result were true for any x value, rather than for a 
particular value of P (he wrote (f+g)(x) = 0, rather than (f+g)(x0) = 0). Based on their performance, it 
seemed as though there would be little opportunity to see growth on the post task. However, both 
showed growth across several mathematical practices. 
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(1a) Daniel’s work (1b) Tim’s work 

Figure 1: Daniel and Tim’s written pre-task work 

Daniel showed growth through more substantial and meaningful connections between his 
algebraic and graphical representations, and through his attention to precision. He took the same 
basic approach to the two problems, using a mostly algebraic approach with graphical examples on 
both. On the post-task, Daniel made stronger connections between the two representations (MP1) 
than he had on the pre-task in order to overcome an initial error. On the post-task, Daniel also 
carefully noted which variables were free and which were fixed. This attention to precision (MP6) 
enhanced the rigor of his final proof, giving him a more complete and detailed argument (MP3) than 
his work on the pre-task had been, even though both were correct results. 

Tim also showed growth in his attention to precision (MP6), along with attending to the domain 
of his argument (MP3) and the way in which he communicated his conclusions. In particular, he 
distinguished between his preliminary scratch work and how he would develop a more formal proof. 
These changes allowed Tim, like Daniel, to produce a rigorous and detailed proof on the post-task 
that showed growth over his performance in the pre-task. 

Learning to Make Sense, Persevere, and Justify: Sam and Laura 
Sam and Laura struggled with the pre-tasks, though in different ways. Sam attempted to use an 

algebraic representation, but misinterpreted the problem and was unable to construct a complete 
argument. Laura tried using a special case, but due to not attending to all the conditions of the 
problem, chose an example that led her to believe the statement she had to prove was false, even 
though participants were told to prove the statement was true. After conjecturing that the statement 
was false, Laura did not attempt to justify her conjecture in any way. 

In the post-task, Sam showed tremendous growth. He was able to accurately analyze the given 
information, monitor his progress and develop a solution plan, and choose a generative special case 
(MP1). One difficulty he had with the pre-task was choosing a special case that was too specific, and 
obscured some of the generality of the problem. In the post-task he chose a more appropriate special 
case (see Figure 2). Then he was able to generalize from the special case, something he had been 
unable to do in the pre-task. He also compared his special case argument to his more general 
argument and was able to evaluate them (MP3). Sam went from being unable to complete an 
argument to having a full, nearly complete proof. His work on the post-interview task was limited 
only by not attending to the meaning of his variables.  
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(2a) Sam’s pre-task special case (2b) Sam’s post-task special case 
Figure 2: Sam’s pre and post-task special cases 

Laura too demonstrated substantial change through her work on the post- task (see Figure 3). In 
this case, she correctly selected a special case (MP1) and was able to construct a complete and 
correct argument for that special case (MP3). She did so through increased work connecting 
representations (MP1). She also engaged in communicating her conclusions and evaluating her 
arguments (MP3), two practices not visible in her pre-task interview due to her early incorrect 
conjecture. Though she did not attempt to generalize her special case result, Laura commented that 
she knew that was the next step. She showed important changes in the way in which she engaged in 
the practice of justification (MP3). 

 

 

 
 

(3a) Laura’s pre-task written work (3b) Laura’s post-task written work 
Figure 3: Laura’s pre and post-task written work 

Discussion: Connections to Opportunities to Learn 
Overall, participants changed their engagement in mathematical practices, particularly making 

sense of problems (MP1), constructing arguments (MP3), and attending to precision (MP6). The 
results hint at the possibility of a learning trajectory around practice engagement. Laura and Sam 
improved in how they made sense of the problems, and this supported them to better construct 
reasonable arguments. Tim and Daniel demonstrated proficiency in making sense of the problems in 
the pre-task, but showed growth in communicating their conclusions and through their attention to 
precision.These particular practices were also a major focus of the abstract algebra class participants 
were taking(Baldinger, 2014). 

Participants regularly had opportunities to make sense of problems during the abstract algebra 
course. For example, the professor emphasized how participants could use a special case to help them 
discover a more general solution. This is the approach Sam took on the post-task, and the approach 
Laura knew she should take.Participants also had opportunities to construct arguments and 
justifications. One such opportunity to learn occurred when the professor talked about 
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communicating conclusions and the differences between scratch work and formal proof. This echoes 
the distinction Tim described in his work on the post-task.A third focus of the class was attention to 
precision. For example, the professor explicitly discussed the importance of defining the meaning of 
variables in a problem. Daniel and Tim both built on that in their work on the post-task. Participants’ 
performance on the post-task reveals some important connections to the opportunities to learn in the 
abstract algebra course. This suggests the potential value of the content course as a site for learning 
about mathematical practices. Participants also reflected that they had learned how to engage in 
mathematical practices in the course (Baldinger, 2014), providing further evidence to support the 
idea that the improvements in performance on the post-task might be related to the learning 
opportunities in the abstract algebra course. 

Implications and Future Directions 
This case study illustrates what four pre-service secondary teachers learned around engagement 

in mathematical practices at the beginning of their teacher preparation. Though their learning was 
related to their experiences in the abstract algebra course, this is not necessarily a causal relationship; 
participants had numerous other learning experiences during this time. Additionally, these four 
participants are not representative of all pre-service teachers, and their learning trajectories are not 
necessarily “typical”. However, each unique case provides insight into the variety of learning 
trajectories experienced by pre-service teachers. 

There are several implications based on the results of this study. First, not surprisingly, these pre-
service teachers exhibited distinctive learning trajectories for mathematical practices. In this case, 
despite differences in their starting places, all four participants showed changes in their engagement 
in mathematical practices. This suggests that teacher preparation programs can be sites for learning to 
engage in mathematical practices, just as the programs can be sites for developing other knowledge 
necessary for teaching. Additionally, such diverse learning trajectories need to be accounted for in 
the design of teacher preparation programs. 

The abstract algebra course was clearly an important site for participants to learn to engage in 
mathematical practices. Incorporating more opportunities of this nature might support teacher 
engagement in a wider range of practices. Building on that, the practices proved portable across 
content levels. The participants learned to engage in these practices addressing college-level 
mathematics, but demonstrated their engagement on secondary-level tasks. This emphasizes the 
value of mathematics content courses beyond developing content knowledge. 

Through engaging with multiple practices in an interconnected way, participants were more 
mathematically productive on the post-task than on the pre-task.  Laura’s post-task highlights the 
way engagement in communicating her conclusions (MP3) depended on her ability to connect her 
algebraic and graphical representations (MP1).  Daniel and Tim’s solutions show how attention to 
precision (MP6) can improve the quality of an argument.  The interconnectedness suggests the value 
of learning about practices in conjunction with one another.  The implication for teacher preparation 
is to provide multiple opportunities for pre-service teachers to engage in a variety of practices, rather 
than focusing on a single practice. Furthermore, this suggests the value of looking more holistically 
at practice engagement in research.   

This study raises a question about how to measure engagement in mathematical practices in a 
way that accounts for varied learning trajectories.The interview tasks used in this study did this by 
focusing on accessible high school level content.  However, the choice of tasks also limited the 
practices that might have been assessed. Additionally, the in-depth interviews conducted for this 
study were exceptionally illuminating but would be inefficient to implement across large teacher 
preparation programs.Given the importance of understanding teachers’ engagement in mathematical 
practices, it is important to identify alternative measurement strategies. 
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The standards of mathematical practice in the Common Core (2010) provide a practical 
motivation for understanding how practices are learned and how they can be taught.  It is reasonable 
to imagine that if teachers have not had opportunities to engage in mathematical practices 
themselves, it will be difficult for them to create opportunities for their students to engage in 
mathematical practices.  Learning to engage in mathematical practices can be seen as a first step 
toward learning to teach others to do so, creating an imperative to more fully understand teacher 
learning around mathematical practices.Future research must consider other contexts for learning 
along with other content areas.  That will help develop a more complete picture of teacher learning 
around practices and provide greater insight into how to structure relevant learning opportunities.  
Additionally, it will be valuable to consider the relationship between a teacher’s ability to engage in 
mathematical practices and the strategies that teacher uses to support student engagement in 
mathematical practices.  Teachers must be able to support students in all aspects of their 
mathematical learning, and should have opportunities to learn to do this as part of their preparation.  
Understanding teacher learning around mathematical practices is a crucial part of supporting teachers 
in their work with students. 
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Supporting students to build robust fraction schemes and operations is an enduring challenge in 
mathematics education. Recent research has explored a developmental trajectory of fractions 
schemes and operations constructed by upper-elementary and middle school students in an effort to 
support student learning. This study broadened the existing research by investigating PreK–8 
preservice teachers’ construction of fractions schemes and operations. This paper specifically 
explores data from PreK–8 preservice teachers regarding one scheme (Iterative Fraction Scheme) 
and way of operating (Three Level Units Coordination). Results focus on 13 special cases that 
disagreed with current conceptions of the developmental trajectory. 

 
Keywords: Learning Trajectories (or Progressions); Mathematical Knowledge for Teaching; Rational 
Numbers; Teacher Education-Preservice 

Introduction and Objectives 
In light of the enduring challenge that understanding fractions concepts places on PreK–8 

preservice teachers (PSTs), our research project sought to validate a developmental trajectory of 
fractions schemes and operations specifically for PSTs. In particular, this study extends current 
research that has worked to establish this trajectory for elementary and middle school students 
(Hackenberg, 2007; Norton & Wilkins, 2012; Steffe & Olive, 2010). For this study PSTs responded 
to tasks designed to determine the fractions schemes and operations with which each participating 
PST seemed to operate. 

The initial goal was to validate the established trajectory with a new population. Upon analysis of 
the data, the trajectory seemed consistent with previous research; that is, each lower level of 
fractional understanding appeared to be a prerequisite to higher levels of understanding. However, 
upon further analysis, 13 special cases emerged that deviated from this trend. In these 13 cases, PSTs 
demonstrated ways of operating that aligned with an Iterative Fraction Scheme (IFS) while 
simultaneously lacking the prerequisite operation of Three Level Units Coordination (3UC). This 
paper focuses on our work examining these special cases. We worked to answer the research 
question “Must PSTs interiorize 3UC before constructing an IFS?” Although studies have shown 
that, without 3UC, elementary and middle school-aged students cannot develop an IFS (e.g. 
Hackenberg, 2007; 2010), it appeared possible for PSTs to do so. 

Background and Theoretical Framework 

PSTs and Fractions 
Many studies document PSTs’ difficulties with making sense of fraction concepts and fraction 

computation, particularly related to fraction division (e.g., Ball, 1990; Borko, Eisenhart, Brown, 
Underhill, Jones, & Agard, 1992; Newton, 2008; Tirosh, 2000; Van Steenbrugge, Lesage, Valcke, & 
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Desoete, 2014). One possible cause for this enduring challenge is the prevalence of part-whole 
thinking in U.S. mathematics curriculum (Newton, 2008; Watanabe, 2007; Yang, Reys, & Wu, 
2010). Part-whole thinking is a common way to define fractions: The fraction m/n is defined as m 
equal-sized parts out of n, where a total of n parts make up the whole (where m and n are positive 
integers). Using this fraction scheme, 3/4 would be thought of as 3 equal-sized parts out of 4. 

Previous studies have established that PSTs rely primarily on part-whole thinking (Newton, 
2008; Sowder, Bedzuk, & Sowder, 1993; Tirosh et al., 1998; Zhou, Peverly, & Xin, 2006). Although 
part-whole reasoning can provide an initial understanding of fractions, research has documented the 
limitations of part-whole reasoning (Mack 2001; Olive & Vomvoridi, 2006; Saenz-Ludlow 1994). 
One of the major limitations of part-whole reasoning relates to understanding improper fractions. 
Students typically struggle to reason with fractions greater than 1 when the only way they know to 
think about fractions is part-of-a-whole (Thompson & Saldanha, 2003). When 3/5 only makes sense 
as three parts out of five, it is difficult to make sense of 7/5, or seven parts out of five. 

Besides the reliance on part-whole thinking, another possible cause for PSTs’ issues with 
thinking about improper fractions as numbers is difficulty with coordinating multiple levels of units 
(Hackenberg, 2007). Construction of improper fractions as numbers requires the interiorization of 
coordinating of three levels of units (Hackenberg, 2007, 2010; Norton & Wilkins, 2012). 
Interiorization is the reorganization of internalized actions as an assimilatory structure; students who 
have interiorized actions (as operations) do not need to carry them out in activity (i.e., they can be 
taken as given prior to activity) (Olive, 2001). 

Table 1: Fraction Schemes 

Schemes Associated Mental Actions 

Part-Whole Fraction Scheme 
(PWS) 

Producing m/n by partitioning a whole into n pieces and 
disembedding m of those pieces. 

Partitive Unit Fraction 
Scheme 
(PUFS) 

Determining the size of a unit fraction relative to a given 
unpartitioned whole by iterating the unit fraction to produce a 
continuous partitioned whole. 

Partitive Fraction Scheme 
(PFS) 

Determining the size of a proper fraction relative to a given 
unpartitioned whole by partitioning the proper fraction to 
produce a unit fraction and iterating the unit fraction to reproduce 
the proper fraction and the whole. 

Reversible Partitive Fraction 
(RPFS) 

Reproducing the whole from a proper fraction of it by 
partitioning the fraction to produce a unit fraction and iterating 
that unit fraction the appropriate number of times. Note that the 
action of partitioning implicitly involves splitting because 
partitioning is used to reverse the iterations of a unit fraction 
(e.g., 3/5 as three iterations of 1/5). 

Iterative Fraction Scheme 
(IFS) 
 

Reproducing the whole from an improper fraction of it by 
partitioning the fraction to produce a unit fraction and iterating 
that fraction unit fraction the appropriate number of times. Note 
that, in addition to splitting, this way of operating implicitly 
involves coordinating three levels of units: the unit fraction, the 
improper fraction, and the proper fraction contained within it. 
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Fractions Schemes and Operations 
Steffe and Olive (2010) suggest a learning trajectory for students’ development of fractions 

knowledge in terms of schemes and operations. The hierarchy of schemes is found in Table 1. In 
addition, two ways of operating also essential to this framework: 1) Splitting, which is the mental 
action of simultaneous partitioning and iterating, and 2) mental actions associated with Three Level 
Units Coordination (3UC). 

Methods 

Context and Participants 
The participants were 109 undergraduates enrolled in the first of three required mathematics 

courses for PreK–8 PSTs. The focus of this first course was number concepts and operations, 
including fractions. The 109 students include only those taking the course for the first time. Of the 
109 participants, about one-half were freshman (52%), about one-third were sophomores (31%), and 
the rest were upperclassmen (17%). 

Data Collection 
The participants were given a fractions schemes and operations assessment at the beginning of 

the semester, specifically before any instruction related to fractions or fraction computations. The 
assessment contained four items associated with each of the seven fractions schemes and operations 
(see Table 1), resulting in a total of 28 items. Each item was designed to provoke a response that 
would indicate whether or not the student had constructed that particular scheme or operation. These 
items were developed for and previously used with upper elementary and middle school students 
(Norton & Wilkins, 2012; Wilkins & Norton, 2011). However, PSTs have and tend to use knowledge 
that upper elementary and middle school students do not necessarily automatically use (e.g., fraction 
division algorithms). Therefore, to obtain a better understanding of the PSTs’ ways of operating, the 
participants were also asked to provide a brief written explanation for their responses. 

Two coders independently rated the responses using both the written work on the assessment and 
the brief explanations provided, according to Norton and Wilkins (2009, p. 156). Each item was 
given a score of 0, 0.4, 0.6, or 1 based on the amount of evidence observed for a given scheme or 
operation (see Table 2). 

Table 2: Scoring Rubric 
Score Evidence Shown 
0 Strong counterindication that the PST could operate in a manner compatible with that 

particular scheme or operation 
0.4 Weak counterindication that the PST could operate in a manner compatible with that 

particular scheme or operation 
0.6 Weak indication that the PST could operate in a manner compatible with that particular 

scheme or operation 
1 Strong indication that the PST could operate in a manner compatible with that particular 

scheme or operation 
 

Each coder summed the four individual item scores, resulting in an overall raw score between 0 
and 4for each scheme or operation. The overall raw scores were then used to infer whether or not the 
PST had constructed that particular scheme or operation. Overall raw scores greater than or equal to 
3 indicated that the PST had constructed that particular scheme or operation. Overall raw scores less 
than or equal to 2 indicated that the PST had not constructed that particular scheme or operation. 
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Overall raw scores between 2 and 3 required each coder to infer from all the given information 
whether or not the PST had constructed that particular scheme or operation. If a disagreement 
occurred between the two raters, the raters reexamined all the relevant information together to reach 
a consensus. (The average kappa statistic for measuring inter-rater reliability for 3UC was .81 and for 
IFS was .93.) 

Data Analysis 
First, descriptive statistics were calculated in order to compare the percentages of PSTs that had 

constructed each of the different schemes and operations. For this paper, we focus in particular on 
Three Level Units Coordination (3UC) and the Iterative Fraction Scheme (IFS). 

Second, data were entered into 2 × 2 contingency table to examine the hypothesized association 
between 3UC and IFS. The gamma statistic, G, was used to test the magnitude of the association 
(Siegel & Castellan, 1988). We were specifically interested in testing whether the interiorization of 
3UC preceded the construction of an IFS. Based on prior research (Hackenberg, 2007; 2010), we 
predicted a direct or positive association between the interiorization of 3UC and the construction of 
an IFS, specifically that the interiorization of 3UC occurs prior to the construction of an IFS. If the 
data associated with 3UC and IFS are consistent with this hypothesis, then we would find a positive 
direct association (i.e., G> 0) and a weak monotonic relationship. A weak monotonic relationship is 
characterized by a staircase pattern in the contingency table, with data falling predominantly in the 
diagonal and lower left cell. Because the G statistic is a symmetrical measure of association it does 
not by itself provide evidence of developmental order among the schemes and operations. 

Following procedures outlined by Wilkins and Norton (2011) we tested for developmental order 
among the schemes and operations by first visually examining the table for evidence of a staircase 
pattern. Empirically, using a binomial test, we tested whether the difference in the number of cases in 
the off-diagonal cells was in the hypothesized direction and different from what would be expected 
by chance. We hypothesized a direct (positive) association between 3UC and IFS and also 
hypothesized a developmental order. For this hypothesis we used a one-tailed gamma and binomial 
test. 

Results 
In Table 3, descriptive statistics for 3UC and IFS are presented. Less than half of the PSTs had 

interiorized the coordination of three levels of units (47%). About a quarter of the PSTs had 
constructed an IFS (27%). 

Table 3: Descriptive Statistics 
Scheme/Operation Percentage SD 

3UC 47% 0.50 
IFS 27% 0.44 

 
Based on our hypothesis, PreK–8 PSTs should interiorize 3UC prior to constructing an IFS. 

Table 4 presents the frequencies of PSTs’ construction of an IFS and coordination of three levels of 
units. Overall, no association between the coordination of three levels of units and the construction of 
an IFS was found (G = .23, p =.15, one-tailed). An examination of the off-diagonal cases (n = 48) 
found 13 PSTs who had constructed an IFS prior to interiorizing the coordination of three levels of 
units. This is a relatively large number of cases that counter the hypothesis. However, the distribution 
of the off-diagonal cases was statistically beyond chance; exact binomial, p = .001 (one-tailed). 
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Table 4: Frequency of 3UC and IFS Scores 
 IFS 

3UC 0 1 Total 
0 45 13 58 
1 35 16 51 

Total 80 29 109 
Note. G = .23, p = .15, one-tailed; Exact Binomial p = .001 (one-tailed). 

 
Because the result from the gamma statistic is inconsistent with the theory relating 3UC and an 

IFS (Hackenberg, 2007; 2010), it is important to further examine the 13 students found to have 
constructed an iterative fraction scheme prior to interiorizing the coordination of three levels of units. 
One point of concern is that the fractions tasks used in the assessment were designed for upper 
elementary and middle school students. As previously discussed, PSTs have and use knowledge that 
upper elementary and middle school students do not automatically employ. For example, by using 
algorithms for dividing fractions or finding equivalent fractions, PSTs’ procedural responses to the 
3UC and IFS tasks, as well as their written explanations, may actually mask evidence providing an 
indication for (or evidence providing a counterindication against) interiorizing 3UC or constructing 
an IFS. For both the 3UC and IFS tasks, the 13 PSTs responses were re-examined to find patterns in 
their thinking and representations. 

One observation found was that many of the 13 PSTs used either fraction division or equivalent 
fractions to answer the 3UC tasks. For example, Figure 1 shows how one PST used fraction division 
to answer a 3UC task. In her explanation, the PST described her thinking: “The pizza shows 3/4 of a 
pizza and each person wants 1/8 so I divided 3/4 by 1/8. I found the reciprocal making it 3/4 ÷ [sic] 
8/1 and found that 6 people could get 1/8 of the pizza.” Although her answer is correct, her 
procedural work and written description do not provide clear evidence that this PST is actually 
coordinating three levels of units. 
 

 
Figure 1. PST used fraction division to answer a 3UC task. 

Figure 2 exhibits how another PST solved a 3UC task, this time using equivalent fractions. In her 
written work, she explained that she wanted to find out “how many eighths are in 3/4 so I multiplied 
top and bottom by 2 to reach eighths and I got 6/8. Therefore 6 people can have 1/8 of the 3/4 pizza.” 
Again, the procedural work and written explanation do not provide evidence for or against this PST 
having interiorized 3UC. 
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Figure 2. PST used equivalent fractions to answer a 3UC task. 

Another observation found in the responses to IFS items was that over half of the 13 PSTs 
changed the given improper fraction to a mixed number to find an answer. Although these PSTs were 
able to determine the correct answer, it seemed that they would have been unable to do so without 
converting to a mixed number based on their written explanations. As an example, one PST (see 
Figure 3) wrote in her explanation, “I changed 7/3 to a mixed fraction and saw it was roughly twice 
the size as the candy bar so I split it into thirds and counted 3/3 to make one.” If this PST had 
constructed an IFS, she would likely respond by partitioning the given stick into seven equal pieces 
and taking three of those pieces to represent the whole candy bar—a more efficient way of operating. 
In this illustrative work, it seems as though the PST relied on the mixed number of 2 1/3 to solve the 
task instead of considering the improper fraction of 7/3 as a number in its own right. 
 

 
Figure 3. PST used a mixed number to answer an IFS task. 

Also, almost half of the 13 PSTs examined demonstrated some level of confusion in their 
responses to IFS items. Even when they provided correct representations and answers, these PSTs 
exhibited a lack of confidence in their work. For example, one PST explained, “I’m having trouble 
understanding the amounts when the given amount is over 1.” Another PST expressed confusion 
when the given diagram (which represented an improper fraction) was a half circle: “I got confused 
looking at the diagram because the picture doesn’t look bigger than a whole.” The confusion 
unveiled in responses like these raise further questions about these PSTs’ construction of an IFS. 

The analysis of the 13 PSTs’ responses suggests that some PSTs may have actually interiorized 
3UC, but their use of procedures and algorithms potentially mask the coordination of the three levels 
of units. In addition, some issues related to the IFS tasks, such as relying on mixed numbers, may 
have been overlooked and resulted in a false identification of that PST constructing IFS. As such, our 
results call for further investigation. 

Discussion 
We found that assessing the interiorization of Three Level Units Coordination (3UC) in PreK–8 

preservice teachers is challenging. Primarily this challenge arose from the PSTs’ automatized 
mathematical procedures that upper elementary and middle school students may still be in the 
process of learning. Instead of having to coordinate three levels of units on these tasks, PSTs may 
just be using their procedural knowledge for dividing fractions or finding equivalent fractions. These 
computational procedures mask evidence for or against the interiorization of 3UC. While PSTs may 
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be able to use a procedure (see Figures 1 and 2) to find a correct answer, they often do not 
demonstrate evidence for or against their ability to view 3/4 of a whole pizza as three 1/4 pieces, 
where four such pieces would make up a whole pizza, and that each 1/4 piece contains two 1/8 
pieces. 

Likewise, we found assessing whether or not PreK–8 preservice teachers have constructed an 
iterative fraction scheme (IFS) to also be challenging. Two reasons for this challenge are the PSTs’ 
use of mixed numbers and lack of confidence. Hackenberg (2007) claims that when students cannot 
consider an improper fraction as a number in its own right, and rather must change the number to a 
mixed number, then the student has not constructed an IFS. Some of the 13 students found to have 
constructed an IFS prior to interiorizing 3UC may have “fooled” us into believing they had 
constructed an IFS even though they relied on mixed numbers to reach (and represent) their solution. 
In addition, the PSTs were often confused about the problem statement as well as their solutions to 
IFS items. In retrospect, we wonder whether we should have inferred that a PST has constructed an 
IFS when they exhibit confusion and lack confidence in their solutions. 

From part of the analysis of our data, it seems that some PreK–8 preservice teachers may have 
constructed IFS without the interiorization of 3UC. However, because of the problematic assessment 
of these items, as noted above, it is difficult to make a definitive conclusion.  Because PSTs’ 
difficulties with fraction concepts and fraction computations is an enduring challenge for researchers 
and teacher educators alike, this current research should be expanded. One starting point is to 
redesign the items used in our current assessment (which were originally designed for upper 
elementary and middle school students) so that PSTs cannot use procedures and algorithms to solve; 
instead, they must rely on their constructed schemes and interiorized operations. Another expansion 
of our research is to conduct clinical interviews with the PreK-8 preservice teachers to better 
understand whether or not they had truly interiorized 3UC or constructed an IFS. 

In addition to the advancement of research, changes should also be considered in required 
mathematics courses for PreK–8 preservice teachers. For example, instead of using language that 
reinforces part-whole thinking (i.e., describing the fraction 4/5 as four equal-sized parts out of five), 
instructors can emphasize language that encourages a more iterative way of thinking (i.e., describing 
the fraction 4/5 as 4 equal-sized parts, each of which is 1/5 of the whole). In addition, instructors can 
incorporate more instructional tasks and activities that involve improper fractions, such as asking 
PSTs to model and describe improper fractions using representations or manipulative materials such 
as Pattern Blocks. These practices may help PSTs move towards interiorizing the coordination of 
three levels of units and constructing an IFS. 

With the call for students as young as fourth and fifth grade to operate with higher-level schemes 
and operations (CCSSO, 2010), it is imperative that future PreK–8 teachers also be able to operate 
with higher-level schemes and operations. Both research and practice can help to accomplish this 
goal. 
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In this paper, we analyze efforts to encourage teachers’ attention to student thinking through a 
professional development (PD) program. We describe three groups of teachers within the same 
program who completed different types of assignments, either conducting interviews, planning 
classroom activities, or both. In both types of assignments, teachers were prompted to explicitly 
address student thinking. Teachers attended to specifics of student thinking when conducting and 
analyzing interviews, but struggled to do so when planning activities. While acknowledging the value 
of sustained attention to revision of lessons, reviewing classroom videos, and utilizing different forms 
of classroom discourse, we argue that conducting and analyzing interviews is an underused activity 
that can and should be an important part of teachers’ professional development if we seek to 
encourage attention to student thinking. 

Keywords: Teacher Education-Inservice (Professional Development); Classroom Discourse 

Introduction and Theoretical Perspective 
Student-centered teaching in mathematics classrooms has been at the heart of reform movements 

and curricula in recent years. We take the perspective that attention to student thinking is important, 
but that learning to notice and understand what students are doing is a difficult process. Recently, 
Schoenfeld (2011) has called us to consider how the practice of attending to student thinking may be 
developed. In the present paper, we respond to this call and argue that engaging teachers in 
conducting and analyzing mathematical interviews with students is extremely productive. To support 
this claim, we describe the work of teachers in an extended PD program that had the dual goals of 
enhancing teachers’ mathematical content knowledge of functions and a functional approach to 
mathematics and enhancing teachers’ understanding of students’ mathematical thinking. 

Attempts to enhance mathematics instruction in the United States (US) have embraced the ideas 
of student-centered or responsive teaching in varying ways. For example, Chapin, O’Connor, and 
Anderson (2009) describe types of classroom talk designed to elevate and utilize student 
contributions, such as restating student ideas in other terms and asking other students to address a 
proffered student idea. These strategies, and others designed to encourage rich student discussion in 
the mathematics classroom, are valuable, as is helping teachers to develop them. However, teachers 
cannot utilize these productively unless they are able to quickly understand what a student is saying 
or determine what questions to ask to clarify the student’s thought. Thus, attention to and 
understanding of student thinking must underpin and accompany any strategies for encouraging 
classroom discussion. 
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Similarly, PD often includes activities in which teachers create, review, and revise lesson 
materials and implemented lessons. The Japanese “lesson study” model (e.g., Lewis, 2000) includes 
these kinds of activities, and they are the focus of the recent call from Hiebert and Morris (2012) to 
shift attention away from teachers and towards the artifacts of teaching, including constantly revised 
lesson plans. Hiebert and Morris state that a key feature in the plans would be that “students’ likely 
responses to instructional tasks and questions are predicted to allow teachers to plan how to use 
students’ thinking during the lesson” (p. 95). Here, they, too, lend their support to the importance of 
attending to student thinking. In both of these models, being able to understand the students is 
essential to the work that the teachers are being asked to do, and again must either precede or develop 
along with the focus activity of revising materials. There is also a logistical challenge to the idea of 
using lesson creation and revision as part of PD in the US. As seen both in lesson study and in 
Hiebert and Morris’ vision, these are practices to be taken on and sustained by groups of teachers. 
This is at odds with most PD for in-service teachers. Teachers may be from different schools using 
different curricula; they may also have time allocated for PD only sporadically. As a result, any 
attempt to focus sustained attention on lesson plans is interrupted, as teachers are not able to 
repeatedly implement and revise these “artifacts.” While some schools have recognized that teachers 
may benefit from shared planning time and collaboration with their peers, it remains to be seen how 
widely this will be sustained and whether or not researchers will be able to access these practices and 
determine whether and how they enhance teachers’ attention to student thinking. 

However, research has shown that teachers can change how they attend to student thinking after 
PD that encourages this attention directly. For example, the video clubs described by van Es and 
Sherin (2008) show that teachers engaged in discussing videos of their teaching shift what they 
attend to, or “notice.” Past work from Carpenter, Fennema, Peterson, Chiang, and Loef (1989) 
showed the results of a PD course in which teachers learned about student thinking in mathematics. 
Their approach, Cognitively Guided Instruction (CGI), included examination of student explanations. 
The teachers who took the course had significantly higher scores in knowledge of student strategies 
for their students, as compared to a control group of teachers. In addition, the students of the teachers 
who had participated in the CGI PD spent significantly less classroom time on number fact problems, 
yet they did significantly better than the students of control group teachers on questions of this type 
on a standardized test. 

This work has been continued by Jacobs, Lamb, Philipp, and Schappelle (2011), using resources 
from CGI to provide sustained PD that included examining written work and video from classrooms. 
They showed that teachers improved in the extent to which they could attend to student thinking after 
extended participation in the PD. They assessed this by evaluating each teacher’s responses as the 
teacher watched a videotaped interview with a student. Since Jacobs et al. consider teachers’ viewing 
of a video of an interview to be suitable ground to elicit and measure teachers’ attention to student 
thinking, this implicitly supports our suggestion that teachers have much to gain from analyzing 
interviews. We suggest that this becomes an even more powerful activity when the teachers conduct 
the interviews themselves and when the interviews are used to develop, and not just assess, the 
practice of attending to student thinking. By carrying out the interviews themselves, teachers have 
the benefits of evaluating the resulting video, but also the experience of attending to and responding 
to the student thinking in the moment. 

Interviewing has been a powerful tool for researchers to gain rich insight into student thinking 
and capabilities. However, we argue that we have not sufficiently tapped this resource for teachers. 
We take the position that interviewing, as outlined by Ginsburg (1997), is not so very different from 
the forms of classroom talk endorsed by Chapin et al. (2009). In order to use “productive talk moves” 
in the classroom, a teacher has to be in the position of attending to students’ thinking. We argue that 
through interviewing, teachers can take advantage of concentrating on student’s responses without 
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the responsibilities of managing a classroom in order to (1) begin to build a knowledge base of 
student ideas around particular mathematical topics, and (2) develop skills in attending to student 
thinking that they can then extend into the classroom. 

In this paper, we report on our work with middle school mathematics teachers from multiple 
districts and schools engaged in a single PD program. The program focused on deep mathematical 
content knowledge of functions and a functional approach to mathematics as well as attention to 
student thinking. To encourage teachers to attend to student thinking, assignments included watching 
and responding to classroom videos, examining pieces of student work and classroom transcripts, and 
responding to questions asking teachers to predict what they thought students would do with different 
mathematical scenarios. In addition, we provided teachers with assignments in which they could 
choose to plan a lesson or to conduct an interview with a student. By comparing cases of three groups 
who completed different kinds of activities, we illuminate some of the benefits of having teachers 
conduct interviews as a way to consider student thinking, as well as describe challenges inherent in 
using lesson planning with the same intent. We argue that conducting and analyzing interviews with 
students can allow teachers to examine student thought in depth and that this should be put to use in 
PD. 

Method 
The data for this paper come from a PD program that offers three graduate-level semester-long 

courses, conducted partially online. To date, the program has had three cohorts of approximately 60 
teachers each, from nine school districts. Here, we analyze the work of some of the teachers in the 
third course of the first cohort. 

In this course, we had four three-week units, each unit concluding with an assignment that was 
framed as “Engaging Students.” For each of these four assignments, teachers worked in groups of 
two to four; each group could choose to conduct and analyze interviews with students, or they could 
create a learning activity. We did not require teachers to develop a full-class activity that would 
extend for an entire class period, nor did we require them to use any particular lesson plan format.  

Table 1: Assignment details 
First option: Interview Second option: Activity plan 

With your group, discuss and compare what 
you each found in your interview. Together, 
write a brief report on what you found in your set 
of interviews. 

Make sure you include the following in your 
group report: 

What did the set of your group's interviews 
show about students' ways of thinking about 
inequalities? What did students say or do that 
surprised you? Use evidence from the transcripts 
of the interviews to support your ideas. How 
might the students' ways of approaching this 
problem help or hinder their understanding of 
equations and inequalities in future mathematics? 
What more would you like to be able to ask your 
students in order to better understand their 
thinking? 

 

What is one mathematical idea, preferably 
relating to this unit's content, that your students 
have difficulty with and that you hope to address 
with an activity? 

What understandings do you think your 
students already have that can form a foundation 
for improved understanding of that idea? What 
misunderstandings do you think your students 
have that may hinder their understanding of that 
idea? What would you like to know about your 
students' understanding of that idea? 

Focus on students' understanding of the 
mathematical idea, rather than (or in addition to) 
their performance of specific tasks or algorithms. 

Work together to design a single activity (not 
necessarily a complete lesson) appropriate to 
your grade levels that addresses the idea you 
identified, builds on their understandings, and/or 
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addresses their misunderstandings. Design the 
activity so that you will learn something new 
about your students' reasoning. 

The option to create an activity was intended as a way to allow teachers to apply their knowledge of 
student thinking to teaching practice. The text of the assignments is shown in Table 1. 

In both cases, teachers were asked about student thinking and asked to describe their students’ 
thinking about the content included in the interview or activity. PD facilitators gave feedback to 
assignments in writing via an online forum. 

Table 2: Assignment choices 
 Number of 

teachers 
Grades 
taught 

Unit 1 Unit 2 Unit 3 Unit 4 

Group 1 4 teachers 5, 9 learning 
activity 

learning 
activity 

learning 
activity 

learning 
activity 

Group 2 2 teachers 7, 8 interview interview interview learning 
activity 

Group 3 3 teachers 6, 8 interview interview interview interview 
 

We chose three groups of teachers to analyze here. Group 1 chose to do learning activities for all 
four units. We selected this group because they were the only ones in the entire cohort who made this 
choice, not completing any interviews. Group 2 chose to do three interview assignments, followed by 
a learning activity for the fourth unit of the course. We selected this group, the only one to follow this 
specific pattern of choices, because we theorized that the interview assignments might better prepare 
them for the learning activity assignment. Group 3 chose to do four interview assignments. We 
selected this group because it represented the opposite end of the spectrum from Group 1. There were 
multiple groups (nine groups, out of nineteen in the cohort) selecting only interviews; from those, we 
chose Group 3 because they shared similar characteristics with Groups 1 and 2 as indicated through 
classroom observations carried out at the outset of the PD program using the Reformed Teaching 
Observation Protocol (RTOP) (Sawada et al., 2002). Together, these three groups illustrate a variety 
of paths followed by teachers. 

For each group, one researcher reviewed the teachers’ written analysis, the interview transcripts 
and/or activity plans, the online forum discussions, and the PD facilitators’ feedback and produced a 
“thick description” (Geertz, 1973) of each group’s work. Next, a second researcher reviewed each of 
the artifacts again and revised and added to the description. 

 The results we present below allow us to provide insights into the utility of these assignments 
and offer points of consideration for PD design. 

Results and Implications 
Analysis of the teachers’ work showed that when teachers created learning activities, their 

attention to student thinking was not as detailed, not as specific, and did not form as substantial a 
portion of their work. They did address student thinking in some cases, but it was because the 
assignment required it. That is, they were responding to our questions in order to complete the 
assignment, not because attention sprang organically from planning an activity. 

Group 1: Four learning activities – beginning to address generalities of understanding 
In their learning activity for Unit 1, the group members planned an activity in which different 

types of candy represented positive and negative numbers and unknowns. However, it was unclear 
how the structure of the activity itself took into account their students’ thinking. In response to the 
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question, “What understandings do you think your students already have that can form a foundation 
for improved understanding of that idea?”, they wrote only, “Our students have the foundation of 
how solve an equation with the goal of isolating the variable.” Here they made a general statement 
about what their students might be able to do, but did not provide evidence or specifics to support 
their claim. In response to the question, “What misunderstandings do you think your students have 
that may hinder their understanding of that idea?”, they listed four related items: “Vocabulary word 
- inverse // Inverse means the opposite in effect. The reverse of. // Some students lack the 
understanding of what an inverse operation is // Solve for an unknown within the equation.” Here, 
they pinpointed the absence of a skill, but did not address what it is that their students do think or 
give any information other than the summary assessment. The Unit 2 work was similar. 

By the Unit 3 learning activity, there is some evidence that Group 1 did try to respond to the 
instructors’ requests that they provide more evidence and specifics about student understanding. 
They stated that, “some of our students tend to be stronger graphing information than verbally 
interpreting it.”In this statement, the group made some progress in attending to student thinking: they 
avoided listing mathematical competencies as “student understandings,” as they did in Units 1 and 2, 
and instead addressed differences among students. The statement suggests that the group felt that 
their students had different competencies to build upon. However, note that the statement is still 
general and lacks supporting evidence. This continued in Unit 4, with general comments forecasting 
difficulties their students would have with the activity such as, “Finding the connection between the 
word problem and the graph will be difficult for [the students].” 

Group 2: Three interviews and a learning activity – progress and regression 
In conducting their interviews for Unit 1, Group 2 focused on correct and incorrect answers from 

students, following up more on incorrect responses and pushing for correct notation. While the 
correct/incorrect answers were also a focus of their written analysis, they did state that they 
understood why their student gave a particular incorrect answer: “I feel that this was an 
overgeneralization of solving for the variable… As a side note, this makes sense to me. In the process 
of practicing the solving of inequalities, students made the observation that it ‘was like solving an 
equation.’” They also suggested a way to investigate the student’s understanding: “we would be 
interested in how this student would graph the inequality on a number line that has no values listed.” 
Taken together, these two quotes demonstrate that Group 2was beginning to consider why students 
might give particular answers and how they might follow up on their perceptions of student thinking. 

In Units 2 and 3, Group 2 continued to try to meet the assignment and instructors’ requests for 
specific evidence and for details about student thinking. The group’s primary focus was still on what 
students didn’t understand in comparison to what they did; for example, they wrote, “the 8th grade 
student didn’t really to seem to understand the problem clearly.” While they did not articulate details 
about students’ thinking, they did identify specific issues and consider how to address them. In Unit 
2, the group noted that a student seemed to have “difficulty with the coordinate grid,” so their 
suggestion was to remove the grid and see how the student would approach the problem. In Unit 3, 
they directly addressed both their attempts to understand student thinking and their challenges: “His 
misunderstanding of the line being diagonal confuses us. He seems to think the line on the apples 
graph is diagonal but the line on the oranges graph is not. (Refer to [line in interview transcript].) It 
was interesting watching him gesture with his hands to determine that both lines were indeed 
diagonal.” 

In Unit 4, with each teacher having previously completed three interviews, Group 2 decided to 
create a learning activity, asking students to find the length of the diagonal of a rectangle with an area 
of 90 cm2 and length and width that were consecutive integers. While they included mention of 
having students explain their strategies, the background they gave on student thinking to justify the 
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activity was quite general: “Students are able to use formulas to solve problems as long as the 
problem is straightforward and there is only one step involved.” The course assignment did not 
require Group 2 to implement and analyze the activity, but this group chose to do so. In the process, 
they tried to return to addressing specifics of student thinking: “many of the students totally fell apart 
and started trying to do some different things instead of using the Pythagorean Theorem. One student 
in particular added 44 and 46 to get 90. A few other students tried to add some other numbers 
together. One student divided 90 by 2 to get 45 and then divided 45 by 2 again to get 22.5.” They 
listed the student strategies, but did not try to determine why the students had used these, nor did they 
offer suggestions for what they might do when confronted with these student ideas, as they had done 
in Units 2 and 3. 

Group 3: Four interviews – developing focus on individual students 
As with Group 2, the Unit 1 interviews from Group 3 focused on students’ correct and incorrect 

solutions. They had asked students to shade a number line to show a<12, and their analysis of the 
interviews included evaluative comments like, “One student did not seem to understand what “less 
than” meant, he actually included 12 as a possible solution.” While the students’ accuracy was at the 
forefront, the group did demonstrate that they were considering specifics of what students were 
doing: “Zero was a point of confusion for the inequalities. For example, when a student answered 
verbally he believed that all the solutions had to stop at zero, but when asked to place the “a’s” on 
the number line he realized the solutions could include values less than zero.” The Unit 2 work was 
similar. 

In Unit 3, the group designed their own interview tasks. They stated that they designed this 
activity, which used drawings to depict a scenario that they then asked the students to graph, because 
the students struggled with graphing in the Unit 2 interviews and they wanted to think of ways to 
scaffold a graphing activity: “we hypothesized that the images would aid the students in both 
activities if the student began with the image problem.” They refer to specifics from their Unit 2 
interviews as they’re justifying their choice of topics here; however, when they shift to discussing the 
actual items, they revert to generalities. For example, to address the question, “What understandings 
do you think your students already have that can form a foundation for improved understanding of 
that idea?” they write, “variables, linear relationships, coordinate plane”. The use of a list of topics, 
rather than what students understand about the topics, is similar to the work of Group 1, as described 
above. While the teachers in the group did go on to conduct the interviews, their analysis of the 
interviews was only a few sentences long, and mainly addressed whether or not the students thought 
the pictures were helpful. 

In Unit 4, Group 3 again used the interview tasks supplied by the PD program. The group shifted 
away from their prior emphasis on correct answers, and mentioned wanting students to understand 
the full scenario in the problem. However, their statements often did not include specific supporting 
evidence; for example, “Student 2 was able to independently arrive at two solutions and eventually 
was able to explain a deeper understanding of the scenario than student 1.” After the departure in 
Unit 3, they again considered what individual students were doing, but they did not progress in 
providing evidence as much as Group 2 had. 

Implications 
As seen in the examples above, when teachers creating a learning activity did address student 

thinking, it was often generalized because they didn’t have a case to examine. However, when 
teachers conducted interviews, we can see more instances where their analyses maintained a focus on 
the specifics of student thinking. For example, Group 2 wrote descriptions of the students’ 
progression through the problems, pointing to specific moments in the transcript to justify times 
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when they claimed the students were confused. In addition, while Group 2 exhibited attention to 
student thinking during the three interview assignments they completed, the activity plan that they 
devised for the fourth assignment, after the interviews, showed the same type of generalizations as 
seen in the work of Group 1. This shift away from attending to student thinking was also seen in the 
Unit 3 work of Group 3, in which they focused on designing interview tasks, rather than on 
conducting and analyzing their interviews. While Group 3 had not demonstrated the depth of 
attention to student thinking that we saw from Group 2, the Unit 3 work of designing the interviews 
seemed to detract from the attempts they had made in Unit 1 and Unit 2 to focus on specifics about 
what students were doing. While all groups show some evidence of shifts in their work, and all 
groups show room to continue to develop their attention to student thinking, these cases begin to 
illuminate the advantages of interviews. 

In planning activities, we were asking teachers to recall student thinking from the past. 
Conversely, when the teachers conducted interviews, they had the video and written work, as well as 
recent memories. The specificity of what they had available to them allowed them to remain focused 
on students’ thinking. While this specificity would also be a benefit of having teachers watch 
classroom videos, as in Van Es and Sherin (2008), the interviews afforded teachers the opportunity to 
focus on one student at a time without having to manage as many other tasks. This was the case both 
while conducting the interviews and while reflecting upon them. This advantage emerged in the 
example above from the Unit 4 activity plan by Group 2. When they reflected on their activity after 
implementation, they reverted to listing many student answers, rather than taking a deeper look at 
particular instances of student thinking. 

Certainly, this analysis uses only a few cases of groups of teachers. Thus, it shows us what is 
possible when teachers conduct and analyze interviews, but of course it cannot conclusively say what 
the results would look like in a large-scale comparison of groups of teachers doing different series of 
assignments. It is also important to note that here we are analyzing teachers’ work in groups, but each 
group has multiple teachers working together on joint final products. These joint analyses reflect the 
work of the group, but it’s not possible to know how each individual contributed or what they might 
have done differently if they were working on the same task alone (see Bautista, Brizuela, Glennie, 
and Caddle (2014) for an examination of this issue). An additional complication is that when teachers 
chose to do interviews, the feedback from facilitators after each assignment was more consistently 
focused on the teachers’ attention and interpretation of student thinking. When teachers planned 
activities, the facilitators tried to address student thinking, but also commented on the structure of the 
activity. This may be valuable feedback on an important task of teaching, but it means that 
facilitators devoted less time and space to supporting teachers’ understanding of student thinking. As 
with the teachers, facilitators lacked a case to examine, and it adversely affected the support they 
were able to offer. 

Researchers have much to learn about how to promote teachers’ attention to student thinking, 
including how it may grow and evolve while teachers conduct and analyze interviews with students. 
While future work should include more rigorous examination of a larger number of groups of 
teachers, this analysis highlights some lessons for teacher educators and PD providers. Certainly, 
activity planning could be undertaken in a thorough and specific way, with constant revision, as well 
as videos of implementations, as suggested by Hiebert and Morris (2012). Equally, analyzing 
classroom video (e.g. Van Es & Sherin, 2008) can enrich teachers’ understandings as well. Our 
analysis does not detract from these other approaches; rather, it shows the rich opportunities that 
arise when teachers conduct and analyze interviews with students. As mentioned, many PD 
opportunities involve teachers from different grades, different schools, or who are using different 
curricula. Interviews can be conducted and analyzed even within these constraints, and teachers’ 
attention to student thinking can be enriched as a result. 
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Formal lesson plans have long been touted as a best practice in mathematics teacher preparation. 
Experienced teachers frequently view formal lesson plans as nonessential to the planning, 
implementation, and evaluation of instruction. We discuss results from an online survey designed to 
make the perspectives of 60 prospective and practicing mathematics and special education teachers 
regarding lesson plans explicit. Practicing teachers identified their use of formal lesson plans as a 
reflective tool and for organization purposes, whereas for prospective teachers lesson plans served 
as a guide and for accountability reasons. Finally, we describe future mathematics teacher education 
engagements designed to promote productive yet practical perspectives of formal lesson plans.  

Keywords: Teacher Beliefs; Teacher Education-Inservice; Teacher Education-Preservice  

Introduction 
Planning for a lesson has long been recognized as a primary factor impacting the efficacy of 

classroom instruction. According to Brahier (2013), “The effectiveness of a lesson depends 
significantly on the care with which the lesson is prepared” (p. 141). Focused lesson planning has 
been shown to support teachers’ implementations of cognitively demanding tasks, help teachers 
anticipate students’ cognitive challenges, and support the generation of questions teachers can ask 
that promote and elicit student thinking (Boaler & Staples, 2008; Franke & Kazemi, 2001; 
Henningsen & Stein, 1997). Smith, Bill, and Hughes (2008) assert, “One way to both control 
teaching with high-level tasks and promote success is through detailed planning prior to the lesson” 
(p. 133). 

As introduced by Morine-Dershimer (1977) and described by Schoenfeld (1998), a teacher's 
lesson image is “the teacher's envisioning of the possibilities and contingencies related to a lesson” 
(p. 17). Furthermore, a teacher’s lesson image includes the teachers’ expectations for how students 
will engage with certain tasks or activities, what students might find straightforward or challenging, 
and potential student responses to the lesson’s tasks and activities and how the teacher expects to 
deal with them (Schoenfeld, 2010, p. 233). As such, a teacher’s lesson image incorporates everything 
related to how the teacher imagines the lesson will unfold (Schoenfeld, 1998, p. 18). Although the 
idea of a lesson image is more preponderant in literature with reference to experienced teachers, one 
need not have taught a lesson in order to have some image for how instruction might play out. 
Therefore, prospective and early career teachers should be motivated to imagine and anticipate how 
students might engage with instruction, envision the understandings and ways of thinking students 
might learn from alternative instructional approaches, and the ways in which discourse invites 
mathematical thinking and reasoning (Grouws & Shultz, 1996; Thompson, 2002). 

One tool that encourages teachers to make their lesson images explicit, and potentially objects of 
thought and reflection, is the formal lesson plan. According to Brahier (2013), “A lesson plan…is a 
road map that can be used by the teacher to provide structure to the lesson” (p. 165). Furthermore, 
written lesson plans help motivate teachers to think deeply about their classroom tasks and activities 
and attempt to anticipate how students might interpret a task, the methods or strategies (correct and 
incorrect) students might use to make sense of the task and work toward a solution, and how those 
“strategies and interpretations might relate to the mathematical concepts, representations, procedures, 
and practices that the teacher would like his or her students to learn” (Smith & Stein, 2011, p. 8). As 
such, formal lesson plans permeate teacher preparation programs in general and mathematics 
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methods classes in particular. As described by Kagan and Tippins (1992), “In virtually every teacher 
education program, considerable time is spent teaching novices how to write detailed, linear lesson 
plans” (p. 477).Although much less pervasive, research in professional development in mathematics 
education has included formal lesson plans as a data generating and analysis component (e.g., Burns 
& Lash, 1988; Morine-Dershimer, 1977; Smith, Bill, & Hughes, 2008). In addition, the creation and 
implementation of formal lesson plans and reflecting on how students engaged with instruction has 
been used with practicing teachers as a means to support teachers’ development of instructional 
practices that promote “framing and solving problems, looking for patterns, making conjectures, 
examining constraints, making inferences from data, abstracting, inventing, explaining, justifying, 
challenging, and so on” (Stein, Grover, & Henningsen, 1996, p. 456). 

Unfortunately, lesson plans have typically been viewed by teachers as a script or directions for 
executing a lesson that emphasizes procedures and structures, with “limited attention to how the 
lesson will help students develop understanding of key disciplinary ideas” (Smith & Stein, 2011, p. 
76). According to Kagan and Tippins (1992), “Traditional university coursework may exaggerate the 
importance of daily lesson plans…[and] an emphasis on detailed written lesson plans may even be 
somewhat detrimental in that it masks the importance of improvisation” (p. 478). Moreover, research 
has consistently shown that “experienced teachers do not use written lesson plans…[and] at 
most…jot down an outline or list of topics to be covered during the lesson, using a cryptic 
shorthand” (Kagan & Tippins, 1992, pp. 477-478). Practicing teachers tend to regard formal lesson 
plans as useful only for student teachers or when they need to plan a new unit, perhaps with new 
standards, or as a required component of a formal administrative observation of their instruction 
(Kagan & Tippins, 1992).  

Purpose of the Study 
Disparity between prospective and practicing teachers, regarding the expectations of and value to 

developing, discussing, and revising formal lesson plans, highlights a need to better understand these 
distinctions from a situational perspective (Peressini et al., 2004), where teacher learning is 
“understood as a process of increasing participation in the practice of teaching, and through this 
participation, a process of becoming knowledgeable in and about teaching” (Adler, 2000, p. 37).In 
this article we present results from a study designed to better understand teachers’ perspectives on the 
role formal lesson plans can and do play in the teaching and learning of mathematics. Specifically, 
the study was designed to address the following research questions:  

• What are practicing (or in-service) teachers’ perspectives on the role lesson plans play in 
their instructional practices? 

• What are prospective (or pre-service) teachers’ perspectives on the role lesson plans play in 
their instructional practices? 

• How do practicing and prospective teachers’ perspectives regarding lesson plans compare 
and contrast? 

Methods 
Study participants consisted of two samples: (a) 28 practicing teachers comprised of middle 

(grades 5-8) and secondary (grades 9-12) school mathematics teachers and intervention specialists 
(special education teachers); and, (b) 32 prospective teachers comprised of early childhood (grades 
K-3), middle childhood (grades 4-9), secondary (grades 7-12), and special education (grades K-12) 
license seeking teacher candidates. Potential participating teachers were emailed a link to an online 
survey designed to make explicit their perspectives on the role formal lesson plans play in their 
practice (see http://kentstate.az1.qualtrics.com/SE/?SID=SV_cCou1lOt7M930zj) 
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Survey Respondents (Study Participants)  
The survey response rate for practicing and prospective teachers was 31.1% (28 of 90) and 20.1% 

(32 of 159), respectively.  Practicing teachers ranged from first year math teachers to those with 30 
years of experience.  A comparison of the number of respondents by grade band, specialization, and 
teacher education program is displayed in Table1 below. 

Table 1: Teacher Survey Participants by Grade Band, Specialization, or Program 
 

Practicing Teachers Number of 
Respondents Prospective Teachers Number of 

Respondents 

Intervention Specialist 13 Special Education 
Licensure Program 21 

Math Content, Grades K-2 0 Grades K-3 Licensure 
Program 3 

Math Content, Grades 3-5 1 Math Content, Grades 4-
9 Licensure Program 3 

Math Content, Grades 6-8 5 Math Content, Grades 7-
12 Licensure Program 5 

Math Content, Grades 9-12 11   

Analysis 
A situative perspective suggests that knowledge, beliefs, and practices are indissoluble from the 

situations in which they occur (Putnam & Borko, 2000). As such, learning to teach mathematics 
“occurs in many different situations—mathematics and teacher preparation courses, pre-service field 
experiences, and schools of employment” (Peressini et al., 2004, p. 67). The samples of teachers 
examined here represent individuals at different ends of a teacher-learning trajectory: teachers at the 
mathematics methods stage (prior to student teaching) and teachers at various levels of experience as 
practicing teachers. 

In the following section, we examine and compare practicing and prospective teachers’ 
perspectives on the role formal lesson plans play in their practices. We focus on two specific 
comparisons: (a) the role of lesson plans for prospective teachers, and (b) the role of lesson plans for 
practicing teachers. Analysis involved both qualitative and quantitative methods. 

The role of lesson plans for prospective teachers. Survey respondents were asked their 
perspectives on the role lesson plans serve prospective teachers. Practicing teachers indicated a wide 
spectrum of perspectives. Sample responses included, “Prepares you to think about all of the things 
that can occur in a period…makes you start thinking about how to organize the time in class” and,  
“They help a pre-service teacher realize and get used to every aspect that is involved in teaching on a 
daily basis. It helps with time management and relating teaching to things that are meaningful in 
students' lives.”   

Individual members of the research team, which consisted of the course instructor and three 
graduate students enrolled in a graduate level course on mathematics education research, examined 
practicing teachers’ responses and developed themes with which to categorize these responses 
(Strauss & Corbin, 1998). The entire research team then reviewed and discussed each category, 
category (theme) descriptors were made consistent, and teacher’s responses were re-classified to 
support coding reliability. The final categories arrived at through examination and discussions align, 
to a degree, with Clark and Peterson (1986) “types” and “functions” of planning.  In order to provide 
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a better understanding of the categories (or themes) the research team settled on, it will be beneficial 
to exemplify what we considered a representation of each (Table 2).   

Table 2: Sample Practicing Teachers’ Responses in Regards to Corresponding Categories  
 

Category (Theme) Sample Practicing Teacher Response 
Confidence “The lesson plan can add to their confidence…” 

Guide 
“[Lesson plans give] you have a general idea of what you want 
to accomplish and how you are going to do it.” 
“[Lesson plans] help them understand what they have to know.” 

Instructional Flow “[Lesson plans] do help a new teacher understand the flow of 
the lesson...” 

Keep on Track-
Accountability “[Lesson plans]…make sure standards are taught.” 

Keep on Track-Locally 

“[Lesson plans] forced me to put things on paper, such as time 
spent on an activity…” 
“It helped me to have typed lesson plans early on because 
included everything I was to cover in the lesson.” 

Keep on Track-Globally 
“[Lesson plans] help a new teacher understand the flow…of the 
week/month…[and] can help a new teacher…transition from 
one unit to the next.” 

 Organization  

“[Lesson plans] helped [me] to learn what goes where and how 
to find the resources.” 
“[Lesson plans] help structure their day when feeling 
overwhelmed.” 

Reflective Tool 

“[Lesson plans] prepare you to think about all of the things that 
can occur in a period.” 
“Thinking about how to tie lessons to each other as well as the 
standards looking for connections.” 

No Productive Purpose “None.” 
 

Prospective teachers also indicated a wide variety of perspectives regarding the role formal 
lesson plans serve a prospective teacher. Responses ranged from, “They make you thoughtfully 
decide what to teach and how to teach it so that it would be effective,” to “They serve as a guide to 
the teacher so they can accomplish what they want, and do it in an organized fashion.”   

The process by which the research team categorized prospective teachers’ responses followed the 
same stages as described above for practicing teachers to support coding reliability. After 
individually examining and categorizing teachers’ responses, the entire research team reviewed and 
discussed each response and its categorization, re-classifying responses as needed. The percentage 
each category (i.e., theme) was indicated by prospective and practicing teachers is displayed in 
Figure 1. 
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Figure 1: Practicing and Prospective Teachers’ Responses to the Role that Formal Lesson 

Plans Serve Prospective Teachers 

There were substantial differences between the percentages of practicing and prospective 
teachers’ responses for “Reflective Tool,” “Guide,” and “Organization.”  Practicing teachers 
indicated formal lesson plans serve prospective teachers as a “Reflective Tool” 26% more and 
“Organization” 19.2% more than did prospective teachers. Taking into account that our sample of 
prospective teachers had been limited, in general, to observing K-12 instruction and tutoring 
individual students as part of their respective prior and current mathematics methods course field 
experiences, it is not surprising they would identify formal lesson plans as a “Reflective Tool” to a 
much smaller degree than practicing teachers. Regarding “Organization,” practicing teachers used the 
term in the sense of helping a prospective teacher “prepare” or be “well planned” for a lesson. As 
observers or class tutors, our sample of prospective teachers would have limited understandings of 
how and what to prepare for pragmatically. Therefore, it seems reasonable that prospective teachers 
would indicate “Organization” to a much smaller degree than practicing teachers.    

Prospective teachers identified “Guide” as a role formal lesson plans serve prospective teachers 
(i.e., themselves) 22% more than did practicing teachers. Prospective teachers used the term “Guide” 
in ways similar to how practicing teachers employed the term; that is, in very general ways. For 
example prospective teachers’ responses included, “[It] will be a guide to help with my instruction”; 
whereas sample practicing teachers’ responses, included, “[A] basic outline.” Both groups of teachers 
used the term “Guide” in the sense described by Kagan and Tippins (1992), where a teacher simply 
“jot[s] down an outline or list of topics to be covered during the lesson, using a cryptic shorthand” (p. 
478). Although our sample of practicing teachers may plan their lessons mentally, without 
committing much to paper as described by Kagan and Tippins (1992, p. 478) and suggested by their 
identification of a lessons plan as a “Reflective Tool,” prospective teachers (especially at the 
mathematics methods stage) lack the experiences to think of lessons in terms of students developing 
understandings and skills, rather than in terms of topics. 

The role of lesson plans for practicing teachers. Survey respondents were asked their 
perspectives on the role lesson plans serve practicing teachers. Practicing teachers indicated a wide 
range of perspectives regarding the role that formal lesson plans serve a practicing teacher (i.e., 
themselves). Sample responses included that lesson plans “help better organize the teacher and to 
keep track of what they taught or modified, and what is working and not working” to “I feel it is 
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burdensome.” Prospective teachers also indicated a wide array of perspectives regarding the role they 
envisioned formal lesson plans serving in their future as a practicing teacher. Responses ranged from, 
“They will help me improve my teaching by allowing me to look back at what I taught and fix my 
mistakes. It is a way to better my teaching,” to “Formal lesson plans will be a requirement that I will 
do because it is required but not because it is valuable to me or my time.” 

Individual members of the research team examined and categorized teachers’ responses using 
those categories (or themes), if possible, described earlier in Table 2. Next, the entire research team 
reviewed and discussed each response and its categorization, re-classifying responses as needed. 
These discussions again supported coding reliability. The percentage each category (i.e., theme) was 
indicated by prospective and practicing teachers is displayed in Figure 2. 

 

 
Figure 2: Practicing and Prospective Teachers’ Responses to the Role that Formal Lesson 

Plans Serve Practicing Teachers 

There were substantial differences between the percentages of practicing and prospective 
teachers’ responses for “Guide” and “Reflective Tool.” Prospective teachers indicated formal lesson 
plans serve practicing teachers as a “Guide” 29% more than did practicing teachers. As with 
teachers’ responses to the role lesson plans serve prospective teachers discussed in the previous 
section, both groups of teachers used the term in very general ways, as an outline or list of topics to 
be covered during the lesson (Kagan & Tippins, 1992). Practicing teachers identified “Reflective 
Tool” as a role formal lesson plans serve practicing teachers (i.e., themselves) 17.8% more than did 
prospective teachers. As indicated in the previous section, such differences could be accounted for by 
prospective teachers’ lack of experiences at designing and enacting instruction. 

Discussion 
In this report we described and compared prospective teachers’ (at the mathematics methods 

stage of their respective licensure programs) perspectives of the role formal lesson plans can and do 
serve in mathematics teaching and learning with practicing teachers’ perspectives. Analyses of 
teachers’ responses to survey questions designed to make teachers’ perspectives explicit indicated 
that our sample of prospective teachers had reasonable perceptions of district and school expectations 
they will encounter, regarding lesson plan requirements, as early career teachers—at least compared 
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to our practicing teacher sample. In addition, we described how analyses suggest that lesson plan 
activities for prospective teachers at the mathematics methods stage should: (a) promote and 
reinforce a focus on student thinking and learning, rather than a focus on covering topics; (b) 
minimize the potential for interpretations that convey formal lesson plans as something done simply 
by mandate; and (c) model and engage teachers in authentic planning, enactment, and reflection 
sessions. Furthermore, analyses suggest that universities and licensure programs should seek 
consistency in their mathematics methods courses regarding: (a) resources faculty promote to their 
students (i.e., prospective teachers) and (b) the amount of time prospective teachers should anticipate 
spending developing and revising their lesson plans once they have entered the field.   

Prospective teachers’ inclination to view formal lesson plans as a “Guide” aligns with Kagan and 
Tippins (1992) suggestion that lesson plans be defined as a brief outline of instructional procedures 
to be used to supplement teachers' guides and other curricular materials and resources (p. 477, 
488).Rather than pushing for lesson plans to be viewed as a “Reflective Tool” or a means to keep 
instruction “On Track,” as identified by our sample of practicing teachers, mathematics methods 
instructors should allow for students (i.e., prospective teachers) to initially view lesson plans an 
outline or guideline. According to Kagan and Tippins (1992), once enacted, these lesson plans should 
be revised to reflect the “spontaneous modifications that occurred during class (p. 488),” thus 
becoming a record of interactions.  Such a process has the potential to promote a more natural 
transformation of prospective teachers’ perspectives of the utility of formal lesson plans toward 
student learning; thus, supporting prospective teachers’ development of productive lesson images. It 
seems reasonable to expect prospective teachers’ experiences at developing lesson plans, attempting 
to enact lesson plans, and reflecting on these attempts to vary somewhat across licensure programs 
and universities. The number and content of mathematics methods courses prospective teachers take, 
the amount and context of field experiences, and the faculty assigned to teach mathematics methods 
courses all have significant impact on these experiences. Results presented here do not address these 
distinctive experiences. Future research should explore how such potentially disparate experiences 
impact prospective teachers’ expectations of the realities of mathematics teaching. 

With a situative lens, a focus on teachers’ perspectives regarding formal lesson plans supports the 
development of models of teachers’ understandings and ways of thinking at two distinct points (i.e., 
contexts) along a teacher-learning trajectory: the mathematics methods stage, prior to student 
teaching, and the practicing teacher stage. Although each of these “stages” is idiosyncratic, with the 
practicing teacher stage itself encompassing a continuum of experiences and contexts, such a focus 
supports the development of productive learning-to-teach situations for prospective teachers. Such 
situations have the potential to be successfully re-contextualized in prospective teachers’ future K-12 
classrooms (Peressini et al., 2004, p. 70). 

Finally, this study did not include one important set of data points, those of prospective teachers’ 
perspectives during student teaching. As such, future research should explore teachers’ perspectives 
on the role formal lesson plans serve at three distinct stages of a teacher-learning trajectory: 
prospective teachers enrolled in program-specific mathematics methods courses, prospective teachers 
during student teaching, and practicing teachers—including those teachers serving as cooperating or 
mentor teachers during student teaching. 
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In the course of engaging with a Mathematics and Science Partnership (MSP) project, we planned a 
yearlong Leadership Academy that fit under the “train the trainers” model for professional 
development. Midway through, teacher leaders rejected a traditional conception of leadership based 
on expertise, individualism, and the transmission of knowledge. This proved to be a moment of 
critical mass wherein the project was democratically reinvented around a model of shared 
leadership where teacher leaders were positioned as ambassadors of a culture of inquiry. We were 
able to document three catalysts for this shift as well as the conditions that existed such that these 
catalysts could prove effective at producing change. We present here our findings on what happens 
when we allow teachers to take power and experience agency in a teacher leadership development 
program. 

Keywords: Teacher Education-Inservice; Teacher Knowledge; Elementary School Education 

Introduction 
Answering the RFP for a state MSP grant, we planned a yearlong Leadership Academy that fit 

under the “train the trainers” model for professional development. We proposed to engage nine 
teacher leaders in an intensive study of their own practice and the Measurement and Data strand of 
the Common Core State Standards for Mathematics (CCSSO, 2010). At the conclusion of their study, 
the Teacher Leaders (TL) would plan and enact a two-week-long institute for their colleagues in the 
district. Our proposal adopted a leadership development stance akin to a game of telephone. As 
Mathematics Teacher Educators, we understood teacher leadership as an automatic byproduct of 
providing long-term, high-quality professional development to teachers and giving them a platform 
to share what they’d gained with others. 

We were shocked mid-way through when teachers who had been happy to participate in our 
curricular activity balked at the thought of identifying as teacher leaders. One wrote, “I am not sure 
that I really want to become a teacher leader…just because you try something doesn't make you an 
expert and teachers may be afraid of being perceived as representing themselves in that way.” 

In this moment, we confronted a living contradiction (Whitehead, 1989) in our assumptions and 
stance. At all times, we believed that teachers deserved agency and voice and intended to empower 
them as instructional leaders. However, the game of telephone positioned teachers as message 
receivers and ourselves as the adjudicators of expertise (a title that the teachers rejected) and denied 
teachers the very things we had intended the program to develop. 

We were able to recognize the contradiction in the midst of our project having previous 
experience with such work (Cox et al., 2014). Our story focuses on the impact of that dissonance and 
its role in our process of reconstructing our leadership development program midstream. We will 
present here our findings on what happens when we allow teachers to take power and agency in a 
Teacher Leadership Development (TLD) program. 

Leadership Development 
Current reform initiatives have led the mathematics education community to consider the 

professional development of teachers as leaders.  There are multiple models of leadership 
development and relatively little research on the effectiveness of these models. As such, we have 



Teacher!Education!and!Knowledge:!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

641!

made decisions to situate our work at the intersection of best practices for professional development 
of teachers of mathematics and their development as teacher leaders. With current demands for 
professional development programs that will reach large numbers of teachers, the idea of teachers 
themselves participating in the professional development of their colleagues is appealing to the 
mathematics education community.  Koellner, Jacobs, and Borko (2011) call for the purposeful 
preparation of a cadre of leaders who can implement effective high-quality PD. They identify three 
features that are critical for the effective preparation of these leaders, that coincide with the features 
of quality PD for teachers:  “(1) fostering a professional learning community, (2) developing 
teachers’ mathematical knowledge for teaching, and (3) adapting PD to support local goals and 
interests” (pg. 116). 

Like so many professional development providers Koellner, Jacobs and Borko (2011) frame their 
PD around three design principles: “fostering active teacher participation in the learning process, 
using teachers’ own classrooms as a powerful context for their learning, and enhancing teacher 
learning by creating a supportive professional community” (p.117).  Engaging teachers in worthwhile 
mathematical tasks, creating opportunities for reflection on their learning, supporting teachers to 
critically analyze their practice, analyzing student work, considering a multiplicity of teacher moves 
as possible for a given teaching episode, are all examples of the types of engagements used by 
mathematics teacher educators to create a high quality PD experience for teachers that attend to these 
three principles. 

Underlying a large number of leadership development projects we find a predominance of a 
design principle where teacher leaders experience, as learners, the PD that they will provide to 
others. In general, a collaborative and problem-based approach that is situated in problems of 
practice are used.  These approaches are identified by Davis, Darling-Hammond, LaPointe, & 
Meyerson (2005) as features of high quality leadership development programs as they discuss the 
preparation of highly effective school principals. 

This theory about the development of leaders produces leaders who exemplify expertise, who 
stand apart from other teachers whom they call colleagues, and who take on a separate role as 
“leader” that may include duties such as facilitating district professional development, coaching, 
classroom observation and peer review of teaching. In contrast, the shared leadership model suggests 
that teacher leadership is less about standing apart and more about standing beside. Schlechty (2001) 
describes shared leadership as, “less like an orchestra, where the conductor is always in charge, and 
more like a jazz band, where leadership is passed around among the players depending on what the 
music demands at the moment and who feels most moved by the spirit to express the music,” (p. 
178). 

In our experiences, shared here, we describe the dissonance that is created when a leadership 
group favors a shared leadership model, but engages in a professional development experience aimed 
at establishing expertise and elevated status. 

Project Background 
Our MSP was designed to meet the recommendations of best practices in the development of 

teacher leaders as described by the federal MSP program. We began with the selection of a small 
cadre of teacher leaders who would remain classroom instructors throughout and after the project.  
From there, we developed a three-strand curriculum (content, pedagogy, leadership) to be delivered 
in a Leadership Academy conducted over the course of a school year. We adhered to three principles 
when designing the curriculum: 

• Teachers should encounter a variety of engaging and interactive activities (c.f. Even, 1999; 
Nesbit et al., 2001) conducted in a constructivist environment (Khourey-Bowers et al., 2005). 
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• Learning should be individualized and grounded in professional inquiry and specific 
classroom practice (Khourey-Bowers et al., 2005). 

• A learning relationship should be at the heart of the academy and focus should be placed on 
establishing and supporting partnerships between individual teachers and university partners. 

Our Academy met six times in cycles, each cycle having the same basic structure. We’d start 
each cycle with a seminar where we met as a whole group including nine teacher leaders, six 
university partners, and one evaluator. In the weeks following a seminar, we’d spend time on 
individual reflection and meet in partnerships. The Academy would culminate in a 60-hour Summer 
Institute for math/science teachers in their district. At this institute, teacher leaders would engage 
their colleagues in conversations about their mathematical and pedagogical work in the Academy as 
well as in questions of future practice. 

University partners were thoughtfully matched (prior to our first seminar) to teacher leaders 
based on pedagogical interests or expertise and the personal preferences of faculty members about 
school or geographical location. Thus, one-on-one relationships were established early in the project 
and remained consistent throughout, documented as a best practice (Howe & Stubbs, 2003). We 
designed a series of partnership activities. From mathematical problem solving to curriculum 
alignment activity, to conducting mini action research projects into student reasoning (Even, 1999), 
to the activity of facilitating public discussion (Harris and Townsend, 2007; Howe and Stubbs, 2003; 
and Nesbit et al., 2001), our teacher leaders would be immersed in inquiry and intellectual 
exploration. 

Measurement and data and the eight mathematical practices within the CCSSM (CCSSO, 2010) 
were selected by district administrators as target areas for district improvement. Thus, those two 
areas formed the mathematical basis for our seminar curriculum. We had intended there to be a two-
way flow of influence between the seminars and the partnership activity. The interplay of ideas 
between large and small groups, 1.would keep our curriculum and professional learning grounded in 
real practice; 2. help the group note contextual similarities and differences; and 3. scaffold learning 
for all participants. We had intended to establish a professional community of practice (Lave & 
Wenger, 1991) for the teachers. Teacher leaders would gain authority, capable of establishing a line 
of inquiry (mathematical or pedagogical), pursuing that inquiry alongside partners, and presenting 
their findings to a larger group. In this way, teacher leaders would be empowered to be reflective 
practitioners and to engage in a rigorous examination of their own practice and the mathematical 
culture of their buildings and district. 

We intended the summer institute to be a replication of the activity of the Academy on a smaller 
scale. There would not be enough time for individual teachers to conduct their own inquiries into 
classroom practice, but they could benefit from the experiences and data collected by the teacher 
leaders in the Academy. Like the transitive property or a game of telephone, we expected the lessons 
of the Academy would translate to good district-wide professional development, an expectation 
supported by Wallace et al. (1999) and Miller et al. (1999). 

 Methodology 
Presented here is one slice of a two-year project aimed at uncovering what happens when we 

allow teachers to take power and agency in a Teacher Leadership Development (TLD) program. Data 
relevant to this study were taken from transcripts of LA Seminars, partnership meetings, and also 
teacher blogs and journaling responses. Data spans the first year of our MSP project. 

Data were transcribed and analyzed by the researchers.  Each researcher conducted multiple 
readings and interpretations using a hermeneutic process (Kinsella, 2006).  Interpretations were 
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substantiated and validated as we contrasted our interpretations and sought common ground, thus 
enriching our understanding of our teacher and the development of their identity as leaders. 

Findings 
Data shared here come from three key episodes in our project. We refer to these episodes as 

catalysts because of their potential to leverage change. The three episodes, Mentoring Peers?, 
Angela’s Rejection of Leadership, and Leading Through Practice stand in concert with other events, 
however stand apart in the sense that they had a profound impact on the planning and enactment of 
our Leadership Development Program. 

Mentoring Peers? 
In our third seminar, we asked TLs to consider leaders within their communities, district, and 

lives. We invited them to describe their mentors and asked, “ To whom do you listen?” Each of us 
shared anecdotes about those in our lives who had been our teachers and when we felt we had strong 
relationships with mentors. 

In the ensuing conversation, TLs shared their previous experiences with leadership models (such 
as state mentorship programs) that had indicated to them that assigned partnerships rarely produced 
chemistry and that the mere act of assignment destroyed a part of the intended relationship. 

 When TLs imagined leaders or described individuals who had an impact on their own practice, 
the relationships seemed more serendipitous and unplanned. Leadership happened in the small 
conversations outside classroom doors (Terry), in the examples witnessed by accident (Marissa), or 
in the lessons that were co-planned, co-constructed, and co-enacted by two eager colleagues who 
were not organized into a false or assigned hierarchy (Molly and Shannon). 

Furthermore, teachers challenged the notion of models of leadership that implied a mentoring 
experience with peers.  Angela described her experiences as a mentor when she was asked to help her 
team implement what she had learned in a professional development experience about Professional 
Learning Communities (PLC).  

“We have weekly PLCs and at my grade level they don't work. I attended the training in Saint 
Louis about 5 years ago but no one else in my grade level did. It didn't work well when we tried 
to come back and tell the other teachers what we had experienced. We basically pretend each 
week to collaborate in a meaningful way but teachers are not invested in the process.” (Angela) 

Angela’s Rejection of Leadership 
Reflecting on the conversations about mentoring in her blog post, Angela provided an abrupt 

catalyst for change. Angela called into question the model of leadership that had been here-to-fore 
assumed (emphasis hers). 

“I am not sure that I really want to become a teacher leader,” wrote Angela, “I think that people 
choose the "mentors" that they have in their lives and I am very leery of being in a position of 
"leadership" when it has been forced upon ANY one.”  

She had begun to question her position within the district and as a “MSP Leader”. Angela 
equated leadership with expertise. She was adamant that she did not want to be perceived as someone 
with expertise--or more specifically, as someone who considered herself an expert. Angela was 
worried that, by association with the MSP, others would assume that she was an expert, or even 
worse, assume that she thought that she was an expert. 

“As I watched the presentation given by two teachers today, I thought of all the teachers in the 
district who have done similar things for much longer than twice and somehow putting people 
and ideas in front of others is in some way suggesting that they are experts.  Could this be why 
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no one wants to be watched teaching?  Just because you try something doesn't make you an 
expert and teachers may be afraid of being perceived as representing themselves in that way.  We 
are always trying new things and how many of our new ideas really stand the test of time.” 

In this same time period, in a small group meeting, Angela expressed a new vision of what 
leadership might entail. She later wrote, "I don't want to be a part of a group of leaders. I want to be a 
part of a leadership group." To unpack this statement as a unified group and eventually negotiate 
what leadership would mean to us would mean redefining leadership and constructing a new purpose 
for our MSP project. 

Leading Through Practice 
In seminar one, we were still playing the role of the PD providers, wanting to plan and account 

for every minute of the four hour block of time we had set aside.  Our rationale -- teachers’ time is 
valuable, we need to make sure they take away something worthwhile from a Saturday morning 
spent with us.  We decided on an activity that seemed important for the roles of leaders. We decided 
to collaboratively create a timeline of children’s experiences with measurement (the mathematical 
content focus of our funded PD project) when going through their school district. Following this 
activity, time was allotted for teacher leaders and university partners to begin to articulate inquiry 
projects as they considered the teaching of measurement. 

The rich conversations that ensued, the difficult questions that were asked, the thoughtfulness 
with which the group considered the timeline of experiences were beyond our expectations. While 
staying within the predetermined activity, teachers used their voices to provoke shifts in the agenda. 
Advocating for herself, one teacher (Ellen) remarked that it made no sense for her to engage in a 
cycle of inquiry about student reasoning and thinking about measurement and data since she wasn’t 
slated to teach the topics. Another group of teachers (Molly, Shannon, Christine, Anne) noticed 
within the timeline the activity of measuring one’s foot in Kindergarten, 2nd grade, 3rd grade and 
again at fifth grade. The group, rather than jumping to conclusions, wondered whether that was 
needless repetition or if there was something useful to gain. They proposed it as a question for the 
larger group. 

It was clear to us that the teachers knew their curriculum well, they had given much thought as to 
the placement of topics in their own grade level, but had never had the opportunity to hear from their 
colleagues and create a mental picture of the vertical alignment of a child’s experience.  We were 
fortunate to have the voices of a few participants who had experiences in different grade levels -- 
either because they had taught at different levels and recently been reassigned (Ellen, Molly, 
Shannon), or because they were intervention specialists (Marissa) and lived in multiple classrooms of 
different grade levels.   This activity generated an opportunity to share their expertise across grade 
levels and across buildings. 

 In addition to advocating for an individualized approach to our planned cycles of inquiry, 
teachers used a collective voice to exert pressure on our planning of future agendas for the Academy. 
During seminar two, Marissa and Terry offered to share a brief “fifteen-minute” story about an 
episode that occurred in Terry’s classroom in the time between our meetings.  Their short story 
evolved into a two-hour discussion with audience participation.  Their peers’ interest in their work 
was a great surprise to them. The many questions and the request for ideas as to how they would 
recommend modifications for the task for other age groups generated a rich discussion and 
positioned Marissa and Terry as having pieces of practice that were worth sharing and discussing.  
What began with excitement about what had transpired in their classrooms turned into a curricular 
experience for others where we continued to interpret and analyze the event. The result was 
empowering, not only to them, but also to others who then followed their lead. The remaining 
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seminars were filled with such presentations and examinations of practice.   

Discussion 
Allowing these catalysts to have an impact on the structure of our MSP required three conditions: 

1. a culture of non-evaluative listening; 2. the willingness of all participants to unpack our 
expectations and experiences with leadership; and 3. a conscious choice on the part of university 
partners to equalize the power relationships within the partnership. We will establish each of these 
conditions below along with how they facilitated change. 

First, we were predisposed to listen to participants and hear their comments without judgment. 
We made the conscious choice to step back from our planned curriculum and forward into a space 
that allowed for multiple funds of knowledge (Moll, 1992). In stepping back, we gave teachers 
agency to construct alternative paths based on professional motivations and interests. 

Each participant in the Academy began to shape a vision of what it would mean to take part in 
the MSP and what we would be doing during the Academy. The original plans for the Academy 
quickly disintegrated giving way to a new concept and a new reason for being. We are not naive to 
think that all of us shared a common vision, but our visions were converging to at least a few 
common aspects, these being that the teachers would be presenting for a good part of the Academy 
seminars, and also that issues were arising in the smaller partnerships that were valuable to bring to 
the large group for their deliberation. 

Second, we committed to the work of consciously unpacking our expectations and experiences 
with leadership. This required the participation of every person involved. It allowed for a shift from 
thinking about leadership as belonging to or living within the individual toward thinking about the 
power of the collective. As a group, we have more power than as individuals to change perception, to 
lift our voices and have our ideas heard by others in our community. This requires that we shift our 
perception of leaders as those with expertise toward where leaders are willing to seek a deeper 
understanding and share that inquiry process publically with others. 

Marissa and Terry were moved by the spirit that Schlechty (2001) describes and we, the 
participants, were inspired by their music to ask our own questions, to examine our own lived 
classroom experiences, and to modulate their melody in our own style and timbre. Their experience, 
because it was shared, reverberated throughout our group. 

Third, as members of this partnership who had the power to determine the curriculum and 
structure of the project, we, the university partners, consciously chose to equalize the power structure 
and to give teacher leaders agency in their own professional development. At the outset, we did not 
view teachers as agents of and for change, but as agents that needed to be changed (Roesken, 2011). 

As a result, in the course of the Academy, participant (university partners and teacher leaders) 
roles in PD began to blur and shift.  From recipients or attendees of PD, teacher leader roles would 
morph to planning and delivering PD themselves.  Our roles as university partners morphed from the 
planners and deliverers of PD to a place where we were active participants reflecting on our personal 
practices as teachers of teachers as well as grounding our practice in the real lived experiences of 
local classrooms. In this way, we were able to define expertise to include multiple funds of 
knowledge and in blurring the lines between the providers and the receivers, the teacher leaders have 
autonomy in crafting, (re)shaping, and enhancing their practice (Diaz-Maggioli, 2004). In as much as 
the teacher leaders perpetuating this model in the summer institute, they passed that autonomy on to 
their colleagues within the district as well. 

Conclusion 
In the course of this project, teacher leaders found professional voice, not only defining for 

themselves what needed to be accomplished beyond classroom doors, but also envisioning their role 
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in accomplishing it. This has direct implications for personalizing local and state reform policies and 
implementing the Common Core State Standards. Ultimately, what we have learned is that it is not a 
matter of trusting that teachers will be productive with neither assigned direction nor oversight. It is 
the act of not even questioning them that ensures both agency and voice. 

As a group, we also reformulated what it means to lead. What began as a game of telephone 
morphed into a model of shared leadership. Teacher Leaders became ambassadors of our culture of 
inquiry, but also remained a part of the community within their buildings and district. This was an 
integral facet of the experience for the teachers like Angela who did not want to be perceived as held 
aloft as experts in their field, entirely distinct from their colleagues. By establishing an environment 
where teachers had agency, we had opportunities to come to know ourselves in relation to one 
another. We realized that we are not only individuals, but are also framed by our participation within 
the community. Leadership identities were shaped by our shared experiences, but also by coming to 
grips with our histories in the district, in our schools, and by coming to understand how we are 
viewed by others because of how we use and have used our professional voice(s). 

Lastly, by challenging conceptions of expertise and including multiple funds of knowledge, 
Academy learning opportunities were based on the realities of the classroom and occurred naturally 
in the course of investigating classroom practice in small supportive partnerships. This learning was 
rigorous, supported discussion of content and pedagogy, and had an immediate effect on classroom 
activity. 
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Although English language learners (ELLs) are one of the fastest growing groups of students in the 
United States, many teacher preparation programs have yet to require preservice teachers (PSTs) to 
receive training in effective practices for teaching ELLs. We examined a four-week field experience 
pairing an elementary PST with an ELL. We examined the strategies PSTs used to support ELLs as 
they implemented cognitively demanding mathematics tasks. Through interviews, observations, and 
written reflections, we found that the PSTs tried to support students, with varying degrees of success, 
by allowing for multiple modes of communication, including visual supports, pressing for explaining, 
and checking for understanding. Implications for teacher preparation are discussed.  

Keywords: Equity and Diversity; Elementary School Education; Teacher Education-Preservice 

Recent curricular reforms have emphasized the importance of engaging all students in rich 
mathematical activity (e.g., National Council of Teachers of Mathematics, 2000; National Governors 
Association Center for Best Practices (NGA Center) and the Council of Chief State School Officers 
(CCSSO), 2010). Rather than passively participating in mathematics classrooms, children are 
expected to actively engage in the mathematical practices. The shift toward engagement in the 
mathematical practices has come with an increase in the linguistic demands of the mathematics 
classroom. For example, students are expected to justify their solutions and to critique the reasoning 
of others. To engage in these practices requires extensive communication skills in not only everyday 
English, but also the academic language of mathematics.  

In conjunction with curricular reforms, the demographics of U.S. public schools are undergoing 
significant changes. English language learners (ELLs) are one of the most rapidly increasing groups 
of students (Wolf, Herman, & Dietel, 2010). In states such as Texas, California, and Florida where 
ELLs have made up a sizeable portion of the school population for a number of years, teacher 
education programs are required to prepare preservice teachers (PSTs) to teach ELLs. Many states 
with historically low numbers of ELLs are now experiencing dramatic increases in their ELL 
population. This has driven the need for these states to consider ways to prepare teachers to work 
with the realities of today’s classrooms.  

Despite estimates that nearly every teacher in the U.S. now has at least one ELL student, teachers 
are still underprepared to teach ELLs. In 2008, Ballantyne and colleagues found that only about a 
third of teachers had received training in strategies to support ELLs. The need for greater attention to 
strategies for teaching ELLs is further evidenced by the persistent achievement gap among ELLs and 
their native English-speaking peers (Fry, 2008). There is widespread agreement that teacher 
education programs must prepare PSTs to work with ELLs. Increasingly, researchers in mathematics 
education have examined PSTs’ work with diverse groups of students (e.g., Aguirre et al., 2012; 
Foote et al., 2013; Turner et al., 2012; Wager, 2012), though these studies did not focus on ELLs in 
particular, but on the broader group of students characterized as culturally and linguistically diverse. 
Because ELLs are simultaneously learning language and mathematics, meeting the needs of ELLs in 
the mathematics classroom may require teachers to learn skills and knowledge specific to supporting 
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ELLs. In this study we examined a four-week field experience for PSTs to engage in mathematics 
with ELLs. The following question guided our work, What instructional supports do PSTs enact 
when implementing cognitively demanding mathematics tasks with ELLs? The answer to this 
question was important in helping to provide a foundation from which to build further work in 
determining effective means of preparing PSTs to teach ELLs.  

The present study will provide greater insight into PSTs’ work with ELLs in particular; a topic 
few researchers have examined. Downey and Cobbs (2007) and Pappamihiel (2007) conducted 
empirical studies that offered fieldwork opportunities for PSTs to teach mathematics to ELLs. 
Downey and Cobbs’ study was situated in a university-based teacher preparation program that 
required elementary PSTs to complete one-on-one tutoring fieldwork with a culturally diverse 
student. As a result, the PSTs deepened understanding of the relationship between cultural diversity 
and mathematical learning. In the Pappamihiel study, content-area PSTs who spent 10 hours with an 
ELL changed their views and recognized that more acceptance and adaptation are essential of 
multicultural perspectives. Fernandes (2012) observed how middle school mathematics PSTs noticed 
ELLs’ understanding in mathematics through task-based interviews. He found that the PSTs started 
adopting ELL strategies from an intervention course and became aware of ELLs’ needs and 
challenges. McLeman and colleagus (2012) found that field experiences with ELLs in conjunction 
with reading ELL literature were valuable in helping PSTs learn instructional strategies for ELLs and 
helping them understand linguistic complexity such as academic language. These studies suggest that 
field experiences with ELLs have promise, therefore we wanted to understand how one such 
experience might help PSTs develop strategies for supporting ELLs in enacting cognitively 
demanding tasks.  

Perspectives 
We frame this study in a situated-sociocultural perspective (Moschkovich, 2002) of learning. 

Because we are interested in the supports the PSTs provided, we focus this study on the learning and 
experiences of the PSTs. We view learning as discursive activity and that PSTs participate in a 
community of practice as they draw on a variety of resources in developing sociomathematical norms 
with their students (Moschkovich, 2002; Yackel & Cobb, 1996). That is to say, we focus on what the 
PSTs are capable of and the ways they draw on these capabilities to extend their own learning that 
will, in turn, support ELLs. 

In considering the strategies the PSTs might employ, we draw on the work of Chval & Chavez 
(2011). Chval and Chavez described seven, research-based strategies they characterized as key to 
supporting ELLs’ mathematical proficiency. These strategies included: (1) connecting mathematics 
with students’ prior knowledge, (2) fostering a classroom environment that is rife with language and 
mathematics, (3) allowing for the use of multiple modes of communication, (4) including visual 
supports, (5) connecting mathematical representations to language, (6) recording key ideas and 
representations, and (7) discussing students’ writing (Chval & Chavez, 2011). These strategies 
support students’ use and development of academic language (Cummins, 1980) in conjunction with 
their development of mathematics and served as a framework to guide our examination of the PSTs’ 
work with the ELLs.  

Methods 
The purpose of this study was to examine the supports elementary PSTs employed when enacting 

cognitively demanding tasks with ELLs. Four PSTs—Kimberly, Hannah, Morgan, and Fiona—
participated in the study, all of whom were juniors in a four-year undergraduate elementary education 
program at a large research university. Each PST was white and spoke English as her native 
language. One PST, Kimberly, stated that while not fluent in Spanish she was able to communicate in 
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that language. All four PSTs had limited prior experiences working and learning about ELLs and 
were eager to put their limited knowledge into practice. 

The four ELLs were native Korean speakers. Kyong-Tae, Jin, and Ho-Min had each been in the 
United States for about six months, Hwa-Young had been in the United States for a little over a year 
and was also a fluent Japanese speaker. We purposefully (Patton, 2002) selected students enrolled in 
classes specifically for ELLs but were at or above grade level in mathematics. This allowed the PSTs 
to gain experience with students who were not yet fully fluent in English without having to also 
support students who struggled greatly in mathematics.   

The field experience centered on the PSTs’ weekly, one-on-one meetings with their assigned 
ELL. The field experience spanned four weeks and each meeting lasted approximately 30 minutes. 
Prior to each meeting, the PSTs were given a cognitively demanding task that they were to enact with 
the student. The PSTs were asked to complete a lesson plan detailing their plan for the meeting and 
given free reign to modify the task and make use of any resources they wished.  During the meeting, 
the PSTs enacted their plan with their ELL. 

Data Sources & Analysis 
We used qualitative methods in order to gain rich descriptions of the PSTs’ interactions with their 

ELLs (Patton, 2002). Each PST completed a survey before and after the field experience. These 
surveys contained both open-ended and Likert scale items and provided insights into the PSTs’ 
teaching experiences, prior experiences with ELLs and thoughts about issues of equity and diversity 
in the classroom and their teacher preparation program. We collected the PSTs’ written lesson plans 
that detailed the learning objectives, their procedures, planned modifications, and assessments. After 
each meeting, the PSTs crafted a written reflection. 

For each weekly meeting, the PSTs would arrive half an hour before their ELL student to 
participate in a pre-meeting interview. In these video recorded interviews we asked the PSTs to 
discuss their lesson plans and planned supports in depth. We also observed and video recorded the 
meetings with the ELLs during which the observer took field notes on moments on which to follow 
up with the PST. Immediately following each meeting, we conducted a video recorded post interview 
with the PSTs. The post interview investigated the PSTs’ immediate reactions to the meeting, things 
she would do differently if she could do the meeting again, and thoughts for the subsequent meeting. 
All video data was fully transcribed.  

Using themes previously described from Chval and Chavez (2011) and additional themes that 
emerged from initial rounds of analysis, we generated a list of codes to use in our subsequent 
analysis of the interview and meeting data. To establish inter-rater reliability (Patton, 2002), two 
coders worked to code each data source. From this initial analysis, we further refined our codes and 
recoded the data. Then, we collapsed the codes into larger categories. For the present study, we 
examined the most commonly occurring categories that were present in all four of the PSTs’ data sets 
to better understand what strategies the PSTs used and how they supported the ELLs in enacting the 
tasks.  

Findings 
Each of the PSTs employed a number of strategies to support their ELLs during the weekly 

meetings. These supports were both intentional and unintentional. The following sections describe 
those supports that were most frequently employed across all four PSTs. These supports included 
using multiple modes of communication, using visual supports, pressing for explanations and 
meanings, and checking for understanding.   
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Allowing Multiple Modes of Communication  
All four PSTs encouraged their ELL to make use of multiple modes of communication during the 

weekly meetings. We defined multiple modes of communication as teacher actions that 
encouraged/allowed students to communicate meaning and thinking through the use of speaking, 
writing, gesturing, drawing, manipulating, and/or using a first language as they grow in language and 
mathematical proficiency (Chval & Chavez, 2007).  

Across the data set, when PSTs referred to speaking as a mode of communication, they did so in 
one of two ways: as an alternative to writing (when unable to) or as a means to explain or 
communicate one’s process (i.e. reaching a solution), thinking, or ideas. When Morgan employed 
this strategy during week two, she asked her student “And this, this time can you try, maybe, telling 
me what you’re doing? Talking about it?” With this question, Morgan was asking her student to 
verbally explain his process and thinking while problem solving.  

During the pre-interview sessions, all four PSTs described drawing as another way to explaining 
one’s thinking in lieu of writing or speaking. The PSTs readily identified that their ELLs may have 
difficulty communicating in English and discussed the need for other methods of communication to 
relay their mathematical thinking. There was one occurrence when Hannah verbalized this to her 
student during a session. During week 2, she said, “Can you draw some over here? Let me help you 
out (began to draw 24 circles on the paper by 6 x 4).” In this instance, Hannah offered an alternative 
method of communication to her student; however, she also took over this communication by 
drawing the representation, removing some challenging aspects of the problem and reducing the 
cognitive demand.  

When PSTs used this strategy with regards to writing, they did so in several ways. During pre-
interviews, the PSTs identified that writing would be used to communicate explanations, equations, 
processes, and thinking and to improve language development. While working with students, three of 
the four PSTs made use of this strategy to provide an additional method of communicating, 
specifically for explanation. In all instances, with two exceptions, requesting students to write their 
explanations did not impact the cognitive demand of the task. In the two instances where the 
cognitive demand was impacted, the PSTs stated a pathway for solving the problem after stating. For 
Fiona, in week 2, she stated, “So, how can you write a sentence to explain how each stadium is 
compared to each other? So are they all the same number? Is one stadium bigger than the other 
stadium?” For Morgan, in week 2, she stated, “If you need, you can write it out. And you can start 
subtracting numbers.” In both statements, in addition to suggesting the student write their thinking 
they also suggested a pathway for reaching a solution, which thereby reduced the overall cognitive 
demand of the task.  

Providing Visual Supports 
Throughout the four weeks, each of the PSTs included visual supports in her lesson planning and 

implementation. We defined visual supports as concrete objects, videos, illustrations, or added 
emphases (bolding, color-coding, etc.) on written tasks. These supports were used in various ways by 
the PSTs but generally involved the use of manipulatives or images.  

Hannah, Fiona, and Kimberly used manipulatives in the meetings with their ELLs. These 
manipulatives included alien cutouts, connecting cubes, and small vehicles intended for the students 
to use in their exploration. In some cases the PSTs used the manipulatives to demonstrate a certain 
solution strategy as in the following excerpt from Fiona’s second meeting. 

Fiona: It’s impossible? Let’s work through this, ok, because it’s possible. It’s kind of confusing, 
I know. So, if I have [moves one of each 2, 3, and 4 eyed cutouts of creatures into center of 
table]—how many eyes do I have? 
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Jin: 9 eyes 
Fiona: How many more do I need to get to 24 eyes?  
Jin: 15 
Fiona: 15. So is there a way I can use the rest of these [cutouts] to make 15 eyes? 

Throughout the lesson, it was Fiona, and not her student, that used these manipulatives, leading to an 
imposed solution strategy. This lowered the cognitive demand on the student by removing the 
challenging aspect of developing a solution. In the majority of instances involving manipulatives, the 
PSTs elected to implement them in a similar manner to Fiona. 

Finally, all four PSTs used imagery in their lessons. For example, Kimberly drew a picture of a 
group of coconuts to help define “pile.” Although many images were used as linguistic supports, 
some were utilized as scaffolds for mathematical learning. In the fourth task, in response to Morgan’s 
student’s ineffective attempts to find the perimeter of a complicated shape, she drew a simpler 
example for him to examine. This figure was intended for him to explore his own strategy in an 
easier setting before returning to the larger figure, applying his exploration, and correcting his 
mistake. However, as the following excerpt shows, this did not occur.  

Morgan: Ok. Alright, so you just added- so can you tell me what you did? What did you add 
together? All of the what? What did you add all of? You added all- all the sides? 

Ho-Min: Yes, 
Morgan: Sides, together? 
Ho-Min: Yes. 
Morgan: Yeah, all sides. Ok. So on [the first problem], when you did this for perimeter, you 

added all the sides, but you made- you made new sides. With these lines. See, you added 
these also. But with this shape, see here- 

Morgan stopped requiring the student’s reflection and instead used her drawing to show him his 
mistake and how to solve the problem. When the PSTs used such scaffolds, they often relied on them 
as a crutch themselves, prompting the use of strategies that lowered the cognitive demand. 

Most visual supports were implemented to allow students to organize their mathematical 
thinking. However, there was often conflict between the planned intention and their actual use. When 
the PSTs relied on the visual supports too heavily, they tended to think for the students and provide a 
solution method or an idea instead of encouraging the student to use the supports in his or her own 
way. Thus, the visual supports more often led to lowered cognitive demand, even though the PSTs 
may not have been intended to do so.  

Pressing for Explanation and Meaning. 
PST actions that pressed a student to explain his/her solution or meaning of task statement 

were one of the prevalent strategies that all of the PSTs frequently used throughout the four 
weeks. The most popular format they used to press students to explain about their solution was 
questioning and they usually asked students to explain more details and rationale about their 
work. However, they sometimes took on command forms such as “Explain what you mean by 
that” or “Tell me about how you figured that one out.”  

The PSTs most frequently prompted students to justify their solution and/or provide more 
details about their solution strategies. Hence, the PSTs’ press for student explanation usually 
came after students finished or stopped their solving process. They used various types of 
questions ranging from general inquiries such as “Why do you think so?” or “How did you find 
out?” to more specific ones such as “Why did you decide to add these and not something else?” 
or “Where does the 12 come from?” Other ways the PSTs employed this strategy included 
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asking students about the meaning of the task statement, asking clarifying questions, asking for 
students’ current thinking, asking for students’ plans to solve the task, and pressing students to 
think further.  

Each PST favored one particular approach in pressing for meaning. For example, 
Kimberly’s use of this strategy involved asking her student for justification and more details. 
Hannah used instances of her student’s work to ask questions such as “I saw you looked over 
your piece of paper over here. What were you just thinking?” This type of question evidenced 
her careful observation of her student’s activity and was particularly effective in eliciting her 
student’s explanation of her mathematical thinking.   

When the PSTs used this strategy, in general it seemed to provide students an opportunity to 
speak with longer expressions and to think more deeply about their solutions. However, this was not 
always the case. Consider the following excerpt. 

Kimberly: Ok. (he writes) Ok, how did you find that? 
Kyong-Tae: Mm, (long pause) I don’t know. I just found. 
Kimberly: Yeah, well I saw you do it and I was thinking about how I would have done that in my 

head, so I saw what you did, first was you found the two- eyed creatures right? And you 
found five of those and that gives you how many eyes? 

In the first line, Kimberly asked her student to explain about his solution pathway. However, the 
student could not come up with an explanation after a long pause. Kimberly did not provide him with 
support to find appropriate words or use guiding questions; instead, she provided her interpretation 
on his work. In this case Kimberly took on much of the thinking for the task.  

Most of the instances in which the PSTs pressed for explanation sought to maintain the cognitive 
demands of the given task. By asking students to explain their thinking after arriving at a solution, 
the PSTs maintained the initial intent of the tasks. There were several instances, as in Kimberly’s 
excerpt above, in which the PSTs pressed for explanation but did not support students or hold 
students accountable for responding to the questions. This led to the PSTs suggesting specific 
solutions, or moving to another task without further discussion.  

Checking for Understanding 
Each of the PSTs frequently checked for their ELL’s understanding during task implementation. 

Checking for understanding usually occurred after the PSTs presented the student with the task and 
allowed them time to read it. For example, in week two Kimberly gave Kyong-Tae a task about 
space-creatures and said, “Ok, well this is the first one that I put together for you. And I want you to 
read it before anything else. [Very Short Pause] Okay, are there any words on there that you don’t 
know?” Asking if there were any words the ELLs were unfamiliar with was a common strategy to 
check for understanding among the PSTs.  

Once the student identified unfamiliar words, the PSTs similarly responded by defining the 
words for the child by attempting to connect to the child’s prior knowledge. For example, Hwa-
Young did not know what creature meant and Hannah tried to explain by connecting to other words 
Hwa-Young might know. 

Hwa-Young: Creature. 
Hannah: You know what that is. 
Hwa-Young: Nope 
Hannah: Okay. So, a creature is a broad term that covers multiple animals, so it could be, do you 

know what a monster is,  
Hwa-Young: Yes. 
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Hannah: Do you know what an alien is 
Hwa-Young: Alien? 
Hannah: Like, UFO, like Ti-Yoong Ti-Yoong (make a sound of UFO). 
Hwa-Young: Oh, oh, I know. 
Hannah: Okay, so monsters, aliens, bugs, animals, they are all considered creatures,  
Hwa-Young: Oh. 
Hannah: So, today, it’s going to be the space creatures, so it’s going to be aliens. That would say.  
Hwa-Young: Okay. Aliens. 

In this excerpt, Hannah attempted to define the term creature for Hwa-Young by comparing it to 
other terms such as alien or monster. She also pantomimed a UFO in an attempt to support Hwa-
Young in understanding the concept.  

This support for language was common among the PSTs when finding the student was unfamiliar 
with a term after checking for understanding. Checking for understanding was most often used to 
check for linguistic understanding, not mathematical understanding. As such, there were several 
missed opportunities to support their students’ mathematics misconceptions because they assumed 
the students’ misunderstandings stemmed from language, not mathematics.  

Discussion & Conclusion 
During the four-week field experience, we found that the PSTs employed a number of strategies 

in attempting to support their ELLs. These strategies were not prompted by the research team, but 
rather by their own experiences working with the students. Each of the PSTs reported no prior 
experiences specifically focused on the mathematics education of ELLs in their teacher preparation 
program. As such, this study provides some insight into the strategies teachers might draw on without 
further formal preparation.  

The PSTs drew on a limited number of strategies in supporting their ELLs. Over time the number 
of strategies did not increase but the ways in which they used the strategies changed, as did the 
frequency in which they employed the strategies. For example, Morgan, whose student was hesitant 
to speak, drew more on multiple modes of communication for her student throughout the weeks. In 
addition, she broadened her range of acceptable communication from spoken and written to include 
drawing and gestures throughout the experience. However, Morgan was unable to employ strategies 
that allowed her to elicit detailed descriptions of Ho-Min’s mathematical thinking. His thinking was 
often shown by a calculation on a page or gesture to a solution, leaving Morgan to assume the 
process behind these artifacts. Morgan and her peers’ experiences suggest that while the PSTs did 
learn from prior experiences with their ELLs, this experience was not sufficient to fully meet their 
students’ needs.  

We also found that the PSTs had difficulty determining whether students’ struggles stemmed 
from linguistic or mathematical misunderstandings. As such, the PSTs typically supported the 
linguistic aspects of the task without considering possible mathematical misunderstandings. Further, 
they typically attempted to take on the mathematical thinking in an effort to support the students. 
This implies that PSTs should be provided with guided experiences that help them begin to support 
both the mathematics and linguistic needs of their ELLs while also maintaining the cognitive demand 
of mathematics tasks.  

In analyzing the PSTs’ final reflections and surveys, we found that completing the field 
experience left the PSTs with the view that ELLs are capable of any task. This is in contrast to earlier 
thinking present in their pre-surveys that particular tasks are more appropriate for ELLs. Further, the 
PSTs were also more aware of their lack of preparation to teach ELLs following the experience. This 
implies that the field experience allowed the PSTs to better understand the need for further learning 
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in this area. Though further research is needed to understand how teacher preparation programs 
might better prepare PSTs for the increasing number of ELLs, this study suggests that PSTs’ natural 
inclinations to support ELLs is not sufficient to support both the linguistic and mathematical needs of 
ELLs. Teacher educators should build on PSTs’ natural inclinations and provide further support to 
help them learn to better accommodate ELLs. PSTs need explicit instruction and experiences 
enacting both mathematical and linguistic supports with ELLs to help build on ELLs’ cultural, 
mathematical, and linguistic resources as they help them develop linguistic and mathematical 
proficiency.   
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The effective use of digital technologies in school settings calls for appropriate professional 
development opportunities for inservice teachers. How has professional development shifted in 
support of mathematics teachers integrating these technologies in their teaching? This study 
explored the impact of digital technologies in mathematics inservice professional development over 
the past four decades and examined how various technologies, content strands, grade-level bands, 
teacher outcomes, and student outcomes were being used to design mathematics professional 
development on integrating technology. This study provides recommendations to mathematics 
teacher educators as they transform professional development to meet the challenges faced in 
integrating new and emerging technologies in their instruction. 

Keywords: Teacher Education-Inservice; Teacher Knowledge; Technology 

What it means to teach mathematics has changed over the past four decades. The development 
and availability of mathematics educational technology is a key factor in how the mathematics 
classroom looks different than 10, 20, 30, or 40 years ago. Professional development provides 
opportunities for inservice teachers to experience new methods of both teaching and learning 
mathematics with technology and to collaborate with colleagues about pedagogical strategies they 
use when implementing these technologies.  

Guskey (2000) defined professional development as, “those processes and activities designed to 
enhance the professional knowledge, skills, and attitudes of educators so that they might, in turn, 
improve the learning of students” (p. 16), which is the definition used in this study.  Professional 
development can be short-term or ongoing and may take many forms such as workshops, sessions 
during teacher inservice training, institutes and sessions in the summer, individual classroom 
interactions, lesson study, professional learning community models, online sessions, or video-series. 
When professional development is effective, teachers may take new ideas back to their classrooms 
and implement new strategies and use technology in different and/or new ways. 

To address ongoing challenges in mathematics educational professional development, we sought 
to examine extant literature in the field, analyze trends therein, and facilitate present and future 
improvements to both teaching and learning. The research questions that guided the present study 
were: (1) What types of technology and content areas have been the focus of professional 
development research over time? (2) What types of technology and grade bands have been the focus 
of professional development research over time? (3) What types of outcomes are used to measure 
effectiveness of mathematics educational technology professional development; have they changed 
over time, and how do they vary across grade levels? 
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Conceptual Framework 
Two frameworks were applied to the analysis of a database of mathematics educational 

technology studies identified by a systematic review: Technological Pedagogical Content Knowledge 
(TPACK) and Comprehensive Framework of Teacher Knowledge (CFTK). The TPACK framework 
(Mishra & Koehler, 2006; Niess, 2005) describes the unique set of knowledge needed to effectively 
integrate technology into the classroom in conjunction with appropriate pedagogical content 
knowledge (as in Ball, Thames, & Phelps, 2008; Shulman, 1986). TPACK extends beyond 
knowledge of how to use the technology proficiently and encompasses a deeper and transformed 
knowledge for understanding how subject matter, pedagogy, and technology are integrated to provide 
richer learning experiences. Subsets of the TPACK framework include Technological Knowledge 
(TK), Pedagogical Knowledge (PK), Content Knowledge (CK), Technological Pedagogical 
Knowledge (TPK), Technological Content Knowledge (TCK), and Pedagogical Content Knowledge 
(PCK). TCK was used to support research question one while TK was used to support research 
question two.  

CFTK (Ronau & Rakes, 2011) describes an all-encompassing structure for studying and 
understanding the complex nature of knowledge required for teaching as a highly complex 
interaction of multiple aspects of teacher knowledge across three dimensions: Subject Matter and 
Pedagogy (Field dimension), Discernment and Orientation (Mode dimension), and Individual and 
Environment (Context dimension). These teacher knowledge outcomes and an extension of these 
outcomes to student outcomes were applied in the analysis of research question three. 

Method 
The present study is part of a larger, more comprehensive study that analyzed mathematics 

educational technology papers published between 1968 and 2009. For the literature search of the 
comprehensive study, we followed a systematic process based on the techniques outlined by Cooper, 
Hedges, and Valentine (2009) and Lipsey and Wilson (2001); for example, we defined constructs 
before coding, defined keywords before conducting the literature search, defined a coding process, 
trained coders, and cross-checked results. To obtain the overall sample, a wide array of databases 
were searched using terms to restrict the sample, based on two criteria for inclusion: (1) The paper 
must examine a technology-based intervention (e.g., technology, calculators, computers), and (2) The 
paper must be focused on the learning of a mathematics concept or procedure (e.g., mathematics, 
algebra, geometry, visualization, representation). We searched the following database platforms (and 
the databases within those platforms): EBSCOWeb (ERIC, Academic Search Premier, PsycINFO, 
Primary Search Plus, Middle Search Plus, Education Administration Abstracts), JSTOR (restricted to 
the disciplines of Education, Mathematics, Psychology, and Statistics), OVID, ProQuest (Research 
Library, Dissertations & Theses, Career & Technical Education), and H. W. Wilson Web (Education 
Full Text). We also examined the bibliographies of the papers we identified through this search in 
order to identify potentially relevant papers that were missed in our searches. For further details 
about this process, see Ronau, Rakes, Bush, Driskell, Niess, & Pugalee (2014). Altogether, our 
literature search of the comprehensive study resulted in 1,210 papers.   

In order to code the 1,210 papers, we created a Microsoft Access database with over 200 
variables, with each coder paired with each of the other coders (i.e., six coders = 15 coding teams) so 
that each paper was both coded and cross-checked. The new coding format created a counter-
balanced design with all six coders, providing a way to maximize construct validity and inter-rater 
reliability of the coding. Our overall inter-rater agreement was 91.5% (Number of Agreements out of 
the Total Number of Possible Agreements), from which we concluded that the inter-rater reliability 
for the comprehensive study was high. Upon completion of coding for the comprehensive study, a 
filter was applied to the database to extract the papers that were coded as teacher development. Next, 
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each paper was read to make certain it aligned with Guskey’s (2000) definition of professional 
development and to verify that the professional development was non-credit bearing (not part of a 
degree program) and took place after initial teacher certification (preservice education was not 
included). Using this criterion, 21 of the 1,210 papers were retained for the present study. 

Results 
None of the papers in our subsample of 21 professional development papers were found in the 

1960’s or 1970’s. For each subsequent decade, the ratio of professional development papers per total 
number of technology papers in mathematics education was 2/48 in the 1980’s (4.14%), 3/320 in the 
1990’s (.94%), and 16/818 in the 2000’s (1.96%). To answer research question one, the number of 
times each technology type was used as compared to content strand per decade was analyzed (see 
Table 1).  

Table 1: Technology Type Compared to Content Strand by Decade 
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Total for 1980 2 0 0 0 0 1 
Number 1 - - - - - 
Not Specified  1 - - - - 1 

Total for 1990 0 3 0 1 1 0 
Algebra - 3 - 1 1 - 

Total for 2000 7 13 1 3 5 2 
Algebra 2 3 - - 2 - 
Algebra, Geometry, Data 

Analysis 1 - - - 1 - 
Algebra, Probability & 

Statistics 1 2 - 1 - - 
Algebra, Geometry, Calculus - 1 - - - - 
Number - - - - - 1 
Probability & Statistics - 2 - - - - 
Not Specified 3 5 1 2 2 1 

Technology Type Total 9 16 1 4 6 3 
Note. N = 21 papers. The number of papers per decade is not always the sum of the row 

because some papers addressed more than one technology type and/or content strand area. 
The Other Technology consisted of computer programming, personal digital assistants, and 
video clips. 

 
The content strands addressed within the professional development papers in the 1980’s were 

limited to number content or was not specified, with calculators used in both studies. Algebra content 
was the only content strand addressed in the 1990’s, and the technology for all three papers was 
computer software, specifically graphing software in two papers and presentation software in the 
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third paper. In the 2000s, there were six different reported content strands. The algebra content strand 
was addressed most often (six of 13 papers). In the three papers that solely included algebra content, 
one paper discussed using graphing software and two papers discussed using spreadsheet software. 
One of the two papers coded as algebra and probability and statistics content discussed using 
geometry software while the other paper used spreadsheet software. The paper coded as algebra, 
geometry, and calculus content discussed using geometry software. The computer software used in 
the two probability and statistics content papers was statistics software. Professional development 
papers written in the 2000’s displayed the greatest variety in technology use, with a growing use of 
the Internet. Many papers (n = 6; 37.5%) however, did not specify the content addressed in the 
professional development. 

To answer research question two, the technology used and teacher participants’ grade-level band 
reported in the papers was analyzed (see Table 2). Across all three decades, two papers included K-5 
teachers; one included a combination of K-5, 6-9, and 10-12 teachers; seven included 6-8 teachers 
only; five included both 6-8 and 9-12 teachers; five included 9-12 teachers only; and one did not 
specify the grade-level band.  

Table 2: Technology Type Compared to Grade Band by Decade 
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Total for 1980 2 0 0 0 0 1 
K-5 1 - - - - - 
K-5, 6-8, 9-12 1 - - - - 1 

Total for 1990 0 3 0 1 1 0 
Unspecified Grade - 1 - - - - 
6-8, 9-12 - 1 - 1 1 - 
9-12 - 1 - - - - 

Total for 2000 7 13 1 3 5 2 
K-5 - - 1 - - - 
6-8 2 7 - 2 1 2 
6-8, 9-12 2 4 - - 2 - 
9-12 3 2 - 1 2 - 

Technology Type Total 9 16 1 4 6 3 
Note. N = 21 papers. The number of papers per decade is not always the sum of the row 

because some papers addressed more than one technology type and/or grade band. The 
Other Technology consisted of computer programming, personal digital assistants, and video 
clips. 

 
The most common technology used was computer software, followed by graphing calculators, 

probeware, Internet, other technology, and interactive whiteboards. Technology for grades 6-8 and 9-
12 teachers varied more widely compared to grades K-5. Professional development for grades K-5 in 
the papers was limited to either calculators or interactive whiteboards. Professional development for 
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grades 6-8 or 9-12 teachers, on the other hand, included calculators, computer software, the Internet, 
probeware and motion detectors, and other technology, including computer programming, personal 
digital assistants, and video clips. 

To answer research question three, we analyzed outcomes (student and teacher) being addressed 
in the professional development papers, organized by grade band and decade (see Table 3). While the 
total number of professional development studies was21, the total count of outcomes as shown in 
Table 3 was51, as many studies had more than one outcome. Teacher outcomes were measured more 
often than student outcomes. Teacher orientation was the most common outcome measured, which 
was measured in 15 studies (2, 3, and 10 from the 1980’s, 1990’s, and 2000’s respectively), followed 
by 10 studies (0, 2, and 8 across the three decades) which measured teacher knowledge of pedagogy, 
and 9 studies (1, 2, and 6 across the three decades) that measured teacher knowledge of subject 
matter.  

Table 3: Outcomes Compared to Grade Band by Decade 

 
Note. N = 21 papers. The number of papers per decade is not always the sum of the row 
because some papers addressed more than one outcome and/or grade band. 
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Teacher knowledge of Discernment or Individual Context in relation to technology was not 
addressed in professional development research until the 2000’s.Both of these knowledge constructs 
tend to be student-centered and are not as easily observed or measured. Since only three studies 
included K-5 teachers, there were no trends to describe how the outcomes varied across grade level. 
With regard to student-related outcomes, student achievement (n = 3 out of 21 papers, 14%) and 
student orientation (n = 3 out of 21 papers, 14%) were studied most often. As the numbers for student 
outcomes were so small, there were not clear patterns or trends through the decades. 

Discussion 
This study found very little published research on professional development focused on 

technology in teaching and learning mathematics, which was surprising given the long-standing calls 
from professional organizations such as the National Council of Teachers of Mathematics (1989, 
2000) for mathematics teachers to incorporate new technologies in the classroom. Only 21 studies of 
1,210 total studies in our sample of mathematics educational technology papers addressed 
professional development. Limited published professional development research impairs the ability 
to advance the field of mathematics educational technology professional development. Shavelson and 
Towne (2002) stated, “Scientific studies do not contribute to a larger body of knowledge until they 
are widely disseminated and subjected to professional scrutiny by peers” (p. 22). Therefore, a 
reasonable direction for researchers who conduct mathematics educational technology professional 
development is to measure the outcomes of their efforts and publish the results of their work. Also, 
researchers might focus on conducting and publishing further research on professional development 
with K-5 teachers as only three of the 21 studies included these teachers. Since many students are 
currently required or will be required to take a computer-based state standardized assessment, some 
K-5 classrooms now have some sort of 1:1 structure in place (e.g., laptop carts, chromebooks, iPads). 
Research is needed on how to use these resources to enhance mathematics learning effectively, and 
professional development research is needed to help providers improve teachers’ ability to integrate 
technology in their classrooms effectively. Furthermore, how technology can enhance learning is 
content-specific, and too few of the published studies reported the content area that was addressed 
during the professional development. Future studies need to explicitly identify the content area being 
studied so that teachers and researchers can build on the work appropriately. Also, the effectiveness 
of the professional development with any explicit measure related to student knowledge, orientation, 
or behavior was often omitted. These results align with Sztajn’s (2011) concerns, who argued that 
norms and standards for reporting on professional development studies are needed. Still, consistent 
with Supovitz and Turner (2000), such standards must include the specific content area(s), grade 
band(s), and technology type addressed in the professional development. The constructs of the study 
must be clearly and explicitly stated, threats to validity discussed, and research methodologies clearly 
articulated as purported in the scientific principles 3 and 4 (Shavelson & Towne, 2002).  

Future Directions 
The historical data we analyzed in mathematics educational technology literature denotes a clear 

need for future research measuring the effectiveness of professional development focused on 
technology in teaching and learning mathematics. Professional development efficacy can be 
measured by using observational tools, teacher knowledge assessments, and teacher surveys to assess 
teachers’ change in practice. These changes should evaluate instructional activities and practices, 
classroom discourse, the fidelity in which the curriculum is implemented, teacher knowledge, and 
teachers’ beliefs. Another reasonable direction is to measure changes in student 
learning/achievement, although we recognize the challenge in collecting such data and the necessity 
of an extensive length of professional development to gather the data to evaluate this change. 
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Research analyzing technology-focused professional development in mathematics education could 
make great strides in mitigating the field’s traditional challenges by pointing to specific research-
supported methods for improving future professional development.  
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I investigate the sustainability of lesson study as mathematics teachers who participated in a 3-year 
professional development partnership engage in a district scale-up lesson study professional 
experience. This study answers three questions: (1) what are K-12 teachers’ conceptions of 
sustaining mathematics lesson study, (2) what practices of lesson study continued after the grant as 
reported by participants, and (3) what are supportive and constraining factors in continuing lesson 
study after external funding ends when there is both reported desire from teachers as well as some 
district support? Survey and interview data are analyzed using grounded theory and social network 
analysis for patterns in and structure to activities. Findings suggest rich conceptions of lesson study, 
the continuation of particular lesson study practices, and the importance of integration and linkage 
as factors that supported or hindered lesson study.  

Keywords: Policy Matters; Teacher Education-Inservice (Professional Development); Instructional 
Activities and Practices 

Introduction 
Though lesson study shows promise as a vehicle for professional development (Stigler & 

Hiebert, 1999; Yoshida, 2012) and has been described as a sustainable form of professional 
development, little research exists on what would help to support teachers in continuing lesson study 
past the life of a grant. Why do some mathematics teachers of lesson study continue while others do 
not, particularly when teachers express interest and have some district support? Therefore, to develop 
a better understanding of sustainability with respect to lesson study, the field is in need of a deeper 
understanding of how to support the continuation of lesson study.  

The purpose of this report is to examine teachers’ conceptions and practices of lesson study, and 
factors that supported and constrained teachers’ ability to continue to engage in lesson study. The 
setting for this study is unique in that participants surveyed and interviewed come from one network 
of U.S. mathematics teachers of grades 3 through Algebra 1 (students 8–14 years old) who 
participated in a three-year professional development partnership that used lesson study and who 
expressed interest in and had some district support for continuing lesson study after grant funding 
ended. In this report, I answer the following research questions:(1) what are K-12 teachers’ 
conceptions of sustaining mathematics lesson study, (2) what practices of lesson study continued 
after the grant as reported by participants, and (3) what are supportive and constraining factors in 
continuing lesson study after external funding ends when there is both reported desire from teachers 
as well as some district support? 

Background 
Lesson study has been described as a vehicle for developing and sustaining professional learning 

communities whose goal is to improve instruction (Yoshida, 2012). Research on mathematics lesson 
demonstrates the potential to enhance teachers’ knowledge about mathematics content (Alston, 
Pedrick, Morris, & Basu, 2011; Fernandez, 2005; Lewis, Perry, & Hurd, 2009; Meyer & Wilkerson, 
2011; Robinson & Leikin, 2012; Yoshida 2012), change teaching practice (Hart & Carriere, 2011; 
Murata, Bofferding, Pothen, Taylor & Wischnia, 2012; Olson, White & Sparrow, 2011), nurture 
professional communities of teachers (Lieberman, 2009; Lewis, Perry & Hurd, 2009; Saito, Khong, 
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& Tsukui, 2012), and help teachers understand how to teach mathematics aligned to reform efforts 
(Lee & Ling, 2013; Lewis & Takahashi, 2013; Takahashi, Lewis & Perry, 2013). These foci – 
enhancing mathematical content knowledge, changing teachers’ practice, nurturing professional 
communities, and helping teachers teach in ways aligned to reform efforts – are ways in which lesson 
study has contributed to the improvement of learning and teaching mathematics, benefiting both 
teachers and students. Yet researchers call for more research in lesson study (Fernandez, 2005; 
Lewis, Perry & Murata, 2006). Future research pathways would be impossible without teachers 
continuing to implement and engage in lesson study. 

Although many educators involved in lesson study research and work describe it as a sustainable 
form of professional development, little research exists that seeks to understand aspects of engaging 
in lesson study that ensure its continued success (cf. Gero, 2015; Lewis & Perry, 2014; Saito, Khong 
& Tsukui, 2012). Factors that hinder lesson study include engaging in collaboration, observating a 
lesson, the potential critique of a teacher’s lesson and teaching, and the collision with the existing 
culture in districts with the tenants of lesson study (Gero, 2015). Saito, Khong & Tsukui (2012) 
found that faith in meetings, support and enthusiasm from principals and other senior teachers, and 
the desire to retain respect from external parties supported teachers in continuing to organize PLCs 
with lesson study. This study furthers research on these factors to add to a deeper research base on 
continuing lesson study. 

Theoretical Perspective 
The theoretical model of lesson study used in this study is based on Japanese Lesson Study 

(Fernandez, 2005), which consists of teachers collaboratively (a) investigating content and setting 
goals for the research lesson, both content-focused and broader site based goals; (b) planning a 
research lesson that seeks to inquire into how students learn a particular topic or sets of topics; (c) 
teaching and observing a live research lesson while gathering student data; and (d) finally, debriefing 
on specifics of what was learned from the lesson as well as more generally about teaching and 
learning mathematics (Lewis, Perry, & Hurd, 2009). Optionally, teachers may modify their research 
lesson and opt to teach it a second time, collecting data on student thinking and debriefing again.  

Yet to understand how mathematics teachers engage in professional activities like lesson study 
requires understanding how they are situated within their site and district. Consequently, this study is 
shaped by the perspective that teaching is embedded within institutional settings like classrooms, 
school sites, and districts with teachers members of communities (Cobb, McClain, Lamberg, & 
Dean, 2003). Additionally, understanding how mathematics teachers engage in professional activities 
requires understanding the nature of collaborative activities that the teachers engage in both in 
informally arranged groups and formally arranged groups by the school or district. 

Supporting the work of teachers in complex institutional settings also requires attention to 
different types of resources supporting teacher work (Gamoran et. al, 2003). These include material 
resources (physical objects or information like curriculum or activities), human resources (qualities 
of people that can be changed like training someone to be a math coach), and social resources 
(attributes of relationships, roles or modes of communication like connections to math coaches and 
other people). I examine social resources for this study, which is one way to understand conditions 
for sustainability (Gamoran et al., 2003). 

Sustainability is defined as maintaining generative practice, or to keep growing and learning 
(Franke et al., 2001; Gamoran et al., 2003). I use Gamoran and colleagues’ (2003) framework for 
conditions for sustainability to inform data collection and analyses, which was derived from an 
economic growth model (Woolcock, 1998). To understand how social capitol is embedded in groups 
among complex institutional settings, Gamoran and colleagues describe the four conditions for 
sustainability as integration, linkage, organizational integrity, and synergy. Integration refers to 
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shared values, mutual expectations, levels of trust, and norms. Linkage refers to the social relations 
that attract resources. Organizational integrity refers to the effectiveness of the organization in 
distributing human and material resources.  Finally, synergy refers to whether the efforts of the 
teacher community is aligned with the efforts of the school and district. For this study, I restrict my 
analyses to integration and linkage. 

To conceptualize and document social resources like integration and linkage, I use the 
perspective of social network wherein the goal is to understand how individual actors are embedded 
in social structures by examining relationships among actors in addition to attributes of individuals 
(Carolan, 2014; Daly, 2010).  

Methods 

Participants  
A subgroup of six primary teachers, one principal, and one district administrator is selected from 

a larger data set to examine in detail due to the high concentration of former grant teachers at one site 
and reported support by their principal.  

Context 
The study began with a survey administered on the last day of the former partnership where 

approximately 75% of 80 teachers described an interest in continuing lesson study. Thus, all 
participants in the current study recently participated in this three-year university partnership that 
sought to improve teachers’ instruction on algebraic thinking. The three-year partnership was 
structured to include a 40-hour week long summer institute for teachers focused on mathematics 
content, student thinking, and pedagogy; four rounds of lesson study during each school year that 
utilized Japanese Lesson Study; and mathematics coaching. For the lesson study component, 
eighteen groups of 3-6 teachers each engaged in two lesson study cycles per year and observed two 
lesson study cycles per year. Groups were arranged to consist of cross-site and cross-district 
participants but are now reconstituted groups as relations among teachers shifted with the conclusion 
of the grant. 

Data Collection and Analysis 
Data were collected after external support from the university ended, or the first school year, 

2013-2014, following the conclusion of the grant. A survey and interview instrument were 
constructed and administered. The survey results were collected in October 2013 and asked for 
lesson study cycles and components completed, resources needed for lesson study, support given by 
principal and fellow teachers, and any additional comments. From these surveys, I gathered 
participants to engage in individual, semi-structured interviews and asked about who teachers worked 
with, the nature of their activities, their work with lesson study, resources that support their work, 
resources that support lesson study, and changes they would make if they were to do another cycle of 
lesson study. I used a snowball technique for collecting interviews, which involved interviewing 
those participants named by interviewees (Carolan, 2014; Cobb, McClain, Lamberg & Dean, 2003; 
Cobb, Zhao & Dean, 2009). I then interviewed principals of participants to learn more about the 
work of teachers at their school site. 

Data were analyzed using grounded theory methods (Corbin & Strauss, 1990), with the methods 
of open coding and constant comparison methods used to derive themes in the data. Analyses were 
also informed by Woolcock’s (1998) conditions of sustainability on integration and linkage and 
analyzed using social network analysis (Carolan, 2014). Specifically, egocentric networks were 
inferred from interview data and analyzed for qualities such as like density and structure. 
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Results 
I first characterize participants’ conceptions of what it means to engage in lesson study using data 

from interviews. I then report on which aspects of lesson study have continued as reported by 
participants on surveys and during interviews. Finally, I describe factors that support and hinder 
teachers’ potential to continue engaging in lesson study using analyses on survey and interview data.   

Teacher’ Conceptions of Lesson Study  
To address the first research question on teachers’ conceptions of lesson study, I analyzed teacher 

responses to characterizations of lesson study. Their responses targeted three general areas to varying 
degrees – (a) the structure or protocol associated to engaging in lesson study, (2) the nature of the 
activities that comprise lesson study, and (3) the focus or purpose of the described structure or nature 
of activities.  

Structure. Most all participants described the structure of lesson study to include planning, 
teaching, observing the research lesson, collecting data during the research lesson, and then 
debriefing on the research lesson. Five participants included the goal setting stage in addition to the 
planning. There was a strong emphasis on student thinking for all participants, and often for all 
components. Ways in which the conceptions of structure varied included whether or not the 
participant described a second enactment of teaching, observing, and debriefing on the research 
lesson. 

Nature of Activities. As mentioned before, most all teachers described activities as including 
goal setting, planning the research lesson with attention to questioning techniques and student 
misconceptions and responses, observing the lesson while one teacher taught the lesson and others 
collected student data, and finally debriefing the lesson where the teacher of the lesson would 
comment first on what went well and changes they would make to improve the lesson based on their 
goals. 

Focus. Two teachers described the focus or purpose of lesson study as a way to unpack the 
teaching practices (e.g. understanding assessment, standards, or student thinking). Primary teacher 
Gillian1 reported that, “It’s more of a philosophy of how to approach what you’re doing 
professionally in the classroom. It’s the philosophy of teaching, if you will.” Four participants 
described it as an activity to better understand student thinking. Jimmy described lesson study as 
useful for observing student thinking and “to be the one standing back and listening. And, you know, 
asking the kids to explain themselves.” One participant described the focus of lesson study as 
improving mathematics content knowledge as well as pedagogy. One participant described lesson 
study as a way to create polished lessons, in addition to a way of understanding student thinking. 

In summary, teachers conceptions of lesson study aligned with how experts in the lesson study 
literature describe lesson study. This finding is significant with the strong presence and focus of 
student thinking in conversations. 

Practices of Lesson Study That Have Continued 
Most teachers (N=4) reported engaging in one cycle of lesson study in the beginning of their 

school year (See Table 1). During this cycle of lesson study, teachers reported to engage in goal 
setting, planning the research lesson, observing the research lesson and collecting student data while 
one teacher taught, debriefing on the research lesson with final reflections. This effort was initiated 
and supported by the district. It differed from former grant efforts in that there was less time for 
planning (three hours on average versus six hours), shorter time between the planning and enactment 
of the lesson, and only one cycle of lesson study planned for the year. Those study participants that 
participated in this effort served as facilitators of lesson study for teachers who had never participated 
in lesson study. 
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Though not all participants completed a round of lesson study, participants reported continuing 
practices of lesson study. Most significantly, all participants reported engaging in the practice of 
analyzing student thinking. For example, one primary school teacher participant named Bertha 

Table 1: Practices of Lesson Study Reported to Continue  
Table 1 
 
Practices of Lesson Study Reported To Continue 

 Teachers Administrators 
Practice Bertha Carmen Jimmy Ben Mia Gillian Ron Kono 

Complete Cycle 
of Lesson Study 

 X X X X   X 

Unofficial Cycle   X  X X   
Goal Setting X X X X X X  X 

Planning X X X  X X   
Observing       X X 

Analyze Student 
Thinking 

X X X X X X X X 

Debriefing X X X  X X X  
 
highlighted one of her conversations with her colleague by recalling her notes from a lesson study: 

The kids were just kind of brain storming what is multiplication. And one of the notes that the 
kids came up with that Carmen and I had on our notes was, multiplication is, you know, a bunch 
of things. But one of the things that stood out was when you multiply, the value always increases. 
I think that's what it was. And then somebody was having a conversation, where they said, 
‘Yeah.’ And I always though that, too. But then they're talking about, ‘Yeah, but what about 
when it's multiplied by 1 or 0, it does not increase.’ 

Mia, a primary school teacher participant, described an example of the role that student thinking 
played in her work with colleagues. She gave the example on how to modify a multiplication task 
with fractions to a multiplication task with whole numbers to help scaffold a problem for a student. 
“If they're not understanding that it is 3/4 of one half, and it is getting smaller. Why? Because they're 
not understanding that it's groups of. Oh, so that's multiplication. So we have to come back with, if 
you have 3 times 5, bring it to an array.” These two examples highlight the role that student thinking 
played in the reported activities of participants. 

None of the teacher participants reported observing their colleagues’ lessons, though 
administrators like the principal and Teacher on Special Assignment (TOSA) reported observing 
teachers. Most teacher participants reported planning and debriefing together, oftentimes during 
formally arranged time like Professional Learning Community (PLC) time and during informally 
arranged times like lunch or sporadically throughout the day. Gillian reported meeting at a coffee 
shop after school to debrief with fellow teachers on what students did during the lesson. 

And it was not, umm, full scale lesson study, I would say. It was more, why don't we try this 
lesson. And then after the lesson we collaborated. We met at Starbucks to talk about, you know, 
how everything went. And, and share information on what the kids were doing. So I would, I 
would call it kind of like a mini lesson study. Cause we didn't, umm, we didn't do the observing 
of each person doing the lesson. So it was more that we, we had common planning and 
debriefing. Which I think is a good option when you can't get release time. 
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Factors that Supported and Hindered Lesson Study 
Two factors that have the potential to support the continuing of lesson study as a form of 

professional development include integration and linkage. Integration levels, referring to the shared 
values, mutual expectations, levels of trust, and norms, were reported low for those teachers who 
described it as unlikely to engage in lesson study with their colleagues. For instance, both Bertha and 
Carmen reported shared values of what constitutes effective teaching and mutual expectations in 
terms of wanting professional collaboration time to focus on students’ mathematical thinking and 
designing lessons that elicit their thinking. Yet their two colleagues in their formally arranged grade-
level PLC did not share similar goals (See Figure 1). Bertha exemplifies this theme in the following 
data: 

And then on my team, not everybody values math the same way, not that I love math. I really 
don't really like math, but it intrigues me because I don't know about it and I want to know more 
about it. But I think that. I'll say some teachers on our team don't really see the value behind the 
lesson study because they haven't been through it. They don't know what it is, and they just know 
that it's, oh it sounds like a lot of work. It sounds like a lot of time. It sounds like a lot of 
planning. I don't have time for that. I'm just going to do the lesson that I've always done. 

Thus, Bertha reported a difference in the way her PLC members valued mathematics. Carmen, her 
fellow PLC member also interviewed for this study, explains that one reason for the difference in 
values on mathematics could be explained by the engagement in union policy by the other two 
members.  

There’s a clause in there that says in PLC that it has to be teacher driven, and teacher, like, 
decided upon. So, if two of the four people on the grade level want to do lesson study, but two 
other people, or one other person who doesn’t want to do lesson study, we can’t make those 
people do lesson study.   

These data exemplify instances of low levels of integration and signify a challenge of continuing 
lesson study with these colleagues. 

To exemplify linkage, I present egocentric network data in Figure 1. In this figure, vertices 
indicate participants and undirected edges between a pair of vertices indicate a reported significant 
professional relationship in the form of work related activities between the two participants. For 
instance, the single edge BC between vertices B and C represent activities such as engaging in 
planning conversations, focusing on students’ mathematical thinking, and also conversations about 
mathematics content. 

 
Figure 1. Network of participants derived from interview data. Formally arranged grade level 
groups are indicated by a circle. Red vertices represent administrators, blue vertices represent 
participants interviewed for the current study, light blue vertices represent former grant teachers not 
interviewed for the study, and black vertices represent teachers not interviewed for the study and not 
a former grant teacher. The circles each represent a formally arranged grade-level PLC group. 

The size of each participant’s neighborhood, or the other vertices that each vertex is connected to, 
range from two to six. In other words, teachers reported to exchange information while engaging in 
activities ranging with two to six specific colleagues, with an average number of connections to 
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others out of participants for this study being 4.75 (vertices A, P, T, and S were not participants for 
this study and consequently are not calculated for size). The density, or the extent to which a 
participant’s connections are connected to one another, is found by dividing the number of ties for 
one participant by the total number of potential ties to other participants. For instance, the total 
number of ties in this network can be calculated as 8!/2!(8-2)! This number, which counts the total 
number of ways 8 participants could be connected to one another exactly once, is 28, making the 
density of this network a total of 19/28, or approximately 67%. The distance, or the mean of the 
shortest path lengths among all connected pairs of participants, for each participant ranges from 1.14 
(for instance, vertex C is connected to all but one by 1 path, and connected to K by a path of length 2, 
making the mean of 1+1+1+1+1+1+2 equal to 1.14) to 1.5 (for instance, vertex G is connected to all 
but two by a path of two, and connected to M and C by a path of length one, making the mean of 
1+1+2+2+2+2+2 equal to 1.5).  

These three measures – size, density, and distance – suggest a way to quantify the measure of 
linkage. These moderate levels of linkage suggest some potential in continuing lesson study. 

Conclusion 
Little research exists on issues surrounding the sustainability of lesson study for mathematics 

teachers. This research examined practices of teacher communities that get reorganized when 
relationships among teachers shift; in particular, when relationships and funding between teachers 
and university faculty who engaged in mathematics lesson studies end.  

Findings from this study highlight teachers’ conceptions of what it means to engage in lesson 
study and reported practices of lesson study that continued past the end of the grant. Findings also 
highlight the need to attend to social relations among teachers and administrators in one district to 
better understand issues of sustainability. It was evident that many teachers from the former grant 
wanted to continue to engage in lesson study. Additionally, districts attempted to put in place 
supports for these teachers to continue to engage in lesson study. Integration and linkage were shown 
to be important factors in continuing lesson study; low levels of integration or linkage suggested low 
potential for continuing while high levels of integration or linkage suggested high potential for 
continuing.  

Endnote 
1All names used in this report are gender preserving pseudonyms. 
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We traced the impact of a sequence of five research-based professional development sessions on a 
cohort of mathematics teachers’ Mathematical Knowledge for Teaching. The sessions focused on 
task design and implementation as a means of building teachers’ pedagogical capacity. Findings 
revealed that teachers’ pedagogical knowledge pertaining to student thinking, if not their practice, 
was influenced by the activities they experienced. 
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Introduction 
Improving the quality of Mathematical Knowledge for Teaching (MKT) among teachers has 

been at the forefront of mathematics education reform agenda for quite some time. Within the 
last three decades, advances have taken place in defining accurately and precisely what 
mathematical knowledge for teaching might mean and the various dimensions that are embedded 
in the construct (Ball, Thames, & Phelps, 2008), developing theoretical models that inform how 
teacher learning of this body of knowledge might be best grounded (Borko, 2004), and 
identifying features of effective professional development programs that facilitate such learning 
for teachers (Garet, Porter, Desimone, Birman, & Yoon, 2001). 

Less clear however, are the specific domains of MKT of teachers that are enhanced by their 
participation in research-based professional development programs or empirical data that support 
changes as the result of their newly acquired knowledge (Sztajn, 2011). In this paper, we will 
describe the findings of an exploratory research project in which we traced the impact of a series 
of professional development sessions focused on task design and implementation on teachers’ 
pedagogical content knowledge. 

Background 
Building on two of Shulman’s categories of teacher knowledge (content knowledge and 

pedagogical knowledge), Ball, Thames, and Phelps (2008) defined six domains of Mathematical 
Knowledge for Teaching (MKT), which they defined as the “mathematical knowledge needed to 
carry out the work of teaching mathematics” (p. 395). While Ball and colleagues distinguished 
between content knowledge (Subject Matter Knowledge) and pedagogical knowledge (Pedagogical 
Content Knowledge) as Shulman did, they more specifically designated three domains within each. 
Within Subject Matter Knowledge, they defined Common Content Knowledge (CCK), Specialized 
Content Knowledge (SCK), and Horizon Content Knowledge (HCK). The CCK domain includes 
knowledge of mathematics that students must learn, while the SCK domain includes knowledge of 
mathematics that is specific to the classroom environment (e.g. analyze student errors). HCK is 
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described as “a view of the larger mathematical landscape that teaching requires” (Hill & Ball, 2009, 
p. 70). 

Within Pedagogical Content Knowledge, Ball and colleagues (2008) distinguished between 
Knowledge of Content and Students (KCS), Knowledge of Content and Teaching (KCT), and 
Knowledge of Content and Curriculum (KCC). In the KCS domain, teachers must understand how 
students may come to understand a concept, while in the KCT domain teachers must make 
instructional decisions that best facilitate student learning. KCC requires that teachers know the 
standards and curriculum not only for a specific mathematics course, but also across grade levels, 
courses, and subject areas. 

Guskey (2003) argued that the primary goal of professional development (PD) programs is to 
“bring about change in the classroom practices of teachers” (Guskey, 2002, p. 381). In order to 
achieve this goal, researchers have identified characteristics of teacher PD programs that tend to 
advance teacher learning and shifts in practice. Among them include opportunities for sustained 
interactions over time, collective participation by participants, and activities that are content-focused 
and grounded in the teachers’ everyday practice (Garet et al., 2001). 

The use of mathematics tasks in PD sessions has been found to influence teachers’ teaching 
knowledge and their instructional practices. Through activities with mathematics tasks, teachers can 
increase their capacity to implement the curriculum with coherence across multiple grade levels 
(Ferrini-Mundy, Burrill, & Schmidt, 2007), improve their problem solving skills (Guberman & 
Leikin, 2013), and increase their content knowledge of mathematics (Silver, Clark, Ghousseini, 
Charalambous, & Sealy, 2007).Boston (2013) found that teachers’ capacity to identify cognitive 
demands of tasks, as well as identify the opportunities particular tasks provided to elicit student 
thinking, was increased by participation in a PD program that focused on the cognitive demand of 
tasks. What remains to be learned about the use of tasks in PD programs is how the modification of 
traditional tasks and their implementation in the classroom builds teachers’ pedagogical capacity. 

Drawing from this body of scholarly ideas, a series of 5 PD sessions for mathematics teachers 
who were expected to serve as instructional leaders in their respective schools was designed. 
Prominently, relying on Cognitively Guided Instruction (Carpenter, Fennema, & Franke, 1996), we 
intended to engage teachers in building their own knowledge of mathematics through investigating 
children’s understanding of mathematics content and using that knowledge to guide instruction. In 
implementing the sessions, we capitalized on five practices recognized to be pivotal to orchestrate 
productive mathematics discussions (Smith & Stein, 2011). The primary focus of our work was 
facilitating knowledge development of the teachers through the creation and implementation of rich 
mathematical tasks, and then considering different solution strategies (appropriate or inappropriate) 
students might use on the tasks as a way of anticipating what may need to be addressed in instruction. 

The Five Practices for Orchestrating Productive Mathematics Discussions includes the planning 
and selecting of appropriate tasks for classroom activity (Smith & Stein, 2011) since this venue has 
been recognized to have an impact on the mathematics students engage with (or not) in the classroom 
(Hiebert & Wearne, 1993). Coupled with the understanding that textbooks and teacher resources are 
often limited in their offering of tasks that require reasoning of children (Thompson, Senk, & 
Johnson, 2012), two of the PD sessions were focused on task selection and design in motivating 
mathematical thinking among school learners. Brown and Walter’s (1983) problem posing 
framework served as the primary guide for organizing teachers’ activities during these sessions. The 
teachers were first presented with a task, and asked to list its attributes. They then removed 
constraints from the task and rephrased it in a way that could substantially extend learners’ thinking. 
The goal was for the modified tasks to reflect characteristics of rich mathematical questions: tasks 
that provide multiple entry points, multiple solution strategies, and opportunities for students and 
teachers to develop deeper mathematical connections (Stein, Grover, & Henningsen, 1996). Our 
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research goal was to determine the knowledge teachers may have gained from such experiences 
based on their classroom implementation. 

Methodology 

Setting & Participants 
The participants in this study consisted of 12 mathematics teachers expected to serve as 

instructional leaders in their own respective schools using a coaching model. The participants’ prior 
mathematics teaching experience ranged from 1-31 years, with a mean of 13.9 years. All teachers 
engaged in a year-long PD program that was grounded in principles of Cognitively Guided 
Instruction (Carpenter et al., 1996). This approach was used to help teachers develop capacity 
towards shifting classrooms from teacher-centered orientation to a more student-centered 
environment. The PD sessions that served as the basis for our exploratory inquiry consisted of series 
of five sessions that lasted approximately 3 hours each (a total of 15 hours). The fourth session in this 
series used the problem posing framework of Brown and Walter (1983) to assist teachers in learning 
about how to modify mathematics tasks to advance students’ mathematical thinking. The teachers 
were asked to revise a task that already existed in their practice or curriculum materials, implement it 
the classroom, and then reflect on what they learned from doing so. 

Data Collection 
Upon the creation of the new tasks to be implemented in the classrooms, the teachers were asked 

to identify mathematical and pedagogical goals they intended to meet using the new tasks. They were 
also asked to collect samples of student work (correct or incorrect) and to comment on what they 
may have gained from the experience. The participants submitted their reflections/assessments 
electronically. For this particular study, the teachers’ original and revised tasks, as well as their 
responses to four questions served as the primary sources for data analysis: (1) How is your revised 
task different from the original task? Describe the process you used to adapt the task from the 
original task.; (2) What additional questions did (or would) you or your teacher ask to elicit, scaffold, 
or extend student thinking?; (3) What insights into your students’ mathematical thinking and 
understanding did the revised task provide that the original task may not have been able to provide?; 
and (4) How would you adapt or implement this task differently in the future and why? 

Data Analyses 
The original and revised tasks submitted by the teachers were coded using Stein, Smith, 

Henningsen, and Silver’s (2000) categories of level and kind of cognitive demands and/or thinking 
processes in mathematics classrooms: high-doing mathematics; high-use of procedures with 
connections to concepts, meaning, and/or understanding; low-use of procedures without connections 
to concepts, meaning, and/or understanding; and low-memorization. An example of our coding 
procedure is show below, illustrating the original and the revised tasks submitted by one teacher: 

Original: There are twenty-one shells. The shells are evenly divided among three students. How 
many shells will each student get? A. 6 B. 7 C. 8 D. 9 

Revised: Susie has 24 gumballs. She wants to share them with some friends.  She wants to make 
sure each friend gets the same amount of gumballs.  How many different ways can you come up 
with for Susie to share her gumballs with friends?  Show all the ways below. 

The original task was coded as low-use of procedures without connections to concepts, meaning, 
and/or understanding, and the revised task was coded as high-use of procedures with connections to 
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concepts, meaning, and/or understanding. Once the codes were generated, further analysis 
determined strategies the teachers used to revise the original task. 

The teachers’ responses to the four reflection questions were coded first using the Mathematical 
Knowledge for Teaching framework (Ball et al., 2008). The unit of analysis was one sentence. If two 
or more sentences referred to the same idea, the two sentences were coded once, and if a sentence 
contained two or more phrases that fell into different codes or ideas, the phrases were coded 
separately. Three independent researchers coded the teachers’ responses. Coding results were 
compared among the researchers; if disagreement occurred, discussions were held to reach agreement 
on the coding for each response. Disagreement on the coding occurred and was remedied five times. 

The following excerpt from one of the teachers’ responses to question (1) serves as an example 
of our coding procedure: 

The original task was simple math. There was not a lot of higher level thinking involved. The 
students had worked on this type of equivalent fractions for some time. It came pretty easy to 
them. We needed to create a task that would challenge the students and take the math they 
learned and apply it to a real life situation. 

The first two sentences were coded once as Specialized Content Knowledge, the second two 
sentences were coded once as Knowledge of Content and Students. The last sentence was coded 
twice as Knowledge of Content and Teaching (one code for “challenge the students” and one code 
for “take the math they learned and apply it to a real life situation”). 

The codes that were identified for the responses to each question were tallied corresponding to 
each participant. Since question (2) primarily elicited responses in the MKT domain of Knowledge of 
Content and Teaching, the question-type framework as described by Boaler and Brodie (1994) served 
as a second level of analysis for the teachers’ responses for question (2). The responses to question 
(4) also overwhelmingly fell into the KCT domain, so they were coded on a second level as either 
related to content or pedagogy. 

Results 

Original and Revised Tasks 
 The coding results for cognitive demand level and type of the original and revised tasks are 

summarized in Table 1.  

Table 1: Cognitive demand level and type for original and revised tasks (n=12) 

 
High-doing 
mathematics 

High-procedures 
with connections 

Low-procedures 
without 

connections 

Low- 
memorization 

Original task 0 0 10 1 
Revised task 0 7 5 0 

 
Note that all of the original tasks were low level cognitive demand (one of the tasks did not 

provide enough information to be coded), and that 7 of the 12 revised tasks increased the cognitive 
demand level to high. The teachers who increased the cognitive demand from low to high did so by 
removing constraints in the task to allow for multiple solutions, asking students to provide 
explanations and visual representations, introducing new mathematics content, and requiring students 
to give non-examples. 
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Five teachers submitted original and revised tasks that were both categorized as low-procedures 
without connections. While they did not increase the cognitive demand of the task, these teachers 
added a context or changed the language of the original problem to revise their task. For example, 
one teacher’s original task, a worksheet of 3-digit subtraction problems, was revised to include three 
3-digit subtraction problems placed in a context, one of which included “There are 300 dogwood 
trees currently in the park. Park workers cut down 115 dogwood trees today. How many dogwood 
trees are left in the park?”. 

Reflection on the Task and its Implementation 
Six teachers responded to all four questions, and six teachers responded to questions (1) and (2) 

only. Table 2 is a summary of the MKT codes, specifically in the domains of SCK, KCT, KCS, and 
KCC that were generated from the teachers’ responses to each question, illustrating the knowledge 
domains that may have been influenced as a result of the activity. 

Table 2: Domains of teacher knowledge elicited by four reflection questions 
 Specialized 

Content 
Knowledge 

(SCK) 

Knowledge of 
Content and 

Teaching 
(KCT) 

Knowledge of 
Content and 

Students 
(KCS) 

Knowledge of 
Content and 
Curriculum 

(KCC) Total 
Question (1) 11 32 7 4 54 
Question (2) 0 57 0 0 57 
Question (3) 11 14 5 0 30 
Question (4) 0 13 0 0 13 
Total 22 116 12 4 154 

 
For question (1), in which the teachers were asked to compare their original and revised tasks, 11 

of the 12 teachers made statements that compared the tasks in terms of the different levels or types of 
thinking the tasks may (or may not) elicit from children. For example, teachers stated that the revised 
task was more open-ended than the original and would thus require students to use their own thinking 
to solve the problem, or that the new task would require a higher level of thinking than the original 
task. Six teachers explicitly stated that they removed a constraint or piece of information in the 
original task to make the revised task more open-ended. Five teachers responded that the revised task 
would require different mathematics content than the original task. 

For question (2), the teachers stated questions they asked or would ask to elicit, scaffold, or 
extend student thinking. In total, the teachers stated 57 questions, all coded as KCT. 66.7% of the 
questions asked students to go deeper than the revised task,  categorized in the Boaler and Brodie 
(2004) question-type framework as extending thinking (n=18); probing, getting students to explain 
their thinking (n=14); exploring mathematical meanings (n=4); and linking and applying (n=2). 
Questions posed by the teachers in these categories included “How might your ideas change if Susie 
includes herself in the equal sharing?” (extending thinking) or “Do you think those represent the 
same solution or different solutions?” (exploring mathematical meanings). The remaining 33.3% of 
the questions geared students toward finding the answer to the posed task. These questions fell into 
the categories of orienting and focusing (n=12), gathering information (n=5), inserting terminology 
(n=1) and establishing context (n=1). Questions posed by the teachers in these categories included 
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“What is this problem asking you to do?” (orienting and focusing) and “How did you know this was 
a subtraction problem?” (gathering information). 

For question (3), the 6 teachers who implemented the task reported what they learned about 
student thinking as a result of implementing the revised task. All six of the teachers claimed to gain 
insight into their students’ thinking, their misconceptions, and where they may struggle with the 
content. For example, one teacher stated “it was apparent which students recognized that there was a 
missing addend and that an efficient way to find the missing addend is to subtract.”  Four of the six 
teachers reported improving their SCK as a result of implementing the task, stating that the task 
provided opportunities for students to use multiple representations and solution strategies, and for the 
teacher to interpret student work and student thinking on their particular topic. 

For question (4), the 6 teachers who implemented the task reflected on how they would 
implement the task differently in the future. The teachers’ responses to this question generated 13 
KCT codes, 5 related to content, and 8 related to pedagogy. For an example of a pedagogy 
modification, one teacher stated that she might “have different students solving the same problem but 
with different numbers of gumballs. This may allow for more connectedness about numbers being 
divided up in different ways.” Pedagogically, a different teacher thought he would “give students 
more time to work through the task, provide manipulatives, encourage collaboration and 
communication, and strategically have students share ideas.” 

Summary 
All of the teachers revised a traditional task to be implemented in the classroom with the intent to 

offer more open-ended venues for student explorations. Of the 6 teachers who revised a low 
cognitive demand task to a high cognitive demand task, 3 implemented the revised task in their 
respective classrooms. The reflections of these 3 teachers revealed that their revised task gave them 
more insight into student thinking, the reflection comments offered by these individuals indicated 
that they felt the new questions allowed their students to learn more mathematics and make deeper 
connections as a result. These 3 individuals also reported that they felt more efficacious in guiding 
the classroom discussions in a manner that deviated from additional tell, show, and correct pattern. 

In their reflections, all 12 teachers reported ways in which their Mathematical Knowledge for 
Teaching may have been influenced by their participation in the PD sessions and related activities. 
Overwhelmingly, the knowledge the teachers claimed to gain could be described as pedagogical, as 
75.3% (n=116) of the teachers’ responses described ways their Knowledge of Content and Teaching 
was impacted as a result of the activity. The teachers claimed to have gained knowledge of strategies 
they could utilize to modify a traditional task to create a task that is more open-ended, allows for 
multiple solution strategies, and requires students to use their own thinking. The 6 teachers who 
implemented the task cited ways the new task enabled them to better facilitate mathematical 
discussions that focused on student thinking and making mathematical connections. 

Six teachers who implemented their revised task in the classroom cited ways that this process 
influenced their Knowledge of Content and Students. One articulated her heightened awareness of 
student thinking as she stated “it was clear that the students did understand the relationship between 
multiplication and division. This is something that the original task would not have brought out about 
student understanding.” Two of the teachers noted that students had difficulty finding new strategies 
that were different than the strategies their teacher had taught them. This leads us to conclude that the 
enactment of the revised task in the classroom, not just its revision as an isolated activity, is critical 
in impacting teachers’ pedagogical knowledge. 
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Conclusion 
The main goal of our exploratory research was to determine what aspects of teachers’ 

Mathematical Knowledge for Teaching could be influenced by PD sessions guided by the principles 
of CGI and with a focus on designing rich, open-ended tasks.  The reports of these participants 
indicated that their pedagogical knowledge pertaining to their understanding of student thinking, if 
not their practice, was influenced by what they had learned as a result of implementing the revised 
tasks in their respective classrooms. Additionally, the teachers who revised the traditional task from 
low to high cognitive demand claimed their students learned different mathematics content and made 
richer connections as a result of engaging with the revised task. 

The National Council of Teachers of Mathematics (2000) and the Common Core State Standards 
for Mathematics (National Governors Association Center for Best Practices and Council of Chief 
State School Officers, 2010) require that children have the opportunity to engage with mathematics 
in ways that foster understanding, sense making, and reasoning. No longer is the traditional drill and 
practice classroom environment acceptable to meet these standards. But teachers must be given 
learning opportunities that may foster the pedagogical and content knowledge necessary to facilitate 
such a classroom environment. The PD program and sessions that informed this research gave 
teachers valuable tools and increased pedagogical capacity necessary to take their current classroom 
materials and adapt and implement them in ways that may help children reason more deeply about 
mathematics to meet these new standards. 
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In an era of high stakes education and the persistence of racism, classism, and the politics of 
language, there is evidence that teachers may benefit from learning creative insubordination, the 
bending of rules in order to advocate for all students to learn mathematics. Even so, we know little 
about how or why teachers decide to take risks when stakes are high. This study examines the 
experiences of secondary mathematics teachers moving from pre-service to full-time teaching and 
their choices of whether or not to use creative insubordination in their working contexts. It highlights 
three rationales that justify taking risks: 1) Changing the minds/practices of others, 2) Projecting an 
identity one can be proud of, and 3) Modeling advocacy behavior for bystanders.  Implications for 
future research and teacher education are offered. 

Keywords: Equity and Diversity; Teacher Knowledge; Teacher Beliefs, Teacher Education-
Preservice  

In an era of high stakes education and the persistence of racism, classism, and the politics of 
language in society, professional development for mathematics teachers has started to expand beyond 
developing forms of pedagogical content knowledge that draws upon deep understanding of 
mathematics (Ma, 1999; Hill, et al., 2005) and students’ funds of knowledge (Civil, 2002; Turner et 
al., 2012; Aguire & Zavala, 2013) to include an understanding of privilege, oppression, and political 
knowledge (Willey & Drake, 2013; Bartell, 2011; Gutiérrez, 2012, 2013a, b, in press).  The 
importance of political knowledge and creative insubordination is underscored by the derailing of 
successful mathematics departments such as Railside High and Union High (Boaler & Staples, 2008; 
Nasir et al., 2014; Gutiérrez, 2013a; Gutiérrez & Morales, 2002).  That is, these mathematics 
departments had long histories of success with low income Latin@ students who normally do not 
have positive experiences or reach advanced levels of mathematics while in high school. Yet, the 
politics of their districts kept teachers from either maintaining the practices they had developed or 
eventually pushed teachers out who were beaten down by a climate of alienation and 
deprofessionalism.  The stories of these departments indicate that professional development around 
issues of pedagogical content knowledge and commitment of teachers to all learners may not be 
enough to sustain success in student learning when larger political debates about public schooling 
and testing arise.  As such, some teacher education programs have adopted a broader lens of equity, 
including actively providing opportunities for teachers to not only deconstruct the deficit narratives 
that circulate in schools, but also speak back to those narratives through direct actions.  One of those 
forms of speaking back through actions is creative insubordination, the bending of rules in order to 
advocate for one’s students.   

Creative Insubordination in Mathematics Teaching 
Our project began using the term “creative insubordination,” having heard it first in activist 

circles in the late 1970s and early 1980s and growing up.  Later, we learned that in their ethnographic 
work conducted in Chicago Public Schools, Crowson & Morris (1985) found “widespread rules and 
directives violations among site-level administrators” that they labeled partly as “creative 
insubordination” because these violations were benign and counter-bureaucratic and substituted the 
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principal’s values for those implicit in organizational policies directed from above.  Summarizing 
various studies, Roche noted: 

Creative insubordination has two main purposes:  to ensure that the system directives do not 
impinge unfairly or inappropriately on teachers and students and to avoid the possible backlash 
that outright defiance might incur. Crowson (1989) and Haynes and Licata (1995) argue that 
when principals use creative insubordination, the counterbureacratic behaviors they adopt often 
contain a moral element designed to balance antieducational consequences.” (Roche, 1999, 257-
8)  

Our work (Gutiérrez et al., 2013; Gutiérrez & Gregson, 2013) builds upon and extends the early 
research on creative insubordination by connecting it with teachers and showing its usefulness within 
the context of secondary mathematics. With respect to mathematics teaching, creative 
insubordination includes the following acts:  creating a counter-narrative to the achievement gap; 
questioning the forms of mathematics presented in school; highlighting the humanity and uncertainty 
of mathematics; positioning students as authors of mathematics; challenging deficit narratives of 
students of color; renaming a course to reflect the fact that it only covers Western, Euclidian 
geometry, not all geometries that are practiced in the world; refusing to go along with procedures at a 
workshop that asked teachers to publicly endorse the Common Core State Standards in mathematics; 
and convincing a co-teacher that the mathematics being taught needed to reflect a more rigorous 
curriculum so that students understood why procedures worked.  

Elsewhere, I have described the concept of political conocimiento for teaching mathematics 
(Gutiérrez, 2012; 2013a) that connects mathematical content knowledge, pedagogical knowledge, 
knowledge with communities, and political knowledge within a community of like-minded 
individuals.  This concept of political conocimiento for teaching mathematics takes into 
consideration the history of mathematics teaching and learning in a global society. In addition, I have 
articulated both a model of teacher education that supports the development of political knowledge, 
as well as taxonomy of strategies for creative insubordination and language practices that keep 
teachers from being dismissed in political situations (Gutiérrez, 2014).  This study seeks to extend 
that knowledge by asking:  What compels mathematics teachers to take risks in their working 
contexts to advocate for historically marginalized students and their learning when the stakes are 
high and the benefits of taking risks are not always clear?   

Risk taking is normally viewed as a process whereby an individual weighs the costs and benefits 
of an action and finds the benefits outweigh the costs.  The majority of the research conducted on 
individuals taking risks falls within the area of risky sexual behaviors, risky business ventures, or risk 
taking in health.  Within education, there is some evidence that both support from leadership (Blase, 
2000) and strong internal feelings of power and a sense of responsibility (Anderson & Galinsky, 
2006) can encourage individuals to take more risks. Moreover, some researchers have suggested that 
risk taking may be a sign of great teachers (Brazeau, 2005).  However, outside of the context of 
innovating their pedagogy to align with reform-based mathematics, we know very little about the risk 
taking behaviors of mathematics teachers in a context of political situations.   

All of the participants in this study acknowledged the utility of creative insubordination (which 
requires taking risks) in their student teaching and current working contexts as well as expressed a 
desire to use it.  However, not all of them did so.  As such, this study sought to understand the 
phenomenon of risk taking for mathematics teachers, how they interpreted risks and how they 
decided whether or not to take a stand in a political situation that involved power dynamics. 
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Methodology 
This study is part of an ongoing, NSF-funded, longitudinal investigation of secondary 

mathematics teachers who have been provided with an alternative teacher education program that 
foregrounded issues of equity, social justice, creative and rigorous mathematics, and political 
knowledge.  Over a period of 2 years each, four cohorts of teachers (n=19) participated in a 3-hour 
bi-weekly seminar, a partnership with a Chicago public high school teacher, several professional 
development sessions including an annual summer boot camp and conference attendances, a weekly 
after-school mathematics club, and biweekly individual mentoring sessions.  These structural aspects 
of the teacher education model supported several conceptual goals, including broadening and 
challenging knowledge, noticing multiple interpretations, developing an advocacy stance, and 
rehearsing creative insubordination (Gutiérrez, 2013a).  Rather than offering a set of “effective 
practices” to follow (Bartolomé, 1994), one guiding principle of this teacher education model was 
“The Mirror Test:” the ability to look oneself in the mirror everyday and say, “I’m doing what I said 
I was going to do when I entered the profession of mathematics teaching.” This notion of a mirror 
test underscored the idea that being a great teacher for students who have historically been 
marginalized (e.g., students who are black, Latin@, low income, English learners, and/or 
immigrants) means carrying out one’s practice in a way that is consistent with one’s philosophy and 
ethical stance.   

The data for this study draw from transcripts of 78 seminars and selected mentoring sessions 
between 2009 and 2014.  Transcripts were coded (Lincoln & Guba, 1985) to identify major themes 
around the interpretation and use of creative insubordination, including types of political situations in 
which teachers find themselves (e.g., battles over curriculum, use of technology, high stakes testing), 
types of power dynamics involved (e.g., teacher-student, teacher-parent, student-student, teacher-
administrator), underlying issues (stereotypes of who is good at math, deficit views of students of 
color, watering down of curriculum, lack of low income students in advanced courses or higher 
tracks), types of creative insubordination strategies teachers used under different contexts (e.g., seek 
allies, challenge with evidence, turn a rational issue into a moral one).  Because I was interested in 
the phenomenon of risk taking as it related to creative insubordination, I began analyzing data by first 
sorting participants into categories of high and low use of creative insubordination.  I identified five 
teachers who consistently reported using creative insubordination in their student teaching and full-
time teaching, three who never or very rarely used creative insubordination in either context, and the 
rest who sometimes used creative insubordination.  Focusing on the high users of creative 
insubordination, I turned to their rationales for why they did so in any given situation as well as the 
questions they raised to others who chose not to use creative insubordination. I was most interested in 
how these high users justified taking a stand on an issue when others in the group might not have 
done so if faced with the same scenario.  From there, I looked at the infrequent users of creative 
insubordination to understand better what challenges they saw that seemed insurmountable or that 
did not seem worth risking their status or relationship with colleagues, students, or administration.  I 
used member checking (Lincoln & Guba, 1985) to corroborate findings.  I report on the trends here. 

Findings 
A review of the transcripts indicated that teachers are often willing to take risks when they 

immediately benefit from doing so.  For example, one teacher in our work group didn’t pause before 
defending herself when a student of hers was leaving her classroom and made a disparaging remark 
about whites.  However, teachers are more cautious when they are risking their status or credibility 
with colleagues to defend students or a more rigorous form of mathematics.  
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Changing the Minds of Others 
Teachers in this study tended to be most likely to take risks in their teaching practices with 

students and their interactions with others when they were optimistic that their actions would have 
some positive effect on the decision-making process of others.  In particular, when faced with 
political situations, ones involving power dynamics, they tended to gauge whether they could 
diplomatically disagree with someone and get an alternate view onto the table in a way that would 
not be dismissed.  They considered the language they would use and the contexts in which they 
found themselves so that they were the most effective. 

One high user of creative insubordination was faced with a cooperating teacher who had low 
expectations for students in an Algebra II course populated by older students.  He laid out an 
argument to the cooperating teacher about the internal consistency of mathematics presented in class 
(how students needed to relate polynomials with integers) because he knew that an argument based 
solely on what students were capable of was not going to sway him.   

He showed me the curriculum, topics that I needed to cover.  There’s like synthetic division, but 
there’s nothing else like…And, synthetic division is basically just an algorithm.  And, I’m gonna 
have to just say, “it works.” …I don’t want to argue against him because I don’t want to step on 
his toes.  I need to be wise in what I say so I don’t sever that relationship with my coop. I just 
think about it in my head, then I try to think about how he would take it.  From there, I try to 
compromise my own words.  I was going to say this, but I try to come up with a better wording.  
I try not to say things right away. I know that the issue is very fresh and he may think I am acting 
on impulse. I try to make sure there is no room for my statement to be misconstrued as I’m just 
challenging him.  Trying to be wise in my timing on things.  I know he feels pretty strongly about 
things and I try to my best of ability, weighing the risk and reward.  Is this going to be something 
worth fighting over? A lot of times, I’ll say, “Let’s wait a bit and see what happens.”   

This teacher, a high user, talks about his process for weighing the risks, and sometimes choosing 
not to fight a particular battle.  In doing so, he suggests that he considers who he is talking with and 
in what context to help him choose his words wisely so that he is not simply dismissed.  In this sense, 
his focus is partly on changing the mind of the person he faces. 

Projecting an Identity that One Can be Proud Of 
Another rationale that arose for the high users that did not arise for the infrequent or rare users of 

creative insubordination was the idea that risk taking is worthwhile even if one is not sure of the 
outcome for others because it reflects who you are.  When faced with a school meeting where the 
school administrator suggested that the achievement gap was due to black student culture, one 
teacher clarifies that she was not sure how the administrator would respond to her correcting his 
statement publicly, but she was also projecting a particular identity that she could be proud of. She 
says, 

Okay, this is also the boss and I’ve only taught one year.  I don’t know how I’m going to say 
what I want to say without sounding like, “I straight out disagree with you” in a respectful 
way…[I was] Just feeling, a lot of fear…But, I have to let myself be known to people.  This is 
the kind of person I am, this is what I believe in, and if you wanted to talk about something that 
is important with respect to race, I’m the kind of person to talk to.  

Her rationale highlights the fact that she was willing to risk her status with a superior not just because 
she thought she might change his mind about black students and the achievement gap, but because 
her actions were signaling something about herself to others.  She counsels others in the teacher 
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group who are less inclined to take risks when they feel uncomfortable to consider how they’ll feel 
about themselves in the end. 

It’s about changing our behaviors not our ideals.  It’s about not saying you stand for problem 
solving and then not doing any problem solving in your class. 

This same teacher faced a black student who when she passed him over to help another student 
when he raised his hand, publicly called her out as racist.  She felt the need to stand up to him in a 
similar way, less because she thought he was serious about thinking she was racist or because she 
was trying to change his mind, but because she wanted other students in the class to know what kind 
of a teacher she was, someone who was comfortable talking about race.  

Returning to the case of the high user who faced a cooperating teacher with low expectations 
who did not want to increase the rigor of mathematics in his class, the high user explains that he 
wanted to change his mind, but that was not his only goal.   

That’s just not how I do things. I didn’t know if I was going to change his mind. But, I just 
needed him to let me do what I wanted. I couldn’t be him. 

This high user of creative insubordination expressed a similar rationale for standing up to a student 
who made a stereotypical comment about certain people being good at mathematics. He witnessed a 
student who was struggling with a problem turn to another and exclaim, “Put on your Asian hat and 
help me do this problem.”  He explained,  

I don’t know if he really thinks that or they’re just joking, but I couldn’t just stand there and, I 
don’t want to signal that that’s okay in my class.  Maybe that’s okay in other classes, but not for 
me. 

Again, we hear the rationale less about weighing the benefits and risks for impacting the student who 
made the stereotypical comment and more about what it signals to his class about the kind of teacher 
he is and what is allowable in his class.  

Modeling Advocacy Behavior for Bystanders. 
Mentioned less often than changing the minds of others or projecting a particular identity was the 

idea that even if one’s actions didn’t convince others to change policy or their beliefs about which 
students were capable of advanced mathematics, using creative insubordination had the possibility of 
influencing others who were bystanders to stand up in similar ways to such comments.  Again, this 
rationale was more present among the comments made by high users of creative insubordination than 
those who were infrequent or rare users.   
One teacher (a less frequent user) was faced with a superior in the mailroom and wasn’t sure how to 
respond to his stereotypic comment about Asians being good in math.  

He said it in an offhand way.  There was a student who was Asian and was not good in math.  He 
said, “She’s Asian and you wouldn’t expect that.” He said it so quickly and kept moving on with 
the story…  I work there, so I can’t have him mad at me.  I don’t want him to say something to 
my boss… being the younger person talking to an older person, is it my place to be saying 
something?  What are the consequences of speaking up?  I know him well enough to know that 
had I said something, he wouldn’t have any respect for what I said.  So, is it even worth 
mentioning?  

Three fellow teachers, high users, counsel her, 

T1:  I think so, 
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T2:  I think so too.  One thing, it’s easy to make assumptions about people that protect us from 
putting ourselves out there. I’m not saying that you did…It’s really easy to assume something 
about someone to keep me from getting out of my comfort zone.  You could say how he 
would have responded, but to say something, even if you are casual about it, he is probably 
going to reflect on his comments regardless of how you think of what he is thinking. I think 
it’s important for us to get out of our comfort zones because it is how we are going to grow 
and how we are going to make a difference… 

T1:… the first step is by putting yourself out there; you are making a change within yourself. 
Then, you can help others make the same change.  How can I help others in my classroom 
take that risk to see others differently if I cannot do that?  How can I start to live more like 
what I believe in?  The little things are what matter. 

T3:  I really like what was just said.  I think it is really good that a lot of us are feeling this 
discomfort.  I don’t know if I would have acted.  I think if I hadn’t, I think I would have 
looked back and said, “Shoot, why didn’t I?  It’s good that we are even feeling that drive and 
that tension.  It’s there because you are taking a real risk when you are doing that.  Especially 
as a white person, that risk doesn’t benefit us.  We can, it benefits us by not taking the risk.  
Maybe the person you are talking to might not get the message.  But, you may become a role 
model for the observer.  That other person will see you taking that risk.  Especially as a white 
person. That is really strong and a way to start making change too. 

Another high user gives a similar explanation for standing up for students even when it doesn’t 
benefit her as a white person.  A rare user of creative insubordination asked her how she gets the guts 
to do what she does.  She responds that when faced with racist comments about her students of color, 
she does not naturally know what to say or how to say it, but she takes the risk because of what it 
says to other white people. 

I’m white and it is really hard to get your privileges pointed out to you, and you know you didn’t 
earn them and you… One privilege is to be able to walk around this discomfort and to be able to 
walk away from it…I feel really nervous right now, that fear, feeling uncomfortable.  Because we 
are in the majority, we can just choose to leave the conversation.  It’s extra important for us to get 
into these uncomfortable situations. We need to commit ourselves to not taking it and not 
walking away from it because we can signal to others what is possible. 

She recognizes that standing up to racist comments by individuals one faces is not always for the 
benefit of that person changing, but for other bystanders to witness what it looks like for a white 
person to stand up for the rights of others.   

Conclusions 
Teachers in this study were provided with professional development that supported their 

understanding of and inclination to use creative insubordination, to not simply go along with the 
status quo but to stand up to racist comments, deficit-based perspectives on students, mathematical 
practices that emphasized procedures and memory over conceptualization, and/or stereotypes of who 
is good at mathematics.  However, some teachers were more likely to stand up for their students, 
even if it meant risking their status or relationships with others.  

There was a greater propensity for high users of creative insubordination to rely on a rationale 
that extended beyond the likelihood that their actions would be met by a change in belief or action by 
the person with whom they were facing in a political situation.  These individuals tended to consider 
what kind of identity they were projecting to others, as well as whether their actions might provide an 
incentive for others to also speak up or advocate for historically marginalized youth and their rights 
to learn rigorous mathematics. That is, they were often willing to take a stand even if they knew their 



Teacher!Education!and!Knowledge:!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

685!

arguments or suggestions for alternate policies or actions were likely to fall on deaf ears. They did so 
knowing that their choice not to go along with the status quo was a means by which they could look 
themselves in the mirror each day. 

Understanding the rationales of high users of creative insubordination can help teacher educators 
and professional developers to emphasize the importance of looking beyond the immediate gain of 
winning an argument with a colleague or changing a policy.  The choice to focus on the projection of 
one’s identity and the possibility of influencing bystanders suggests a longer term approach being 
used by teachers who seem more willing to take risks to advocate for all students to learn meaningful 
mathematics.  
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This study investigates how 20 prospective elementary teachers make connections among children’s 
multiple mathematical knowledge bases in their thinking about assessing children’s understanding of 
fractions. The researcher facilitated concept-mapping tasks to examine the ways the prospective 
teachers linked concepts related to children’s lives and experiences and children’s mathematical 
thinking. This paper focuses on high-level tasks as a potential entry point to build stronger 
connections between assessing children’s understanding of mathematics and children’s multiple 
mathematical knowledge bases in teacher education. Additionally, I discuss implications for teacher 
educators and considerations for further research. 

Keywords: Teacher Education-Preservice; Teacher Knowledge; Equity and Diversity 

A role of teacher education programs is to provide support for prospective teachers to develop 
professional skills that are specific to and required for teaching. Mathematics teacher educators may 
provide opportunities for prospective teachers to recognize and validate children’s many ways of 
knowing mathematics, which is especially powerful for addressing the needs of students who are 
traditionally marginalized in the mathematics classroom. Mathematics education researchers 
emphasize the importance of eliciting and building on children’s mathematical thinking in teaching 
mathematics (e.g. Carpenter, Fennema, Peterson, Chiang, & Loef, 1989; Jacobs, Lamb, & Philipp, 
2010). Supplementing this focus on children’s thinking, more recent research calls for incorporating 
children’s home and community-based mathematical funds of knowledge in mathematics teaching to 
support student learning of mathematics (e.g. Aguirre et al., 2012; Turner et al., 2012). When 
teachers consider children’s funds of knowledge, they ultimately have more resources to draw upon 
and inform their teaching practice to design meaningful classroom experiences that incorporate their 
students’ knowledge and experiences outside the mathematics classroom. There is limited research, 
however, on how prospective teachers connect the role of assessing children’s understanding of 
mathematics to incorporating children’s funds of knowledge in their mathematics teaching. The 
purpose of my study is to better understand in what ways prospective teachers make this connection 
in the context of an elementary mathematics methods course. In this paper, I address the following 
research question: In what ways do prospective elementary teachers link concepts related to 
children’s multiple mathematical knowledge bases to assessing children’s understanding of 
fractions? 

Theoretical Framework 
Aguirre and colleagues (2012) defined children’s multiple mathematical knowledge bases as 

children’s mathematical thinking and children’s community, linguistic, and cultural funds of 
knowledge. By building stronger connections among children’s multiple mathematical knowledge 
bases, teachers may have opportunities to learn from their own practice while making intentional 
instructional decisions that support their students’ learning in meaningful ways by connecting 
students’ funds of knowledge to their mathematics classroom experiences. In this study, I am 
interested in the connections that prospective teachers make between children’s multiple 
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mathematical knowledge bases and their thinking about assessing children’s understandings as part 
of their professional practice. 

Given the intricacies of teaching practice, I draw on concept mapping as a tool that provides 
prospective teachers with a learning opportunity to create a representation of their thinking about 
relationships between concepts related to teaching practice. The research literature on concept 
mapping in teacher education provides evidence that its use as a research tool is valid and robust. 
Scholars have used concept map artifacts to examine teacher knowledge about mathematics content 
(e.g. Williams, 1998; Hough, O’Rode, Terman, & Weissglass, 2007) and knowledge about teaching 
skills (e.g. Beyerbach & Smith, 1990; Koc, 2012).Other researchers studied the validity of using 
concept maps as a research tool in education. For example, Miller et al. (2009) examined the 
capability of concept maps as a research tool by studying pre- and post- concept maps by 251 
prospective and practicing teachers. The authors used a concept map scoring method (Novak & 
Gowin, 1984) and found that participants’ concept map scores distinguished expert to novice levels 
in conceptual understanding and growth over time. My research question focuses on how prospective 
teachers make connections among concepts related to children’s multiple mathematical knowledge 
bases, and I am using concept maps to gather evidence of these connections by examining how 
concepts in their maps are linked together. I based my research design on work by Hough and 
colleagues (2007) who partially used qualitative content analysis to compare teachers’ pre-maps and 
post-maps from beginning to end of a professional development program. 

Method 
I conducted this study within the context of a larger research project that produced modules 

designed to teach prospective elementary teachers to make stronger connections in mathematics 
lessons between children’s mathematical thinking and children’s lives and experiences. In my 
research, I collected data from20 prospective teachers enrolled in a15-week elementary mathematics 
methods course using activities from these modules. This paper reports data from and analysis of 
individual concept maps constructed in the last week of the course and individual reflections on the 
connections within the concept maps. All prospective teachers created these artifacts during their 
regular class meeting time and location; however, the methods course instructor was not present 
during these activities. All names in this paper are pseudonyms. 

Data Collection 
During the last class meeting of the semester, I explained concept maps and the concept map 

activity to the whole group. In this activity, I prompted prospective teachers to create a concept map 
to represent their knowledge about assessing children’s understanding of fractions. I selected 
“fractions” as a specific mathematics topic to consider because it was a major topic in the 
mathematics methods course. I explicitly instructed prospective teachers to think about this concept 
map activity with a network structure, rather than a hierarchical structure with downward flow, to 
encourage making connections among any and all related concepts on their maps. I emphasized 
connections among concepts because I wanted prospective teachers to focus on indicating links 
between concepts to answer my research question.  

First, prospective teachers individually created a concept map on a legal-sized sheet of paper with 
the option to draw the map entirely by hand or to write concepts on provided sticky notes to place on 
the sheet of paper. I did not provide prospective teachers with any initial concepts to consider, but I 
did provide black pens for this part of the activity. Next, I asked prospective teachers to have a 
focused discussion about evidence of connections among children’s multiple mathematical 
knowledge bases in their concept maps. These discussions occurred in groups of four people. After a 
few minutes, I interrupted small group discussions to direct attention to specific concepts related to 
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children’s multiple mathematical knowledge bases that I provided on a sheet of paper: Children’s 
mathematical thinking; Problem solving strategies; Making sense of students’ mathematical ideas; 
Students’ personal experiences; Students’ interests and activities; Students’ home and community 
knowledge bases (e.g. regular routines, places in community); and Funds of knowledge (e.g. cultural, 
community, and linguistic resources). 

I asked each group to review the list and determine if any of these concepts connected to their 
concept maps. I also asked each group to discuss how they would change their concept maps to 
include any of the provided concepts but explicitly instructed them not to change their maps during 
the discussion. While prospective teachers had discussions in their groups, I collected all black pens 
and distributed red pens. I designed this activity in two parts with different colored pens to 
distinguish and collect data for both parts (before and after focused group discussion). After 
discussion, prospective teachers individually revisited their concept map to make any changes with 
red pens. Finally, prospective teachers individually wrote a brief reflection about evidence of 
children’s multiple mathematical knowledge bases in their map. 

Data Analysis 
I used content analysis techniques to examine links and concepts within prospective teachers’ 

concept maps by specifically looking for evidence of children’s multiple mathematical knowledge 
bases in their maps. I first coded all concepts in the maps using three initial categories: Mathematical 
Concepts, Assessment, and Children’s Multiple Mathematical Knowledge Bases. I created these a 
priori categories based on my research question and concept map prompt. I started analysis by coding 
five concept maps at a time with the initial coding scheme and identifying any concepts that did not 
seem to fit well in any of the categories. Through multiple rounds of this iterative process, I refined 
my coding scheme to include emergent categories based on patterns from my analysis. Table 1 
contains my final coding scheme, definitions, and examples from concept maps.  

Table 1: Final coding scheme with examples 
Category Definition Notes Examples 
Mathematical 
Concepts 

Includes all concepts related to fractions 
(types and parts of fractions, definitions) 
or number & operations more broadly 

Same as a priori 
category 

Numerator; Reciprocal; 
Common denominator 

Representations 
and Tools 

Includes representations such as number 
lines, manipulatives, and examples of 
fractions 

Emerged from 
iterative coding 
process 

Number lines; 
Pie charts; 
½ 

Teaching 
Practices 

Includes examples of and concepts related 
to assessment (design and types), 
activities, tasks, and instructional planning 

Broader category of 
a priori Assessment 
category 

High level tasks; Formal 
assessment; Differentiation 

Children’s 
Mathematical 
Thinking 

Includes examples of and concepts related 
to students’ prior knowledge, solution 
strategies, specific common 
understandings and misconceptions Children’s Multiple 

Mathematical 
Knowledge Bases 

Problem solving strategies;  

Misconceptions; 

Seeing students’ thinking 
Children’s 
Lives and 
Experiences 

Includes examples and concepts related to 
children’s funds of knowledge: linguistic, 
community, home, and cultural knowledge 

Funds of knowledge;  
Relate to students’ interests; 
Culturally relevant 

 
Mathematical Concepts remained a category, Representations and Tools emerged as a new 

category, and I broadened the a priori Assessment category to include all concepts related to 
Teaching Practices. I decided to split the Children’s Multiple Mathematical Knowledge Bases 
category to make a distinction between Children’s Mathematical Thinking and Children’s Lives and 
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Experiences because I wanted to compare how prospective teachers represented both concepts in 
their maps. Finally, I used the prospective teachers’ brief reflections as another source of data to 
examine how prospective teachers saw evidence of children’s multiple mathematical knowledge 
bases in their concept maps. 

Results 
Across the group, nearly half (48.89%) of all links in the maps connected concepts related to 

children’s multiple mathematical knowledge bases to concepts I coded as Teaching Practices. In 
particular, seven prospective teachers made a direct link between children’s multiple mathematical 
knowledge bases and high-level tasks. A key finding from my analysis suggests that high-level tasks 
may be a possible entry point to strengthen connections between children’s multiple mathematical 
knowledge bases and assessing children’s understanding of mathematics. In this section, I will 
highlight three examples of how prospective teachers made these connections with particular 
attention to high-level tasks in their concept maps and reflections.   

As shown in Figure 1, Avery has high-level task as a concept directly connected to assessing 
children’s understanding of fractions with a cluster of concepts also connected to it. After editing the 
map, Avery added problem-solving strategies to this cluster of concepts, which I coded as a concept 
related to children’s mathematical thinking. Avery also added connect to students’ experiences, use 
students’ names, and connect appropriate funds of knowledge to this cluster, which I coded as 
concepts related to children’s lives and experiences. 
 

 

Figure 1. Avery’s end of semester concept map. 
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In the end of semester reflection, Avery explicitly wrote about seeing evidence of connecting 
children’s multiple mathematical knowledge bases to assessing children’s mathematical 
understanding by using high-level tasks: 

Avery: I made the biggest connection between developing high-level tasks[emphasis added]with 
relating students' experiences and funds of knowledge. When assessing students and how 
they think we need to make sure that all students relate to the problem and can understand the 
context or background of a problem. The material needs to be relevant to every child so that 
they can one day use their knowledge in the real world. Even something as small as changing 
the names in a story problem will increase student interest and motivation. 

Avery points to a connection between creating high-level tasks to assess students’ mathematical 
understanding and using relevant information about students’ funds of knowledge. Avery also notes 
that it is important to acknowledge students’ relationship to mathematical problems, including the 
problem context and background. Part of this relationship may be related to student motivation, but 
Avery focuses on the potential utility of mathematics in students’ lives outside of the mathematics 
classroom. 

Similarly, other prospective teachers indicated evidence of children’s multiple mathematical 
knowledge bases by connecting these concepts to high-level tasks. Figure 2 shows Morgan’s end of 
semester concept map with these connections. In this map, utilize students’ funds of knowledge is the 
lead concept of an added cluster directly connected to assessing children’s understanding of 
fractions, fraction vocab, number talks, exit tickets, high-level tasks, and allow multiple 
representations. Additionally, Morgan added a direct link between high-level tasks and allow 
multiple representations in the edited map. 

 

Figure 2. Morgan’s end of semester concept map. 
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In the brief reflection, Morgan explained that high-level tasks and multiple representations 
connected to concepts related to children’s multiple mathematical knowledge bases: 

Morgan: Creating high-level tasks [emphasis added] that provide students with multiple entry 
points into problems allowing them to think and use strategies that makes sense to them will 
tap into students' prior knowledge of what they already know and what strategies they are 
comfortable using. Allowing students to use multiple representations [emphasis added] also 
connects to their experiences of what types of strategies they have used in school before and 
what representations they prefer to use. 

Morgan’s brief reflection provides evidence of connections between high-level tasks and students’ 
mathematical knowledge and strategies from in-school mathematics experiences. It is not clear, 
however, in what ways Morgan is making connections between high-level tasks and students’ funds 
of knowledge. Similarly, it is not clear in what ways Morgan is making connections between multiple 
representations and students’ funds of knowledge, even though there are links between these pairs of 
concepts on Morgan’s map. 

One prospective teacher, Harper, noted that there was evidence of concepts related to children’s 
mathematical thinking before editing the map, such as number talks, seeing students’ thinking, and 
high-level tasks. After editing the map, Harper added more concepts related to children’s lives and 
experiences: 

Harper: At first, the only discussion I had about mathematical thinking was in describing how we 
can use number talks to see students thinking, and allowing them to explore different 
strategies with high-level tasks [emphasis added]. Once I edited the map, I added things about 
students’ home life, community, personal experiences, etc. 

Harper initially highlighted eliciting students’ mathematical thinking through number talks, 
which is an activity in which students participate in 15-minute conversations about computation 
problems to communicate their mathematical thinking. Harper also describes how high-level tasks 
provide opportunities for students to explore different problem solving strategies, which is also 
closely connected to students’ mathematical thinking. Harper does mention a shift to focusing on 
students’ funds of knowledge only after the discussion and editing process. 

An Interesting Case to Explore 
Out of all the prospective teachers’ brief reflections, Parker was the only participant who claimed 

to not see evidence of children’s multiple mathematical knowledge bases in the end of semester 
concept map (see Figure 3). Parker explained that there was no evidence of concepts related to 
children’s multiple mathematical knowledge bases in the map because of Parker’s ways of thinking 
about assessing and about using funds of knowledge in mathematics teaching: 

Parker: I think there is no evidence because I thought of assessing in the pedantic sense. I 
thought that experiences of the children would go more along with the actual teaching 
[emphasis added] of concepts… I could add funds of knowledge to the concepts that I stated 
as being a part of a formal assessment. 

I highlight Parker’s reflection as an interesting case because I heard multiple prospective teachers 
voice similar thoughts during small group discussions about funds of knowledge being more directly 
related to the process of teaching mathematics rather than assessment, which could follow the act of 
teaching. From the methods course materials, I have evidence that prospective teachers adapted 
existing tasks and curriculum materials, but I have little evidence that prospective teachers have 
designed assessments at this point in their preparation program. One prospective teacher told me 
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during the whole group discussion that they have experience adapting problems to align with 
students’ needs although they have not created assessments in the course. Consequently, this 
evidence made me wonder about how prospective teachers’ made sense of the phrase “assessing 
children’s understanding” in the root of this concept map activity, and ultimately, how their 
understandings influenced the construction of their concept maps. 

 

 

Figure 3. Parker’s end of semester concept map. 

Discussion 
This study investigates in what ways prospective elementary teachers make connections among 

children’s multiple mathematical knowledge bases in their thinking about assessing children’s 
understanding of fractions. In the following, I describe implications for teacher educators and 
considerations for further research. 

Teacher educators may support prospective elementary teachers to make explicit and stronger 
connections among concepts related to children’s mathematical thinking, children’s lives and 
experiences, and assessing children’s understanding of mathematics. One entry point to better 
support these connections involves emphasizing high-level tasks as a concept related to teaching 
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practices that connects to both children’s mathematical thinking and children’s lives and experiences. 
From my analysis of concept maps and brief reflections, I found strong evidence that the prospective 
teachers in my study made connections between high-level tasks and children’s mathematical 
thinking. Based on an interesting case I found in the data, another implication for teacher educators is 
to be cognizant of a possible perception that funds of knowledge, including children’s lives and 
experiences, are not used or useful in assessing children’s understanding of mathematics. I would 
recommend a stronger focus on assessment as one of many teaching practices and the role of 
assessment for equitable teaching practices that serve the needs of all students, especially those who 
are traditionally marginalized in the mathematics classroom. 

For further research, I would be interested in gathering more information about how prospective 
teachers make sense of the concepts related to children’s multiple mathematical knowledge bases. 
Although prospective teachers made connections among these concepts, I noted that the concepts 
used more general language and did not include specific examples of how children’s multiple 
mathematical knowledge bases connected to children’s understanding of fractions. More 
specifically, I would like to examine whose multiple mathematical knowledge bases are represented 
in these concept maps. Are particular racial or ethnic groups of students in mind when we use the 
phrases funds of knowledge or multiple mathematical knowledge bases? Where do understandings of 
multiple mathematical knowledge bases come from (e.g. content in course readings/activities, prior 
experiences with children, etc.)? 
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This project examines how prospective elementary teachers (PSTs) framed the idea of drawing on 
multiple mathematical knowledge bases (MMKB)—children’s mathematical thinking and funds of 
knowledge— for diverse learners, in the context of adapting curriculum. We analyzed 47 written 
reflections of PSTs’ analyses of an existing mathematics curriculum. Using inductive analysis, we 
identified four themes related to how PSTs evaluated the curriculum and identified possible spaces 
for small adaptations. Findings describe how these four themes related to incorporating MMKB. We 
discuss implications for mathematics teacher education.    
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The field of mathematics teacher education has begun to address how the cultural, linguistic, and 
socioeconomic positionality of students impacts their learning opportunities (Zevenbergen, 2001). 
Unfortunately, the focus on children’s sociocultural identity in the classroom often appears as a 
separate subset of study from the more traditional focus on the psychology of mathematics education 
(Aguirre et al., 2012). Typically, children’s home- and community-based knowledge receives much 
less attention in teacher education than children’s mathematical thinking (e.g., problem types, 
solution strategies, etc.; Carpenter, Fennema, Peterson, Chiang & Loef, 1989) (Aguirre et al., 2012). 
In mathematics teacher education, the emphases on children’s mathematical thinking and on 
children’s home- and community-based knowledge and experiences remain largely disjointed, 
leaving prospective teachers (PSTs) ill-equipped to meaningfully integrate both important sources of 
mathematical knowledge and learning. 

Research continues to reveal how a majority white, female, middle class teaching force struggles 
to effectively teach a diverse student population (Sleeter & Milner, 2011). This enduring challenge in 
education, more broadly, has serious implications for mathematics teacher education at all levels. 
The purpose of this paper is to examine how elementary PSTs make sense of addressing the needs of 
historically underrepresented populations in school mathematics during their mathematics methods 
course. In particular, we examine PSTs’ work on a curriculum analysis assignment to better 
understand how PSTs frame meeting the needs of historically underrepresented populations through 
mathematics curriculum adaptation. 

Theoretical Perspectives 
Theoretical perspectives from two strands of research on elementary mathematics teaching and 

learning guide this project. First, the extensive body of research on mathematics instruction that 
centers on children’s mathematical thinking (e.g., Cognitively Guided Instruction, Carpenter, et al., 
1989) provides a basis for developing PSTs’ knowledge of children’s mathematical thinking in ways 
that change beliefs and shape classroom practices. Second, research that documents the benefits of 
drawing upon the cultural, linguistic, and community-based knowledge of historically 
underrepresented groups (Ladson-Billings, 2009; Turner, Celedón-Pattichis & Marshall, 2008) 
guides PSTs’ development of leveraging home- and community-based knowledge in mathematics 
instruction. In particular, this project draws on the theory of funds of knowledge(FoK) for teaching. 
FoK refer to the “historically accumulated and culturally developed bodies of knowledge and skills 
essential for household or individual functioning and well-being” (Moll, Amanti, Neff, and 
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Gonzalez, 1992, p. 133). Using students’ FoK for mathematics teaching means that classroom 
instruction utilizes the cultural, linguistic and cognitive resources from home or community settings 
to promote students’ learning of the standard mathematics curriculum in school settings (Moll et al., 
1992). 

Although both strands of research are well developed, they remain disconnected in mathematics 
teacher education, as mentioned above. As a result, the field of mathematics education lacks a deep 
understanding of how teachers might learn to integrate the focus on children’s mathematical thinking 
with the emphasis on home- and community-based knowledge. This project aims to bridge these two 
bodies of research by guiding K-8 PSTs to use children’s multiple mathematical knowledge bases 
(MMKB) to support student learning. In this paper, we refer to MMKB as the integration of 
children’s mathematical thinking and children’s FoK (Aguirre et al., 2012). More specifically, the 
research question for this project is: How do K-5 PSTs frame the idea of drawing on MMKB, 
specifically for historically underrepresented student groups, in the context of adapting curriculum? 

Methods 
The research presented in this paper is part of a larger project, TEACH Math. In this section, we 

briefly discuss the goals and methods of the larger project and provide details about the specific data 
collection and analysis that produced the findings presented here. 

Research Overview 
The TEACH Math project aims to transform elementary mathematics teacher preparation so that 

new generations of teachers will be equipped with powerful tools and strategies to increase student 
learning and achievement in mathematics in our nation’s increasingly diverse public schools. The 
project involves iterative refinement of three instructional modules for elementary mathematics 
methods courses designed to explicitly develop teacher competencies related to mathematics, 
children’s mathematical thinking, and community and cultural FoK. Across these three modules, 
PSTs develop specific knowledge, beliefs, and dispositions related to MMKB. 

Research has occurred at six university sites across the United States, with data on PSTs’ work in 
all three modules collected from elementary mathematics methods courses at each of these sites. We 
analyzed data collected at one university site, a large university in the Midwest located near a small 
city with an increasingly diverse population. For this analysis, we used data collected from an 
activity in two K-5 mathematics methods courses at this university, each with a different co-principal 
investigator (PI) as course instructor. 

In the activity selected for this analysis, Analyzing Curriculum Spaces, PSTs analyzed an 
existing elementary mathematics curriculum to identify opportunities for accessing, building on, and 
integrating children’s mathematical thinking and children’s home and community-based 
mathematical FoK (i.e. MMKB). We refer to places in the curriculum where teachers can make these 
types of small adjustments as curriculum spaces(Drake et al., 2015). This activity is one of four in 
the Classroom Practices Module in which PSTs learn to analyze classroom practices through four 
lenses: teaching, learning, task, and power and participation. In this specific activity, PSTs use a tool, 
Curriculum Spaces Table, designed by the co-PIs, to guide PSTs’ identification and adaptations of 
curriculum materials that create spaces for eliciting and building on children’s MMKB. 

The Curriculum Spaces Table has three sections. In the first section, PSTs identified the central 
mathematical goal or ideas of the lesson. In the second section, they answered questions about the 
different phases of the lesson (e.g. launch, explore, summarize). The questions included: (1) What 
makes the task(s) in each phase good and/or problematic?; (2) What are opportunities for activating 
or connecting to family/cultural/community knowledge in each phase of the lesson?; (3) How does 
each phase of the lesson open spaces for making real-world connections?; (4) What are opportunities 



Teacher!Education!and!Knowledge:!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

697!

for students to make sense of the mathematics and develop/use their own solution strategies and 
approaches?; (5) What kinds of spaces exist for children to share and discuss their mathematical 
thinking with the teacher and the class?; (6) Where does the mathematical authority reside in the 
lesson? In the final section, PSTs proposed possible adaptations for the lesson phases or the overall 
lesson. 

Data Collection and Analysis 
Data for this paper included PSTs’ written reflections on their use of the Curriculum Spaces 

Table to analyze the Stickers: A Base-Ten Model lesson from Grade 3 Investigations in Number, 
Data, and Space (TERC, 2008, p. 26-33). We analyzed a total of 47 written reflections. Participating  

 

Primary 
Theme 

Definition Subthemes & Definitions 
(if applicable) 

Learning 
Supports 

Aspects of the lesson/teaching provide 
supports to facilitate student learning of 
mathematical content, including 
scaffolding (i.e. gradually decreasing the 
need for learning aids as students’ comfort 
with language, concepts, etc. increases); 
teacher questioning(i.e. various forms of 
questioning recognized to support learning 
(Boaler & Brodie, 2004)); or 
differentiation (i.e. individualized 
adaptations of lessons/tasks). 

General Learning Supports: 
Considerations that will arise in 
essentially every classroom setting; 
no reference to FoK. 

Learning Supports for Diverse 
Learners: give diverse learners 
access to the mathematical 
content; particularly important 
when the class included culturally 
and linguistically diverse students 
or special education students; may 
or may not reference FoK. 

Prior 
Knowledge 

Aspects of the lesson/teaching are relevant 
to the students’ prior knowledge. The 
teacher or students can provide this 
connection to prior knowledge. 

 

School-Based Knowledge: Prior 
knowledge that arose in a school-
based setting. 

Funds of Knowledge: Prior 
knowledge that arose from 
community/family/cultural 
knowledge or experiences. 

Not-Specified: Source of prior 
knowledge is not specified 

Motivation  Aspects of the lesson/teaching are relevant or familiar to students for the 
purpose of engaging or motivating students. 

Children's 
Mathematical 
Thinking 

 

Aspect of the lesson/teaching accessed, built on, or integrated children’s 
mathematical thinking, including references to: (1) students’ mathematical 
explanations and justifications; (2) orchestration of mathematical discussion 
(Smith & Stein, 2011); and (3) specific mathematical features of the task (e.g. 
manipulatives, multiple representations, multiple strategies). 
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Figure 1: Coding Themes & Definitions for Content of Written Reflections 

PSTs were reflective of national demographics (i.e. mostly white, middle-class females). In the 
written reflections, PSTs discussed strengths and limitations of the lesson, spaces they identified for 
eliciting and building on children’s MMKB, and the ways in which using the Curriculum Spaces 
Table aided in their analysis. 

We analyzed the written reflections through an iterative coding process. The first two authors of 
this paper began the coding process separately, analyzing two of the written reflections and noting 
themes. We compared our initial impressions and used the themes to develop an initial codebook. We 
continued coding separately, comparing analyses, and revising the codebook until we produced a 
final (seventh) version of the codebook (Figure 1). Throughout our development of the codebook, we 
continually looked for confirming and disconfirming evidence of the identified themes (Erikson, 
1986).  

Using the final version, we coded the remaining written reflections together, discussing 
discrepancies and reaching consensus on coding. Written reflections were coded at the paragraph 
level (as denoted by the participant or roughly 10-15 lines) because surrounding sentences (or turns) 
provided important context for identifying themes. The codebook provided exhaustive codes (i.e. 
every paragraph received at least one code), but primary codes were not mutually exclusive. 

We used the codebook described above to identify major themes related to the content of PSTs’ 
written reflections, and we created a second coding stream to identify themes related to PSTs’ 
evaluation of the curriculum. This secondary coding stream represented three major themes in PSTs’ 
analyses: (1) Strength; (2) Weakness; and (3) Curriculum Space (Figure 2). Coding in these two 
streams allowed us to examine both the specific aspects of the lesson/teaching that PSTs identified in 
their curriculum analysis and whether PSTs framed those aspects of the lesson as strong/weak or 
spaces for adaptation. We linked codes in this second stream directly to codes in the first stream. For 
example, sometimes PSTs discussed ways in which the lesson provided learning supports, and they 
clearly identified those learning supports as strengths of the lesson. Such a paragraph would receive a 
“learning supports-strength” code. In some cases, PSTs did not clearly evaluate lesson aspects as a 
strength/weakness or a space for adaptation, and we did not use the second coding stream. Codes in 
the second stream were not mutually exclusive because some paragraphs included a discussion of 
both strengths and weaknesses of the same aspect of the lesson and because curriculum spaces were 
generally identified alongside weaknesses. 

 
Primary 
Theme 

Definition Subthemes & Definitions  
(if applicable) 

Strength PSTs evaluated some aspect of the lesson/teaching as strong. 
Weakness PSTs evaluated some 

aspect of the 
lesson/teaching as 
weak or limited. 

Too little – Weakness or limitation resulted from too little of 
an aspect (e.g., too little support for diverse learners) 
Too much – Weakness or limitation resulted from too much 
of an aspect (e.g., too much explaining/telling by the teacher) 

Curriculum 
Space 

PSTs identified an aspect of the lesson/teaching where the curriculum could be 
adapted. This code was used both when the PST made a specific adaptation 
suggestion (e.g., I would let the students try the problem on their own first.) or when 
the PST talked more generally about spaces in the curriculum (e.g., The lesson needs 
to be adapted for English Language Leaners (ELL).) 
Figure 2: Coding Themes & Definitions for Evaluation by PSTs 
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Findings 
In this section, we share the major themes that emerged across the written reflections. We found 

that attending to children’s mathematical thinking represented the most dominant theme (Table 1), 
and we present these findings first. Attention to the needs of historically underrepresented 
populations of students, specifically, emerged under several different themes - learning supports, 
prior knowledge, and motivation. We present findings related to each of these themes separately. 
Overall, FoK and diverse learners received lesser attention in PSTs’ curriculum analysis. 

Table 1: Percent of total codes (n=1086) by specific code/theme 
Children’s math 

thinking 
Learning supports Prior knowledge Motivation Other 

35.6% 17.7% 11.8% 7.8% 27.1% 
 General 15.2% School 4.2%   
 Diverse 2.5% FoK 4.7%   
  Unspecified 2.9%   

Attention to Children’s Mathematical Thinking  
PSTs paid considerable attention to aspects of the lesson that accessed, built on, or integrated 

children’s mathematical thinking (Table 1). PSTs identified both strengths and limitations in the 
ways the lesson attended to children’s mathematical thinking, and they recognized spaces for 
adapting lessons to integrate, build on, or elicit children’s mathematical thinking beyond 
opportunities already offered in the lesson. Consider the following excerpt: 

The launch of the lesson is very important in making the lesson effective in promoting students’ 
learning…Students might only use one method of solving the task if they were not taught 
multiple ways to see the numbers. The lesson provides opportunities for students to explore but 
the lesson could summarize more in a group discussion format. In doing a discussion students 
could share their solutions and allow other students to ask questions, compare, or justify their 
own thinking… 

In this reflection, the PST identified aspects of the launch as strong but also recognized limitations in 
and suggested adaptations for eliciting student thinking, particularly in the summary discussion. 

Learning Supports 
Among all relevant themes for our research question, learning supports, both general and specific 

to diverse learners, represented the second most common theme in written reflections (Table 1). 
Learning supports for diverse learners represented 2.5% of all codes. This means that fewer than 15% 
of all reflections on learning supports focused on diverse learners, specifically. In other words, 
overwhelmingly, PSTs seemed to focus on general learning supports in their analysis of the lesson. 
The following PST identified general learning support as a strength.!

This lesson…gives [students] a way to visualize the patterns and fully understand what it means 
to add by ten as opposed to just giving them a problem and hoping they figure out the answer. 
Giving students ways to remember patterns is more beneficial in my opinion.  

When PSTs did discuss learning supports for diverse learners, a greater proportion of the codes 
occurred alongside codes for weaknesses than alongside codes for strengths in the lesson. The 
following excerpt is from a rare instance where a PST identified strengths of the lesson in regards to 
supporting the needs of diverse learners: 
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This lesson states, “As frequently as possible, refer to strips as strips of 10 to reinforce the 
groupings of 10s and 1s”.  When teaching I think it is important to pay attention to the 
vocabulary you are using and try to keep it the same throughout. Especially when thinking about 
ELL students…using the same words to describe something throughout a lesson can help 
decrease confusion of word meanings and phrases.  

More commonly, PSTs expressed that the lesson inadequately addressed the needs of diverse 
learners: “This lesson also limits ELLs. At no point in the lesson do I see any talk of ELLs so that’s 
something that could limit their learning.” Despite being able to identify learning supports for diverse 
learners as a weakness in the lesson analysis, however, only approximately 11% of all suggested 
adaptations related to learning supports focused on the needs of diverse learners, specifically. 

Prior Knowledge 
Prior Knowledge represented one of the most identified categories relevant to how K-5 PSTs 

framed the idea of drawing on MMKB, specifically for historically underrepresented student groups, 
in the context of adapting curriculum (Table 1). PSTs discussed home- and community-based FoK 
with roughly the same frequency as school-based prior knowledge. Figure 3 provides example 
excerpts of school-based prior knowledge, funds of knowledge, and prior knowledge with an 
unspecified source. 

 
Examples of Prior Knowledge Themes 
School Based “The lesson connects back to Sticker Station done in second grade so it utilizes 

[students’] background knowledge.” 
FoK “Aspects of the lesson plan that stand out as especially important for making the 

lesson effective in promoting students’ learning are…that the lesson opens spaces 
for making connections to their family/cultural/community knowledge.” 

Non-Specified “I do believe that it is possible to be responsive to students’ thinking and 
background knowledge while also using the curriculum materials.” 

Figure 3: Examples for Each Category of Prior Knowledge 

Only a small percentage of PSTs identified prior knowledge (combined) as a limitation in their 
lesson analysis; however, when PSTs did identify prior knowledge as a weakness, they 
overwhelmingly focused on FoK, specifically. Consider the following excerpt: 

I thought the lesson was limited at making a connection to cultural, community, and/or family 
knowledge. It was great that the lesson used stickers which students were familiar with from the 
sticker station store in 2nd grade. This would hook student’s interest and motivate them for the 
lesson.  

As the above quote illustrates, school-based prior knowledge was rarely identified as a weakness 
in the analysis of this lesson. PSTs who identified FoK as a weakness in this lesson also generally 
discussed adaptations related to FoK. The focus on adapting the lesson to attend to FoK, however, 
represented less than 10% of all identified spaces for adaption. For example: 

The teacher could have had students create their own problems using something from their 
culture, home, or of interest that could be bundled in a set of 10 or used individually; for 
example, my case study student was very interested in basketball and played it at home with 
family often. He could create a problem having one team of basketball players represent the 10’s 
place and an individual basketball player representing the 1’s place. They could then share these 
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problems in partners or with the whole class. I feel if students could connect with the problem 
better, it would better promote students learning. 

Motivation 
Attention to engagement and motivation in the lesson plan was common throughout the 

reflections, receiving about 8% of the codes. PSTs identified aspects of the lesson that attended to 
motivation in both strong and limited ways. Nonetheless, about 10% of codes related to curriculum 
adaptations identified motivation as a space for improving upon the lesson, suggesting an overall 
desire to improve engagement and motivation in the lesson. 

If students are forced to complete tedious, uninteresting tasks, their motivation for learning the 
material will decrease…However, if a teacher is allowed to use the requirements of the 
curriculum materials as a guide to the objectives students are expected to learn and revise the 
material to the interests of the students, both motivation and success in learning the material will 
increase. 

Additionally, as a specific focus of the study, students commonly referred to engagement and 
motivation when discussing the purpose of integrating students’ FoK. The quote in the prior 
knowledge section above offers one example of this connection, but the following excerpt also 
illustrates how PSTs linked FoK to motivation. 

[This analysis] helps me to think how I should engage real-life objects with my lesson plans and 
how it would help [students] to have clearer understandings…[students] not only easily learn 
how to add and subtract multi-digit numbers, but also learn how to engage their class lessons in 
their real life. 

We interpreted this PST’s use of “engage” as evidence of attention to students’ motivation or 
interests. 

Discussion and Conclusion 
Even though the mathematics methods courses in the TEACH Math project aimed to integrate a 

focus on children’s mathematics thinking and children’s FoK, the emphasis given by the PSTs still 
seems unbalanced. Of all the themes discussed by the PSTs in their curriculum analysis, less than 
10% focused on children’s FoK specifically (i.e. prior knowledge: FoK or learning supports for 
diverse learners). PSTs overwhelmingly attended to aspects of the lesson focused on children’s 
mathematical thinking (over 30%). These findings suggest that the two emphases, children’s 
mathematical thinking and children’s FoK, remain disjointed. Other teacher educators/researchers 
have observed similar trends when PSTs use lesson analysis tools that attend to both children’s 
mathematical thinking and FoK (Aguirre, Zavala, & Katanyoutanant, 2012). Even though FoK 
received less attention than we might have expected given the methods course goals, the fact that 
some PSTs emphasized FoK and suggested lesson adaptations, while still attending to children’s 
mathematical thinking, offers hope of balancing these two important emphases in mathematics 
teaching.  

The equal attention to school-based prior knowledge and FoK offers some hope of guiding PSTs 
to consider MMKB in their lesson analysis, but prior knowledge, overall, received only limited 
attention in PSTs’ analyses. These findings suggest a need to understand how PSTs frame FoK. In 
the rare instances when PSTs attended to children’s FoK, they commonly discussed the practice in 
terms of motivating or engaging students. In science education, teachers’ rationale for attending to 
FoK ranges from motivating students to increasing access to the content to changing the content itself 
(Barton & Tan, 2009). A deeper understanding of the reasons PSTs focused on FoK in the context of 
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mathematics curriculum analysis could shed light on more effective ways of balancing the emphasis 
on children’s mathematical thinking with FoK. The range in motivations for attending to FoK raises 
questions about which framings promote consideration of MMKB and challenge deficit views of 
historically underrepresented students. 

Findings from this study also have implications for research on how teachers learn to adapt 
lessons to attend to the needs of historically underrepresented students, once they have identified the 
need for such adaptions. Those PSTs who attended to FoK in their reflections overwhelmingly 
identified a need for incorporating more focus on children’s home- and community-based knowledge 
into the analyzed lesson. The ability of some PSTs to identify spaces for and to recognize the 
importance of incorporating MMKB suggests that this type of analysis holds promise. Nonetheless, 
PSTs did not necessarily suggest specific lesson adaptations or specific spaces in the lesson where 
adaptations might occur. This finding suggests that PSTs might need more support in thinking about 
how to adapt mathematics lessons to integrate, meaningfully, children’s mathematical thinking with 
children’s FoK. Further research is necessary to support PSTs in analyzing lessons and adapting them 
in order to support the needs of diverse students. 
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This mixed-methods study examines effects of implementing a mock edTPA task on prospective 
elementary teachers’ perceptions of teaching effectiveness. Results from the Mathematics Teaching 
Efficacy Beliefs Instrument document a significant change in participants’ beliefs that they can 
effectively teach mathematics. Qualitative results illuminate participants’ growing confidence in 
their understanding of elementary mathematics, their ability to recognize and attend to children’s 
thinking, and their use of pedagogical tools and resources to support children’s learning. 

Keywords: Teacher Education-Preservice; Teacher Beliefs; Teacher Knowledge 

Background and Purpose 
Teacher preparation and initial certification are undergoing significant changes as a result of new 

policy. Teacher performance assessments, including edTPA, are at the center of these policy changes 
and play a consequential role in some states for prospective teachers’ eligibility for initial 
certification. One teacher preparation program recently implemented edTPA, and data for this study 
were collected during the first semester that edTPA had consequences for program graduates. This 
study occurs in the context of a mathematic methods course preparing prospective teachers for the 
math task in the elementary education edTPA. Current research is suggesting that it is important for 
mathematics content courses to introduce the academic language needed to be successful with 
teacher performance assessments (Lim, Moseley, Son, & Seelke, 2014). However, a national survey 
conducted by Masingila, Olanoff, and Kwaka (2012) shows the majority of elementary mathematics 
content courses are taught by instructors in mathematics departments. Therefore, by default, teacher 
preparation programs must take the lead in preparing prospective elementary teachers (PSTs) for 
teacher performance assessments such as the edTPA.  

This study examines how one elementary mathematics methods instructor prepared PSTs for 
edTPA through a focus on Cognitively Guided Instruction (CGI) as an approach to instruction. In the 
mathematics methods course, the final course assessment was the implementation of a mock edTPA 
task. It is hoped the findings of this study will provide insights into ways to prepare PSTs for 
successfully completing edTPA, while maintaining a focus on effective pedagogy in elementary 
mathematics. This study seeks to answer the following two research questions:  

• What changes occur in elementary prospective teachers’ mathematics teaching efficacy 
beliefs during a mathematics methods course implementing a mock edTPA task?  

• What are the perceptions of PSTs about their mathematics teaching effectiveness upon 
completion of a mathematics methods course implementing a mock edTPA task? 

Theoretical Perspective and Related Literature 
edTPA is a standardized high-stakes assessment modeled after the Performance Assessment for 

California Teachers (PACT). PACT was developed by researchers and teacher educators at Stanford 
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University. The intent of edTPA is to move the measure of PSTs’ effectiveness from an individual 
university responsibility to a state or national level (Sato, 2014). Several prominent organizations, 
including AACTE, CAEP, NCATE, and CCSSO, have supported the need for teacher performance 
assessment to predict PSTs’ effectiveness. edTPA is composed of four teaching tasks designed to 
focus on planning, implementing, and assessing instruction based on a central focus selected by the 
PST. The fourth task concentrates on mathematics instruction, and PSTs are required to consider 
student’s mathematical thinking to plan, implement, and assess instruction. PSTs are then evaluated 
on their ability to analyze their effectiveness as a mathematics teacher implementing instruction 
focused on student’s mathematical thinking and learning.  

In the field of mathematics education, numerous studies have linked teachers’ pedagogical beliefs 
and pedagogical content knowledge to students’ learning of mathematics (Peterson, Fennema, 
Carpenter, & Loef, 1989; Campbell, Nishio, Smith, Clark, Conant, Rust, DePiper, Frank, Griffin, & 
Choi,2014). PSTs’ affect (e.g., emotions, attitudes, and beliefs) and knowledge undoubtedly also play 
an important role in learning, including successfully completing the edTPA Task 4. Teacher affect 
has been conceptualized as a continuum (Philippou & Christou, 2002). Feelings and emotions have 
been found to be short lived, highly charged, and unstable. Feelings and emotions are on one end of 
the continuum, with beliefs on the other end. Beliefs have been found to be more cognitive in nature 
and also more stable. One belief construct important to PSTs’ learning in mathematics methods and 
eventual classroom teaching is teaching efficacy beliefs. Mathematics teaching efficacy beliefs have 
been considered as two-dimensional: involving personal mathematics teaching efficacy and 
mathematics teaching outcome expectancy. Personal mathematics teaching efficacy is the beliefs a 
teacher holds about his or her skills and abilities to teach mathematics effectively. Mathematics 
teaching outcome expectancy is a teacher’s belief that effective teaching will yield positive student 
outcomes regardless of external factors. These beliefs impact PSTs’ perspectives and understandings 
of subject matter, therefore this can impact how PSTs perceive and understand elementary 
mathematics content and pedagogy (Fives and Buehl, 2014; Philipp, 2007;Swars, 2005; Richardson, 
1996; Pajares, 1992).  

Cognitively Guided instruction (CGI) (Carpenter, Fennema, Franke, Levi, & Empson, 1999) is 
an instructional model focused on children’s mathematical thinking. It is designed to support 
teachers’ instructional decisions in ways that allow them to connect the informal knowledge of 
students’ mathematical thinking with the formal mathematics. A majority of the instructional time in 
a CGI classroom should be dedicated to discourse (i.e., dialogic discussion about mathematics). 
During discourse, teachers make real-time decisions about children’s knowledge and orchestrate the 
mathematical discussion through intentional questioning. Professional development focused on CGI 
has proven to enhance teacher’s pedagogical content knowledge and shift their beliefs (Carpenter et 
al., 1989; Carpenter et al., 1993; Fennema et al., 1996; Swars, Smith, Smith, & Hart, 2009). Students 
in classrooms aligned with the pedagogy of CGI have also been shown to perform better on number 
sense tasks than peers not receiving similar instruction (Higgins & Parsons, 2010). 

Methods 

Participants and Context 
The participants in this study were 33 PSTs enrolled in two sections of a 3 credit-hour 

mathematics methods course. Their ages ranged from 19-48 (30 females and 3 males). They were in 
the second semester of their initial teacher certification program at a large, urban university in the 
southeastern United States. The duration of the teacher preparation program was two years and used 
a cohort model. This teacher preparation program includes campus-based courses and a field 
component for the first three semesters. The PSTs attended courses two days a week and were in 
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their field placement for two days per week. The field component followed a developmental model, 
progressing from prekindergarten through fifth grade during three semesters. The fourth and final 
semester consists of a full-time student teaching experience. 

Course Design 
As mentioned, the PSTs were enrolled in a mathematics methods course, which consisted of a 

14-week semester and met one day a week for 2 and ½ hours. The instructor taught the course from a 
social constructivist perspective. The primary goal was to develop beliefs and practices that aligned 
with the practices described within the NCTM’s Principles to Actions: Ensuring Mathematical 
Success for All (NCTM, 2014). The purpose of these practices is to integrate the content outlined in 
the Common Core State Standards (CCSS-M) with NCTM’s curriculum standards and principles 
(NCTM, 2000). Therefore, the methods course used the practices in Principles to Actions (PtA)to 
frame course assignments and instructor feedback on those course assignments, classroom discourse, 
and learning activities during course sessions. 

Learning activities in the course were focused on experiences that supported the PtA. For 
example, one principle states to “elicit and use evidence of student thinking” (NCTM, 2014). 
Therefore, PSTs were asked to conduct interviews with students in one-on-one settings during their 
field experiences. Once they completed the interview they would submit their final analysis for 
feedback and an assignment grade. As they continued to grow and have experiences with eliciting 
students’ thinking, they were introduced to materials that would assist them in facilitating whole 
group lesson implementation. The students were then asked to select a central focus and anticipate 
students’ potential strategies with a story problem they designed.  

The final assessment component of this course was a teacher performance assessment (edTPA) 
mock task. This task focuses on how PSTs are able to plan, implement, and analyze elementary 
students’ mathematical thinking. A central focus must be selected that allows students opportunities 
to develop conceptual understanding, procedural fluency, and problem solving knowledge. The PST 
must speak to these types of knowledge when they are analyzing the elementary students’ 
mathematical thinking. The purpose of the mock assessment task was not only to familiarize PSTs 
with the evaluation process, but to introduce the academic language of the edTPA assessment, 
alongside the academic language of the mathematics content standards and principles for teaching.  

The primary course goal was for PSTs to align their pedagogical beliefs and practices with the 
PtA teaching practices, and a secondary goal was for the PSTs to have a successful experience with 
the mock edTPA task. In order to meet these goals it is important to have a pedagogical model that 
integrates these theoretical ideas, so the primary text for the course was Children’s Mathematics: 
Cognitively Guided Instruction (Carpenter et al. 1999). Cognitively Guided Instruction (CGI) was the 
approach to instruction selected to allow PSTs to construct ideas about student’s mathematical 
thinking and problem solving capabilities, strengthen their own mathematical content knowledge, 
and to build their confidence teaching mathematics through implementation of CGI in their field 
placements. 

As shown in Figure 1, this course began with introducing the Common Core State Standards for 
Mathematics (CCSS-M) to situate the relevance of CGI within PST’s current field placements and 
future classrooms. Then, language and ideas in course learning activities and assignments immersed 
students in CGI. Students began with early number concepts and progressed through number and 
operations leading into algebraic thinking. As students became more familiar with the CGI 
framework and implementation materials, the course transitioned into the introduction of the mock 
edTPA task. The language and focus then joined the ideas of CGI with the expectation of the edTPA 
task. This task was broken into individual components to allow PSTs an opportunity to continue 
working with CGI as they merged these new understandings with a teacher performance assessment 
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task. Therefore the course began with the language of the standards, immersed PSTs into the 
pedagogical model (CGI), and concluded with a teacher performance task (edTPA).  

 
 

Figure 2. Course Design Overview 

Data Collection 
This study includes both qualitative and quantitative methods of data collection. Data collection 

occurred during one semester. The instructor of the course collected any materials related to 
coursework (i.e. course assignments, daily writings, etc.). Another researcher administered the survey 
data and conducted six interviews, without the instructor present at either of those events.  

Quantitative data presented here were collected during the first and last day of the mathematics 
methods course using the Mathematics Teaching Efficacy Beliefs Instrument (MTEBI). The MTEBI 
survey consists of 13 items on the Personal Mathematics Teaching Efficacy (PMTE) subscale and 8 
items on the Mathematics Teaching Outcome Expectancy (MTOE) subscale (Enochs, Smith, & 
Huinker, 2000). The subscales address the two-dimensional aspect of teacher efficacy. The PMTE 
subscale examines the PSTs’ beliefs about their abilities to be an effective mathematics teacher. The 
MTOE subscale examines the PSTs’ beliefs about their abilities to increase student learning through 
effective mathematics teaching regardless of external factors. This instrument employs a five-item 
Likert scale, with a higher score correlating with teacher effectiveness. Possible scores on the PMTE 
subscale range from 13 to 65; MTOE subscale scores range from 8 to 40. These subscales have high 
reliability (Chronbach’s alpha = .88 for PMTE and .81 for MTOE) and represent independent 
constructs based on confirmatory analysis. 

The qualitative data consists of end of the semester semi-structured interviews that were 
conducted with six PSTs selected randomly from the 33 PSTs in the methods course. The 
participants were recruited through an email that was sent from the researcher conducting the 
interviews. The purpose was to elicit conversation around PSTs beliefs, course experiences, and the 
mock edTPA task. The interview protocol consisted of 11 multi-part questions.  

Results 
Research question 1:What changes occur in elementary prospective teachers’ mathematics 
teaching efficacy beliefs during a mathematics methods course implementing a mock edTPA 
task? 

Table 1 presents the Likert scale value means and standard deviations as well as those for the 
PMTE and MTOE subscales. Table 2 shows the analysis of dependent sample t-test, using an alpha 
level of 0.05. The Likert scale values on the overall MTEBI and the PMTE subscale show a 
significant increase in teacher effectiveness beliefs. PSTs became more confident in their beliefs 
about their ability to implement effective mathematics instruction. Therefore, mathematics teaching 
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efficacy beliefs did positively change during the mathematics methods course. The change in scores 
on the MTOE subscale was not statistically significant, so the slight decline in mean scores should be 
interpreted as unchanged expectations for student outcomes and the statistically significant change 
for the overall MTEBI should be attributed entirely to the change in the means for the PMTE 
subscale. 

Table 1:MTEBI Likert Scale Value Means, Standard Deviations, and Mean Differences 
 

Table 2: MTEBI Dependent T-Test Results 
 

Instrument T-value p-value 
Overall MTEBI 3.12 .004* 
PMTE subscale 7.93 .000* 
MTOE subscale 1.91 .065 
* Statistically significant difference in the mean for Pre vs. Post. 

 
Research Question 2: What are the perceptions of PSTs about their mathematics teaching 

effectiveness upon completion of a mathematics methods course implementing a mock edTPA task? 
The qualitative interview data indicate that PSTs recognize the importance to teaching 

effectiveness of assessing and understanding students’ mathematical knowledge prior to and during 
instruction. “I think they should learn based off of what they know” (Participant # 2, interview, 
December 9, 2014). Another recurring theme was that effective teaching allows for multiple solution 
strategies to be considered, which was different from the PSTs’ own mathematical learning 
experiences, “I use to think that there was just one way to learn math…. I don’t really think that there 
is one way I saw kids [describes a variety of solution strategies]” (Participant # 3, interview, 
December 9, 2014). Also, some participants indicated they were able to be effective because they 
were introduced to resources that they could rely on in their own classrooms such as, “CGI 
interviews”(Participant #6, interview, December 9, 2014) and “formative assessment” (Participant 
#4, December 9,2014). Finally, others made general statements about their growing confidence, such 
as, “I have seen, from the beginning of this course to the end of the course, I have seen a progression 
in my own math…so I do feel more prepared coming out of it” (Participant #3, December 9, 2014) 
and “I was terrified to teach math…but now I feel a little more confident” (Participant # 2, December 
9, 2014).  

Discussion 
With the limited research on how edTPA is shaping and changing teacher education it makes 

sense to begin with considering PSTs’ teaching effectiveness beliefs during a time when they are 
preparing for an experience that will assess how well they are able to analyze their teaching 
effectiveness during a sequence of mathematics lessons and a re-engagement lesson based on their 
analysis of student assessment data. As teacher educators consider how to merge teacher 
performance assessments into their teacher education programs, this study is one example that if a 

 Pre Post Change 

Instrument Mean  
Likert Value SD Mean  

Likert Value SD Mean  
Difference 

MTEBI 3.54 0.48 3.75 0.40 0.21 
PMTE subscale 3.55 0.64 4.31 0.46 0.76 
MTOE subscale 3.53 0.61 3.32 0.68 –0.21 
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pedagogical model such as CGI has been previously shown to shift pedagogical and efficacy beliefs, 
then edTPA can become a useful part of the overall methods course experience without unduly  
dominating such a course. The PSTs perceptions of their effectiveness proved to be strong because of 
their ability to implement CGI in their field experiences and come back to the university classroom to 
engage with creating the edTPA Task 4 documents. The field experiences and the shift in beliefs 
seemed to ease the potential tension about edTPA and how it should be completed during their future 
student teaching experience.  
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Math Teachers’ Circles (MTCs) are an innovative, problem-solving focused approach to 
professional development. This model provides teachers opportunities to develop their problem-
solving skills as well as help them to communicate with others on classroom implementation of 
problem-solving activities. As with any professional development with teachers, it is important to 
explore the impact of this model in terms of teachers’ learning and development. In this report we 
provide our implementation of a zone theory lens provided by Goos as a way to investigate the MTC 
model. Initial analysis implementing this particular theoretical lens helps us gain insights in ways to 
improve this new model of professional development activities for future participants. 

Keywords: Teacher Education-Inservice; Problem Solving; Mathematical Knowledge for Teaching; 
Assessment and Evaluation 

Introduction  
Problem solving is one of the critical topics in mathematics education that has been the focus of 

research and curriculum reform internationally (e.g., Common Core State Standards Initiatives 2010; 
NCTM 2000; OECD 2004 & 2010). As its importance in students’ learning of mathematics is 
palpable, in-service teachers also need support in developing and improving their problem solving 
abilities as well as its classroom implementation (Anderson 2005; Hiebert et al. 1996). One 
innovative professional development approach to address these areas is the Math Teachers’ Circle 
(MTC) model, which emphasizes developing and improving teachers’ problem solving skills in the 
context of significant mathematical content. It is designed after Math Circles for secondary students, 
which originated in eastern Europe, migrating to the US in the mid-1980s. Secondary students in 
these circles engage in solving challenging mathematics problems with guidance from the 
mathematicians who facilitate these sessions. In this spirit, participating teachers in an MTC engage 
in solving math problems geared towards the level of teachers, rather than the level of their students, 
designed and facilitated by mathematicians. During each session teachers solve problems, discuss 
problem-solving strategies and different solutions, as well as possible implementations of problem-
solving activities in their classrooms. Generally, each MTC provides a weeklong summer workshop, 
followed by monthly evening sessions during the academic year. This model has been gaining 
momentum in the US, with 71 active MTCs in 36 states. White, Donaldson, Hodge and Ruff (2013) 
and White (2015) provide additional information about the MTC model. 

Being a relatively new model (since 2006), the evaluation of MTCs requires an investigation of 
effectiveness from various lenses-both theoretical and practice based ones. The purpose of this report 
is to describe our initial attempt at implementing a theoretical model described by Goos (2009) to 
explore possible contributions of the MTC models to teachers’ development in the area of problem 
solving. 

   Theoretical Framing 
The evaluation of professional development activities is a complicated task. Many researchers 

provide practice-based perspectives to design, implement and evaluate professional developments 
and outline effective practices. For example, Mewborn’s (2003) review of research identifies three 
key elements of successful practices. In general professional developments are stated to be effective 
if they (1) provide opportunities in which teachers engage with mathematical concepts and also focus 
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on their students’ learning of such concepts; (2) are situated in school-context in which teachers 
could implement and authenticate ideas; and (3) provide opportunities in which teachers discuss 
issues related to their and their students’ learning within a supportive group of participants and 
network.  

These key elements are part of a more theoretical model proposed by Goos (2009), which 
provides additional aspects contributing to the outlined key elements of effective professional 
developments. This particular perspective is an extension of Valsiner’s (1997) model for 
understanding learner’s development that stems from Vygotsky’s Zone of Proximal Development 
construct (1978).  

In their model, Goos et al. (2007) describe three zones, each of which focuses on different 
aspects of teacher learning and development: the Zone of Proximal Development (ZPD), the Zone of 
Free Movement (ZFM), and the Zone of Promoted Action (ZPA). The ZPD in this model refers to 
teachers’ knowledge and beliefs on content and pedagogy. In other words, teachers’ development of 
content knowledge, pedagogical content knowledge, their beliefs about mathematics and about 
teaching and learning of mathematics are considered within this zone. The ZFM, on the other hand, 
focuses on “constraints and affordance within the professional context” (p.26). In particular, 
teachers’ perceptions related to their profession such as insights on their students’ ability, views on 
curriculum, standards, and assessments they implement, and connections to other teachers and 
districts, and how such perceptions develop or change through participation in professional 
development activities are considered in this zone. The third zone, the ZPA, focuses on the 
professional development strategies that are being introduced either formally through structured 
workshops or informally through communication with other colleagues.  

Goos et al. (2007) observed that these zones complement each other in the effort to describe 
teacher’s learning and development. In particular, Goos et al. state, “For teacher learning to occur, 
professional development strategies [ZPA]must engage with teachers’ knowledge and beliefs 
[ZPD]and promote teaching approaches that the individual believes to be feasible with their 
professional context [ZFM]” (p. 26). 

In this exploratory study, we investigated ways in which the MTC model contributes to 
participants’ learning and development by identifying aspects related to each zone. Though this 
particular theoretical lens was only implemented in the data analysis phase of the evaluation, this 
exploration provided insights on improving the planning stages of the professional development 
model, as discussed in our conclusion. 

Methods 

Participants and Data 
The participants of this study were 129 in-service teachers who attended one of the six MTCs 

summer workshop hosted during 2011 summer. The number of participants and their years of 
teaching varied by site, as summarized in Table 1. There were more MTC sites during this particular  

Table 1: MTC sites and participants  
Site Number of participants 

 
Years Teaching 
Mean (SD)    Range 

A 23  7.26 (5.2) 1-18 
B 20    9.4 (8.8)  0-31  
C 16 12.3 (10.3)  0-35  
D 19 11.7 (8.7) 0-28 
E 20   8.2 (5.3) 1-19 
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F 
All 

27 
129 

14.6 (6.9) 2-30 
10.8 (8.0) 0-35 

summer; however only six of them both qualified and agreed to participate in this exploratory study. 
To qualify, a site had to offer at least a workshop of four full days in length and with primarily 
middle-school level teacher participants, though many also allowed secondary teachers to participate. 
These sites were geographically diverse. All sites focused on problem-solving activities by engaging 
participants to solve challenging problems. Some sites also included activities in which participants 
explicitly discussed pedagogical approaches and implementation of problem solving in their 
classrooms. 

Analysis 
In this study we focus on data collected by two instruments: the Learning Mathematics for 

Teaching (LMT) instrument developed by Hill, Schilling and Ball (2004) and an exit survey 
developed by one of the authors. All sites administered two subscales of the LMT instrument at the 
beginning and the end of the workshop. These subscales were used to measure mathematical 
knowledge for teaching (MKT) of Number Concept and Operations, and Proportional Reasoning. 
These particular items were used to get an insight on the participants’ development of content and 
pedagogical content as described in the ZPD.  

In addition to the LMT instrument, we investigated the ideas relating to the ZPD by qualitatively 
analyzing the end of workshop exit survey. These questions focused on participants’ overall 
experiences, asking them to comment on their thoughts about the workshop, their learning, other 
participants’ impact on their learning, their anticipation of changing their teaching practices as a 
result of this workshop, useful aspects of the workshop as well as their comparison of this workshop 
to other professional developments. Participants’ responds were transcribed and analyzed using open 
and axial coding procedures as described by Strauss and Corbin (1990). Each researcher developed 
codes that describe participants’ experience as a learner and a teacher. These codes were refined by 
the research team and themes were developed. At the final stage of the analysis, themes relating to 
the ZPD, ZFM and ZPA from each site were analyzed across workshops to get an insight of the 
overall experience of all participants. 

Results 
The LMT instrument was used to explore the participants’ development of mathematical 

knowledge for teaching, addressing aspects outlined in the ZPD. As a condition of using the 
instrument, we must report standardized scores only by converting raw LMT scores to standardized 
(z) scores using the scoring tables provided at the instrument-training workshop. An example of the  

Table 2: The LMT: Standardized Scores for Number Concepts 
Site Number and Operations 
              Pre          Post   Difference  
A -.41 (1.0) .06 (1.0) .48 (.53)*  
B .23 (1.0) .58 (.74) .35 (.86)*  
C .12 (.85) .30 (.91) .18 (.75)  
D -.50 (.66)     -.21 (.73)* .28 (.63)*  
E .65 (1.1) .91 (1.1) .26 (.72)*  
F .37 (.98) .56 (.96) .18(.47)  
All .05(1.0) .33(97) .29(.67)*  
Notes.(1)Scores are standardized and are presented as M (SD). Pre = pretest score; Post = 

posttest score; Difference = Post – Pre.  
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(2) *= Planned comparisons showed a significant difference between pre- and posttest 
scores (p < .05).  
 

standardized pre-, post and differences is provided in Table 2 for the Number Concept and 
Operations. 

The analysis of the LMT indicates that the planned comparison t-tests show an increase in the 
Number Concept and Operations scores that was significant with all sites combined, 
M(SD)=.29(.67)with p <.00001.However, we have not observed a similar increase in Proportional 
Reasoning content that was also administered in the LMT instrument. 

In addition, we conducted the repeated measure ANOVA, which revealed a significant main 
effect of Test Form, F(1, 112) = 76.31, p < .001. Overall, Proportional Reasoning scores were 
significantly higher than the Number Concept and Operations scores (M(SD) = .29(.67) and  
-.10(.67), respectively), and this pattern was consistent across all six sites. The interaction of Test 
Form x Workshop Site was not significant, F(5, 112) = 1.46, p = .21. 

Table 3: Repeated Measures ANOVA: LMT Standardized Scores 
Source              SS         df        MS                       F                     p 
    Between subjects 
Site         68.27  5     13.65            5.48**        .00 
Error        279.19  112       2.50 
     Within subjects 
Test         21.03  1     21.03           76.32**             .00 
Test * Site        2.02   5       0.40             1.44         .21 
Test (Error)            30.86  112       0.28 
Time          0.96  1       0.96             4.28                .04 
Time * Site    0.476  5       0.10             0.42        .83 
Time (Error)       25.13  112       0.22 
Test * Time   4.45  1       4.45           18.82**           .00 
Test * Time * Site  0.40  5       0.08             0.34       .89 
Test * Time (Error)    26.49  112       0.237 
Note. Site = Workshop Site 1, 2, 3, 4, 5 or 6. Test = Number Concepts and Operations or 
Proportional Reasoning. Time = Pretest or Posttest. **p < .01.  

 
There was also a significant main effect of Time Administered, F(1, 112) = 4.28, p = .04. Post-

test scores were higher on average than pre-test scores (M(SD) = .45(.92) and .36(1.05), 
respectfully). The interaction of Time Administered x Workshop Site was not significant, F(5,112) = 
.424, p = .83, indicating that all six sites shared a pattern of differences between pre- and post-test 
administration and supporting the combination of data across sites for the planned comparisons tests. 

There was significant interaction effect of Time Administered x Test Form, F(1,112)=4.452, 
p<.001. Overall, there were gains from the pre- and post-test scores for Number Concept and 
Operations scores, whereas there were losses for the Proportional Reasoning scores (M(SD) = 
.29(.67) and -.10(.67), respectively),and this pattern was consistent across 5 of the 6 sites. However, 
the interaction of Test Form x Time Administered x Workshop Site was also not significant, F(2, 
112) = .35, p = .889. This indicates that the pattern of pre- and post-test scores for each form was not 
significantly different across sites and further supports combining the data across sites for analysis in 
the planned comparison tests. 
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The exit survey results were analyzed qualitatively to capture general themes within all zones: 
ZPD, ZFM, and ZPA. The main themes reflecting ideas that relate to the ZPD were different types of 
learning such as learning of math content, problem-solving strategies, teaching strategies and overall 
comments on learning. The themes that captured the ideas referring to the ZFM were teachers’ 
perspectives on student learning, plans for classroom teaching and problem-solving activities and 
teaching, and the Common Core State Standards perspectives. The main themes observed reflecting 
the ideas for the ZPA were the challenges that participants experienced during the workshop, 
collaboration and engagement experience, and general comments on the structure of the workshop.  

Responses to the question, “please tell us your thoughts about the workshop,” were varied, 
demonstrating that the culture within the individual sites was unique. However, the dominant themes 
were reported by the participants mostly related to the ZFM and ZPA, such as collaboration with 
other teachers; engagement in the workshop activities and perspectives on teaching strategies in the 
classroom. Even though themes related to the ZPD were also observed, these were not observed in 
the cross-case analysis. For example, Site A participants reported that learning problem-solving 
strategies was impactful.  

Most participants (64.12%) commented that collaboration with others was the most important 
support they received during the workshop. This particular theme directly relates to the structure of 
the MTC model, referring to the ZPA. This theme was observed in response to the question, “please 
comment how the support you received from others impacted your learning.” A participant from Site 
E commented that the support from others was most impactful in a way that it was, “positive, 
reflective, [they] bounced ideas off each other, check[ed] mechanisms, asked/answered why—had 
seen/shared several different approaches to the same question.” 

Another theme indicating a possible development in the ZPD but also ideas referring to the ZFM 
was observed in the responses to the question, “Do you anticipate changing anything about how you 
teach mathematics as a result of the workshop. If so, in what ways?” The majority of participants 
(63.84%) stated that they learned teaching strategies in the workshop that they planned on 
transferring to their classroom. An exemplary quote from a participant referring to the ZFM was 
about this teacher’s perspective on student learning is, “I realize that it’s ok to give ‘hard’ problems 
for students to solve. The process to solve takes patience and, as a teacher, I need to encourage 
students to be creative in their thinking to build good reasoning.”  

Participant engagement was the most common theme that highlights the unique structure of the 
MTC model in area of the ZPA. This theme emerged in response to the questions, “Please comment 
on any differences or similarities that struck you about this workshop compared with other profess-
sional development workshops you have attended in the past (if applicable)” and “Please comment 
on what you considered to be the most useful aspects of this week.” Participants from workshop Sites 
A, C, D, E, and F all commented that the MTC workshops were more engaging than other profess-
sional development workshops they had attended. A participant from site F commented that,  

most workshops are how to get children excited about learning. This workshop goes beyond with 
a chain reaction. The instructor was excited, making the teacher excited, which in turn will make 
the students excited. Some workshops I have attended in the past, I felt like the teacher link was 
the smaller part. Each link needs to be equal to gain strength. 

The most common theme coming from participants of workshops at sites B, C, and D was in 
regards to the usefulness of collaborating with other teachers: this was also the most common theme 
from the combined responses.  

Overall, this initial analysis to investigate the MTC professional development model through a 
zone theory perspective highlights the possible impact that the MTC could provide to participating 
teachers in the ZFM and ZPA. In addition to the possibility of increasing participants’ development 
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and learning of mathematics and mathematical knowledge for teaching the exploration of other zones 
provides a framework to structure the future MTC workshops.  

Conclusion 
In this report we shared a theoretical approach to explore the MTC professional development 

model. The MTC model is an innovative professional development in which participants develop 
their abilities and beliefs on problem solving which are the main ideas of the ZPD. However, as 
previous research on effective professional development address the development in the ZPD is not 
enough to make change in teachers’ professions and special focus and investigation are needed on the 
areas that are highlighted in the ZFM and ZPA. We use this zone theory approach was to gain 
insights on possible impacts of the MTC model. This particular approach provided a mean to 
understand aspects such as importance of engagement with other teachers and impacting teachers’ 
personal motivation during their participation. This initial attempt needs further exploration by 
collecting data from facilitators of each MTC on the structure of the MTCs, observing each MTC 
during workshops and conducting follow-up interviews and surveys with the participants. 
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Literature suggests that the mathematical language of teachers impacts a student’s understanding of 
math concepts. When teachers unintentionally use ambiguous language, students’ understanding of a 
subject can be negatively affected. We share background on specific instances in which teachers can 
create confusion with the language they use, and we investigate both pre-service teachers’ and college 
algebra students’ concepts of three common terms in mathematics: Solve, Evaluate, and Simplify by 
asking both groups to unpack their understanding of these terms through a writing prompt. We compare 
the language used by both groups in their definitions. Preservice teachers’ reflections on their 
experience with the writing prompt are also examined to identify ways that such a task can help them 
identify gaps in their own understanding and in their thinking about student learning. 

Keywords: Teacher Education-Preservice, Classroom Discourse, Mathematical Knowledge for 
Teaching 

Introduction 
By the time students have entered a college mathematics class, we might assume that they have 

developed a clear understanding of some basic terminology. Similarly, as teachers we might expect that 
we also have a clear definition in our minds for the words we use in our academic language everyday. 
However, when pressed to really examine our understanding of certain terms, it is possible that several 
gaps in understanding may come to light. 

Teaching requires a sensitivity to the need for precision in mathematics (Ball & Bass, 2003). 
Mathematical terms are perhaps more precisely defined than those in many other disciplines (Barwell, 
Leung, Morgan, & Street, 2005), and ambiguities can only be accepted when there are shared 
experiences and assumptions across a community of learners (Jamison, 2007). However, we know that 
simply reading or hearing a precise definition of a mathematical term does not guarantee that a learner 
will attribute the same given meaning to the term. Meaning-making is dependent on an individual’s 
construction experiences surrounding such mathematical expressions (Brown, 1997). It is important for 
teachers to consider ways in which they may unintentionally influence students’ learning through their 
own ambiguous use of terminology and academic language in mathematics. Even simple vocabulary can 
have a large impact on students’ understanding (Boulet, 2007; Gay, 2008). 

In this study, we discuss the use of a tool for reflection called writing to learn mathematics 
(WTLM) to help preservice teachers not only examine their own understanding of certain vocabulary 
terms but also investigate how college algebra students understand them. Our study is housed within a 
unique college teaching seminar that supports the development of preservice secondary mathematics 
teachers’ (PSMTs) knowledge about both mathematics and pedagogy as they work as the instructor of a 
college algebra course. We are interested in how both PSMTs  and college algebra learners define words 
that they have been using in mathematics for many years. Specifically, we examine the following three 
questions in this study: (a) How do college students (specifically college algebra students and PSMTs) 
define the common terms, solve, simplify, and evaluate in mathematics? (b) What are PSMTs’ reactions 
when required to interrogate their own understanding of these common mathematical terms? (c) What 
can PSMTs learn from reading students definitions of the terms? 
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Background 

Ambiguity in Mathematical Language 
It is a common misconception in and out of the classroom that mathematics is a subject composed of 

“arcane rules for manipulating bizarre symbols something far removed from speech and writing” 
(Jamison, 2007, p. 45). This misconception places mathematics in a negative light. The meaning of 
mathematics almost literally gets lost in translation as vocabulary and terminology seem to take a 
backseat to the repetition of procedure and blindly following steps to solve a problem (Boulet, 2007). 
Jamison (2007) provides one suggestion for why students may struggle in mathematics classes: 

Ordinary speech is full of ambiguities, innuendoes, hidden agendas, and unspoken cultural 
assumptions. Paradoxically, the very clarity and lack of ambiguity in mathematics is actually a 
stumbling block for the neophyte. Being conditioned to resolving ambiguities in ordinary speech, 
many students are constantly searching for the hidden assumptions in mathematical assertions. But 
there are none, so inevitably they end up changing the stated meaning–and creating a 
misunderstanding. (p. 47) 

The preciseness of math terminology juxtaposed with the implicit, sometimes vague definitions 
contained in natural language, may prevent students from developing adequate meanings; they are 
constantly switching between math and every day speaking. Problems may arise especially when there 
are shared meanings with everyday words, or when vocabulary used in natural language has a very 
different meaning in the mathematical context (Rubenstein, 2007). Table 1 shows some examples of 
potential vocabulary problems that teachers may overlook when trying to understand students’ 
conceptual difficulties. 

Table 1: Vocabulary Issues (adapted from Thompson & Rubenstein, 2000, p. 569) 

Category of Potential Pitfall Examples 

Some words are shared by mathematics and 
everyday English, but they have distinct 
meanings. 

number: prime, power, factor 
algebra: origin, function, domain, radical, imaginary 
geometry: volume, leg, right 
statistics/probability: mode, event, combination 
 

Some mathematical words are related, but 
students confuse their distinct meanings. 

number: factor and multiple, hundreds and hundredths 
algebra: equation and expression, solve and simplify 
geometry: theorem and theory 
statistics/probability: dependent and independent events 

 
Students and teachers need to know the meaning of math vocabulary words and terminology in 

order to communicate in the classroom (Gay, 2008, NCTM, 2000, Thompson & Rubenstein, 2000). 
More specifically, it is important for teachers and their students to have the same (or at least similar) 
understanding of the words being used to convey ideas, objects, and actions. There is much literature 
devoted to the development of mathematical vocabulary, particularly in the context of students studying 
a field of mathematics (e.g., geometry, algebra, statistics) for the first time, or for students learning 
mathematics in a second language. However, by the time students are in college, we expect them 
already to have learned the basic vocabulary associated with a topic such as college algebra. In this 
study, the focus is not on teaching vocabulary, but on probing existing understanding of common 
vocabulary terms in mathematics. 
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It is challenging for beginning teachers with little classroom experience to skillfully incorporate 
academic language for productive discourse. Gay (2008) shares examples of witnessing such challenges 
when preservice teachers ask students to do such things as “Graph this expression” and “Evaluate 63, 
124, and n4 if n=3” (p. 218). She suggests the importance of helping pre-service teachers be aware of the 
impact of their use of vocabulary on their students’ learning and understanding and shares strategies she 
has used with preservice teachers to help them build their understanding of mathematics terms, such as 
graphic organizers, concept circles, and the use of analogies. Below, we discuss the use of writing in 
mathematics as an effective tool for unpacking one’s understanding of the language used in 
mathematics. 

Addressing the Problem 
Nathan and Petrosino (2003) posit that, “discursive and reflective methods that are already 

commonplace in professional development and teacher education programs can serve as the basis for 
interventions aimed at aligning teachers’ views with accurate models of student reasoning and 
development” (p. 924). Writing to Learn Mathematics (WTLM) is one such method that incorporates 
writing prompts into content and methods courses to support the understanding and teaching of concepts 
and procedures. Through writing, learners (including PSMTs) can engage with mathematical content in 
new ways (Author and colleagues). In alignment with WTLM, careful reflection on written work can 
influence perspectives on teaching and learning in mathematics. Researchers suggest that giving 
learners opportunities to write in the content domain can play a major role in helping them to develop 
their voice in that domain (Kaplan, Fisher, Rogness, 2009; Thompson & Rubenstein, 2000). And can 
play a significant role in advancing and assessing learning (Inoue & Buczynski, 2011; Miller, 1992). 
Incorporating writing in the mathematics classroom offers multiple benefits to PSMTs committed to          
understanding the diverse ways in which students learn, discover, and create. 

Research on WTLM focuses heavily on benefits it provides to the students doing the writing (Inoue 
& Buczynski, 2011). Investigations have also focused on the benefits that teachers can gain from 
reading their students’ writings in mathematics (Adu-Gyamfi, Bosse, Faulconer, 2010; Miller, 1992, 
Quinn & Wilson, 1997). In this study, we take this further to look at what teachers can learn from 
engaging in the writing prompts themselves before giving them to students. 

Theoretical Perspectives 
We believe that well-developed subject- matter knowledge is critical for effective teacher prepa-

ration. However, as PSMTs develop more expertise in their field, they can easily forget what novice 
students find easy and difficult to learn in mathematics (Nathan & Petrosino, 2003). One reason to 
explicitly teach WTLM stems from the existence of such expert blind spots (Nathan & Petrosino, 2003), 
where “teachers’ subject-matter expertise often overshadows their pedagogical knowledge about how 
their novice students learn and develop intellectually in the domain of interest” (p. 906). PSMTs need 
opportunities to engage with mathematics in ways that interrogate and reframe their current unders-
tandings and to perturb their basic idea of “knowing” mathematics. WTLM provides a tool for both 
expanding content knowledge and assessing students’ understandings of mathematics (Miller, 1992). 

Reflective practice is one means of supporting WTLM’s incorporation in the classroom (Quinn & 
Wilson, 1997). It allows teachers to consider the implementation of novel practices in the classroom 
(Foss, 2010). When enacted as “a deliberate way of thinking leading to change in action,” (Shoffner, 
2008) reflection allows PSMTs to develop and refine the knowledge needed to guide their teaching 
(Spalding & Wilson, 2002). Thus, reflection can support PSMTs’ understanding of teaching 
mathematics through consideration of prior understandings, past experiences, and current beliefs 
(Stockero, 2008). 
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Working within a constructivist framework where learning is viewed as a process of transformation 
or modification of existing ideas, we see WTLM and reflection as powerful tools for perturbing PSMTs’ 
existing ways of thinking in mathematics. They provide a way from them to interrogate understanding, 
enhance their thinking, and reflect on ways in which they and their students understand mathematics. 

Methods 
The participants in the study were senior PSMTs enrolled in a unique mathematics seminar at a 

university in the United States where they receive course credit to teach College Algebra. As course 
instructors, they were fully responsible for teaching the class to 20-30 students three days a week in 50-
minute class sessions. They also had the added requirement of attending a seminar (taught by the first 
author) each class day to discuss pedagogical issues from the day and the mathematics that they would 
teach next. The College Algebra course was overseen by a course coordinator who designed the 
syllabus, pacing guide, and common exam and online homework sets. The added responsibilities for the 
undergraduate teachers were writing lesson plans, creating and grading their own quizzes twice a week, 
and proctoring exams. 

Over the course of a semester, PSMTs were given WTLM prompts related to college algebra topics. 
In this study, we focus on the first prompt given, which dealt with mathematical vocabulary. We chose 
to address understanding of the common terms solve, simplify, and evaluate. The prompt given to the 
PSMTs was stated: Explain the difference between the directions “Solve, Evaluate, and Simplify” 
in math problems. Then write an example using each with the expression 3(x+2)-x. This question 
comes from a set of writing questions at the end of a chapter in Sullivan and Sullivan’s (2004) algebra 
book. We chose it because of the target courses’ focus on algebra and because confusion amongst these 
terms is mentioned in the literature (Thompson & Rubenstein, 2000). 

After writing a response to the prompt in class, PSMTs engaged in collaborative reflection through 
asynchronous web discussions on a course wiki (c.f., Shoffner, 2008). They were asked to post their 
prompt response and post a reflection on the experience of answering the prompt, and were required to 
read and respond to other posts from their fellow PSMTs. They next created a quiz for their college 
algebra students (referenced below as “students”) that included the same WTLM prompt, and posted 
another reflection on the WIKI to discuss that they had learned from reading their students’ responses. 

We collected prompt answers and reflections from 31 PSMTs over four semesters. These serve as 
our primary data source. In Fall 2014, we also collected prompt responses from 185 college algebra 
students. All data have been analyzed using content analysis to identify patterns in responses (Creswell, 
2007) to address the research questions above. Our analysis included an examination of the following: 
(a) common language used to define the terms; (b) common misinterpretations of the terms; and (c) 
common themes in the PSMTs’ reflections. 

Findings 

Definitions of Solve, Simplify and Evaluate 
We examined the glossaries of several algebra textbooks to see examples of some formal definitions 

of the terms solve, simplify and evaluate. One McGraw Hill online algebra text gave the following 
three definitions: evaluate means to find the value of an expression; solve is the process of finding all 
values of the variable that make an equation a true statement; and simplify means to write an expression 
in simplest form. In comparison, we found that both the PSMTs and college algebra students used 
similar language in some of their definitions, but provided many more specific ideas from their 
experiences with these terms. Additionally, many of the college algebra students (and some PSMTs) 
struggled significantly with defining evaluate. 

Table 2 shows a count of the number of acceptable vs. unacceptable/incorrect definitions. 
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Table 2: Response Results 
 Unacceptable 

Definition Acceptable Definition No Definition Given 

 Solve Eval Simp Solve Eval Simp Solve Eval Simp 
Students 
(N=185) 

16 133 15 169 30 168 0 22 3 

PSMTs 
(N=31) 1 5 0 30 25 31 0 1 0 

 

Solve was not a difficult term for the PSMTs or students to define. Over 90% of both groups 
provided an acceptable definition – some formal, some very informal. Table 3 shows the most common 
language used across both the PSMTs and students. For example, a majority of both groups mentioned 
that solve involves either finding a value of the given variable (similar to the textbook definition above) 
or finding an answer/solution to the problem (without specific mention of variables). A small 
percentage (3.9%) of the students felt that solve and simplify were actually the same thing, and another 
7.8% defined solve as producing an “exact” answer – neither of these ideas was found with the PSMTs. 
Both groups made use of the language of “isolating” the variable or “getting the variable on one side” in 
their definitions. 

Table 3: Results for Solve 

SOLVE Same as 
Simplify 

Find value of 
variable 

Find an 
answer/solution 

Isolate 
variable Exact 

Students 
(N=185) 

7 (3.9%) 65 (35.7%) 67 (36.8%) 9 (5%) 14 (7.8%) 

PSMTs (N=31) 0 12 (38.7%) 8 (25.8%) 7 (22.6%) 0 
 

Simplify was also relatively easy for the both groups to define, with 91% and 100% providing an 
acceptable response. Interestingly, in their reflections, several PSMTs mentioned this term as the one 
that gave them the most difficulty. This was due to the fact that they did not know how to define it 
without using the word “simplify” in their definition. As seen in Table 4, we did find that the most 
common language used by the college algebra students was to get something into the simplest terms or 
simplest form, which matches the textbook definition  above. However, we also found that 14.6% of 
the students and 9.7% of PSMTs referred to getting an “equation” in simplest form, rather than an 
“expression.” It is possible that this could be partially explained by how the responders may have been 
thinking about the purpose the simplification - some members of both groups of learners made reference 
to a need to simplify first before solving an equation. Thus, their reference to an equation makes sense 
for them in this context 

The most common language in the PSMTs definitions for simplify involved “combining like terms.” 
They were also more likely to mention specific strategies for simplifying such as “factor” or “cancel,” 
while a larger percentage of students used the language of “breaking it down” to describe what was 
happening. Both groups had members who referred to the idea of “reducing” in their definitions in 
some way. 

Table 4: Results for Simplify 
 

SIMPLIFY Combine 
like terms 

 
Reduce Break it 

down 

Simplest 
terms/for 

m 

Involves 
an 

equation 

 
Factor 

 
Cancel 
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Students 
(N=182) 

13 (7%) 28 
(15.1%) 

28 
(15.1%) 85 (46%) 27 

(14.6%) 
20 

(10.8%) 
1 

(0.5%) 
PSMTs 
(N=31) 

18 
(58.1%) 

8 
(25.8%) 

1 (3.2%) 13 
(41.9%) 

3 (9.7%) 12 
(38.7%) 

9 
(29%) 

 
Evaluate was the most difficult for both the PSMTs and the college algebra students. Only 16.2% of 

students provided an acceptable definition of this term, and while 83% of the PSMTs were able to come 
up with a suitable definition, their reflections after answering indicated that most of them struggled to 
do so in the task. When members of both groups did have an acceptable definition, it was common to 
find the language of “plugging in” in their answer. The most common incorrect responses among the 
students was that evaluate meant the same thing as solve (28.8%) or simplify (10.4%) (see Table 5). 
Only a small percent (3.7%) used the language similar to the textbook definition above, though all of 
these students said that evaluate meant to “find a value of the equation” (while eight out of the nine 
PSMTS who used this language said “find a value of the expression). What we found most interesting 
where the definitions that attributed a non-mathematical definition of evaluate to this term. Some 
examples include: “To evaluate an equation is to determine how you are going to solve the given 
equation;” “evaluate means tell what kind of problem it is”; and “evaluate is to analyze a given 
expression in order to find further information” (the latter was from the one PSMT who answered with a 
non-math definition). 

Table 5: Results for Evaluate 

EVALUATE Same as 
Solve 

Same as 
Simplify 

Find the 
value 

Non-math 
definition Plug in 

Students 
(N=163) 

47 (28.8%) 17 (10.4%) 6 (3.7%) 16 (9.8%) 12 (7.4%) 

PSMTs 
(N=30) 

2 (6.7%) 0 9 (30%) 1 (3.2%) 10 

PSMTs’ Reflections After Answering the Prompt and Reading Student’s Responses 
We next analyzed the PSMTs wiki reflection posts to identify common themes in the ideas that they 

posted and discussed asynchronously with each other. The left column in Table 6 includes general 
forms of the most common themes found across the PSMTs’ reflections after they answered the writing 
prompt or after they read their students’ answers. These themes are paraphrased from PSMTs’ writings, 
while the quotes in the right column are one example of a direct quote from a teacher that fits the theme. 
Each one here appeared in some form in more than five different PSMTs’ reflections and was therefore 
identified in our coding as an area of interest. 

Table 6: Common Remarks from PSMTs’ Reflections 
 Theme Example Quote 

 
 
 

Reflections on 
mathematical 

I had a hard time 
differentiating among 
the three words 

“At first, I really had no idea what the 
differences were between the terms.” 

I had a hard time 
putting my answer into 
written words 

“Once I started writing my ideas down, I felt 
stupid. I couldn't find the words to describe 
what the process was for each one.” 
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understanding I take things like this for 
granted 

I think we are so conditioned to know what to 
look for we don't look at the directions unless we 
are confused... If [it says] 3(x+2)-x=0, we'd 
solve.” 

 
 

Reflections 
on pedagogy 

This activity caused me 
to think about what I do 
or my own experiences 

“I never realized how much informal language I 
use, and how I often find myself neglecting the 
more formal language of mathematics.” 

I need to change what 
I’m doing in class 

“I am going to be more strategic with the words I 
use in class to be sure that my students fully 
understand and that I am truly meaning what I am 
saying.” 

 
 
 
 
 
 

Reflections 
on student 
thinking 

I can see why students 
struggle in mathematics 

“Grading my quizzes today, I realized that a lot of 
students tried to factor when the problem was to 
expand or expanded when they were told to 
factor. I think if I had not done this prompt before 
grading, I might have been a little more 
judgmental. I probably would have thought: Can't 
these kids read directions?” 

If we change what 
we’re doing, it will be 
easier for students to 
learn 

“I think that by using the term evaluate, we can 
get our students to think about a problem more 
deeply.” 

I learned a lot about the 
different ways that 
students think about 
mathematics 

"When reading what the students write, I get to 
see an alternative way of thinking about a 
problem or a word, which helps me become a 
better educator.” 

 
As seen in the table, the PSMTs’ reflections can be grouped into three main categories: reflections 

on their own mathematical understanding surrounding mathematical language/vocabulary; reflections on 
their own pedagogy; and reflections on their students’ thinking and learning. The most common 
statement in the reflections (16 out of 31 PSMTs) was that struggling to define these terms made them 
feel like they were being placed in their students’ shoes and that they could empathize with students’ 
struggles. The second most common reflection focused on PSMTs’ awareness that they have become 
too comfortable with terms in mathematics and the realization that they do not tend to pay attention to 
them in problem solving– instead they felt they usually let the mathematical symbols “tell” them what to 
do. 

Conclusions 
Teachers impact students in some obvious ways, but the focus for us is how they unintentionally 

influence students through ambiguous terminology and practices. Given the emphasis for a focus on 
developing student conceptual understanding and sense making in mathematics (NCTM, 2000), there is 
a critical need to understand and support effective practices that PSMTs can engage in to overcome their 
blind spots and enhance their content and pedagogical content knowledge in secondary mathematics. 
Our findings suggest that the use of writing prompts that unpack and encourage reflection on existing 
understandings of common mathematical terms can serve as one such effective practice to use in teacher 
preparation. 
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This study investigated how pre-service teachers’ fractional concepts are related to solving problems 
involving advanced fractional knowledge. 96 Participants took a written test including three fractions 
questions about fraction concept, fraction comparison, and multiplicative relationship involving 
fraction quantities and composite units. The data were analyzed using an inductive content analysis 
approach. Findings suggest that many of our PSTs developed limited understanding of fraction sub-
constructs and thereby were not able to solve the three problems. Another finding is that when PSTs 
relied on only one sub-construct such as part-whole, they tend to provide incorrect answers. This 
finding implies that PSTs’ understanding of fractions as measure and operator may be a foundation of 
solving problems involving advanced fractional knowledge. 

Keywords: Teacher Education-Preservice; Teacher Knowledge  

Objectives or Purpose of the Study 
The purpose of this study is to characterize profiles of the mathematical competence of pre-service 

teachers in the topic of fractions.  Especially this study investigates how pre-service teachers’ fractional 
concepts are related to solving problems involving advanced fractional knowledge. Since Shulman 
(1986) coined the notions of content knowledge and pedagogical content knowledge, many researchers 
have investigated what teachers know and how they know about mathematics and teaching 
mathematics over the past three decades. They reported teachers’ insufficient knowledge about teaching 
mathematics, in particular, elementary in-service and pre-service teachers’ lack of understanding about 
whole numbers, fractions, and fraction operations (e.g., Behr, Harel, Post & Lesh, 1993; Ma, 1999; 
Mack, 2001; Steffe, 2003).  

This line of research studies suggests that teachers should develop a profound understanding of 
fundamental mathematics (Ma, 1999) and mathematical knowledge for teaching (e.g., Ball, Thames, & 
Phelps, 2008), which encompasses knowledge that teachers use in teaching practice such as selecting 
and using effective representations, deftly assessing students’ work, and providing appropriate 
remediation. In particular, teachers’ capability to solve problems differently and to use different 
representations of mathematical ideas is considered to be an important aspect of mathematics education. 
Empson (2002) highlighted that “the key in fraction instruction is to pose tasks that elicit a variety of 
strategies and representations” (p. 39) and, that representational models used by teachers (e.g., pizzas, 
number lines, and fraction bars) engaged and facilitated students’ learning of initial fraction knowledge.  

However, despite a large number of research studies focusing on teachers’ problem-solving, 
representational knowledge, and computational skills (e.g. Eisenhart, Borko, Brown, Underhill, Jones, 
& Agard, 1993), several questions still remain unanswered regarding preservice teachers’ ability to 
solve problems, their ability to translate from one mode of knowledge to another, and possible 
difficulties preservice teachers have in connecting different modes of knowledge. Lester and Kehle 
(2003) highlighted that “far too little is known about problem solving” and in particular, about teachers’ 
problem solving strategies and their abilities to transfer in problem solving (p. 510). This issue should 
be addressed in the teacher education of preservice teachers of mathematics at all levels. 

As a way to characterize profiles of the mathematical competence of pre-service teachers in the 
topic of fractions, this study investigates how pre-service teachers’ fractional concepts are related to 
solving problems involving advanced fractional knowledge.  The research questions that guided the 
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study were: (1) How do PSTs solve fraction problems and what strategies do they use? (2) How does 
PSTs’ conception of fractions relate to problem solving ability involving advanced fractional 
knowledge? 

Theoretical Framework 

Studies on Fractions (Five sub-constructs) 
According to research, understanding fractions clearly indicates understanding five possible 

constructs that fractions can represent (Clarke, Roche, & Mitchell, 2008; Sibert & Caskin, 2006). 
Although the meaning of part-whole is dominantly used to represent fractions in mathematics 
textbooks, many mathematics researchers believe that students would understand fractions better when 
they are exposed to the other meanings of fractions (Clarke et al., 2008). The first construct is part-
whole, which goes well with an example of shading parts out of a whole. The second construct is 
measurement. Measurement includes identifying a unit length and then iterating the unit length to 
determine the length of an object. The third construct is division. When considering a sharing context, 
people can connect division to fractions. For example, in the context of finding a person’s share to 
fairly share 3 candy bars with 4 people, each person will receive ¾ of a candy bar. The fourth construct 
is operator. That is, fractions can be used to indicate an operation. For example, when John has $21 and 
Mary has 2/3 of John’s money, Mary’s money will be 14 dollars, which indicates 2/3 of 21 dollars. 
Students who represent “two-thirds the amount of 21 dollars as “2/3 x 21” may have developed a 
concept of a fraction as an operator. The last construct is ratio. That is, fractions can be used to 
represent part-part ratio or part-whole ratio. For example, when there are four red marbles and seven 
blue marbles, the ratio 4/7 could be used to indicate the ratio between red marbles (part) and blue 
marbles (part). Also, the ratio 4/11 could represent the ratio between red marbles (part) and total 
marbles (whole). In this study, we provided pre-service teachers with three fractions questions, which 
particularly used part-whole construct and operator construct. According to Usiskin (2007), operator 
construct is not stressed enough in school curricula although just knowing how to represent fractions 
using part-whole construct doesn’t guarantee knowing how to operate with fractions in other areas of 
curriculum where fractions occur (Johanning, 2008). 

Studies on Teacher Knowledge (MKT and CK) 
Shulman (1986) put forward the idea that teachers have specialized knowledge of teaching, which 

is what differentiates a teacher from a subject matter specialist. This notion is referred to in his article 
as the distinction between content knowledge, pedagogical content knowledge, and curricular 
knowledge. Content knowledge is subject matter knowledge of mathematics. Pedagogical content 
knowledge is topic specific pedagogical knowledge needed to teach mathematics. Curricular knowledge 
refers to educational programs made for the teaching of specific subjects and topics at a given grade 
level, including instructional materials available in relevant programs, and affordances and constraints 
in the use of such specific instructional materials (Shulman, 1986). More recently, Ball and her 
colleagues (1990; 2008) proposed a new term, Mathematical Knowledge for Teaching (MKT), which is 
defined as “a practice-based content knowledge for teaching built on Shulman’s (1986) notion of 
pedagogical content knowledge” (Ball, Thames, & Phelps, 2008, p. 389). Mathematical Knowledge for 
Teaching focuses on identifying students’ mathematical thinking and on the understanding required to 
teach specific topics in mathematics. MKT distinguishes mathematical content knowledge into three 
strands: common content knowledge, knowledge at the mathematical horizon, and specialized content 
knowledge. Common content knowledge is described as the mathematical knowledge held in common 
with others who know and use mathematics in various professions or occupations, which is what 
Shulman meant by his original content knowledge. Specialized content knowledge is described as 
mathematical knowledge about the ways that mathematics is taught to students by a teacher. Knowledge 
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at the mathematical horizon refers to an awareness of how mathematical topics are related over the 
span of mathematics included in the curriculum. 

This study examines pre-service teachers’ content knowledge such as specialized content 
knowledge and knowledge at the mathematical horizon. That is, our study focuses on pre-service 
teachers’ specialized content knowledge in fraction concept (part-whole construct) and fraction 
comparison, and how this specialized content knowledge of different topics are horizontally related to 
advanced fractional knowledge, which deals with multiplicative and reversible reasoning involving 
fractional quantities and composite units. 

Method  

Participants and Contexts 
Data from this study came from 96 PSTs from two different university sites. Participants were 

either in their sophomore, junior or internship year of elementary teacher preparation programs—one 
from at a large northeastern university and the other from at a large southwestern in the United States. 
Each PST was enrolled in an elementary mathematics methods course. Mathematics methods courses 
were designed to support PSTs’ knowledge development for teaching elementary mathematics.  

Data Sources 
A written task was used for the study, which asks three important fractional knowledge: 

(1) Fraction comparison (recognizing the difference between the actual numbers and fraction of the 
number and comparing the size of fractions); (2) fraction concept (the concept of referent units to 
represent a partial portion of a whole in given area models); (3) Multiplicative relationships involving 
fraction quantities and composite units (reversible reasoning including composite units of fractions). 
The provided questions are as follows (see Table 1). 

Table 1: Main Task of this Study 
1. At both Rivers High School and Mountainview High School, ninth graders either walk or ride 

the bus to school. 6/7 of the 9th grade students in Rivers High School ride the bus, while 7/8 of 
the 9th grade students in Mountainview High School ride the bus. If there are 40 9th grade 
students who walk at Rivers and 25 9th grade students who walk at Mountainview, in which 
school do more students ride the bus? In which school do a greater fraction of the students ride 
the bus? Explain your strategies or solutions as much as in detail.  

2. For each picture shown below, (i) write a fraction to show what part is shaded. For each picture, 
(ii) describe in pictures or words how you found that fraction, and why you believe it is the 
answer. 

 
 
(1)                                                               (2)                                 

3. Merlyn spends $60 of her paycheck on clothes and then spends 1/3 of her remaining money on 
food. If she $90 left after she buys the food, what was the amount of her paycheck? Explain your 
solution method as much as in detail. You may use representations (e.g., diagrams, rectangles, 
number line etc.). 

Data Collection and Data Analysis 
Three questions about fractions were administered to the entire class in four mathematics methods 

course sections towards the end of the spring semester in 2014. Qualitative and quantitative analyses 
were conducted. In particular, for the written response, we used an inductive content analysis approach 
(Grbich, 2007). We initially organized raw data into an Excel spreadsheet, read all of the responses, and 
created codes based on the raw data. More specifically, data analysis involved five processes: (a) an 
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initial reading of each PST’s response, (b) identifying correctness of the responses, (c) exploring the 
subcategories under each analytical aspect according to the number of correct responses and their 
problem solving strategies that PST demonstrated, (d) coding the categories and subcategories, and (e) 
interpreting the data quantitatively and qualitatively (Creswell, 1998). 

Summary of Findings 
In this section, we present overall findings from the written task and detailed analysis depending on 

PSTs’ cognitive levels in fractional knowledge. Because we divided the cognitive levels according to 
the number of correct answers among three questions, it would be helpful to be aware of what fractional 
knowledge is involved in each three question. The first question is focused on comparing the size of 
fractions and recognizing the difference of comparing the size of the actual numbers and fractions. To 
find in which school a greater fraction of the students rides the bus, students need to compare the sizes 
of the given fractions 6/7 and 7/8 using procedural knowledge or conceptual knowledge. However, to 
find in which school more students ride the bus, students may use measurement construct by focusing 
on unit fraction and iterations (multiplicative relationship). That is, considering the given fractions for 
bus riders at two schools were 6/7 and 7/8, students would be able to know that 1/7 and 1/8 indicates 
fractions for walkers, which corresponds to the number of students given in the questions, 40 students 
at Rivers and 25 students at Mountain view. Thus, students can find the number of bus riders by 
multiplying 40 by 6 or 25 by 7 because 6/7 or 7/8 can be created by iterating a unit fraction, 1/7 or 1/8 
six times or seven times, respectively. 

The second question is focused on concept of fractions, more specifically, understanding of referent 
units to represent a partial portion of a whole in the given area models. To find a fraction of shaded 
parts in the diagram, students need to pay attention to what is considered as a referent unit and how to 
represent the different sizes of continuously or discontinuously shaded portions using the same referent 
unit (a whole). Depending on students’ cognitive levels, some students could solve this problem by 
finding the total area or portion of the shaded part or by finding fractions of each shaded portion and 
adding them together, or by finding a fraction of the smallest portion, setting it as a unit and counting 
the total number of the unit through iterations.    

The third question is focused on understanding of multiplicative relationships and reversible 
reasoning when composite units of fractions are included. To find the amount of original paycheck, 
students need to know 2/3 of the remaining money equals $90 because 1/3 of the remaining money was 
spent for food. Also, students need to understand that 2/3 is created by iterating a unit fraction (1/3) 
twice and thus the amount of money corresponding to 1/3 can be found by dividing $90 by 2. From 
here, students will be able to easily figure out the amount of money corresponding to 3/3 and so the 
original paycheck can be found by multiplying 45 by 3 and adding it to 60 via reversible reasoning. 

Among the three questions, we think the third problem is most difficult followed by the first and 
second questions. The third question requires understanding fractions as operators and requires multi-
steps to solve the problem. The first question may be solved by either using measurement sub-construct 
or ratio sub-construct. The second question, which may be easiest, can be solved by relying on part-
whole sub-construct. Because each question that we asked was created by focusing on specific 
fractional knowledge, we first divided PSTs’ cognitive levels depending on the number of correct 
answers and further examined their strategies used to solve the questions. More specifically, we divided 
PSTs into three categories depending on the number of correct answers. PSTs who got all three correct 
answers were sorted into level 3, and PSTs who got two questions were assigned to level 2. PSTs with 
all incorrect answers to the three questions were considered at level 0. 19 PSTs were assigned to level 3 
and 36 PSTs were assigned to level 2. Also, there were 28 PSTs corresponding to level 1 and 16 PSTs 
corresponding to level 0. In the next section, we present each level in more detail. 
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PSTs at Level 3 
PSTs at level 3 demonstrated following features in terms of problem solving strategies and 

fractional knowledge across the three questions (see Table 1). PSTs at level 3 demonstrated a good 
understanding of fractions as part-whole, measure, and operator in solving problems. In particular, they 
tended to often use multiplicative reasoning, which is related to iterations in the measure construct to 
solve word problems involving fraction quantities. Also, the PSTs showed that they had a clear concept 
of unknown and were able to create equations to find unknowns based on the concepts of unknown and 
the understanding of fractions as measure and operator. 

Table 2: Features of PSTs at Level 3 in problem solving strategies and fractional knowledge  
Level 3 Features 
Fractional knowledge  • Understand the part-whole construct of fraction 

• Understand the measurement construct of fraction by using iteration 
(multiplicative reasoning) to solve the problems 

• Understand the operator construct of fraction by considering fractions as a 
multiplicative operator on knowns or unknowns 

• Have a concept of unknown and create equations to find the unknowns 
Problem solving 
strategies 

• Understand problem clearly 
• Often use drawing to make better sense of the problem situations 
• Tend to use multiple ways of solving the problems 

 
Regarding fractional knowledge used to solve each question, in the first question, PSTs at level 3 

compared the size of two fractions by using a conceptual strategy (i.e. 1/7 is bigger than 1/8 and thus 
7/8 should be greater than 6/7 because 7/8 took out less fraction than 6/7), converting fractions into 
decimals (i.e. 7/8 [= 0.87] is greater than 6/7 [= 0.85]), or finding common denominators procedurally 
(i.e. 7/8 [=49/56] is greater than 6/7 [=48/56]). However, to find in which school has more bus riders, 
most PSTs tended to identify a unit fraction for walker from the given information and use the 
multiplicative relationship to figure out the number of bus riders at two schools (Figure 1).  

 
Fig. 1 Solution to find in which school has more bus riders in question 1. 

 
Also, in solving the second question, most PSTs used a strategy to divide all parts into small equal 

sizes (1/16 or 1/32), set the equal size as a unit, and count the number of iterations of the unit (See 
Figure 2). This strategy shows that PSTs at level 3 understand measurement construct of fractions. 
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Fig. 2 Solution to find a fraction of shaded parts. 

Finally, in solving the third question, two-thirds of PSTs found the amount of original paycheck by 
using multiplicative relationship from measurement construct of fraction. For example, PSTs first 
found the amount of money corresponding to 1/3 of remaining money by using the multiplicative 
relationship that 2/3 can be created by iterating 1/3 twice and the given information that $90 is 2/3 of 
the remaining money. Then PSTs added the money spent on clothes ($60) to the entire remaining 
money, which consists of 2/3 ($90) and 1/3 ($45). Figure 4 presents PSTs’ solution method where they 
use their understanding of unknown and operator construct of fractions. PSTs set variable x as the 
original paycheck that she wanted to find and then represented the amount of money spent on food as 
(x-60) × 1/3 by considering 1/3 of remaining money was spent on food after spending $60 on clothes.  

 
Fig. 3 Solution to use unknown and operator construct of fractions in question 3. 

PSTs at Level 2 
PSTs at Level 2 got two questions out of the three questions. We divided three sub-categories 

within level 2 depending on which questions PSTs got. For example, level 2-1 designates PSTs who got 
correct answers in both questions 3 and 2 (level 2-2: PSTs who got a correct answers in question 3 and 
1 / level 2-3: correct answer in question 1 and 2). Although there are three sub-categories in level 2, we 
consider level 2-1 is highest, followed by level 2-2 and 2-1 due to the problem difficulty, which will be 
explained in detailed. We observed many similarities between PSTs at level 3 and those at level 2-1. 15 
PSTs at level 2-1 demonstrate a good understanding of fractions a measure and an operator. However, 
these PSTs did not understand the problem correctly to question 1 and provide only one of the two sub-
questions. With respect to problem solving strategies, they tended to represent the problem using 
drawing and solve each problem in multiple ways. 

However, PSTs at level 2-2 seem not fully understand fractions as an operator. Although four PSTs 
provided a correct answer to the question 3, which requires multi-step multiplicative thinking, they 
often ignored denominators and solved it like whole number problems.  5 PSTs were categorized at 
level 2-1 where they were not able to recognize known and unknowns in correctly. In solving question 
3, they showed difficulty in using measurement concept (e.g., 2/3 is twice of 1/3). In solving question 
#1, they relied on guess and check by either using given fractions.  

PSTs at Level 1 
PSTs at Level 1provide only one correct answer and consequently three subcategories exist in this 

level. For example, level 1-1 indicates PSTs who got a correct answer in question 1; level 1-2 includes 
PSTs who got a correct answer in question 2, and level 1-3 with PSTs who got a correct answer in 
question 3). Because each problem requires different level of problem difficulty, we consider PSTs at 
1-3 is the highest level followed by those at level 1-1 and at 1-2. 13 PSTs were at 1-1; eight were at 
level 1-2; and six were at level 1-3. Table 3 shows the features of problem solving strategies and 
fraction knowledge at this level. 
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Table 3: Fractional knowledge and problem solving strategies by PSTs at Level 1 
Level/Description Features 
1-1: Correct 
answer to 
question 1 
(Middle) 

Fractional knowledge 
• Be able to apply fraction as a ratio and measurement. 
• Yet, show lack of understanding of fraction as operator/ multiplicative 

thinking.  
Problem solving strategies 
• Although some used logical reasoning, rely on guess and check.  

1-2: Correct 
answer to 
question 2 
(Lowest) 

Fractional knowledge 
• Develop an understanding of fraction as part whole. 
• Understand the measurement construct of fraction by using iteration 

(multiplicative reasoning) to solve the problems. 
• Lack understanding of fraction as measurement, operator, or ratio.  

Problem solving strategies 
• In solving # 2, relying on visualization by rearranging all parts together to 

form one simple fraction or viewing half of 3 squares. 
• Often do not understand the problem correctly. 
• Make computational errors/ Misrepresent the multiplicative relationship.  

1-3: Correct 
answer to 
question 3 
(Highest) 

Fractional knowledge 
• Have some understanding of multiplicative thinking involving fractions. 
• However, have limited understanding of fraction as ratio or measurement. 

Problem solving strategies 
• Tend to use guess or backward/ Often do not recognize the problem correctly. 
• Misrepresent the second denominators. 

PSTs at Level 0 
15 PSTs were categorized at Level 0 where none of the answers are correct in the three fraction 

problems. In Question 1, these PSTs showed limited understanding of fraction as a ratio or 
measurement by either focusing on only one part of the two. In solving the question 2, they tended to 
miss the denominator and consider the problem as involving whole numbers. In solving Question 3, 
they showed lack of understanding of unknown and were not able to construct or solve algebraic 
equation. In particular, most of these pre-service teachers failed to identify the multiplicative 
relationship by recognizing the referent unit incorrectly.  

Discussion and Concluding Remarks 
In this study, we investigated how pre-service teachers solved three fraction problems that require 

different sub-constructs. By tracing their correctness and problem solving strategies in the three 
problems, we also explored how PSTs’ use of fractional concepts is related to solving problems 
involving advanced fractional knowledge. First, we found that many of our PSTs developed limited 
understanding of fraction sub-constructs and thereby were not able to solve the three problems. Another 
finding is that when PSTs relied on only one sub-construct such as part-whole, they tend to provide 
incorrect answers. Based on our findings, we hypothesize that PSTs’ understanding of fractions as 
measure and operator may be a foundation of solving problems involving advanced fractional 
knowledge. 
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This exploratory case study investigated the role of mindset (i.e., fixed mindset vs. growth mindset) as 
elementary teachers participated in a professional development focusing on mathematics. Data were 
collected on two participants with opposing mindsets. Attention was given to their interactions in 
collaborative group settings as well as their views regarding working with successful and struggling 
mathematics students. Results indicated that although the two participants engaged in the same 
professional development activities, their engagement led to different interactions within those 
activities. 

Keywords: Teacher Beliefs; Teacher Education-Inservice 

Introduction  
To support all students in developing deep mathematical understanding, “students [must] have 

access to a high-quality mathematics curriculum, effective teaching and learning, high expectations, 
and the support and resources needed to maximize their learning potential” (National Council of 
Teachers of Mathematics [NCTM], 2014, p. 59). Although the literature abounds with descriptions of 
effective teaching and learning (e.g., Franke, Kazemi, & Battey, 2007;NCTM, 2000, 2014; National 
Research Council, 2001), teacher educators recognize that for most mathematics teachers the classroom 
practices described in the literature represent a reconceptualization of mathematics teaching (Sowder, 
2007). Professional development (PD) is a key mechanism for supporting teachers’ development of 
effective teaching practices (Loucks-Horsley, Stiles, Mundry, Love, & Hewson, 2010;Sowder, 2007) 
and equity in mathematics. 

PD experiences that are sustained, focused on worthwhile tasks, and provide immersion 
experiences in productive teaching practices can challenge teachers to transform their practice (Elmore, 
2002; Hawley & Valli, 1999; Loucks-Horsley et al., 2010). Despite these known characteristics of 
effective PD, supporting change in mathematics classrooms continues to be daunting (Franke et al., 
2007). Cooney (1999) posited that teachers’ belief in teaching as an act of giving information to 
students represents an obstacle to change in the mathematics classroom. Sowder (2007) stated, “Many 
of teachers’ core beliefs need to be challenged before change can occur” (p. 160). Recognizing that a 
teacher’s beliefs influence his or her perceptions of effective instruction (NCTM, 2014;Pajares, 1992), 
much research on PD has sought to address changes in teachers’ beliefs and changes in instructional 
practice, with varying results (see Philipp (2007)). 

Recently, mindset has emerged as a term used to describe the belief that either mathematics ability 
can be cultivated in all students or mathematics ability cannot be changed (Dweck, 2006). NCTM 
(2014) reported research showing that “believing in, and acting on, growth mindsets versus fixed 
mindsets can make an enormous difference in what students accomplish” (p. 64). Responding to these 
different mindsets may be an important notion for progressing the field forward. Just as teachers’ 
differing beliefs influence their PD experiences, we wondered how teachers’ differing mindsets 
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influence their engagement in PD experiences. The purpose of this study was to examine how teachers 
with opposing mindsets interacted with the content of a PD. Specifically, the research question that 
guided our work was: How do elementary teachers of different mindsets interact in a mathematics-
focused PD?  

Theoretical Framework 
Dweck and Leggett(1988)described a social-cognitive model of motivation and personality that 

framed a theory of implicit conceptions of the nature of ability based on work in goal orientation and 
behavioral patterns. This implicit theory and its research base continues to support work in fields 
including educational psychology and mathematics education (e.g., Aronson, Fried, & Good, 2002; 
Blackwell, Trzesniewski, & Dweck, 2007; Dupeyrat & Mariné, 2005). The evidence supporting its 
generalization to other domains (Dweck, Chiu, & Hong, 1995; Dweck & Leggett, 1988) and the 
instrument used to measure its constructs (Dweck et al., 1995) provided the theoretical framework for 
this study. 

Dweck and Leggett (1988) posited that an individual's implicit assumptions about the nature of an 
ability lead directly to the type of goals he pursues regarding that ability and the behaviors he exhibits 
when faced with challenges (Dweck et al., 1995; Dweck & Leggett, 1988). They described the entity 
and incremental theories. Individuals assuming an entity theory tended to view attributes as fixed, 
uncontrollable entities and adopted performance-oriented goals to gain or avoid judgment regarding the 
ability. In contrast, individuals espousing an incremental theory tended to view attributes as malleable 
and subscribed to learning goals focused on improvement of the ability (Dweck, 1986; Dweck & 
Leggett, 1988). These mindsets and their associated goals created "a framework for interpreting and 
responding to events" (Dweck & Leggett, 1988, p. 260) that promoted observable behavioral patterns 
when the ability under consideration is challenged. Maladaptive, helpless responses characterized by 
lowered performance and the avoidance of challenges were associated with entity theories. Their 
adaptive counterparts, mastery-oriented responses, were associated with incremental theories and 
characterized by the pursuit of challenges and persistence when faced with failure (Diener & Dweck, 
1980; Dweck, 1975; Dweck & Leggett, 1988). 

Although the tenets of implicit theories were initially established through the characterization of an 
individual's own intelligence, Dweck and Leggett(1988) proposed a framework through which its 
generalization to other attributes and domains occurred, culminating in the validation of an instrument 
used to assess individuals’ implicit theories for multiple attributes (Dweck et al., 1995). The authors 
predicted that for any attribute of personal significance, "viewing it as a fixed trait will lead to a desire 
to document the adequacy of that trait, whereas viewing it as a malleable quality will foster a desire to 
develop that quality" (Dweck & Leggett, 1988, p. 266). Additional evidence supported that the model 
holds for generalization to traits beyond the self, such as the character and attributes of other people and 
the world (Dweck & Leggett, 1988; Erdley & Dweck, 1993). This application of the model suggested 
further observable characteristics of an individual's interactions based on their implicit theories. Those 
with fixed mindsets should be seen to reject change in themselves and others and draw simplified 
conclusions from brief experiences. In contrast, those with growth mindsets should be seen to 
encourage growth in other individuals and organizations and experience a sense of control relative to 
their environment (Dweck & Leggett, 1988). 

Methodology  
To examine the role of mindset in PD, we used case study methodology, specifically a holistic, 

multiple-case design (Yin, 2014). We viewed this as an exploratory case study, with the purpose “to 
identify research questions or procedures to be used in a subsequent research study, which might or 
might not be a case study” (Yin, 2014, p. 238).  
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This study occurred within a PD project serving 82 kindergarten through sixth grade mathematics 
teachers. The project was in its second year of external funding and represented a partnership between a 
university and four rural school districts in a southeastern state. Although the project included academic 
year meetings and demonstration lessons, the project component of focus in this report was the ten-day 
summer institute occurring during the second year of the project in which teachers met in grade-level 
groups (i.e., K–2, 3–4, 5–6) and engaged in immersion and practice-based experiences (Loucks-Horsley 
et al., 2010), with a mathematical focus on fractions and their operations.  

The twelve-item Likert style mindset survey included Dweck et al.’s (1995) nine items related to 
mindset in relation to intelligence, morality, and world. (For evidence of reliability and validity see 
Dweck et al.) In addition, we created three survey items pertaining to a teacher’s point of view of their 
students’ mathematical abilities. The addition of these items is supported by the work of Dweck and 
Leggett (1988).  

We developed four semi-structured interview protocols along with an observation protocol for data 
collection. Interview questions related to participants’ strong academic students, struggling students, 
and their role as mathematics teachers working with these students. The observation protocol, 
employed during observation of participants in PD activities, consisted of six categories: evaluation of 
situation, dealing with setbacks, challenges, effort, criticism, and success of others. In each category, 
observable behaviors for each mindset were recorded. Participants were video-recorded during institute 
activities.  

On the first day of the summer institute all teachers completed the mindset survey, which was 
scored following Dweck and colleagues’ (1995) protocol. Four participants representing each mindset 
were interviewed and then two teachers, Ms. Fitzgerald (fixed mindset) and Ms. Gorman (growth 
mindset) were selected. Both Ms. Fitzgerald and Ms. Gorman (pseudonyms) participated in the grades 
5–6 PD group, which had as its primary focus the modeling of multiplication and division with 
fractions. At the time of the study, Ms. Fitzgerald, a Caucasian female, had completed eight years as a 
classroom teacher and Ms. Gorman, an African American female, had completed nine years of 
classroom teaching.  

To analyze the data, we drew on the organization and analysis procedures described by Yin (2014). 
We developed a case study database for each participant, organizing and compiling all data 
chronologically. We began by employing an inductive strategy for analyzing participant interviews. 
This strategy led to the development and refinement of a set of codes representing relevant concepts. In 
addition, we relied on our theoretical framework to guide the analysis of interviews and observation 
data, identifying evidence of both fixed and growth mindsets. The validity and reliability of our 
findings are supported by the use of multiple sources of evidence (construct validity), replication logic 
(external validity), and a case study protocol (reliability).  

Results 
In this section, we present the results from our analysis. Each case will be presented separately, 

organized according to the three themes that emerged during analysis: intelligence, goals, and 
challenges. 

Ms. Fitzgerald (Fixed Mindset) 
Intelligence. When asked if intelligence was something that could change, Ms. Fitzgerald stated, “I 

don’t think so. I think it’s something that you are born with and what you learn through school is what 
you learn.” During her interviews, Ms. Fitzgerald distinguished between students who were naturally 
talented at mathematics and those who were talented at literacy:  

I think that you are either literature based or you’re mathematically based. . . . The literature-based 
[students] are slower learners. . . . The mathematically based [students], they can do it through 



Teacher!Education!and!Knowledge:!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+annual+

meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+Education.!
East!Lansing,!MI:!Michigan!State!University.!

735!

computations. They can do it with manipulatives. They can usually draw diagrams.  

She also spoke of instructional practices related to students of different ability levels.  

I would give [students in the high ability group] a higher level task and give my inclusion group a 
lower level task. But all that was aiming towards the same goal. . . . For my inclusion group, I 
might pull a fourth grade task on perimeter versus my high group, I might pull a sixth grade task. 
And then my middle group, keep them on target with a fifth grade task. But in the end, we are all 
working towards the same goal.  

Ms. Fitzgerald indicated that students have a tendency to disengage when faced with challenging 
material, thus leading to behavioral issues. In addition, as she reflected on her own frustration when 
faced with a challenge, she said: “Now I see how my kids get frustrated. . . . I think that I would back 
off a little bit if a task seemed to be too difficult for them. I don’t want them to get this frustrated.”  

Goals. Ms. Fitzgerald indicated that she was guided by performance-oriented goals for herself and 
her students, which was evidenced in three ways. First, Ms. Fitzgerald focused on solutions to 
problems. She said:  

I would let [the struggling students] do their own models first but we might go to an algorithm a 
little bit quicker with them and try to work backwards if they can’t get the models on their own. 
Solve the problem and then try to create a model that matches and then hopefully later on they 
could go to the model first. 

Ms. Fitzgerald indicated that if a student cannot draw the model right away, then she has the student 
find the solution using an algorithm, thus emphasizing the model as another procedure to be learned. 
Then, the student can use the solution as a means for drawing the correct model. 

Ms. Fitzgerald also placed a great emphasis on testing and algorithmic proficiency. She stated:  

I go straight to the algorithm and I would like for my kids to have different ways to do it because 
when it comes time for [the state’s constructed response assessments], they can’t just do the 
algorithm. They have to be able to draw some type of model or picture. 

She saw her instructional role in working with the students as guiding them to the answer.  

I have to step away and let them do their thing, not tell them the right answer, step back, let them 
struggle a little bit, and guide themselves to the correct answer. And if they get it wrong, it’s ok. . . . 
I might give them an easier task the next day, something that’s still within . . . the same unit, but 
something that may be a little easier, not as confusing for them. After that, lead into some 
instruction because they always have to have some instruction. 

Challenges. During the PD, Ms. Fitzgerald faced the challenge of developing models (i.e., either 
pictorial or concrete representations) for fraction problems involving multiplication and division. Ms. 
Fitzgerald consistently demonstrated helpless responses. She made statements such as, “I couldn’t tell 
you because I don’t know,” and “Yeah, but that’s probably not right,” which indicated a negative self-
cognition. In addition, Ms. Fitzgerald offered statements that seemed to be intended to divert away 
from the discussion such as, “I’m more of an algorithm person,” and, “I need to go to the K-2 class and 
then maybe I can do something in there.” When selected to respond during the institute, she would offer 
statements such as “We’re nowhere yet” and “I’m thinking I don’t know.” 

Ms. Fitzgerald expressed continued frustration when faced with the challenge of drawing models. “I 
can’t read the models. I can’t draw the models. So I was very frustrated. That made it hard to participate 
in the tasks and the problem sets.” Similarly, Ms. Fitzgerald stated, “Because I’ve tried – like our 
problem sets, you have to draw the model, no algorithm and I just look at it and go – oh, I’m defeated 
again today, I can’t do my homework.” When asked how she might overcome the challenge, Ms. 
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Fitzgerald said, “Um, just forge ahead and really try to wrap my brain around it.” She also indicated 
that more time should be spent “breaking [the model] down and simplifying it to where everybody can 
understand it.” 

Ms. Gorman 
Intelligence. When asked if intelligence was something that could change, Ms. Gorman stated, “I 

look at this as saying people can make mistakes, and you can learn from your mistakes, and you can 
change.” She explained that although some students understand procedures more quickly, all students 
can gain a stronger understanding of mathematics through struggling with difficult material and 
exploring and explaining their thinking.  

I think that in the long run they would have a better understanding of math, they would have the 
critical thinking skills to think through it, whereas some of the others . . . they could do the 
procedures but couldn't explain why. . . . I had some [high ability] kids who, at the beginning of the 
year, 'The answer is 24', 'How do you know that?', 'I just know.' They knew the procedures of it, 
they could tell you the answer, but couldn't explain. It didn't mean anything. . . . I was almost 
excited when they would get something incorrect because that gave me the chance to help them 
think through it. 

Ms. Gorman’s goal of supporting all students in understanding mathematics led her to describe her 
instructional practices in working with low achieving students. 

Definitely take some steps back. . . . Let them struggle. . . . to a degree. . . . you don't want them to 
struggle so much that they're like "I'm done." But to let them struggle to see if they can figure out – 
a way of persevering through it. And then offer my help and then walk away. 

Ms. Gorman described her own struggles in working with high-ability students: 

This past year I had five [high ability] kids, which is a lot to have in one room. They were very 
procedural and what I found was hard for them was, they were like 'I just know,' but they couldn't 
visually show me or tell me why. . . . So, with them, having more advanced type tasks, questions, or 
even be able to have questions to be able to ask them, I think that's one of my struggles. Even 
though I know I'm supposed to ask advancing and assessing questions, I think that even when I'm 
looking at it I have a hard time being able to pinpoint what question to ask at that moment quickly 
and walk away. 

Goals. Ms. Gorman’s statements suggested that she was guided by learning-oriented goals, as 
indicated by her tendency to focus on developing mathematical understanding. She described the role 
of student exploration and explanation in developing this understanding and linked these to changes in 
her instructional practice.  

Being able to connect with how they are thinking, I would say it's a lot more engaging, just because 
I am pulling it out and trying to find manipulatives, and getting the kids to explain their answers, 
and I've been trying to share with the kids multiple ways that they can get to it, and I usually don't 
share until they open the door first. So, I kind of build off of their ideas. 

She indicated her role in working with students was to ask good questions and serve as a guide.  

So as far as my teaching strategies go, it's just taking some steps back, making sure I'm asking the 
right types of questions, to get the kids to go in a certain path, so even if they're steering off the 
wrong way my questioning needs to be correct in that I'm pointing them back in the right direction. 
If they have no clue at all, you know, just helping them to find that starting point without giving too 
much. And without them always using my strategy.  
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Finally, she acknowledged the role of drawing models in supporting the development of mathematical 
understanding. The models served as a tool for making sense of the mathematics and making 
connections.  

A lot of times I think . . . the lower kids tend to not have number sense or not really know what the 
numbers represent. And so with pictures, and things like that--with the labeling--I think that would 
help them to progress to a better understanding of what it is they're doing. 

Challenges. When discussing the challenges associated with understanding the models for 
multiplication and division of fractions, Ms. Gorman’s responses most often could be categorized as 
mastery-oriented responses. Ms. Gorman attributed her struggles with understanding the models to the 
fact that she had not been taught these models as an elementary student. She said, “I feel like I’m trying 
to figure some of these [visual models] out because I was not taught that way. . . . I thought I knew 
math. I do not know math the way I thought I knew math.” 

She felt it was important, however, to understand the models so that she could utilize them in her 
classroom.  

I don’t [understand] the pattern blocks. . . . I would not use those in my classroom because I would 
feel like if I could not explain it to the kids with a clear understanding – because that to me would 
become one of the tools that they could use to figure out the problem. But they can’t use something 
if I can’t explain it efficiently. 

During summer institute sessions, she frequently continued to work with one particular model until she 
felt sure, even as others around her moved on to a different representation.  

In reference to the variety of models displayed by her peers, Ms. Gorman described herself as being 
overwhelmed as her lack of understanding had been exposed and she aimed to understand all of the 
different models.  

I’m very overwhelmed. Just in the sense of – obviously I know how to divide and multiply fractions 
– but having to show pictorially how to multiply and divide fractions is totally different. Because I 
never have really had to do that. . . . And then another thing that was overwhelming is that you are 
passing these posters around and you are looking and somebody like me whose mind is just 
constantly going and I see a different way to work out something then I’m like – ooh! You know, I 
want to work it out this way. And then there’s another way. And then another. 

She believed that to overcome the challenge she needed more practice with the models. She said, 
“Before I took it to the classroom I would need some more practice . . . just so I could feel comfortable 
in what I'm saying, so that they could try it and understand what they were doing.” 

Discussion and Conclusion 
Supporting all students in learning meaningful mathematics is a daunting task, and one that requires 

a shift in how teachers view effective mathematics teaching (Sowder, 2007). PD represents the primary 
means towards supporting teachers in developing this view (Loucks-Horsley et al., 2010) and much is 
known about key components of effective PD (Elmore, 2002; Hawley & Valli, 1999; Loucks-Horsley 
et al., 2010). The impact of PD is often hindered, though, as a result of teachers’ beliefs about 
instruction (Sowder, 2007). Although much research has examined the role of beliefs in teachers’ PD 
(Philipp, 2007), the role of mindset has only recently emerged and has yet to be examined in this way. 

As a result, the purpose of our study was to examine how teachers’ mindsets influenced their 
participation in a PD setting. Throughout the PD, the teachers worked with representing the 
multiplication and division of fractions with models, a task to which many teachers had not been 
previously exposed. In this sense, Ms. Fitzgerald and Ms. Gorman were no exception. They each 
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described the uncomfortable feelings associated with not knowing; yet how they responded to this 
challenge was quite different. Ms. Fitzgerald spoke of frustration, stating continuously that she did not 
understand the models and that she preferred to utilize algorithms. Ms. Gorman spoke of being 
overwhelmed, providing statements that demonstrated her persistence in trying to understand the 
variety of models available.  

Additional differences between the two participants emerged when considering the purpose of 
understanding the models. Ms. Fitzgerald seemed to see the development of a model as an additional 
process for students to learn; a process that was needed in order to be successful on state assessments. 
Ms. Gorman indicated that the development of a model supported the development of students’ 
understanding. Interestingly, Ms. Fitzgerald believed that students who understood mathematics made 
connections among the models and the algorithms. Unlike Ms. Gorman, however, she did not see this 
as an indication that students struggling with mathematics might benefit from tasks or activities that 
supported them in making those same connections. Rather, she felt these students did not hold the 
potential for understanding mathematics and instead needed more practice with the procedures. 

These contrasting views influenced the instructional practices described by the two participants. 
While both mentioned the role of struggle in learning, Ms. Fitzgerald aimed to support her students in 
avoiding struggle, for example through the use of easier tasks. This practice was likely influenced by 
her belief in the inability to influence students’ mathematical abilities. Rather, each student’s 
achievement level should be identified and then appropriate tasks assigned. Ms. Gorman described the 
importance of productive struggle in supporting the learning process. Thus, students’ mathematical 
abilities could be shaped by their learning experiences.  

Across the three areas in our analysis (i.e., intelligence, goals, and challenges), the differences 
between views expressed by the two participants can be attributed to their opposing mindsets. Ms. 
Fitzgerald’s propensity to see intelligence as unchangeable is clearly linked to her fixed mindset, along 
with her performance-oriented goals and helpless responses. Similarly, Ms. Gorman’s view that 
intelligence is changeable combined with her learning-oriented goals and mastery oriented responses is 
clearly aligned with her growth mindset. As a result, the opposing mindsets resulted in different PD 
experiences. 

The findings for this exploratory case study lead us to ask more questions. First, we believe that 
Ms. Gorman and Ms. Fitzgerald left the PD with greatly different experiences. How will the differences 
we observed in Ms. Gorman’s and Ms. Fitzgerald’s interactions during PD carry over into their 
classroom practice? In Principles to Actions(NCTM, 2014) explicit connections are drawn between 
growth mindsets and mathematical success for all students. Further, Blackwell, Trzesniewski, and 
Dweck (2007) reported being able to manipulate mindset. What interventions can we include in PD so 
that we orient teachers toward a growth mindset? How might findings from these questions impact 
future PD and even work with pre-service teachers? Finally, how can we help teachers build ways to 
work productively with students of different mindsets? Knowing that “believing in, and acting on, 
growth mindsets versus fixed mindsets can make an enormous difference in what students accomplish” 
(NCTM, 2014, p. 64), we must also continue to follow this investigation into the differences that can be 
made in what teachers accomplish when attention is given to mindsets. 

References 
Aronson, J., Fried, C. B., & Good, C. (2002). Reducing the effects of stereotype threat on African American college 

students by shaping theories of intelligence. Journal of Experimental Social Psychology, 38, 113-125. 
Blackwell, L. S., Trzesniewski, K. H., & Dweck, C. S. (2007). Implicit theories of intelligence predict achievement 

across an adolescent transition: A longitudinal study and an intervention. Child Development, 78, 246-263. 
Cooney, T. J. (1999). Conceptualizing teachers’ ways of knowing. Educational Studies in Mathematics, 38, 163-187. 
Diener, C. I., & Dweck, C. S. (1980). An analysis of learned helplessness: II. The processing of success. Journal of 

Personality and Social Psychology, 39, 940-952. 



Teacher!Education!and!Knowledge:!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+annual+

meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+Education.!
East!Lansing,!MI:!Michigan!State!University.!

739!

Dupeyrat, C., & Mariné, C. (2005). Implicit theories of intelligence, goal orientation, cognitive engagement, and 
achievement: A test of Dweck’s model with returning to school adults. Contemporary Educational Psychology, 
30, 43-59. 

Dweck, C. S. (1975).The role of expectations and attributions in the alleviation of learned helplessness. Journal of 
Personality and Social Psychology, 31, 674-685. 

Dweck, C. S. (1986).Motivational processes affecting learning. American Psychologist, 41, 1040-1048. 
Dweck, C. S. (2006). Mindset: The new psychology of success. New York, NY: Random House. 
Dweck, C. S., Chiu, C. Y., & Hong, Y. Y. (1995). Implicit theories and their role in judgments and reactions: A word 

from two perspectives. Psychological Inquiry, 6, 267-285. 
Dweck, C. S., & Leggett, E. L. (1988). A social-cognitive approach to motivation and personality. Psychological 

Review, 95, 256-273. 
Elmore, R. F. (2002). Bridging the gap between standards and achievement: the imperative for professional 

development in education. Washington, DC: Albert Shanker Institute. 
Erdley, C. A., & Dweck, C. S. (1993). Children's implicit personality theories as predictors of their social judgments. 

Child Development, 64, 863-878. 
Franke, M. L., Kazemi, E., & Battey, D. (2007). Mathematics teaching and classroom practice. In F. K. Lester, Jr. 

(Ed.), Second handbook of research on mathematics teaching and learning (pp. 225–256). Reston, VA: National 
Council of Teachers of Mathematics. 

Hawley, W. D., & Valli, L. (1999). The essentials of effective professional development: A new consensus. In L. 
Darling-Hammond & G. Sykes (Eds.), Teaching as the learning profession: Handbook of policy and practice (pp. 
127–150). San Francisco: Jossey-Bass. 

Loucks-Horsley, S., Stiles, K. E., Mundry, S., Love, N., & Hewson, P. W. (2010). Designing professional development 
for teachers of science and mathematics (3rd ed.). Thousand Oaks, CA: Corwin. 

National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: 
Author. 

National Council of Teachers of Mathematics. (2014). Principles to actions: Ensuring mathematical success for all. 
Reston, VA: Author. 

National Research Council. (2001). Adding it up: Helping children learn mathematics. J. Kilpatrick, J. Swafford, and 
B. Findell (Eds.). Mathematics Learning Study Committee, Center for Education, Division of Behavioral and 
Social Sciences and Education. Washington, DC: National Academy Press. 

Pajares, M. F. (1992). Teachers’ beliefs and educational research: Cleaning up a messy construct. Review of 
Educational Research, 62, 307–332. 

Philipp, R. A. (2007). Mathematics teachers’ beliefs and affect. In F. K. Lester, Jr. (Ed.), Second handbook of research 
on mathematics teaching and learning (pp. 257–315). Reston, VA: National Council of Teachers of Mathematics. 

Sowder, J. T. (2007). The mathematical education and development of teachers. In F. K. Lester, Jr. (Ed.), Second 
handbook of research on mathematics teaching and learning (pp. 157–223). Reston, VA: National Council of 
Teachers of Mathematics. 

Yin, R. K. (2014). Case study research: Design and methods (5th ed.). Thousand Oaks, CA: Sage Publications. 



Teacher!Education!and!Knowledge:!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+annual+

meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+Education.!
East!Lansing,!MI:!Michigan!State!University.!

740!

AN EXPLORATORY ANALYSIS OF A VIRTUAL NETWORK OF MATHEMATICS 
EDUCATORS  

Anthony V. Matranga  
Drexel University 

avm43@drexel.edu 

Emmanuel Koku 
Drexel University  

emmanuelkoku@drexel.edu  
This study is part of a larger research design project that aims to cultivate an online community of 
mathematics educators. The purpose of this smaller study is to suggest interventions that will further 
support community cultivation efforts. Social network analytical methods are used to study project 
participants’ interactions in virtual spaces. Investigation focused upon the connectivity of network 
structure, the most prominent members of the network, the presence of a core-periphery structure 
and the relationship between participant types and prominence.  Analysis suggests that supporting 
interactions between newly involved and more long-standing participants will enhance community 
cultivation efforts. And, four participants emerged as most influential in the network, therefore being 
most effective in controlling and spreading novel information. These participants are suggested to 
receive additional professional development. 

Keywords: Teacher Education-Inservice  

Educational research and policy call for mathematics instruction to be student-centered, with a 
focus on argumentation and negotiation. While these calls were made over two decades ago, 
classroom instruction still does not reflection this “reform” oriented vision of classroom instruction 
(Stigler & Hiebert, 1999). One initiative that has shown promise in supporting teachers in shifting 
instructional orientation from teacher-centered to student-centered is engagement in community. 
Involvement in community provides opportunities for teachers to critically examine daily 
instructional issues, analyze student work, and plan mathematics tasks to support learning. While 
community engagement has been linked with improved instructional strategies (Vescio, Ross, & 
Adams, 2008), there is a lack in understanding of how to support emergence of teacher communities, 
particularly those that take place in online mediums. 

This study is part of a larger research project that implements and innovative professional 
development (PD) model designed to cultivate an online community of mathematics educators. Due 
to extensive interactional data available from the larger study, and a particular focus on structural 
features of the network, we used social network analysis to investigate the patterns of interactions 
within the network. Social network analysis is a quantitative analytical method derived from graph 
theory used to study the structure of social networks (Scott & Carrington, 2011). Taken together, 
social network analysis can provide data about relationships in social networks that can be 
informative for future interventions that would not have been evident by other investigatory 
approaches. From an educational researcher’s perspective, structural information about teacher 
networks is crucial for the implementation of interventions designed to foster community cultivation. 
For example, if teachers are identified as being sparsely connected, an intervention can be designed 
to support interaction between these teachers in order to improve the flow and access of information 
in the network as a whole. Interventions that serve the purpose of the one just mentioned may be 
critical in the process of cultivating a community of educators. Part of the purpose of this research is 
to make such suggestions for interventions.  

The analytical methods briefly introduced here (and further elaborated in the methods section) 
serve as the backdrop against which research questions are formulated to focus investigation in this 
study. Consequently, this study seeks to answer the following research questions: 
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• What are some of the structural properties of the social network? 
• Who are the most central members of the participant network? 
• To what extent is a core-peripheral structure present in the network? 
• What is the relationship between participant type and centrality? 

Literature Review and Conceptual Framework  
This study is informed by literature on sociocultural learning theories (i.e. communities of 

practice and situated learning) and social network theory. These theories provide the conceptual lens 
to understand the structural relationships in the community of mathematics educators, and provide 
insights for interventions aimed at improving dissemination of instructional strategies and learning in 
the MathCom network. 

Communities of practice  
Communities of practice is a social perspective of learning that hinges learning upon individuals’ 

enculturation into a community through increased participation within a social group. Three 
characteristics distinguish a group of individuals from a community of practice: mutual engagement, 
joint enterprise and shared repertoire (Wenger, 1998). Mutual engagement refers to the notion that 
communities develop and are maintained around engagement in shared practices. Engagement in 
meaningful activities of a community requires particular competencies that are valued by the 
community. Understanding of such competencies can be measured by the extent to which one 
interacts with community members. Therefore, identifying participation patterns both provides a 
sense of individuals’ level of understanding of communal practices and the strength of community 
structure. Joint enterprise and shared repertoire refer to common goals, beliefs and a shared set of 
tools, respectively. While evidencing these aspects of community relies on more qualitative research, 
social network analysis is useful for investigation of mutual engagement to identify patterns of 
interactions (Wenger, Trayner, & de Laat, 2011).  

Legitimate peripheral participation (LPP) 
Communities of practice have a particular structure that is conducive to sustaining and 

maintaining engagement, which can be conceptualize through the lens of LPP. Communities consist 
of a core group of full participants, or “old-timers” who are experts in the community’s practices 
(Lave & Wenger, 1991). However, if only experts are present, engagement typically becomes 
stagnant and interactions do not persist. Peripheral participants, or “newcomers”, provide new 
perspectives and fresh outlooks to be considered by old-timers, which facilitates sustained 
engagement within a community (Lave & Wenger, 1991). Overtime, newcomers follow a trajectory 
of increased participation in the community, and eventually replace old-timers. The constant 
interchange of newcomers and old-timers is a core feature of a community of practice. Therefore, 
identifying places to support interaction between newcomers and old-timers may enhance community 
cultivation efforts. 

Social network analysis and communities of practice  
The discussion above underscores a perspective of learning that takes participation in a 

community as the unit of analysis. Researchers argue that communities of practice are comprised of 
social networks (Schenkel, Teigland, & Borgatti, 2001). Social network theory focuses upon the 
relational patterns embedded within a community and groups. In order for group norms to emerge 
and common beliefs to be present amongst the community, it is important for the social network 
structure to afford information flow. Recent studies have sought to identify central 
members!prominent members that have high levels of interaction within the group!in teacher 
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communities to leverage their position in social networks to spread novel information (Daly, 2010). 
For example, through investigation of the importance of leadership for community success, Tsugawa, 
Ohsaki, and Imase (2010) conclude that in online communities, centrality can predict an individuals’ 
ability to assume leadership responsibilities. In a similar study that sought to understand the 
relationship between individuals’ centrality and successful implementation of reform, Atteberry and 
Bryk (2010) provide teachers professional development to act as “coaches” to spread information 
around school-based initiatives. In doing so, Atteberry and Bryk (2010) used social network analysis 
to study the relationship between teachers’ centrality prior to receiving professional development and 
the success of the reform effort. They conclude that teachers with higher levels of centrality prior to 
implementation were more successful in dispersing novel information. In the current study, centrality 
measures are used to inform which participants, given additional developmental opportunities, may 
have the most impact on community cultivation. 

Methodology 
Social network analytical methods are used to investigate the “MathCom” network structure. In 

the following section these analytical methods are explained along with descriptions of the research 
setting, participants, data collection and processing, and data analysis plan.  

Study Site and Participants 
Data for this study is drawn from the MathCom project, which began in 2012. This project is 

designed to bring together and cultivate a virtual community of mathematics educators across the 
nation. A primary goal of the MathCom project is to foster mathematics educators’ collective 
engagement in learning of mathematics and pedagogy. Accordingly, participants have been recruited 
in groups throughout the project as incremental efforts are being made to cultivate community. Over 
the past two years, multiple mediums of communication have been used as leverage points to support 
teacher interactions (i.e. face-to-face workshops, online classes and workshops, twitter discussion 
threads and email list serves) around different content, such as mathematics, instruction and 
assessment. Therefore, the research setting is in virtual spaces that foster online communication, such 
as twitter, online courses/workshops, and email listservs.  

There are 82 participants (mathematics educators) involved in this study. Taking into 
consideration whether (and how) they participated in the two face-to-face summer institutes (at the 
end of Year 1 and Year 2 of the project) that focused on community and instructional development, 
we can distinguish between 6 types of participants: 

• 2013 Fellows (n=12) were part of the Year 1 institute 
• 2014 Fellows (n=5) began in Year 2 and were involved in the second summer institute. 
• 2013 and 2014Fellows (n=12) participated in both summer institutes.  
• Online participants (n=15) were those who participated in the Year 2 institute solely via 

virtual video chat software.  
• Other(n=26) participants participated strictly via online mediums  
• Staff(n=12) are teacher educators responsible for virtual interactions with participants and 

developing project activities  

However, given our interest in participants’ interactions in the virtual spaces, we focused on the 
67 who participated in those spaces. 
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Data Collection and Processing: 
Social network analysis is based on the premise that social life consists primarily of relations and 

the patterns formed by these relations. Social network analysts study these patterns of interactions 
between individuals in a network (Scott, 2013). In order to conduct the social network analysis, we 
examined the records of interactions between participants in each virtual space (twitter, online 
classes and workshops, email listservs) between May 2013 and September 2014. Participant (i) is 
said to have “talked to” Participant (j) if the latter initiated a communication tie to the former. In 
Twitter, a tie exists if Participant (i) included (j’s) hashtag in the message (Ediger et al., 2010). On 
email and Blackboard learning systems, a tie is defined if Participant (j) responded to an initial or any 
other posts/emails from another participant (i). From this information, we created one 
communication matrix that records the interaction between study participants. Each cell (Xij) of the 
matrix takes on a value indicating how frequently (number of times) participant (i) directs or initiates 
a tie to participant (j). The resulting 67 x 67 binary asymmetric matrix became the basis/input for all 
of the structural analysis presented in this paper. The social network analysis software, UCINET 
version 6 (Borgatti, Everett, & Freeman, 2002) was used in all data preparation and analysis. 
Analysis results are reported as normalized indices. A normalized measurement is one in which the 
numerical value that results from analysis is standardized so one could compare the particular 
analytical result to other networks with different sizes.  

Data Analysis Plan 
This study uses four social network analysis measures (i.e. density, centralization, centrality and 

core-periphery) (Borgatti & Everett, 2013; Kadushin, 2011) to address the research questions and 
describe the communication structure of the MathCom network. First, density and network 
centralization measures allow us to address the first research question: what are some of the 
structural properties of the MathCom Network? Network density describes the general level of 
cohesion in a graph (Scott, 2000). The centralization score describes the extent to which the flow of 
information is organized around particular individuals or groups of individuals. Second, centrality 
analysis is employed to answer the second research question: who are the most central members of 
the MathCom network?  Centrality is used in social network analysis to identify important nodes or 
those that occupy influential positions in a network. Three variants of centrality measures are used in 
this study: in-degree, out-degree and betweenness centrality (Freeman, 1979). In-degree centrality 
measures the ties an actor receives from others, while out-degree centrality measures the ties an actor 
directs to others. Betweenness centrality is a measure that indexes the number of times a participant 
falls on the shortest path between two participants in the network. Third, we employ a core-periphery 
model to examine the extent to which core-peripheral structures are present in the MathCom network 
(Question 3). This method bifurcates the network into a discrete model consisting of two classes. 
Fourth, distinguishing levels of centrality for participant types is also of interest (Question 4). We 
used specialized Analysis of Variance (ANOVA) tests for social network data to examine the 
differences in centrality by participant type (e.g. whether 2013 fellows are more central then 13 & 14 
fellows). 

Findings 
Research Question 1: What are some of the structural properties of the MathCom network? To 

address this question, density and centralization measurements were used to give information about 
network connectivity. The MathCom network resulted in a density of 8.3%. Out of the 5,852 possible 
directed edges in the network, 488 of these edges are present. The network centralization analysis 
resulted in a measure of 0.222. This indicates that the MathCom network is more representative of a 
network that has centrality evenly distributed throughout the network than one that is controlled by a 
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few central members. Density and centralization give an overall representation of the structure of the 
network. And in this case illustrate that over the 15 months in which this data was collected, close to 
500 connections were made and certain central members are potentially emerging as a centralization 
score of .222 indicates there is some heterogeneity among centrality in the network.  

Research Question 2: Who are the most central members of the MathCom network? As will be 
recalled, in-degree and out-degree centrality scores index the level of activity of participants in the 
communication network. On average, the top 10 participants have normalized out-degree scores of 
about 1.082, which is about 10 times larger than the average out-degree scores for the middle ten 
participants (0.111), and ninety times larger than the scores for the bottom ten participants (0.0117) 
respectively. On an individual level, participants 11018, 11006 and 11003 are the most active 
participants: actors 11006 and 11018 for instance have an outdegree score that is about 35% higher 
than the next highest out degree in the network.  The indegree analysis yield similar results to those 
of outdegree: actors 11006, 11018 and 11003 have the highest normalized indegree centrality scores. 
Betweenness centrality analysis also yields actors 11018, 11006 and 11003 falling in the top ten, 
however actor 11016 also yielded a high betweenness centrality score. While actor 11016 did not 
have as high a valued in/out-degree score, her dichotomized indices where among the highest. Given 
the importance of betweenness centrality for indicating potential for leadership qualities and the 
control of information, actor 11016 is considered as one of the most central members.  

The above analysis suggests that actors 11018, 11016, 11006 and 11003 are the most central 
members in the network. Each of the identified actors are 2013 and 2014 fellows, meaning they have 
been a part of the project since it began in 2013, a year longer than other members that began 
participation in 2014. Over a year of the project, the identified actors will have had many more 
chances to participate than those that began in 2014, therefore being a possible reason for their 
increased centrality. However, based on centrality alone, and drawing from previous research, this 
analysis suggests these are the most central members and should receive additional professional 
development opportunities.  

In addition, in this analysis staff members are omitted in identification of the most central actors. 
For example, staff members 1 and 7 are present in the top ten of each centrality measure, however 
they are left out of this analysis. Part of the purpose of this research is to provide additional 
professional development opportunities for participants that are identified through social network 
analysis as most influential in the network. Therefore, identifying staff members that are most central 
does not support research goals; although, staff members are included in analysis as part of the 67 
individuals because many interactions occur between staff (who act as role models) and participants, 
thereby disseminating best practices in mathematics pedagogy. 

Research Question 3:  To what extent is a core-peripheral structure present in the network? To 
address this question, we fitted a categorical core-periphery model to the MathCom data.  The core-
periphery analysis provided sub-group densities, which can be used to examine the connectivity, 
between/within, the core and periphery groups. The density profiles also help evaluate the extent to 
which the derived groups approach an ideal core-periphery structure where 100% of ties are expected 
between core members, 0% between peripheral members, and most of the connections expected 
between the core and periphery members. The core-to-core density of the MathCom network is 59%, 
the core to periphery is 16.7%, the periphery to core is 9.6% and the periphery to periphery is 3.2%. 
Although this network does not completely approach an ideal core-periphery structure (and few are 
expected to be), the analysis indicates the presence of a core periphery structure in the network (see 
Figure 1).  

Of the 15 participants in the core of the network, 9 are 2013 & 2014 fellows, 2 are 2013 fellows, 
3 are staff, and 1 is an “other” participant that was not part of either institute but was rather active in 
online classes. The high concentration of 13 & 14 fellows in the core of the network is expected, due 
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to increased opportunities to participate throughout the life of the project. Thus, participation in the 
summer institute seems to be related to communication activity in the network. The staff members in 
the core of the network are also reasonable results due to their frequent activity in twitter and email. 
However, a rather interesting result is participant 13010 falling into the core, as she was not part of 
either institute. Further research will explore the position of participants such as 13010. 

Research Question 4: What is the relationship between participant type and centrality? The 
analysis above suggests that there are variations in centrality of participants in MathCom.  One 
determinant of this communication activity is participant type (whether they are 2013 Fellows, 2013-
2014 Fellows, etc.). Table 1 displays the results of an ANOVA permutation model examining the 
differences in mean (betweenness, outdegree and indegree) centrality of participants by participant 
type. The ANOVA analysis shows that 2013 & 2014 fellows have the highest centrality means in 
each category. Their average betweenness, outdegree and indegree centralities are about 3 times 
larger than the next largest mean. For example, the mean out degree centrality for 2013 fellows is 
0.2452, while that of 2013 & 2014 fellows is 0.7148, which is 2.9 times larger then the 2013 fellows. 
Second, 2014 fellows have substantially lower in/out-degree (valued and dichotomized) than 13 & 14 
fellows. For example, the in/out degree of the 2014 fellows is 14.8% and 10.6% of the 13 & 14 
fellows, respectively. These findings illustrates a clear divide in the amount of participation between 
the two groups: with the 2013 & 2014 fellows much more active than 2014 fellows. 

Discussion 

Network structure 
The above analysis clearly shows the presence of a core and periphery in this network. While the 

core-periphery analysis will “force” members into the two categories regardless of the nature of the 
connections in the network, the density measures suggest a rather densely connected core (59% of 
the potential connections are present) and a rather sparsely connected periphery (3.2% of the 
potential connections are present). In the ideal core-periphery structure the core-to-core density is 
100% and the periphery-to-periphery density is 0% (Borgatti & Everett, 2000). While the results 
shown here are not quite representative of the ideal core-periphery network, the divide suggested by 
Borgatti and Everett is a theoretical model rarely (if ever) observed in practice. 

Lave and Wenger (1991) suggest a core-periphery structure is critical to sustaining productive 
interactions within a community while maintaining the structure of a community. In particular, they 
note that constant interaction between core and peripheral members is critical for knowledge creation 
and distribution in a community. In consideration of this guiding theory, results of this study are used 
to identify connections that should be fostered between core and peripheral members to ensure the 
suggested interactional patterns. Through intervention, members that have been most recently 
introduced to the MathCom network (e.g. 2014 fellows) and are in the periphery, will be connected 
with members in the core that have been part of the project for a longer period of time (e.g. 2013 and 
2014 fellows). Furthermore, as the periphery begins to decrease in size due to peripheral members 
beginning to evolve into more centrally located members in the community; new participants should 
be gathered in order to maintain the core-periphery structure.  

Centrality 
Recent literature suggests that higher levels of centrality in networks increase individuals’ 

likelihood of spreading novel information throughout the network (Atteberry & Bryk, 2010). In 
addition, Tsugawa, Ohsaki, and Imase (2010)mention that high levels of betweenness centrality are 
indicative of leadership qualities. Therefore, providing additional professional development 
opportunities to the most central actors may be an effective way of spreading novel information 
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throughout the network in this study. The results of this study suggest that actors 11003, 11006, 
11016 and 11018 should be given additional developmental opportunities in order to become 
“coaches” within the network that engage in practices with others to promote development of 
student-centered instructional strategies.  

Conclusion 
This study illustrates a quantitatively driven approach to enhancing professional development 

efforts. Social network analytical methods were used to identify opportunities for intervention that 
may have otherwise gone unnoticed. In particular, this investigation has evidenced the presence of a 
core-periphery structure and has identified 4 individuals that are most central in the MathCom 
network. These results provide justification for (1) providing professional development to specific 
individuals in the network, and (2) fostering relationships between specific groups of individuals in 
the network.  

Table 1: Mean centrality measures and ANOVA tests of mean differences for each participant 
type 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Communication interactions by participant type 

 2013 
Fellows 

 13 & 14 
Fellows 

2014 
Fellows Online  Staff Other One-Way ANOVA 

Mean 
centrality        F-

Statistic 
P-
Level 

R-
Squared 

Betweenness 1.1381 0.2452 0.19 0.1125 0.0801 0.2357 3.966 0.003 0.108 

Valued 
Outdegree 3.4667 0.7148 0.4265 0.2193 0.159 0.1331 4.44 0.015 0.127 

Valued 
Indegree 0.5694 0.0762 0.0632 0.05 0.0498 0.0753 1.183 0.265 0.003 

Dichotomized 
outdegree  0.679 0.211 0.079 0.066 0.066 0.0469 2.931 0.030 0.280 

Dichotomized 
indegree 1.6592 0.2664 0.1535 0.0844 0.0712 0.0408 4.52 0.002 0.033 

N 12 12 5 15 12 26 -- -- -- 

Triangle=Core 
Circle=Periphery 
Light blue=13&14 fellows 
Black=2014 fellows 
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In this report, we will consider in-service elementary school teachers’ noticing of the mathematical 
practice: justification. This study is part of a larger project evaluating the efficacy of a three year 
professional development built around attending to student thinking and promoting mathematical 
habits of justifying, generalizing and making sense. Noticing justification is a complex task requiring 
attention to both the (1) mathematical content and strategies and (2) the nature of the argument 
provided by a student. We have found that teachers’ struggle to attend to both aspects simultaneously 
and offer a framework for considering teacher noticing of mathematical practices.  

Keywords: Classroom Discourse; Teacher Education-Inservice; Reasoning and Proof; Standards 

Reform curriculum and standards frequently treat mathematics as a dichotomous subject 
consisting of both content and practices (National Governors Association Center for Best Practices & 
Council of Chief State School Officers, 2010; National Council of Teachers of Mathematics, 2000). 
Teachers are expected to foster classrooms not just based on mathematical content goals, but that 
also promote practices such as justification and generalization. However, practice goals often remain 
more mysterious. For example, many teachers lack an understanding of just what justification is and 
how it would look if a student was engaged in justification (Knuth, 2002; Simon & Blume, 1996). 
Professional noticing is a lens for making sense of what teachers attend to in their classrooms, how 
they interpret student strategies and build upon them. We consider teacher noticing of justification in 
the context of a professional development (PD) designed to transcend particular mathematical 
content and focus teachers on the mathematical practices that support and sustain students’ 
development and learning of mathematics. We attend to teachers’ noticing of justification, 
considering the interplay between noticing of justification practice and content-specific mathematical 
strategies.  

Noticing  
Noticing in a professional setting is both a lens for making sense of what teachers see in the 

complex setting of a classroom and a skill to be developed in PD for current and pre-service teachers. 
Much of the work on noticing stems from Mason’s (2002) intentional noticing. Intentional or 
professional noticing differs from everyday noticing as to what is attended to and how it is 
interpreted is influenced and focused by the professional experience and knowledge of the individual. 
Jacobs, Lamb, and Philipp (2010) developed a framework for teachers’ professional noticing of 
children’s mathematical thinking consisting of: attending to children’s strategies, interpreting 
children’s understandings, and deciding how to respond on the basis of children’s understandings.  

We build on Jacobs, Lamb, and Philipp’s work to consider not just children’s mathematical 
thinking related to content and strategies, but also as it relates to general mathematical practices. We 
are considering practices to be mathematical activity that is not dependent on particular mathematical 
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content, bur rather is embedded in all areas of mathematics such as the practices of justifying or 
generalizing. For this report, we will focus on the practice of justification.  
Justification 

Justification is an essential practice in mathematics classrooms listed in both the Common Core 
State Standards for Mathematics (CCSS) (National Governors Association Center for Best Practices 
& Council of Chief State School Officers, 2010) and the National Council of Teachers of 
Mathematics (NCTM) Principles and Standards for School Mathematics (National Council of 
Teachers of Mathematics, 2000). Our usage of mathematical practice will reflect the usage found in 
the CCSS where mathematical practices describe ways in which students engage in the discipline of 
mathematics. Justification is of particular importance as it provides “a means by which students 
enhance their understanding of mathematics and their proficiency at doing mathematics...” (Staples, 
Bartlo, Thanheiser, p. 447). Justification provides a means to both deepen understanding of various 
mathematical content and develop mathematical practices.  

Despite its importance, defining justification is a perilous task. Our definition will most closely 
follow Stylianides (2007) definition of a proof:  

• It uses statements accepted by the classroom community (set of accepted statements) that 
are true and available without further justification; 

• It employs forms of reasoning (modes of argumentation) that are valid and known to, or 
within the conceptual reach of, the classroom community; and 

• It is communicated with forms of expression (modes of argument representation) that are 
appropriate or known to, or within the conceptual reach of the classroom community.  (p. 
291). 

Within the PD, we define justifying as: 

 Reasons with meaning of ideas, definitions, math properties, established generalizations to: 

• show why an idea/solution is true 
• refute the validity of an idea 
• give mathematical defense of an idea that was challenged 

As in Stylianides’ definition of proof, justification derives its meaning from building on established 
facts in order to present a mathematical argument. However, in the PD, the emphasis switches from 
the product (a proof or justification) to the act of justifying. In this way, a student may be engaged in 
justifying even if his or her reasoning is incomplete or incorrect.  

Previous work has shown that teachers and pre-service teachers may struggle to differentiate 
between justifications and non-justifications both when evaluating and creating their own 
justifications. Knuth (2002) found secondary teachers often evaluated non-proofs including empirical 
arguments as valid justifications for general cases.  Pre-service teachers also often consider purely 
empirical arguments justifications for the general case (Stylianides & Stylianides, 2009; Martin & 
Harel, 1989). Simon & Blume (1996) illustrated that pre-service teachers provided alternate 
information when pressed to justify such as citing a rule for its efficiency or relying on procedures in 
place of a mathematical rationale. In light of these results, the noticing of student justification 
practices in classrooms is a challenging task. Lo and McCrory (2010), identified four factors 
necessary for teachers to promote justifying activity: (1) Knowing what counts as a valid justification 
for a given answer; (2) Familiarizing oneself with the struggles elementary school students may 
have; (3) Understanding how mathematical topics connect across operations and number systems; 
and (4) Knowing how to teach in a way that supports mathematical reasoning. (p. 150). These factors 
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highlight some of the complexity involved for teachers to promote justifying activity. While the PD 
aims to address all four factors, we will be focusing on the first factor. Knowing what counts as a 
justification (and recognizing justifying activity) serve as an important aim when promoting 
justification. 

Attending to justification practices provide an extra layer of complexity to the already complex 
situation of making sense of students’ mathematical thinking. Noticing justification requires both 
attention to content and practice. That is, there must be mathematical content to be justified. 
However, mathematical content alone is insufficient; justification also requires an argument to 
provide a why for mathematical claims and decisions. For example, consider the task in Figure 1.  

 

 
Figure 1: Task from Cycle 4 

A non-justification for the solution of twelve students might be: 

“I added 12, 17, and 7. 12+17 is 29. 29+7 is 36. Then 36 divided by 9 is 12. So 12 students would 
get snacks. 

While the student is explaining how they arrived at the answer, they are not providing any rationale 
for why this procedure produces the correct answer. There is mathematical content in this example, 
but no evidence of the practice of justification.  

In contrast, a justification for the solution of nine students might be:  

“There are 12 of one snack, 17 of one snack and 7 of another. I could add all of the snacks 
together to find the total number of snacks since the types of snacks do not matter, which would 
be 36. Because division tells me how many groups of three are in 36, I could divide the 36 by 3. 
This would tell me how many groups of three snacks fit into 36 snacks. So 12students could each 
have three snacks.”  

In this example, the student used their knowledge of addition and justified why totaling the different 
snacks would be appropriate. They then justified their division decision by using the known 
definition and connecting to the context. By connecting to a known meaning, they not only used an 
operation, but provided a justification for it. The mathematical content and argumentation were both 
aspects of the excerpt.  

The Setting and PD 
The PD takes place at an elementary school in a mid-sized urban district that is engaged in a 

three year PD for third to fifth grade teachers. The PD uses a Studio Model where one teacher (the 
studio teacher) works with a consultant to plan math lessons and then opens their classroom to the 
other teachers while teaching this lesson. The remainder of the third to fifth grade teachers (resident 
teachers) help plan the lesson, observe the enactment, and then debrief the lesson. At this elementary 
school, the third to fifth grade teachers engage in a yearly summer course (3 days) and five studio 
cycles throughout the year. These cycles include two days of PD sessions. Day one consists of 
leadership coaching with the principal and planning with the studio teacher. Day two involves all 
third to fifth teachers and consists of working together to do mathematics related to the lesson, 
planning and enacting the studio lesson and then debriefing the lesson. For this study, we are going to 
focus on the first year of the PD with attention to the lesson debriefs.  
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The central focus of the PD is to get all students to habitually justify and generalize in order to 
make sense of mathematical problems and ideas. To this end a set of Habits of Mind (such as 
working through stuck-points), Habits of Interaction (such as critique and debate), and 
Mathematically Productive Teaching Routines are the focus of the PD throughout the first year 
(Foreman, 2013). 

Resident teachers’ attention is focused on student discourse, in particular on discourse related to 
justifying and generalizing during the studio lesson. The teachers are provided with observation tools 
to help focus their attention (see Figure 2). The teachers are encouraged to write down discourse they 
observe during the lesson within the categories of: procedures/facts, justifying, and generalizing. 
After the lesson is enacted, the teachers engage in discussion around the various discourse they 
noticed and characterize them with respect to the three categories provided. In the discussion they are 
asked to justify their categorizations. Using this tool helps teachers focus/attend to children’s 
discourse rather than other aspects of the classroom.  

 
Figure 2: Student Discourse Observation Tool. Reprinted from Best Practices in Teaching 

Mathematics: How Math Teaching Matters (p. 41), by L.C. Foreman, 213, West Linn, OR: Teachers 
Development Group. Copyright 2013 by Teachers Development Group. Reprinted with permission. 

Methods 
A member of the research team was present at each of the PD sessions and took detailed field 

notes. In addition, all PD sessions were video recorded. The field notes from year 1, provided the 
starting ground for identifying instances when teachers discussed student discourse and how it 
pertained to justifying, generalizing and procedures/facts. These episodes were then transcribed for 
analysis. Transcripts were analyzed for any instance of noticing during discussions of characterizing 
discourse. Each instance (measured as a turn in conversation) was then considered in light of whether 
the teacher noticed (1) the mathematical content, (2) the character of the discourse (justifying, 
generalizing, or procedures/facts), and (3) what evidence was provided for their interpretations and 
descriptions. The analysis focused on describing and interpreting aspects of noticing (rather than 
responding to student thinking), as the PD focused first on these aspects during year 1.  

Results and Discussion 
Each of the following excerpts comes from a teacher response when asked to share a piece of 

discourse from their discourse observation tool after the lesson. Teachers were prompted to 
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characterize the discourse in terms of justifying, generalizing and procedure/facts. We begin each 
section by sharing the teacher-selected piece of discourse and then analyzing it.  

Teacher Noticing 1 (Cycle 1) 

Teacher: They [a pair of students] were very much engaged with each other and happily 
exchanging their different ways of looking at the problem.  

No mathematical content or practices. This quote exemplifies noticing that is general and does 
not provide evidence of student discourse or any interpretation of mathematical content or practices. 
This teacher was commenting on level of engagement without evidence. She did note that they had 
different ways of looking at the problem, but without evidence, this statement does not reflect 
noticing of the mathematics in terms of content or practice. Because of the PD’s structure (and the 
observation tool’s focus), teachers were nearly always focused on students rather than teachers. 
However, this focus often swayed to their noticing of student affect rather than mathematical 
discourse. 

Teacher Noticing 2 (Cycle 1) 

Teacher: I still think he’s doing that justifying, defending the idea about that whole corner thing. 
I heard such awesome things, like, “How?,” “I know because…,” and then he’s explaining, and 
then “I disagree, how did you get this number?” “Well, because you said this, this, this…did you 
know it was going to be this number” “Look. You said…” and he showed him on the paper!” 

Noticing mathematical practice without content. The above noticing was of two students 
engaged in discussion as to whether the corners of the perimeters in Figure 3 should count once or 
twice in the total. The student used toothpicks to illustrate that a corner contributes two sides to the 
perimeter total. In this case, the teacher has noticed the practice of justification, but the evidence 
provided does not connect to the mathematical content. This noticing might be considered keyword 
justification noticing. While the teacher appeared to notice that a mathematical argument was being 
made, she did not report any student discourse that was mathematically focused. Noticing 
justification in this manner might reflect any number of justification conceptions and does not 
directly connect back to the definition of justifying being utilized in the PD. With the content of what 
follows, “I know because,” an interpretation of justification lacks warrant. The “because” could be 
followed by a justification or it could be followed by a procedural explanation. Prior to attending to 
student mathematically thinking, it is unlikely a teacher could recognize justification beyond what 
might be a superficial interpretation.  

 
 

What 2 observations are you going to share with your partner and 
why does it make sense? 

 

Figure 3: Task from Cycle 1 

Teacher Noticing 3 (Cycle 2) 

Teacher: But, then [student 1]– I really thought it was great when [student 1] on her own –cause 
we were just flipping it [a triangle] [motions upside down] you know what the kids would think 
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as right side up because we gave it to them “upside down” [air quotes] so he [student 2] thought 
it if you flip it, it’s right side up so when she [student 1] turned it lengthwise, “well does that look 
like it to you?” 

Noticing mathematical content without practice. In this excerpt, a teacher is noticing the 
mathematical content. Students were asked to identify if various shapes were triangles. Many 
students felt that whether or not a shape was a triangle related to orientation (see Figure 4). In this 
exchange, one student recognized and rotated a triangle to provide an argument that the top was in 
fact a triangle. The teacher noticed this exchange including interpreting that the students were 
focused on orientation. In this excerpt, some evaluative comments were made such as, “I really 
thought this was great.” Despite the prompt to characterize this discourse, this teacher did not 
consider whether there was justifying, generalizing or using facts/procedures. This was a fairly 
typical response type within a subset of teachers. It is unsurprising that a teacher’s focus might be 
solely on making sense of the students’ mathematical strategies, especially if attending to students’ 
mathematical thinking is a shift from their typical teaching. Interpreting the nature of the discourse 
and making sense of the mathematical understandings requires attending to two different (though 
interrelated) facets of a complex situation. 

 
Figure 4: Task from Cycle 2 

Teacher Noticing 4 (Cycle 4) 

Teacher: [Student 1] was arguing with girl next to him [student 2] that she was wrong because 
she had the two and one remainders and the numbers added up to 11 even though [student 2] had 
12 up there. They were focused on the remainders. He had 12 and knew he was right. When he 
talked to the whole group, it was when he said, “2 remainders plus 1 remainders equals 3” and he 
goes, “three divided by three equals one more group.” As soon as he said it out loud, you could 
see the light bulb flash and he was smiling and he told the girl next to her she’s right. The other 
girls said [inaudible]. He was having the whole conversation justifying it to himself. 

Noticing mathematical content and practice. In this excerpt, the teacher is describing a debate 
between students based on the remainder from the prompt in Figure 11.The teacher in this case 
provided specific evidence of the mathematical discourse that included both content and interpreting 
the character of the discourse. While the connection between the mathematical content and 
characterizing of practice was tenuous, this excerpt represents one of the only cases of a teacher 
identifying a justification with concrete evidence. This might reflect both the complexity involved in 
attending to both aspects, but also the fact that this data is from the first year of the PD 
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implementation. At this point, the teachers are in the beginning phases of attending to student 
reasoning in a meaningful way. 

A Framework for Noticing Mathematical Content and Practices 
We summarize the four different ways teachers notice justification in Table 1. 

Table 1: Framework for Noticing Mathematical Content and Practices  

 Does not notice mathematical 
practices 

Notices mathematical practices 

Does not notice 
mathematical content 
and strategies 

Statements are general in nature 
and contain no evidence of 
students’ mathematics. 

Statements may provide evidence 
of students engaged in a practice 
but no mathematics content is 
included. 

Notices mathematical 
content and strategies 

Statements include evidence of 
students’ mathematical strategies 
and content-specific 
interpretations. 

Statements include evidence and 
interpretation of both content and 
practices. 

 
Attending to and promoting student justification may require a high level skill-set including both 

a knowledge of the nature of mathematical justification paired with being able to notice and make 
sense of students’ mathematical thinking and strategies around content. The characterizing student 
discourse tool provides both a tool for writing down discourse (which focuses teachers on students), 
and provides a stable definition for the discourse types of: generalizing, justifying and using 
procedures/facts. As teachers learn to notice their justifications, their conceptions of justifications 
should continue to develop. At the same time, characterizing discourse (with evidence) necessarily 
requires understanding of students’ mathematical thinking around given content. In this way, 
characterizing discourse is a way to promote attending to students’ mathematical thinking and 
making sense of their reasoning. 

Our analysis of Year 1 data, provided insight into the current state of teacher noticing of practices 
such as justification and generalizing. Noticing justification is an incredibly complex skill requiring 
both a deep understanding of elementary mathematics content and understanding of justification as a 
mathematical practice. The teachers in our study frequently attended to one or the other, but rarely 
created robust interpretations of student discourse that addressed both the character of the discourse 
and the mathematical content understandings. In fact, there were no examples of attending to both 
during the thirty minute debrief discussions in the first three cycles. 

Based on this analysis, we were able to illustrate examples of what teachers notice when told to 
focus on characterizing discourse in terms of justifying, generalizing, and procedures/facts. Prior to 
extensive professional development, teachers were not able to characterize discourse using evidence. 
Further, we argue that noticing practices is a difficult and complex task due to the requirement to 
notice not just mathematical practices cues, but also notice mathematical content. Finally, we have 
introduced a framework that has helped to organize and make sense of the way teachers were 
noticing to student discourse. We conjecture that teachers will continue to shift from noticing only 
certain facets of student discourse to an integrated view of mathematical content and practice through 
Year 2 and Year 3 of the professional development.  
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Endnote 
1The division problem could be solved in one of two ways. The snacks could be first summed to 

arrive at the total number of snacks, and then divided by three. Alternately, each snack type could be 
divided by three first, leaving remainders of two carrot sticks and one apple slice. 
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THE UNINTENDED CONSEQUENCES OF A LEARNING TRAJECTORIES APPROACH 

Marrielle Myers 
Kennesaw State University 
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This case study, which is a part of a larger design study, examines teachers’ uses of learning 
trajectories (LTs) in diverse classrooms. Specifically data were collected and analyzed for evidence 
of equitable use of LTs and learning trajectory-based instruction (LTBI). Qualitative analysis 
revealed that the use of LTBI did not guarantee equitable instructional practices. Moreover, a 
number of deficit-oriented themes emerged in one case. 

Keywords: Learning Trajectories; Equity and Diversity; Teacher Beliefs; Teacher Education-
Inservice 

Introduction 
Research has demonstrated that professional development (PD) that focuses on students’ 

mathematical thinking can lead to changes in teachers’ practice (Kazemi & Franke, 2004; Sowder, 
2007). Learning trajectories (LTs) are gaining prominence as a representation of students’ 
mathematical thinking, and are thus being used in professional development projects nationwide. 
While initial results of LT-focused professional development projects are positive, these results have 
not yet been teased apart to investigate if these benefits are present for traditionally underserved 
students. 

In this paper, I present findings from a case study of teachers that participated in a yearlong 
professional development project focused on LTs. I begin this report with a brief discussion about 
learning trajectories. I focus this discussion on how research on LTs has developed over time, 
specifically in relation to their use in classroom instruction. I follow with a discussion of the 
theoretical framework that guided this study. I describe the context of the study (location and 
professional development) and present findings from one case that was particularly interesting and 
problematic. I conclude this report by discussing implications of the findings.  

Background  
Over the past two decades, a number of scholars have written about and argued for the use of LTs 

in mathematics and science education (Battista, 2004; Brown, Clements & Sarama, 2007; Clements 
& Sarama, 2008; Clements, Wilson & Sarama, 2004; Clements & Sarama, 2008; Confrey et al, 2009; 
Duncan, Rogat & Yarden, 2009). While the terminology differs (e.g., learning progressions vs. 
learning trajectories), many of these scholars agree that LTs have the potential to transform the 
teaching-learning process. LTs have shown promise because they: simultaneously attend to specific 
skills as well as broader concepts; they attend to how student thinking develops over time (NRC, 
2007); they are empirically developed from work with students; and they attend to probable 
pathways students may take as well as common misconceptions in their mathematical development 
(Confrey, 2006). 

Research on LTs has occurred along three primary fronts: a) developing and validating LTs in 
different mathematical strands (Battista, 2006; Clements & Sarama, 2007; Maloney & Confrey, 
2010); b) using LTs to design curriculum and assessment (NRC, 2007); and c) exploring the ways 
teachers use LTs in instruction (Bardsley, 2006; Edgington, 2012; Mojica, 2010; Wilson, 2009). 
Regarding the latter, previous research on LTs has shown promise. Using knowledge of student 
thinking as represented by LTs, teachers have: a) set goals based on students’ developmental level 
(Clements, 2007); b) described student work with greater detail (Wilson, 2009); c) assessed students 
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more effectively (McKool, 2009); and d) anticipated students’ strategies as well as misconceptions 
(Edgington, 2012). What remains unexamined is whether or not all students benefit from the promise 
of LTs as well as how teachers use their knowledge of LTs with traditionally underserved students. 
Specifically, are LTs used equitably? 

Theoretical Framework 
To examine whether or not LTs were used equitably in the classroom, I framed this study using 

Gutierrez (2007) equity framework. In this and other work, she articulates four dimensions of equity: 
access, achievement, identity, and power. Because Gutiérrez’ initial framework was developed from 
her work with high school math departments and school districts, my first step in this work was to re-
conceptualize this framework at the classroom level. Additionally, I conjectured ways in which 
teachers might use LTs to promote access, identity, achievement, and power. Table 1 represents a 
conjecture of the ways in which teachers might use LTs in to promote equitable instruction (Myers, 
Sztajn, Wilson & Edgington, in review). 

Table 1. Conceptual Framework for LTBI and Equity (E-LTBI Framework) 
  

Teachers use their knowledge of LTs and LTBI to: 

A
cc

es
s Design instruction and instructional tasks such that they are accessible for all students. 

Identify and use up-to-date research based materials and technology 
Be accessible to and attend to all students in the class. 
Foster classroom discussions such that all students can participate and engage. 
Provide all students with opportunities to engage in rigorous mathematics. 

A
ch

ie
ve

m
en

t Set high, yet appropriate, academic standards for all students. 
Unpack and build upon their students’ prior mathematical knowledge and use it as a basis 
for understanding more meaningful and complex mathematics. 
Select and use a variety of forms of assessment (e.g., formative, summative, projects, class 
discussions) to gauge student achievement. 

Id
en

tit
y 

Support the development of a robust mathematical identity 
Listen to and consider students out-of-school experiences and design instructional 
activities that incorporate elements from their homes and communities. 
Validate the use of students’ own algorithms and strategies to solve problems. 
Assist students to build connections between the mathematics they learn and the broader 
world/society. 
Encourage students to engage in mathematical tasks according to their preferences and 
participate in mathematical discourse in ways that are comfortable for them. 

Po
w

er
 

Ensure that students have voice in the classroom. 
Position students as experts in the classroom (this includes things they know in school and 
things they know from outside of school). 
Allow students to solve problems that are relevant to them (these problems can exist inside 
or outside of school). 

Encourage all students to present, justify, and defend their mathematical ideas/arguments. 

Help students to see themselves as sources of mathematical knowledge. 
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Methods 
The Learning Trajectories Based Instruction (LTBI) project is a multi-year design project that 

examined teacher learning of LTs and how LTs were used in instruction (Sztajn et al., 2012). The 
participants in this case study represented a subset of teachers in a larger design study.  The research 
question under investigation for the case study was: In what ways do teachers use LTBI to promote 
access, achievement, identity, and power in their instruction? In this report however, I address a 
smaller research question: How do deficit perspectives manifest in the context of an LT-focused 
professional development project? 

Context 
Learning trajectory-based instruction is defined as instruction that situates LTs at the center of 

the teaching practice (Sztajn et al., 2012). The goals of the larger LTBI project were to (1) explore 
the impact of LTs on elementary teachers mathematics instruction; (2) build a conceptual model of 
instruction that is centered on LTs; and (3) confront teachers’ stereotypes of students (van 
Langenhove & Harré, 1999) by focusing on what students can do (as seen in LTs) and building upon 
it through supportive classroom practices (instead of focusing on what they cannot do).  

The professional development began with a 30-hour summer institute in which participants 
learned about Clements and Sarama’s (2009) LTs for early number and counting, addition and 
subtraction problem types, Smith and Stein’s (2008) five practices for mathematical discourse, as 
well as formative assessment. Because the content of the LT was dense, the LTBI research team 
organized multiple LTs from Clements and Sarama’s work into what we called “Learner 
Profiles”(Myers, Sztajn, Wilson & Edgington, in review). These profiles—named perceptual child, 
direct modeling child, counting on child, place value child and multi digit child—provided a way for 
teachers to “chunk” information about students and created a broader perspective. Teachers 
participated in an additional 30 hours of PD throughout the school year where they engaged in 
professional learning tasks related to both the content of the LT and its use in instruction. These tasks 
included watching clinical interviews, analyzing samples of students’ work, curriculum evaluation, 
and task design. Participants also conducted a number of activities with their own students, which 
served as the basis for project discussions. 

While there were a number of initial conjectures from the project related to teacher learning, 
discourse, and positioning/stereotypes, three of these conjectures were particularly relevant to this 
case study. First, the LTBI team conjectured that the learner profiles would be a more manageable 
grain-size for teachers and offer them a productive way to talk about “where” their students were 
mathematically. Second, the LTBI team conjectured that LTBI could support teachers’ focus on 
individual students and help teachers design instruction that meets their needs based on their current 
conceptions. Finally, the LTBI team conjectured that teachers would reduce their use of the words 
“low” and “high” to describe their students and begin describing their mathematical work using 
language from the LT. 

The partner school for this study was a small elementary school in a suburban district in the 
southeastern United States. The enrollment was 370 students and the five-acre campus was situated 
in the heart of a historic district. Demographic data indicated that 36.2% of students are considered 
economically disadvantaged and 27.1% of students had limited English proficiency. 

Participants 
Seven teachers participated in the larger design study described above. Because the content of the 

learning trajectory focused on early number knowledge (including counting), four K-1 case teachers 
were selected for additional research. Case teachers participated in four interviews and three 
classroom observation cycles during a four-month period. At the start of this case study, the teachers 
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had completed 40 hours of the professional development. The remaining 20 hours of PD occurred 
concurrently with the case study. 

For the purpose of this paper, I focus on one case “Elizabeth.” At the time of the study, Elizabeth 
had 15 years of teaching experience. She was in her fourth year teaching kindergarten and had been 
teaching at the partner school for nine years. Elizabeth was selected as the focal case for this paper 
because she demonstrated a deficit orientation throughout the PD project. 

Data Sources and Analysis 
Data sources for this case study consisted of student mathematical portraits, interviews, 

classroom observations, and field notes. The mathematical portraits consisted of questions related to 
how teachers use LTs to: solicit evidence of students’ mathematical understandings, set goals for 
students, and create mathematical opportunities for students. These portraits were created so that the 
researcher could examine the ways in which teachers talked about individual students as well as 
groups of students. The mathematical portraits were revisited at each interview during the course of 
the study. Interview protocols addressed each dimension of the E-LTBI framework and additional 
questions were added as themes emerged during the study. An observation protocol was also 
developed to address the E-LTBI framework as well as other aspects of equitable instruction (Author, 
2014). 

Data analysis occurred in two phases: ongoing and retrospective. The goal of on-going analysis 
was to understand emergent themes as they related to the E-LTBI framework. All interviews and 
field notes were reviewed immediately and notes were made regarding preliminary themes. Both pre-
determined and open coding was used during ongoing analysis. The pre-determined codes consisted 
of the four dimensions of the E-LTBI framework (access, achievement, identity, and power) as well 
as the LTBI instructional practices (task/learning goal, anticipate, monitor, select/sequence, and 
connect). While pre-determined codes resulted from the research questions and the LTBI 
instructional model, open coding allowed for the emergence of new themes. The following codes 
were developed during open coding: curriculum, high vs. low students, comparing, literacy, 
usefulness of LTs, using “high” students as exemplars, deficit orientations, and motivation. During 
retrospective analysis both within-case and cross-case analysis were conducted (Merriam, 1998). 

Results 
While a number of themes emerged during the data analysis, one particular manifested 

throughout Elizabeth’s case. At different periods during the study, Elizabeth displayed a deficit 
perspective towards certain students in her classroom. In some cases, she actually used language 
from the trajectory to justify her beliefs. Here, I present a number of examples that highlight 
Elizabeth’s deficit orientations as well as how she failed to use LTBI equitably. 

Tracking 
In my opening interview with Elizabeth, I asked her to talk to me about where each of her 

students was currently working in the learning trajectory. Elizabeth chose to group her students into 
four groups. She labeled these groups, “…lower group, next up from low, not quite counting on, and 
higher group.” Later in the study, I again asked Elizabeth to talk to me about her students and where 
they were working in the trajectory. Although the LTBI team conjectured that teachers would 
describe groups of students using mathematical evidence from the LT, this was not the case with 
Elizabeth. Throughout the study, she continued to use language of “low” and “high” and only 
described her “high” students with LT language. 

Not only were these labels of “low” and “high” problematic, but also the demographics of the 
students that fell into these two groups were alarming. Of Elizabeth’s 17 students, eight of them were 
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in the two “lower” groups and the remaining nine students were in the “higher” groups. Of the eight 
students in the lower groups, six were Hispanic, one African-American, and the other was White. Of 
the nine students in the “higher” groups, seven were White, one African American and one Hispanic. 
Throughout the course of the study, the only student that moved out of the lower track (according to 
Elizabeth’s assessment) was the one White student. As you will see in the coming examples, 
Elizabeth used LTBI to provide opportunities for her “higher” students while her “lower” students 
were denied the benefits of LT-based instruction. 

This particular finding is problematic because one conjecture from the project was that teachers 
could use knowledge of LTBI to focus on individual students and design instruction to move them 
forward. At the conclusion of the study, Elizabeth indicated that her students in the higher group 
continued to achieve, while those in the lower group did not. 

Access 
One aspect of the LTBI PD was a focus on creating high demand tasks with multiple entry 

points. Teachers had opportunities to examine a variety of tasks and modify them such that students 
at multiple levels of the LT could access the task. When I asked Elizabeth to explain how she ensures 
that her tasks are accessible by students at various LT levels, she indicated that the students at the 
lowest level needed step-by-step instructions. Specifically, she stated: 

You take it step-by-step and for each step you plan for them not understanding it possibly. And 
for the ones it’s not accessible because they just don’t comprehend it…[make] sure through the 
activity progressively each step is accomplished and comprehended and then move on to the next 
step. Check for comprehension at the lowest level and once that’s clear, move to the next step. 

In this example, Elizabeth indicated that the learning trajectory could be used as a rigid checklist to 
monitor students’ progress. In contrast to our discussions about using LTs develop open tasks that 
were accessible for students working at different profile levels; Elizabeth indicated that students at 
the lowest level needed more procedural tasks. 

Another important component of access was that teachers would use LTs to design rigorous tasks 
for students at all LT levels. When I asked Elizabeth about how she used the LT to design these 
opportunities, she stated: 

I remember. . .. we do set appropriate academic standards, and I think since our last meeting 
when I mentioned that we thought that the idea of them counting to 100 and counting to 100 by 
tens would be pretty much asking too much but we did it every day and now a good majority of 
them can.  Not successful for I’d say 50% of the class but we work it into. . . I work things into 
my daily routines so they got daily practice, and those that could achieve it at least have the 
opportunity to try and the opportunity to practice. 

In this example, Elizabeth indicated that rigorous goals were appropriate for those that “could 
achieve.” Throughout the study, Elizabeth offered some students opportunities to be challenged 
mathematically, while those that were “lower on the trajectory” or “floundering” were given rote 
tasks. 

Achievement 
A focus of the achievement dimension is that teachers could use LTBI to set short- and long-term 

goals for individual students, assess their progress, and design instruction that builds upon students’ 
individual conceptions as identified in LTs. During a pre-lesson observation, I asked Elizabeth to 
think about the skills her students had demonstrated in class and how she would build upon students’ 
conceptions. Elizabeth responded: 
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They have learned to count to ten, which is great because they didn’t do that before. I’m trying to 
think.  They don’t have a number sense and…I guess it’s hard to say what they do have, honestly, 
I guess because I worry so much about what they don’t have.  But they have gained since the 
very beginning of the year and just being able to count to ten, and even to twenty.  Not 
completely accurately but they know if they put one number after the other, they’re seeing things 
in order.  I guess I should be more positive but really they’re . . .. I don’t know how to express it 
in a positive way.  I worry that they don’t grasp just the whole idea of numbers and amount, and 
why it’s important. 

This example highlights tension Elizabeth felt. While she was able to identify some progress that her 
students were making, her primary focus was what students did not know. She focused more on skills 
that the students did not demonstrate and she did not use the LT did not provide her with the agency 
to develop appropriate instructional plans. 

Identity 
In the identity dimension, teachers use their knowledge of LTs to solicit and validate various 

approaches to tasks. Another element of this dimension is that teachers help students build 
connections between in-school mathematics and out-of-school mathematics. When I asked Elizabeth 
how she could facilitate this in her classroom, she stated: 

I don’t think they have the ability to really grasp say, say I think maybe fourth, fifth grade 
demography and geography.  That might be something a little bit more of a mathematical 
connection but for their level and I’ll introduce grander ideas or bigger numbers and they kind of 
get it but I think my kids who are challenged with second language and also just the beginning of 
number sense, they can’t get it. 

In this statement, Elizabeth indicates that English language learners or students developing 
number sense could not “get it.” This statement also highlights that Elizabeth was unwilling to 
think of out-of-school mathematics in relation to her students lived experiences. Rather, her 
example of out-of-school mathematics was demography or geography.  

Power 
A key component of this dimension is that teachers see the mathematical potential of all of their 

students, allow them to take ownership of their ideas, and position them as experts in the classroom. 
As we were discussing the concepts of positioning students as experts, I asked Elizabeth to recall and 
example she previously shared with me of a student who counted and tapped her chin as she counted 
to keep track of the number. I suggested to Elizabeth that this could be an example where she could 
allow this student to share her counting method with the class. Elizabeth responded: 

Usually they can’t express it because they don’t have . . . They don’t know what they’re doing. 
They’ve just seen adults do it and they think that’s counting…I assume some type of counting 
method that is used in that country, but I usually would ask them about it and they could continue 
doing that if it helped them . . .. But I wouldn’t encourage the rest of the class to start doing it 
too. I just said this is the way we’re going to do it here and if that’s the way you do it, you can do 
that, that’s fine. 

I asked Elizabeth if she could think of an example when she would position students as experts and 
allow them to take ownership of ideas in the classroom. She provided the following example: 

We just had a center – a subtraction center – that was manned by Paul, Natalie and Jared.  Natalie 
had her first grade workbooks and she asked me if she could have a center during math time that 
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if people were done they would be able to visit the math center and practice subtraction because 
she knew how to do it and she wanted to teach them how to do it. 

Later in this conversation I asked Elizabeth to think of other students that she could position as 
experts or different types of expertise that existed in her classroom. She shared another example 
about Paul. These examples demonstrate Elizabeth’s belief that only some students can be seen as 
experts in the classroom. The student referenced in the first example was one of Elizabeth’s “lower” 
students. Paul, Natalie, and Jared on the other hand were her top three students. Throughout the 
study, I asked Elizabeth to share examples of students taking ownership of ideas in the classroom or 
demonstrating expertise. For Elizabeth, only her “high” students were referenced. These examples 
indicate that the trajectory was not enough to help Elizabeth see all students as possessors or 
knowledge therefore allowing all students to be experts. 

Discussion 
My goal for this paper was to present an important “unintended consequence” that emerged as a 

result of a professional development project. While other teachers in the case study exhibited 
growth/progress/demonstrated change, Elizabeth did not. Using the LT as a tool to focus on the 
students’ individual thinking did not disrupt Elizabeth’s beliefs about who could and could not do 
mathematics. While Elizabeth did demonstrate findings from other studies of LTs (e.g., using LTs to 
set goals for students), these findings did not cut across all subgroups of students in her class. 

Previous work has shown promise that when content-focused PD and issues of culture, privilege 
and power are fully integrated; teachers can begin to acknowledge the contributions of all students 
and deficit orientations can be dispelled (Battey & Chan, 2010). Elizabeth’s case presents a critical 
challenge for the field. When teachers have strong deficit perspectives, those beliefs will carry over 
to their professional development experiences. Therefore, although teachers may engage in new and 
innovative pedagogies, not all students will benefit from this new professional knowledge. This case 
highlights the fact that although Elizabeth was able to use elements of the LTBI in her instruction, 
they were not implemented equitably. Therefore, to avoid unintended consequences of content-only 
focused PD, teacher educators must consider simultaneously addressing issues of culture, power, and 
privilege. 
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In this study, we considered how middle school teachers understood the relationship between 
fractions and ratios. We used two instruments to collect data from 11 teachers and relied on 
Knowledge in Pieces as a lens for considering understandings teachers have and how coherent those 
understandings are. From our analysis, we developed three main findings: participants did not have 
a single definition for ratios; they used specific vocabulary when discussing ratios; and their 
language evoked additive strategies rather than multiplicative relationships. Further, we concluded 
that they each had a number of knowledge resources, but that those resources may not yet be well-
connected to each other. This has implications for professional development. 

Keywords: Teacher Knowledge; Middle School Education; Rational Numbers 

Purpose & Background 
In middle school mathematics, teachers are asked to teach an array of concepts for which they 

may have only limited understanding. One such area, proportional reasoning, has increased in 
prominence and emphasis by being considered its own content domain in the Common Core State 
Standards for Mathematics (National Governors Association & Council of Chief State School 
Officers, 2010). Despite the importance and richness of the proportional reasoning domain there has 
been a disproportionate focus on it in research (Lamon, 2007). The limited research available on 
teacher knowledge of proportions indicates that like students, teachers struggle with proportional 
reasoning (e.g., Akar, 2010; Harel & Behr, 1995; Orrill & Brown, 2012; Orrill & Kittleson, in press; 
Orrill, Izsák, Cohen, Templin & Lobato 2010; Post, Harel, Behr, & Lesh, 1988; Riley, 2010). 
Strikingly, in one study, Post, Harel, Behr, & Lesh (1988) found that their sample of teachers in 
grades 4-6 were unable to correctly respond to ratio and proportion items developed for students in 
those grades. In fact, on the ratio items, the 167 respondents answered less than 50% of the items 
correctly. 

Lamon (2007) explained that proportional reasoning is one of “the most difficult to teach, the 
most mathematically complex, the most cognitively challenging, the most essential to success in 
higher mathematics and science, and one of the most compelling research sites” (p. 629). Despite this 
there is little research on teachers’ understandings of proportional reasoning (Ben-Chaim, Keret, & 
Ilany, 2007; Lamon, 2007; Lobato, Orrill, Druken, & Jacobsom, 2011). Existing research suggests 
that proportional reasoning is conceptually difficult for teachers. This is, in part, because it is 
possible to rely on rote algorithms such as cross multiplication to get correct answers while 
overlooking the multiplicative nature of the relationship (Berk, Taber, Gorowara & Poetzl, 2009; 
Lobato et al., 2011;  Modestou & Gagatsis, 2010; Orrill & Burke, 2013). Researchers have also 
suggested that teachers hold naïve conceptions about proportions (Canada, Gilbert, & Adolphson, 
2008; Lobato et al., 2011).  For instance, Canada, Gilbert, and Adolphson (2008) found that in a 
sample of 75 pre-service teachers only 28 were able to reasonably interpret a unit rate (e.g., amount 
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per dollar) as useful for determining which package was a better buy when comparing two different 
size packages of ice cream. 

Past research indicates an important link between the amount of knowledge a teacher 
demonstrates and its organization (Bédard & Chi, 1992; Ma, 1999; Orrill & Shaffer, 2012). For 
instance, Orrill and Shaffer (2012) found that the least expert teacher in their study demonstrated 
many ideas about ratios and fractions that were not interconnected while the most expert teacher 
introduced many ideas that co-occurred more frequently, suggesting stronger connections between 
them. We hypothesize that these stronger connections are an indicator of greater coherence. This 
finding is consistent with research in cognitive psychology that suggests expertise requires both an 
accumulation of knowledge and organization of that knowledge (Bédard & Chi, 1992). It is also 
consistent with seminal work in mathematics education such as Ma’s study (1999) that showed that 
teachers with more connections between their mathematical knowledge resources were better able to 
interpret a variety of mathematical situations. As highlighted by Thompson, Carlson, and Silverman 
(2007), teachers with incoherent understanding can only teach disconnected facts. In contrast, a 
teacher with coherent understanding has the potential to support students in developing coherent 
understandings. Thus, coherence is a salient aspect of teacher knowledge (e.g., Carpenter, Fennema, 
Peterson, Chiang, & Loef, 1989; Kaasila, Pehkonen, & Hellinen, 2010; Ma, 1999).  

Two concepts that are important to proportional reasoning are fractions and ratios. Past research 
has found that the relationship between these two important concepts is not always clear  (Clark, 
Berenson & Cavey, 2003; Sowder, Philipp, Armstrong, & Schappelle, 1998). This may, in part, be 
because of the organization of textbooks that frequently provide limited guidance on the definition of 
ratios and fractions and that deal with multiplicative structures in discrete unconnected ways, such 
that topics like the relationship between ratios and fractions are not shown or discussed (Clark et al., 
2003; Sowder et al., 1998). These issues suggest that it is entirely plausible that teachers hold 
multiple knowledge resources about the relationship between fractions and ratios that are not 
coherently organized.  

This study contributes to the growing knowledge base focused on teacher understanding by 
considering one aspect of proportional reasoning: relationships between fractions and ratios (e.g., 
Lobato & Ellis, 2010). Specifically, we considered the following questions: (1) how do 11 middle 
school teachers understand the relationship between ratios and fractions; and (2) how coherent are 
their understandings? 

Theoretical Framework 

Coherent & Robust Understandings 
A coherent and robust understanding of ratios for middle school teachers must go beyond that of 

their students (Clark et al., 2003; Lobato & Ellis, 2010). Teachers need to understand that a ratio is a 
comparison of two quantities, where quantity is defined as “a measurable quality of an object-
whether that quality is actually quantified or not” (Lamon, 2007, p. 630). A teachers’ understanding 
of ratio should go beyond ways to express it, to include the understanding that a ratio is a 
multiplicative comparison and not an additive comparison (Lamon, 2007; Lobato & Ellis, 2010; 
Sowder et al., 1998). This is a critical understanding as the concept of ratio is considered crucial for 
the transition from additive to multiplicative reasoning (Sowder et al., 1998). Teachers need to be 
able to discern whether students are using additive or multiplicative reasoning (Sowder et al., 1998). 

It is also important for teachers to understand the relationship between ratios and fractions. A 
fraction is more than simply a part-whole relationship. Fractions can be interpreted as a part-whole 
comparison, measure, operator, quotient, and ratio (Lamon, 2007).  A common notion that students 
have is that all ratios are fractions – which is a limited conception given that ratios can be part-part 
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relationships and given that a ratio is a comparison of two quantities, thus not a value that can be 
placed on a number line (Clark et al., 2003; Lamon, 2007; Lobato & Ellis, 2010). Teachers should 
both understand the relationship between fractions and ratios and have the ability to identify 
students’ limited understandings to justify or refute them (Lobato& Ellis, 2010). And, teachers need 
to know that in many cases ratios can be meaningfully reinterpreted as fractions (Lobato & Ellis, 
2010). For instance, in a salad dressing that is 2 parts of vinegar and 5 parts of oil, the ratio 2:5 
expresses not only the part-part comparison, but also the multiplicative relationship—that there is 2/5 
as much vinegar as oil.  

Knowledge in Pieces 
We rely on the Knowledge in Pieces theory (KiP; diSessa, 2006) for this study. KiP asserts that 

individuals hold understandings of various grain sizes that are used as knowledge resources in a 
given situation (Orrill & Burke; 2013). For novices, these knowledge resources are not well-
connected to each other. As expertise develops, interconnections allow more knowledge resources to 
be invoked in appropriate situations. KiP offers a unique lens for exploring the development of 
expertise, which is dependent on the extent of the coherency of knowledge (Orrill & Burke; 2013). 
By coherency of knowledge we refer to multiple knowledge resources that are connected in robust 
ways allowing for in situ access to the resources. Coherence, combined with a robust set of 
knowledge resources, allows teachers to deal with complex situations in more efficient ways. This is 
consistent with previous research on expertise (e.g., Bédard & Chi, 1992), and Ma’s (1999) concept 
of profound understandings of mathematics. We hypothesize that as a teacher develops coherence 
among knowledge resources, the teacher will be more fluent at teaching and doing mathematics.  

KiP represents a departure from the deficiency model traditionally used in the study of teachers’ 
knowledge. Much prior research has focused on what knowledge teachers do not “have” and the 
misconceptions that they do display. In contrast, KiP assumes that teachers have a wide variety of 
knowledge resources available to them, but that those resources may not be well connected. KiP also 
allows for identification of additional resources that could be important for a teacher to develop.  

Methods & Data Sources 
The participants were 11 middle school teachers (6 females) ranging from 1 to 18 years of 

experience from multiple schools within a single state. Data were collected from two interviews. 
One, the LiveScribe interview, was a paper-based protocol with think-aloud prompts that included 23 
items. We mailed the interview protocol to the participants along with a LiveScribe pen, which 
recorded their spoken words as well as marks they made on their paper. The second source of data 
was from a 90-minute videotaped clinical interview including 18 items conducted with each 
participant. All recordings were transcribed verbatim to capture the knowledge resources evoked by 
the participants. We analyzed the data by focusing on the knowledge resources the teachers 
demonstrated on these tasks (not those resources they did not use). We used open coding (Corbin & 
Strauss, 2007) to identify codes for knowledge resources.  

Interview Tasks 
For the current study, we considered participants’ responses to four tasks that focused 

specifically on the relationship of fractions and ratios. The Triangle task (Table 2), from the 
LiveScribe interview, explored teachers’ understandings of the multiplicative relationship between 
the two sides of the triangle. All the other tasks were drawn from the clinical interview. Tasks 2 and 
3 focused on situation related to salad dressing shown in Table 2. In Task 2, participants are asked to 
respond to one teacher’s approach to making sense of the situation using an algorithm to find 
equivalent fractions. We then asked the teachers, “What does 2:5 mean as two-fifths? What is there 
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2/5 of in this situation?” Task 3 asked the participants to react to other teachers’ responses to Task 2 
as shown in Table 2. We considered only the second bullet point, “fractions and ratios are the same  

Table 2: Interview Tasks 
Task 1 Triangle Task 

Some students in Mr. Warren’s class have noticed that the ratio of 3 feet to 24 feet simplifies to 1 to 8. They 
also know that this ratio can be written as 1/8. However, they get confused about what the fraction 1/8 means in this 
situation. 

 
a) What does the 1/8 mean in this situation? 
b) How would you explain that to your students? 

Task 2? Oil & Vinegar Situation 
Alexi made a batch of salad dressing using 2 tablespoons of vinegar and 5 tablespoons of oil. She would 

like to make a much larger batch that preserves the ratio of vinegar to oil. If she uses 15 tablespoons of oil, how 
much vinegar should she use? 

Task 3 Teachers’ responses to the oil & vinegar situation 

•  “I know that 6 is 
5
2  of 15. So I guess there’s a two-fifth there.” 

•  “Fractions and ratios are the same thing.” 

•  “
5
2 is a ratio here not a fraction. A fraction is a part-whole relationship like 2 T vinegar to 7 T of salad dressing, 

which is  
7
2  not 

5
2 .”  

•  “I wonder if it has something to do with finding how much vinegar I would need for 1 part oil or how much oil 
for 1 part vinegar?” 

 
thing” for this analysis. Finally, Task 4 asked each participant whether they believe fractions and 
ratios are the same. (Note: there are 4 participants who did not respond to Tasks 2 and 3 due to time 
constraints in the clinical interview).   

Results 
In our analysis, we found three main results related to our questions of how 11 middle school 

teachers understand the relationship between ratios and fractions; and how coherent those 
understandings are. First, the participants did not share a unified definition of ratios. Second, these 
participants used specific vocabulary to discuss ratios that differed from their fraction vocabulary. 
Finally, these participants relied on language that evoked a build-up strategy rather than language 
that suggests multiplicative relationships. 

Multiple Definitions 
Consistent with previous research (e.g., Clark et al., 2003), these participants seemed to draw 

from multiple knowledge resources in defining the relationship between ratios and fractions. The 
knowledge resources we saw among the 11 participants were comparison of two concepts, part-part 
and part-whole relationships, context as differentiating, and equivalence. For example, five 
participants focused on the similarity between the representations of fractions and ratios in talking 
about the relationship of the two concepts. For instance, Greg said in response to Task 3, 
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Fractions and ratios are the same thing…I mean, a ratio can be written as a fraction, but again, 
you could write this as 2/7ths. … when you’re thinking about it as a ratio it’s important to define 
what you’re comparing what the numerator and denominator are.  

Mike and Alan also mentioned the idea of “comparing two things to each other” (Mike).  
Nine participants relied on discussions of part-part and part-whole relationships. Bridgett and 

Alan both relied on the idea that ratios are part-part whereas fractions are part-whole, without 
clarifying whether ratios could be part-whole. For example, Bridgett explained, “When we first 
introduce ratios we say it’s a part over a part and then we say for fractions it’s a part over a whole.”  
Allison, Ella, Mike, Larissa, and Greg added that ratios can be part-whole relationships. For instance, 
Allison explained that ratio is part-part but “sometimes it can be a part to whole relationship” as in 
the relationship of “the vinegar to the whole recipe” in Task 2. 

A third set of knowledge resources considered context as differentiating ratios and fractions. 
David and Greg both discussed the need for using units (labels) with ratios. David asserted that 
fractions and ratios are the same except, “… with a fraction you don’t need a unit. A ratio you should 
have some type of unit… you don’t just put numbers.” Larissa considered the need for context 
through word problems as a differentiating characteristic. She stated, “When I’m dealing with 
fractions I don’t necessarily see it as a ratio unless it’s in a word problem form.”   

Equivalence was the final knowledge resource on which participants drew. Greg, David and Ella 
explained that the 1/8 in Task 1 is a ratio rather than a fraction by referring to equivalent ratios.  For 
instance, Greg explained that 1/8 is “the ratio between the two legs” and that we also could have “1-
to-8, 2-to-16, 30-to-240, and those would still have the same ratio.”  Larissa, Ella, Greg and Allison 
relied on the use of similar triangles to demonstrate that all triangles similar to the given one have the 
same ratio as the original triangle.   

Ratio Language 
For these 11 participants, ratios evoked certain phrases. Most common among these was the 

phrase “for every”, which was used by nine of the participants. For example, in describing the 
relationship in the Task 1 David said, “For every one foot on the short side of this triangle you have 
eight feet on the long side of this triangle.” Similar language was used by six participants and two 
others used this language in Task 2. 

We also noted that many participants used “a to b” when describing ratios versus “a out of b” or 
“a-bths” language when describing fractions. For example, Ella justified her assertion that there is 
not a two-fifths in the oil and vinegar situation saying, “the two-fifths is not like two to five… like it 
is just fundamentally part to part. Pretty much all ratios are.” Care in using differentiating language 
use was not consistent for all the participants. 

Build-up Language 
Our third main finding focused on the language selected by the participants. There was pervasive 

use of language that suggested additive reasoning. In particular, we found that10 of the 11 teachers 
used some variation of “for every” in their response. For example, when responding to part B of Task 
1, Bridgette stated, “so every time you go up one you should go out eight points.” This suggested a 
build-up strategy in that every time you add one to the short side, you add 8 to the long side. Another 
suggestion of additive reasoning came in statements of uncertainty about multiplication versus 
addition. For example, Allison noted, “for every one unit on one side the other side has eight times 
that unit. I almost said eight plus, but then that wouldn’t work if it was eight plus so it has to be eight 
times that unit.” This suggested a tie to addition for this participant. Only Autumn avoided use of this 
language in her responses. 
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Conclusions 
We examined 11 teachers’ understandings of the relationship between fractions and ratios and 

how coherent those understandings were. The lack of a dominant focus for ratios and fractions 
suggests that students may be hearing a number of different definitions from their teacher. This is 
consistent with previous research and could partially be attributed to a wide array of definitions 
presented in textbooks (Clark et al., 2003) as well as to a lack of a single definition of these concepts 
in the field (Lamon, 2007; Lobato & Ellis, 2010; Vergnaud, 1988). For our research, the use of these 
resources raise questions about the coherence of teachers’ knowledge. Holding many definitions that 
do not seem well-connected could suggest knowledge structures that are not robust enough to support 
an array of student thinking. For instance, if these teachers tell students that ratios are part-part 
relationships whereas fractions are part-whole relationships students may infer that ratio cannot be 
part-whole. Teachers with coherent and accurate resources for the relationship of ratios and fractions 
may be better able to support students in developing coherent understanding of these concepts.   

We saw that language and context both seem to be important in considering knowledge resources 
for ratios and fractions. Many of the participants relied on certain phrases when discussing ratios. 
The participants were not consistent with these phrases and some used them interchangeably, which 
obscures the coherence or lack thereof of the concepts. Thus, language and context seem critical for 
the development of coherency of knowledge in this domain.   

We found that several important aspects of a coherent and robust understanding of ratios and 
fractions were not evoked by the teachers. For example, not all described ratios as a comparison of 
two quantities. Also only five participants were able to reason about the relative value of one quantity 
to the other and six participants were unable to reinterpret a ratio as a fraction in Task 1. These 
teachers seemed to have access to knowledge resources for fractions and ratios, but relied only on 
ratio understanding in some cases.  

This study considers areas in which participants may lack coherence in their understandings. For 
example, part-whole discussions only happened in the context of the oil and vinegar situation. In 
contrast, build-up strategies, which are more elementary (Lamon, 2007), were found across the tasks. 
For a coherent understanding, we would expect to see strong connections between consistently used 
knowledge resources comprising a robust understanding of ratios. 

Scholarly Significance 
Teachers need robust understandings of mathematics to support students’ learning (e.g., Baumert 

et al., 2010). However, little research has been done on teachers’ understandings of proportional 
reasoning to uncover how they conceptualize the relationship between fractions and ratios. Knowing 
how teachers understand the mathematics they teach has practical implications for guiding the 
development of effective support opportunities for teachers.  

The teachers in our study have access to a variety of knowledge resources for fractions and ratios, 
but they have not necessarily developed coherent connections between those resources. Returning to 
the idea that expertise refers to having more structured knowledge (Bédard & Chi, 1992), this work 
unveils some possible connections between knowledge resources that teachers rely on when 
differentiating between ratios and fractions. More research needs to be done to highlight the kind of 
knowledge and the organization of the knowledge needed for teaching ratios and fractions.  
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Mathematics teacher education has been criticized, both internally and externally, for failing to 
identify shared practices and goals within teacher preparation programs. Work has begun to address 
this criticism at the elementary level but less exists at the secondary level. This paper reports on a 
national survey with responses from 116 secondary mathematics methods course instructors from 
colleges and universities. The purpose of the survey was to identify those topics, or “touchstones,” in 
secondary methods courses that are widely valued. The survey asked participants to rank 41 
potential “touchstones” of secondary mathematics methods courses on a scale from one to five 
according to those touchstones they value most in their methods courses. The results were 
quantitatively and qualitatively analyzed looking for important characteristics that would spur 
discussion about shared goals in secondary teacher preparation. 

Keywords: Teacher Education-Preservice; Mathematical Knowledge for Teaching 

Teacher preparation is striving for continual improvement, motivated both internally and by 
critiques from external entities. Within the teacher preparation community, scholars and practitioners 
consistently press for self-improvement through adherence to guiding principles (Grossman, 
Hammerness, & McDonald, 2009), attention to the needs of schools and communities (Darling-
Hammond, 2006), and emphasis on evidence-based practices as shared through venues such as the 
Mathematics Teacher Educator journal. External groups, such as some economists (e.g., Harris & 
Sass, 2011) or the National Council on Teacher Quality, have also called for reform, citing the 
difficult-to-detect effects of teacher preparation programs on beginning teacher performance. There 
are counterarguments, however, to the external critiques (e.g., Heller, Segall, & Drake, 2013). For 
example, it is unwise to condemn university-based teacher preparation programs in general when 
they vary widely in their specific features. 

Some of these varied features are the quantity or quality of field components, course 
requirements, the content of required courses, and the alignment and integration of various aspects of 
a preparation program. In mathematics teacher preparation, specifically, some scholars (Ebby, 2000; 
Youngs & Qiang, 2013) have focused on the importance of prospective teachers’ field experiences 
and the alignment between those experiences and the kinds of mathematics instruction advocated in 
methods courses. Others have called for more content courses for prospective mathematics teachers 
(Conference Board of the Mathematical Sciences, 2012) or for thoughtful integration of mathematics 
subject matter in pedagogical methods courses (Burton, Daane, & Giesen, 2008; Steele & Hillen, 
2012). These subject-specific teaching methods courses—in which prospective teachers develop 
skills and pedagogical content knowledge essential to them developing effective, ambitious, and 
manageable classroom practices—are commonly a central component of teacher preparation 
programs (Sowder, 2007) but the number, format, and foci of these courses vary widely from 
institution to institution (Kidd, 2008). 

This study focuses specifically on the topics addressed in mathematics teaching methods courses 
because these courses are largely under the control of mathematics teacher educators and so can be a 
focused area of improvement to complement larger-scale programmatic efforts. We address 
secondary methods courses because of our experiences at this level and because it is less studied than 
methods courses at the elementary level. This study involved a survey of 116 methods instructors 
from across the United States for the purpose of determining what topics they value for inclusion in 
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secondary mathematics methods courses. We sought to determine the extent to which secondary 
mathematics methods instructors agree in their valuations and to identify topics that are broadly 
valued by instructors that may potentially serve as shared foci, or what we refer to as touchstones, for 
these courses. By analyzing and discussing responses from a large number of mathematics teacher 
educators, we can, as a field, work to clarify and bring needed coherence to the curricula of these 
methods courses. 

Background 
With regard to research on mathematics methods course, much of the past work focused on 

courses for prospective elementary teachers. Mewborn (1999) and Ebby (2000), for example, 
analyzed prospective elementary teachers’ reflections on and connections between these courses and 
their concurrent field experiences. Swars and colleagues (2009) traced changes in prospective 
elementary teachers’ beliefs and specialized content knowledge as they progressed through a two-
course methods sequence that had associated field experiences, finding that shifts in the prospective 
teachers’ beliefs about mathematics teaching and learning and their sense of efficacy with 
mathematical content could be traced to specific features of the methods courses. Ball and colleagues 
(2009) have also worked on features of elementary methods courses, developing and studying 
curricula for such courses that include high-leverage teaching practices and aim to develop 
mathematical knowledge for teaching. 

At the secondary level, some scholars have developed textbooks for methods courses (e.g., 
Posamentier & Smith, 2009; Rock & Brumbaugh, 2013) and there is a wide range of studies that 
examine specific topics within the context of methods courses (e.g., Stump, 2001) but not a great 
deal of research focused on the overall content of secondary methods courses explicitly. Two 
exceptions to this lack of research on methods courses overall are the work of Markovits and Smith 
(2008) and Steele and Hillen (2012), both of which deal with content-focused methods courses that 
integrate pedagogical development with the development of mathematical knowledge for teaching 
through “discernible mathematical and pedagogical storylines that are tightly connected” (Steele & 
Hillen, 2012, p. 54). For the present study, it is important to note that one principle for designing 
content-focused methods courses is to choose a narrow focus on a specific mathematical topic or 
pedagogical process. This choice, then, becomes centrally important to the methods course and the 
advocates of content-focused methods courses do not explicitly specify what those focal topics or 
processes should be. Our study is complementary because it concerns the specific topics that one 
might choose to include in a secondary methods course but it does not specify how one might design 
a coherent course around the chosen topics. 

Currently, there are many different topics addressed in secondary mathematics methods courses 
(Arbaugh & Taylor, 2008; Kidd, 2008). In an article about elementary programs that applies equally 
well to secondary programs, Ball and colleagues (2009) argued that the lack of a shared professional 
curriculum for teacher preparation means that “[s]tudent teachers’ learning opportunities reflect the 
orientations and expertise of their instructors and cooperating teacher” rather than “common 
agreements about the preparation required for initial practice” (p. 459). Although the lack of common 
agreements is certainly a concern, the diversity that currently exists provides a rich set of resources to 
draw upon as we work to establish common agreement. 

To guide the field in drawing upon those resources and achieving systematic improvement, 
Arbaugh and Taylor (2008) laid out a framework adapted from Borko (2004). Their framework 
identifies three phases of research phases. The first phase involves studying a single course or single 
teacher preparation program. The second phase involves studying a single course or a single program 
feature that is enacted in multiple teacher preparation programs. The final phase compares multiple 
programs with varying features across multiple sites. Arbaugh and Taylor (2008) pointed out that 
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“the vast majority of work in mathematics teacher education fails to surpass Phase 1” (p. 5). The 
research in Phase 1 provides a valuable literature base for the field, but the present study moves into 
Phase 2 by focusing on a specific program feature—secondary mathematics methods courses—
across the United States and Canada. This is not to say that our study is the first endeavor into Phase 
2 with respect to methods courses. Indeed, Taylor and Ronau (2006) analyzed 58 methods course 
syllabi from members of the Association of Mathematics Teacher Educators (AMTE) and found 
considerable variation in the types of assignments included on the syllabus and the stated goals and 
objectives for the courses. The present study complements Taylor and Ronau (2006) by focusing on 
topics within secondary mathematics methods courses rather than assignments and broad learning 
goals and by relying on instructor survey responses which can capture more than what is encoded in 
a syllabus. 

We use the term “touchstone” to refer to potentially agreed-upon topics for inclusion in 
secondary mathematics methods courses. This term has historical roots in the notion of a physical, 
public stone to which community members could bring their precious metal to verify its authenticity. 
In our usage, we imagine a set of touchstones as a community-developed, public resource to which 
instructors could refer as they design and develop their own courses. We chose to use “touchstone” 
rather than the term “standard” because “standard” conveys an official or authoritative quality that 
we do not intend. Rather, if this initial work of identifying potential touchstones for secondary 
mathematics methods courses leads to a well-defined set, we intend for the set to form a resource that 
instructors have the option but not the obligation to adopt. 

Toward that end, this study addresses the following questions: Which potential touchstones do 
instructors of secondary mathematics methods courses value the most highly? Which potential 
touchstones are valued to significantly different extents by different instructors? 

Method 

Survey 
Drawing on seminal research in the field related to mathematics teaching and teacher education 

(e.g., Arbaugh& Taylor, 2008; Schoenfeld & Kilpatrick, 2008; Swars et al., 2009) as well as our own 
experiences with secondary mathematics methods courses, we compiled a list of potential 
touchstones to be used in a survey for methods instructors. Examples of these touchstones are 
“Enacting mathematical tasks,” “Formative assessment,” and “Digital tools and technologies (e.g., 
calculators).” We piloted this list with approximately 20 instructors and asked whether items could 
be removed or whether items we had omitted should be added. Revision then yielded a list of 41 
potential touchstones (see Appendix) that we used for this study. Our goal for the list was to balance 
comprehensiveness and specificity by covering a full spectrum of topics without overwhelming 
survey respondents with an inordinate number of options or with options that were too closely related 
to allow for meaningful distinctions. 

We chose to supply a predetermined list of touchstones rather than ask open-ended questions 
because an open-ended approach would have likely led to a wide variety of phrasing and terminology 
in the responses and possible idiosyncrasies of meaning, as described by Kidd (2008), that we would 
then have to interpret and categorize with possible concerns for the internal validity of the analysis. 
We recognize that, with a predetermined list, respondents also have to engage in interpretation of 
what we mean with various phrasing of the touchstones, but we felt there would be less variability in 
the respondents’ interpretations as readers of touchstones than there would be in their responses as 
writers of touchstones. Furthermore, it is possible that, when responding to an open-ended question, a 
respondent may inadvertently omit a topic that is actually quite valuable to them only because they 
did not happen to bring it to mind in the few minutes they were responding to the survey. With the 
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predetermined list, we were able to go through a multi-step process to assure that there were no 
serious omissions and we also included an open-ended item at the end of the survey asking 
respondents to list any touchstones that they highly value but were not on the list. Finally, the 
predetermined list lessened the time demands on the respondents and thus likely increased the 
response rate. 

The survey was administered electronically with the following prompt: “Please tell us how 
important you feel it is for each of the following content items to be valued and addressed by 
secondary mathematics methods courses for preservice teachers.” The 41 touchstones were then 
listed with a five-point Likert scale ranging from “Not important” to “Very important.” We chose to 
ask about the instructors’ values rather than about their actual practice because the latter may elicit 
what instructors feel obligated to teach or what they are able to address in a limited timeframe rather 
than what they value in an ideal sense. In addition to the open-ended item about missing touchstones, 
there was also an open-ended item for general comments. The survey then gathered demographic 
information including professional title, secondary methods teaching experience, and academic home 
(e.g., college of education, department of mathematics). 

Participants 
The survey was sent to the approximately 940 members of AMTE, with the invitation email 

explicitly asking for responses from those involved in secondary mathematics methods courses. An 
item on the survey was used to verify that respondents were secondary methods instructors as 
opposed to other members of AMTE. Members of AMTE were chosen because the association is 
professional peers within the field who would most like participate and find value in the results of 
this study. It should be noted that AMTE’s membership is not necessarily representative of all 
mathematics teacher educators in the United States but rather those who are active with regard to 
professional organizations of teacher educators. Thus our results should not be construed as the 
representative values of secondary mathematics methods instructors in general. The results, however, 
can be interpreted as representing the values of many of the leaders in mathematics teacher education 
and those likely to be involved in shaping future directions in the field. 

We received 129 responses and included 116 responses in the analysis. Of these, 70 were from 
individuals in colleges of education and 36 were from individuals in mathematics departments. The 
remaining 10 individuals had either joint appointments or another situation. 

Data and Analysis 
The data were analyzed using quantitative and qualitative methods as the data included numerical 

and free responses. First, the data were compiled on the 41 touchstones to determine basic descriptive 
statistics (mean, standard deviation) to understand which touchstones participants valued the most 
and the least. Independent t-tests and analyses of variants (ANOVA) were used to determine if 
certain groups separated by department or professional title varied significantly in how they valued 
any of the 41 touchstones. Second, the free responses were qualitatively analyzed to determine what 
touchstones participants perceived as missing and to identify themes in any of the additional 
comments offered. 

Results 
Due to space limitations, only the overall valuations of the touchstones and comparisons 

according to academic home will be reported in this paper. 
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Descriptive Statistics 
Table 1 lists the 41 touchstones ordered by mean values. Note that every touchstone had a rating 

above 2.5 out of 5, which lends internal validity to the set of potential touchstones. Nineteen of the 
41 touchstones had means within one standard deviation of the highest-rated touchstone and 0  

Table 1: Touchstones Ordered by Mean Value 
Touch 
stone 

Description Mean St. 
Dev. 

TS4 understanding of practice/process standards (e.g., CCSS, NCTM, 
NRC) 

4.71 0.56 

TS16 multiple representations of mathematical ideas 4.68 0.57 
TS28 attending to student thinking and using student ideas to push 

understanding forward 
4.68 0.58 

TS35 mathematical knowledge for teaching 4.68 0.64 
TS8 adapting, choosing, and generating mathematical tasks 4.61 0.59 

TS20 productive classroom discourse 4.59 0.61 
TS9 enacting mathematical tasks 4.55 0.68 
TS6 lesson and unit planning 4.53 0.67 
TS7 cognitive features of mathematical tasks 4.48 0.67 
TS3 understanding of content standards (e.g., CCSS, state, district, school) 4.48 0.68 

TS17 the relationship between conceptual and procedural knowledge 4.47 0.68 
TS11 formative assessment (on-going assessment) 4.44 0.74 
TS29 motivating students to persevere and take risks 4.36 0.76 
TS36 reflection on practice and development as a professional educator 4.35 0.69 
TS10 informal assessment (e.g., observation, conversations with students) 4.34 0.79 
TS5 choosing and writing instructional goals 4.28 0.8 

TS21 positive classroom culture 4.26 0.79 
TS37 repertoires of effective mathematical teaching practices and 

pedagogical tools 
4.22 0.74 

TS18 pedagogies that address different types of knowledge and skills (e.g., 
procedural, conceptual, strategic, declarative) 

4.17 0.83 

TS25 digital tools and technologies (e.g., calculators) 4.14 0.72 
TS34 mathematical content knowledge 4.13 0.91 
TS30 nature of problem-solving 4.11 0.81 
TS23 roles of the mathematics teacher (e.g., teacher as guide, teacher as 

lecturer) 
4.11 0.84 

TS26 analog tools and technologies (e.g., manipulatives) 4.05 0.78 
TS14 issues of equity, status, fairness, and social justice 4.05 0.93 
TS24 mathematical applications or mathematics in context 4.03 0.84 
TS12 summative assessment to assess student understandings 3.98 0.78 
TS15 needs of underrepresented populations 3.98 0.95 
TS1 curriculum vision 3.91 0.86 
TS2 knowledge of written curriculum materials 3.81 0.81 

TS31 students’ metacognitive skills 3.78 0.81 
TS27 classroom management that supports cultural and learning goals 3.77 0.95 
TS40 learning theories and applications to practice 3.73 0.89 
TS22 sociomathematical norms 3.73 0.95 
TS19 relationship between participation structures (e.g., pair work, complex 

instruction) and cultural and learning goals 
3.72 0.97 

TS33 personal and societal beliefs about teaching and learning mathematics 3.62 1.07 
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TS13 expectations, purposes, and design of homework 3.61 0.88 
TS39 teaching theories and applications to practice 3.54 0.88 
TS38 read educational research 3.38 0.9 
TS32 history and nature of mathematics 3.09 0.94 
TS41 do educational research (e.g., Action Research) 2.78 1.07 

 
touchstones had a mean near the “not important” or “less important” ratings, indicating that the 
respondents tended to value a large portion of the potential touchstones. Only 32 out of 116 
respondents made any suggestion of additional touchstones and most were singular suggestions (e.g., 
working with parents). Seven additional touchstones were suggested by at least two respondents. One 
related to reflecting on practice was mentioned in some form 5 times and another related to learning 
trajectories was mentioned 4 times. 

Comparison by Department 
Focusing on respondents from colleges of education or mathematics departments, and using an 

alpha level of 5%, we found statistically significant differences between the valuations of five 
touchstones (see Table 2). As there were nearly twice as many participants in educational 
departments (70) to those in mathematics departments (36), assuming equal variance was not 
possible in every case. Thus we ran independent t-test comparisons with equal variance assumed or 
not assumed as appropriate according to Levene’s statistic (p<0.05). 

 
Table 2: Touchstones that varied significantly by respondents’ department 

Touchstone TS3 TS9 TS10 TS14 TS15 
Description understanding 

of content 
standards (e.g, 
CCSS, state, 

district, 
school) 

enacting 
mathematical 

tasks 

informal 
assessment 

(e.g., 
observation, 

conversations 
with students) 

issues of 
equity, status, 
fairness, and 
social justice 

needs of 
underrepresent
ed populations 

Equal 
Variance 

Not Assumed Not Assumed Assumed Not Assumed Not Assumed 

t-score 3.399 -2.288 -3.258 -3.205 -3.601 
df 96.557 62.510 104 53.573 55.199 

p-value 0.001 0.026 0.002 0.002 0.001 
Education 

Department 
Mean 

 
4.429 

 
4.686 

 
4.529 

 
4.271 

 
4.271 

St. Dev. 0.627 0.627 0.583 0.779 0.779 
Mathematics 
Department 

Mean 

 
4.778 

 
4.361 

 
4.028 

 
3.611 

 
3.556 

St. Dev. 0.422 0.723 1.000 1.103 1.054 
 
Table 2 shows that understanding content standards (TS3) varied significantly, with participants from 
mathematics departments valuing it more than participants from colleges of education. On the other 
hand, enacting mathematical tasks (TS9), informal assessment (TS10), issues of equity, status, 
fairness, and social justice (TS14), and needs of underrepresented populations (TS15) were valued 
more highly by those in colleges of education than in mathematics departments. 
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Discussion 
The purpose of this study is to spur conversation amongst mathematics teacher educators about 

what we value with regard to topics in secondary mathematics methods courses. Based on our survey 
results, part of this conversation can be the idea of a set of touchstones for secondary methods 
courses, possibly consisting of those items valued most highly by our respondents. We found the 
notion of preservice secondary mathematics teachers coming to understand process standards 
(NCTM, 2000) or the Standards for Mathematical Practice (NGO & CCSSO, 2010) to be valued the 
most highly. Also valued very highly were the notions of using multiple mathematical 
representations, attending to student thinking and student ideas, and developing the preservice 
teachers’ mathematical knowledge for teaching. These touchstones and others align with ongoing 
national efforts focused on mathematics education in general, such as the National Council of 
Teachers of Mathematics’ (2014) Principles to Actions, which laid out eight effective teaching 
practices that are largely consonant with the highest rated touchstones. 

Our results also confirm past work (e.g., Taylor & Ronau, 2006) showing that mathematics 
teacher education as a field places high value on a wide range of topics and activities. Although the 
set of touchstones covers a vast array of topics, each of which could easily warrant extended attention 
and development, results show nearly all of it being valued for inclusion in secondary methods 
courses. In other words, we may as a field be a bit too ambitious, especially considering the issue of 
limited time with which to address these touchstones in methods courses specifically. This concern 
was raised several times in the comment section of our survey and thus is worth discussing. One way 
to address the time constraints is to move certain touchstones to other facets of teacher preparation 
programs besides methods courses. Another way to address time constraints is to remove some of the 
lesser-valued touchstones from consideration, perhaps because they are unnecessary, such as having 
preservice teachers read or conduct empirical research, or because they are better suited for 
development for inservice teachers, such as the role of sociomathematical norms in classrooms or the 
applications of learning theories to practice. To be clear, we are not suggesting specific remedies for 
this dilemma, but the results presented here can form an empirical basis on which to make these 
decisions rather than relying solely on the idiosyncrasies of individual instructors as critiqued by Ball 
and colleagues (2009). 

This study is a modest effort in Phase 2 of Arbaugh and Taylor’s (2008) roadmap for research on 
mathematics teacher education. We have gathered input from methods instructors from across the 
country, representing many different teacher preparation programs. Yet, future research can go 
further to gather more detailed data to allow for the examination of the ways in which respondents 
interpreted the touchstones presented here. Moreover, future research could bridge the gap between 
what we value for methods courses in an ideal sense and what is actually occurring in the methods 
courses. Some of this work is already underway via the Mathematics Teacher Education Partnership 
(MTEP), which is a consortium of secondary mathematics teacher educators from 30 states and 69 
universities formed to coordinate improvement of secondary mathematics teacher preparation. The 
results presented here can inform MTEP and other similar efforts to identify what we value in the 
field and what we want to emphasize with preservice teachers in the limited opportunities that we 
have to interact with them. 
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REASONING QUANTITATIVELY TO DEVELOP INVERSE FUNCTION MEANINGS 

Teo Paoletti 
University of Georgia 
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Researchers have argued that students can develop foundational understandings for a variety of 
mathematical concepts through quantitative reasoning. I extend this research by exploring how 
students’ quantitative reasoning can support them in developing meanings for inverse relations that 
influence their inverse function meanings. After summarizing the literature on students’ inverse 
function meanings, I provide my theoretical perspective, including a description of a quantitative 
approach in the context of inverse relations. I then present one student’s activity in a teaching 
experiment designed to support her in reasoning about a relation and its inverse as representing the 
same relationship. The student’s quantitative reasoning supported her in developing productive 
meanings for inverse function, although this required her to reorganize her understanding of various 
mathematical ideas. 

Keywords: Cognition; Teacher Education-Preservice; Design experiments 

Researchers have indicated students can leverage reasoning quantitatively to develop meanings 
for various mathematical topics before developing more formal mathematical understandings (Ellis, 
Ozgur, Kulow, Williams, & Amidon, 2012; Johnson, 2012). Researchers using a quantitative 
reasoning lens have also provided important insights into students’ learning of a variety of secondary 
mathematics topics including specific function classes (e.g. linear functions (Johnson, 2012; P. W. 
Thompson, 1994) and exponential functions (Ellis et al., 2012)). A natural extension of this body of 
research is to explore how students’ quantitative reasoning influences their notions of relations (or 
functions) and inverse relations prior to and concurrently with thinking about specific function 
classes. In this report, I summarize the research on students’ inverse function meanings then propose 
ways of thinking that have the potential to support students in developing productive inverse relation 
and inverse function meanings. I present important aspects of a student’s activities from a semester-
long teaching experiment designed to support her in developing such meanings. I conclude with 
implications stemming from this work and directions for future research.  

Research on Inverse Function 
Vidakovic (1996) presented a genetic decomposition for inverse function (i.e. a description 

of how students might learn a concept, including methods for constructing their schemes). She 
proposed that students develop inverse function schemas in the following order: function, 
composition of functions, then inverse function. She conjectured students could coordinate all 
three schemas and develop inverse function meanings through this coordination. Whether 
implicitly or explicitly, many researchers (Brown & Reynolds, 2007; Kimani & Masingila, 2006; 
Vidakovic, 1997) who have examined students’ inverse function meanings have maintained an 
emphasis on composition of functions as critical to students developing productive inverse 
function meanings. However, these same researchers noted that students often carry out 
techniques for successfully determining representations of inverse functions (e.g., determining an 
inverse function analytically) without connecting these techniques to function composition. As a 
consequence, students (and teachers) hold compartmentalized inverse function meanings, 
typically related to executing specific actions in analytic or graphing situations (Brown & 
Reynolds, 2007; Kimani & Masingila, 2006; Paoletti, Stevens, Hobson, LaForest, & Moore, in 
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press). Moreover, Paoletti et al. (in press) reported that pre-service teachers, when given a 
function meant to represent a context, struggled to interpret the contextual meaning of the 
inverse function they constructed. Collectively, these researchers’ findings suggest that current 
approaches to inverse function have been ineffective in supporting students in developing 
productive inverse function meanings. Complicating the matter, and as I argue in more detail 
below, researchers predominately treat students construction of ‘inverse function’ meanings as 
distinct from their function understandings (e.g., Vidakovic’s genetic decomposition), as 
opposed to approaching ‘inverse function’ as developing hand-in-hand with ‘function’. 

Theoretical Framing  
I explore the possibility of supporting students developing inverse meanings via reasoning about 

quantities and relationships between quantities (i.e. reasoning quantitatively). A quantity is a 
conceptual entity an individual constructs as an attribute of an object or phenomena that allows a 
measurement process (P. W. Thompson, 1994). As an individual associates two varying (or non-
varying) quantities, she can construct quantitative relationships (Johnson, 2012; P.W. Thompson, 
1994); an individual engages in quantitative reasoning as she constructs and analyzes these 
relationships (P. W. Thompson, 1994). 

Using a quantitative reasoning lens, I conjectured that if a student constructed a relationship 
between two quantities (e.g., quantities A and B) that did not entail some conceived causation 
between the quantities, the student could choose one quantity to be the input of a relation (e.g., A 
input, B output) while anticipating that the inverse relation would involve choosing the other quantity 
as the input (e.g., B input, A output). With respect to graphing relations and inverse relations in the 
Cartesian coordinate system, a student who understands relations in ways compatible with this could 
interpret a single graph as representing both a relation and its inverse. Engaging in such reasoning 
requires the student to anticipate choosing either axis as representative of an input quantity; 
researchers (Moore & Paoletti, 2015; A. G. Thompson & Thompson, 1996) have defined such 
reasoning as bidirectional reasoning. Although this type of reasoning may seem trivial, Moore, 
Silverman, Paoletti, and LaForest (2014) illustrated that students are often restricted to reasoning 
about the quantity represented along the horizontal axis as the input. 

By focusing on a relationship between quantities, the ‘function-ness’ of a relation and its inverse 
is not critical. A student can describe a relation and its inverse without (necessarily) being concerned 
if either represents a function. Moreover, the student understands that the choice of input-output 
quantities does not influence the underlying relationship that the associated functions or relations 
describe. Whereas this approach does not foreground function (or composition of functions) as 
critical to developing inverse meanings, I conjecture a student who develops understandings 
compatible with those described would have little difficulty making sense of the formal definition of 
inverse function that relies on composition of function (e.g., understanding if B = f (A) and A = f-

1(B), then f (f-1(B)) = f (A) = B and f -1(f (A)) = f-1(B)= A).  

Methods 
I conducted a semester-long teaching experiment with two undergraduate students, Arya and 

Katlyn (pseudonyms). I focus this report on Arya’s activity. Arya was a junior who had successfully 
completed a calculus sequence and at least two additional courses beyond calculus. The teaching 
experiment consisted of three individual semi-structured task-based clinical interviews (per student) 
(Clement, 2000) and 15 paired teaching episodes (Steffe & Thompson, 2000). I used clinical 
interviews to explore Arya’s function inverse meanings without intending to create shifts in her 
meanings. I used the teaching episodes to pose tasks and questions that I conjectured might perturb 
Arya’s meanings, leading her to make accommodations to her meanings to resolve her perturbations. 
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I used the combination of clinical interviews and teaching episodes to explore Arya’s mathematical 
activity, to build models of her mathematics, and to investigate the mathematical progress Aryamade 
over the semester (Steffe & Thompson, 2000).  

In order to analyze the data, I used open (generative) and axial (convergent) approaches (Strauss 
& Corbin, 1998) in combination with conceptual analysis(P. W. Thompson, 2008)to develop and 
refine models of Arya’s mathematics. Initially, I analyzed the videos identifying episodes of Arya’s 
activity that provided insights into her meanings. Using these identified instances, I generated 
tentative models of her mathematics that I tested by searching for activity that corroborated or refuted 
my models. When Arya exhibited novel activity that contradicted my models, hypotheses were made 
to explain this activity including the possibility that this new activity indicated fundamental shifts in 
her operating meanings. Through this iterative process of creating, refining, and adjusting hypotheses 
of Arya’s meanings, I was able to not only characterize her thinking at a specific time or situation, 
but I was also able to explain transitions in Arya’s meanings throughout the teaching experiment.  

Task Design 
I focus this report primarily on one task (Graphing sine/arcsine task, Figure 1), which a research 

team designed to support the pair of students in developing productive inverse relation meanings via 
reasoning bidirectionally. Relevant to this report, the first two parts of this task involve the students 
creating graphs of the sine (Graph 1) and arcsine function (Graph 2). The third prompt asks the 
students to consider how they could use Graph 1 to represent the arcsine function. The prompt also 
asks the students to consider if Graph 1 and Graph 2 represent “the same relationship.” I conjectured 
by asking the students to foreground the “relationship” represented by both graphs, they might 
engage in reasoning bidirectionally in order to conceive Graph 1 and Graph 2 as representing both 
the sine and arcsine functions (or relations).  

 
Graph 1:  Create a graph of the sine function with a domain of all real numbers. What is the range? 
Graph 2:  Using covariation talk, create and justify a graph of the arcsine (or inverse sine) function.  
Prompt 3:  Can you alter (do not draw a new graph) Graph 1 such that it represents the graph of the arcsine 

function? Does this graph convey the same relationship as the second graph? How so or how not? 
Figure 1: Graphing sine/arcsine task 

Results 
For brevity’s sake, I highlight important instances in Arya’s activity in order to describe her 

thinking including shifts in her thinking. I first describe Arya’s activity (most relevant to this report) 
during the initial clinical interview in order to characterize her meanings prior to the teaching 
episodes. I then provide data from four consecutive teaching episodes in which Arya addressed the 
prompts in the Graphing sine/arcsine task for various relations.  

Results from the initial clinical interview 
When given a function’s graph and asked to determine a graph of the inverse function, Arya 

switched the coordinate values (e.g., a point (a, b) from the original curve became (b, a) on the 
inverse curve). When asked to determine the inverse of a function represented analytically, Arya 
switched the variables and solved for the previously isolated variable (heretofore referred to as 
switched-and-solved) (e.g., the inverse of y = x + 1 was y = x – 1). I also gave Arya a function 
defined analytically that converted degrees Fahrenheit to degrees Celsius (i.e., C(F) = (5/9)(F – 32) 
and asked her to represent the inverse function. She switched-and-solved obtaining C-1(F) = (9/5)F + 
32. When asked to interpret the meaning of the inverse equation, Arya considered again switching 
the variables (e.g., F(C) = (9/5)C + 32), but rejected the resulting equation because it defined the 
same relationship between degrees Fahrenheit and Celsius as the original equation and function. I 
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inferred from Arya’s activity that she anticipated a function and its inverse function represented 
relationships that differed in some way other than a choice of defining input-output quantities (e.g., 
having different graphs or defining a different relationship).  

Also of note from the interview, Arya exhibited activity in multiple problems that I took to 
indicate she was restricted to reasoning about the horizontal axis as representing a function’s input. 
For instance, when given the graphs in Figure 2 and asked “Are these graphs the same or different?” 
Arya argued, “[the graphs are] showing the same thing but in a different way… this [Figure 2a] is 
what is happening to distance as time is going on.” Then describing Figure 2b, Arya stated, “As you 
change your distance… the time is moving forward.” In this and other cases, Arya maintained 
considering the horizontal axis as representing a function’s input or the independent quantity of a 
relationship.    

 

  
(a)      (b)  

Figure 2: Double parabolas problem: Are the graphs the same or different? 

Considering sine and arcsine 
Nine days prior to the first teaching episode exploring the Graphing sine/arcsine task, Arya and 

Katlyn constructed the sine function as a relationship between an angle measure (input) and a vertical 
segment length above the horizontal diameter measured relative to a circle’s radius (output) in a 
circular motion context (see Moore (2014)). Upon my giving the students the Graphing sine/arcsine 
task, they reproduced the graph of the sine function (see Figure 3a, Graph 1). Arya then leveraged 
her understanding of switching the coordinate values to graph the arcsine relation (e.g., the point 
(π/2, 1) became (1, π/2), see Figure 3a, Graph 2). The students labeled the horizontal and vertical 
axes in Graph 2 ‘vertical distance’ and ‘angle measure’, respectively. I then questioned the students 
about “what [the] two graphs are representing?” Arya responded, “They're showing the same 
relationship, but this [pointing to Graph 2, Figure 3a] shows… if you're changing your vertical 
distance on your graph, what [pointing to θ-label on the vertical axis]radian measure that 
corresponds to. And this shows [pointing to Graph 1, Figure 3a] if you're changing your angle 
measure what vertical distance that corresponds to.” As during the Double parabolas problem, Arya 
described the graphs as representing the same “relationship,” but her interpretation of each graph 
relied on the horizontal axis as representing the input quantity (e.g., the quantity that she first 
envisioned varying or caused the other quantity to vary). 

With both students content in their explanations of the two graphs, I asked them to consider the 
third prompt with the hopes of raising the underlying difference between their understandings of the 
graphs. Katlyn first wrote the analytic equation sin-1(y)= θ near Graph 1 and described interpreting 
Graph 1 with the vertical and horizontal axis representing the input and output quantity, respectively, 
of the arcsine relation. Arya responded, “I don't know if that, can you do that?” Katlyn’s claim 
contradicted Arya restricting a function’s input to the horizontal axis. As the interaction continued, 
Arya attempted to refute Katlyn’s reasoning. But, as she attempted to do so, Arya continually 
returned to her understanding that Graph 1 represents the same distance-angle measure pairs 
regardless of which axis is denoted as a function’s input. She concluded, “I don't see anything 
mathematically incorrect. I don't see it.” 
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Figure 3: Graphs of (a) the sine and arcsine functions and (b) a cubicand its inverse 

By focusing on both graphs as representing, “Vertical distance and angle measure… the 
relationship between the two,” Arya reorganized her meaning for interpreting graphs. Specifically, as 
Arya addressed the third prompt in the Graphing sine/arcsine task and Katlyn’s claim, she had to 
consider whether graphs unquestionably represented the input quantity on the horizontal axis or if 
this was a common practice of graphing. Once Arya understood that graphs could be interpreted with 
either axes as representing the input (i.e., reasoned bidirectionally with respect to axes), she 
understood a single graph as representing both a relation and its inverse. By the end of the second 
teaching episode, Arya exhibited this understanding multiple times with respect to both Graph 1 and 
Graph 2, leading me to conjecture she had constructed the sine and arcsine relations as representing 
the same relationship between angle measure and vertical distance.1 Moreover, she understood that a 
graph of the sine relationship simultaneously represented a graph of the arcsine relationship, and vice 
versa.  

Considering a decontextualized function 
I designed the third teaching episode to explore how Arya might extend her reasoning with the 

sine and arcsine relations to a relation or function represented by a decontextualized equation (y(x)= 
x3). For instance, I was unsure if she would continue to reason about a relation and its inverse as 
representing the same underlying relationship, particularly when graphed, or if she would encounter 
perturbations due to the different context and the chance that she might use her switch-and-solve 
technique (on the previous task they maintained a quantitative referent for each variable rather than 
switching the variables). After graphing y= x3 (Figure 3b, Graph 1), the pair switched-and-solved to 
obtain the inverse rule y=x1/3. They were unsure how to graph this equation so I suggested they recall 
their activity from the previous sessions. In response, they labeled the horizontal axis y, the vertical 
axis x, and they constructed Graph 2 (Figure 3b) by considering how y changed (along the horizontal 
axis) for changes in x (along the vertical axis) so that they maintained the same x-y relationship of 
Graph 1. That is, when drawing Graph 2, their focus was not on the equation y=x1/3, but instead the 
relationship between the varying values x and y as depicted in Graph 1.Arya argued, “all the same 
information is in both graphs.” Compatible with the outcome of the prior two teaching episodes, 
Arya’s (and Katlyn’s) graphing activity indicated that she anticipated that a relation (or function) and 
its inverse represented the same relationship between quantities that could be represented graphically 
in multiple ways. 

Due to my perceived discrepancy in their Graph 2 and the equation they had determined, I asked 
Arya to write an equation for Graph 2. She pointed to the equation y = x1/3 but quickly noticed Graph 
2 (Figure 3b), as labeled, did not represent an equivalent relationship between the varying values x 
and y. Because of this, Arya relabeled the vertical axis y and the horizontal axis x so that Graph 2 
represented, “This equation [pointing to y = x1/3].” Although Arya’s newly labeled graph represented 
the equation y=x1/3, she immediately experienced another perturbation. Given her new axes labels, 
she noted that Graph 1 and Graph 2 did not represent the same relationship between the varying 
values x and y. Hence, Arya realized that her switching-and-solving activity was inconsistent with 
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her activity in the previous teaching episodes where she maintained the relationship between the 
quantities (i.e., variables).  

As Arya was unable to reconcile her perceived inconsistency between switching-and-solving and 
maintaining the relationship between quantities (or variables) in both Graph 1 and Graph 2, I directed 
her to address the third prompt believing this may support her in considering the relation in Graph 1 
as simultaneously representing the inverse relation, and that she might then note that her Graph 2 was 
merely the result of using variables arbitrarily. Consistent with her activity interpreting Graph 1 in 
Figure 3a as the arcsine relationship, Arya described two ways of interpreting Graph 1 in Figure 3b 
by considering either the horizontal or vertical axis as her input. Although Arya had no difficulty 
reasoning bidirectionally with respect to the axes in Graph 1, this did not support her resolving the 
differences she perceived between Graph 1 and Graph 2 (Figure 3b) due to the discrepancy 
introduced by her use of variables. 

Contextualizing the function 
As Arya began to question the validity of her activity when graphing the arcsine relation, and 

based on my interpretation that she did not realize that switching-and-solving requires using variables 
arbitrarily, I attempted to give contextualized meanings to the variables in order to support Arya in 
reflecting on her use of variables. I rewrote the given equation as V = s3 and asked Arya to consider 
the equation as representing the volume of a cube (V) for a given side length (s) with the caveat that 
we could have negative side length and volume values. When considering the context, Arya labeled 
both Graph 1 and Graph 2 in a way that maintained both the relationship between volume and side 
length and the variable referents; in Graph 1 she labeled the horizontal axis side length and the 
vertical axis volume and in Graph 2 she labeled the horizontal axis volume and the vertical axis side 
length. Although Arya maintained the relationship between side length and volume in both graphs, 
this did not alleviate her perturbation as she remained unsure how this related to her switching-and-
solving activity. 

To support Arya in considering a way to relate her activity maintaining the relationship between 
quantities (and maintaining variable referents) with her switching-and-solving activity, I raised the 
idea of using the variables arbitrarily. I wrote the equations y = sin(x) and y = arcsin(x) next to two 
unlabeled Cartesian coordinate systems. I asked the pair to describe how they would label each 
coordinate system for the given equation and what quantity each variable would represent in each 
case. Katlyn stated she would use the conventional x-horizontal, y-vertical axis labeling and that for 
the y = sin(x), x would represent angle measure but in y = arcsin(x), y would represent angle measure. 
Arya questioned, “Why do we do that?… It doesn't make sense… Just because we want this to be our 
input [pointing to x in the equation y = x1/3] and that to be our output [pointing to y in y = x1/3]? I feel 
like that's really the only…It's [referring to switching the variables] just so you can call your input x 
and your output y.”  

Although Arya identified that switching-and-solving maintained calling the input quantity x, this 
did not resolve her perturbation. For instance, Arya leveraged reasoning bidirectionally to question 
the need of a second graph if a relation (or function) and its inverse were meant to represent the same 
relationship between quantities, saying, “If they gave me this graph [Graph 1] and wanted me to find 
the information, with this [the vertical axis] as the input I certainly could… I could turn my head and 
look at it [Graph 1 with the vertical axis as input] and understand what that means. There's still no 
reason for this [pointing to Graph 2] graph. So… like when you switch then you're saying something 
new.” Arya maintained that her switching-and-solving technique resulted in ‘something new’, which 
was incompatible with her anticipation that a function or relation and its inverse maintain the same 
relationship.  
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Through much of the remainder of the last two teaching episodes, Arya experienced a state of 
perturbation as she attempted to relate her quantitative meaning for inverse to her switching-and-
solving activity. By the end of the fourth teaching episode, Arya understood using variables 
arbitrarily (e.g., switching the quantitative referents of variables) to relate these meanings but 
continued to question why this would be done if a function and its inverse were meant to represent 
the same relationship. Arya’s activity in contextualized situations, along with her reasoning 
bidirectionally with respect to the axes and her reasoning about variables as arbitrary, supported her 
in reorganizing her meanings for inverse relations (and functions). In later interactions, Arya 
maintained that a relation (regardless of if the relation was a function) and its inverse represented the 
same relationship and that in order to make sense of switching-and-solving she had to use the 
variables arbitrarily to represent the quantities under consideration (although she continued to 
question why she was taught to switch the variables).  

Discussion and Concluding Remarks 
 By the end of the teaching experiment Arya understood that a relation and its inverse (regardless 

whether the relation was a function in the formal sense) represented the same relationship. However, 
developing this understanding was not trivial; it required Arya to reorganize her meanings for 
interpreting graphs (e.g., which axis could represent the input quantity), her meanings for variables 
(e.g., changing the quantitative meaning of x depending on the function under consideration), and her 
inverse function meanings (e.g., a function and its inverse represent something different). Whereas 
previous researchers have focused on students’ and teachers’ developing inverse function meanings 
via their understanding of function composition, these results provide insights into a different 
approach to inverse functions (or relations). To develop an understanding of a relation and its inverse 
as representing the same invariant relationship, the student in this study had to consider and reflect on 
various meanings she maintained (e.g., graphical conventions, interpreting variables, inverse 
procedures). As she reflected on her activity including her coordinating relationships between 
quantities, the student reorganized her meanings for various mathematical ideas so that she could 
adequately address the prompts in the Graphing sine/arcsine task (as well as all previous problems 
she was able to address). Previous researchers have indicated students can leverage quantitative 
reasoning to develop foundational meanings for various mathematical topics (Ellis et al., 2012; 
Johnson, 2012), and these results indicate students can reorganize already developed meanings via 
quantitative reasoning, although this process is not trivial.  

In this report, I focused on Arya’s development of inverse relation (or function) meanings via her 
reasoning quantitatively about relationships. Arya’s activity had the potential to influence other 
meanings as well, including her function meanings. Future researchers may be interested in exploring 
how quantitative and/or bidirectional reasoning has the potential to support students in developing 
foundational function meanings. Additionally, this work examines the activity of a student who had 
already developed meanings for inverse function. Researchers may be interested in exploring how 
students who have not had formal instruction in functions and inverse functions (e.g., middle school 
students) could develop meanings for (inverse) function via their reasoning about quantities as these 
results indicate that such an approach has the potential to support students in developing productive 
inverse meanings. 

Endnote 
1Arya did discuss restrictions to the graphs in Figure 3(a) such that both Graph 1 and Graph 2 

would represent functions regardless of chosen input quantity, but she typically worked with the 
arcsine relation (a multi-valued function). 
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Can professional development (PD) have a profound and lasting effect on participating teachers? 
The purpose of this study was to understand how teachers learn new mathematics content in 
professional development in order to contribute to the open question of how PD affects teachers' 
actual instructional choices in the classroom. Teachers were followed from a content-based PD 
program into their classrooms and their content knowledge was probed in each context. Data was 
analyzed from the perspective of motivation theory. Findings show compelling links between 
teachers’ motivations, their conceptions of their students, and the nature of their knowledge of 
algebra. These links have broader implications for conceptualizing in-service teacher learning. 

Keywords: Teacher Education-Inservice; Teacher Knowledge 

Research on the professional development (PD) of mathematics teachers depends heavily on the 
question of what kinds of knowledge teachers need in order to teach mathematics effectively. After 
Shulman's (1986) introduction of the idea of pedagogical content knowledge and its subsequent 
refinement, researchers interested in both preservice and inservice teacher education have developed 
a clearer idea of what types of knowledge teachers needed to develop (Grouws & Shultz, 1996). 
However, defining the types of mathematical knowledge teachers need is only the first step in 
fostering that knowledge in teachers. Although the field has struggled to define and measure the 
effectiveness of PD without using teacher self-reports or student achievement data, there is no doubt 
that such an endeavor relies on understanding how teachers use concepts learned in professional 
development in their own classrooms. The purpose of this study was to investigate the ways in which 
teachers participating in content-based professional development made connections between the 
mathematical content of the PD program and their own mathematics instruction.  

Background 
The professional development of teachers is just one stage in the overall education of teachers 

and often comes at a time when teachers have settled comfortably into their practice (Feiman-
Nemser, 2010). According to Feiman-Nemser, research has viewed teachers at this stage in two 
ways, either having already settled into a basic style and resistant to efforts aimed at change or 
constantly changing (with or without the help of professional development) in order to become more 
effective with students and to gain professional satisfaction. This study is done with the second view 
in mind, positing that professional development is one way of guiding or channeling the change 
teachers already are invested in making. However, according to previous research, the effectiveness 
of any program aimed at changing instructional practice must rely on how well such programs align 
with a teacher's preexisting beliefs about teaching, learning and mathematics (Arbaugh, Lannin, 
Jones, & Park-Rogers, 2006; Chapman, 2002; Thompson, 1984). 

Due to the increasing diversity of teachers' mathematical backgrounds, educating inservice 
teachers produces issues very similar to those faced when educating diverse learners (Adler, Ball, 
Krainer, Lin, & Novotna, 2005). However, while some facets of professional development reflect the 
dynamics of a mathematics classroom, such as an instructional triangle consisting of interactions 
between nodes representing the professional development instructors, the participating teachers and 
the mathematics content (Borko, 2004), teachers constantly consider their own students–even while 
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attending to their own learning–creating an instructional rhombus with the fourth node representing 
the teachers’ real or hypothetical students (Nipper et al., 2011). However, Nipper et al. found that 
tension between the teachers and the content of the professional development arose as teachers 
realized that the mathematics content of the program was not content that they could directly use in 
their own classrooms. 

Previous research has identified particular design features that characterize effective professional 
development: sustained learning over a period of time, active learning by teachers, examples from 
classroom practice, collaborative activities, modeling effective pedagogy, opportunities for 
reflection, practice and feedback, and focus on content (Boyle, White & Boyle, 2004; Hill, 2004). 
Ross, Hogaboam-Gray, and Bruce (2006) found that a professional development program which 
incorporated all these features resulted in a significant increase in student achievement on an external 
assessment. However, Marra et al. (2010) argue that individual design features are not as important 
the interactions between these features. Thus, they propose the orientations framework for classifying 
professional development programs. Based on their framework and the meta-study they conducted, 
they conclude that the most effective orientations of professional development are either completely 
or partially content-driven. This conclusion is echoed by Sowder, Philipp, Armstrong, and 
Schappelle (1998), who found that teachers appreciated when attention was paid to learning 
mathematics content. Sowder et al. found that changes in mathematical knowledge prompted changes 
in instruction, but this was mediated by teachers' comfort level with the content. Moreover, increased 
understanding of the mathematics they were teaching prompted the teachers to have greater 
expectations for their students' mathematical learning and changed their views about the centrality of 
curriculum materials and the quality of the classroom discourse. Content-driven professional 
development has also been shown to support student achievement (Hill, Rowan, & Ball, 2005; Saxe, 
Gearhart, & Suad Nasir, 2001).  

However, while much research has been done to identify effective professional development, 
most of it relies on teachers' self-reporting of aspects of professional development that they liked and 
what instructional changes they have made (Marra et al., 2010). Less work has been done in 
understanding how teachers use the knowledge gained in professional development and how that 
knowledge leads to instructional change.  

Theoretical Frameworks and Research Question 
This study adds to the existing knowledge by applying the frameworks of motivation theory to 

analyze teachers’ participation in and engagement with professional development. There are four 
major frameworks that make up the foundation of motivation theory as applied to the classroom: 
expectancy-value theory, self-efficacy beliefs, goal orientation and attribution theory (Karabenick & 
Conley, 2011). In the context of education, these describe students' willingness to engage with school 
tasks. According to expectancy-value theory, the effort a student expends on a task depends on 
whether he thinks he will be successful at the task and on whether he believes that success on the task 
will result in a valued reward – either internal or external. A student's self-efficacy determines her 
assessment of her own abilities, interpreting her past failures and successes in order to set her own 
personal goals and define success for herself based on those self-determined goals. The character of 
the goals set by the student for himself also affects the student's level of effort. Two different goal 
orientations produce different patterns of effort and perseverance: performance goals are goals that 
rely on affirmation from others and can result in low effort from students with low-self efficacy, 
while learning (or mastery) goals are goals defined by gaining new skills or new knowledge, 
potentially prompting students with low self-efficacy to learn from failure and try again. Finally, a 
student's attribution of failure or success to either effort or ability also affects her motivation to 
attempt or to persevere in completing a task.  
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However, as teacher learning is different in character than student learning, applying motivation 
theory to teacher learning narrows the focus of this framework in order to allow for a more nuanced 
discussion of how teachers' self-efficacy and subjective task values can influence their participation 
in professional development. Karabenick and Conley (2011) use motivation theory to investigate 
teachers' motivation to participate in professional development, situating teacher motivation within 
the context of a PD program by tying motivation to the ways in which teachers participate in the 
program and enact the practices recommended by the program. They extend a framework for 
teachers' choices developed by Watt and Richardson (2007). The studies by Karabenick and Conley 
(2011) and Watt and Richardson (2007) both rely on a framework for value developed by Wigfield 
and Eccles (2000), which classifies four different types of value: 

interest value is the enjoyment the individual derived from performing the task; utility value is 
how the task relates to future goals; attainment value is the importance to the self of doing well 
on a task, linked with identity (in this case teacher identity); and cost, which refers to the 
accumulated negative aspects of engaging in the task, including anticipated emotional states 
(performance anxiety, fear of failure), and the amount of effort required to succeed at the task. 
(Karabenick & Conley, 2011, p. 11). 

Expectancy-value theory relies on the intertwined concepts of self-efficacy and value, both of 
which have been studied extensively with regard to students, but are only beginning to be explored 
with teachers. This study, like others that apply a motivation theory framework to the processes and 
concerns of teaching (Karabenick & Conley, 2011; Watt & Richardson, 2007), primarily relies on the 
lenses of expectancy-value theory and self-efficacy theory, with other constructs in motivation theory 
referenced if relevant. 

This study attempts to contextualize the choices teachers make with respect to their own learning 
within professional development, as well as their use of content from PD in their own classrooms. 
This paper will address the findings related to the following research question: what influences 
mediate teachers' alignment with the mathematics content of professional development and 
connections they make between that and the mathematics content of their classrooms?  

Methods 
These qualitative case studies were conducted within a three-year part-time degree for middle 

school mathematics teachers with elementary certification run by a large research university in the 
southwestern United States. This program had a heavy focus on mathematical content and included 
four required mathematics courses: number & operation, algebra, geometry, and probability and 
statistics, each of which was team-taught through the university by a research mathematician and a 
high-school teacher. After completing the program, participants are awarded a Master of Arts degree 
in Middle School Mathematics Teaching Leadership from the university. The general orientation of 
the program would be classified as content-driven (Marra et al., 2010). Three participating teachers, 
each of whom had at least five years of teaching experience in either middle or elementary school, 
were chosen from a single cohort of the professional development program after that cohort had 
finished the program's algebra course.  

Data was collected in four major stages: 1) during the Spring 2012 semester as teachers 
participated in the professional development algebra course, 2) after the end of the algebra class, 3) 
during the 2012-2013 academic year as the teachers began their first year of teaching after finishing 
the algebra course, and 4) during the Fall 2013 semester. Data collected from the first stage of the 
study was made up of observations of the PD algebra course at the university. Special attention was 
paid to the instructors’ mathematical decisions and perspectives of algebra. Stage two of the study 
included a post-class task-based interview where teachers were asked to reflect on the experience of 
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the algebra class and their attitudes about the content, as well as the program as a whole up to that 
point and then to pedagogically unpack five mathematical content questions taken from the algebra 
course. The third stage of the study asked teachers to open their practice and their classrooms to 
observation by the researcher. Teachers were asked to identify lessons for observation which they 
saw as connected to the content covered in the professional development algebra class. Teachers 
participated in pre- and post-observation interviews in order to chart the teacher's intentions more 
specifically by focusing on a particular mathematical topic. Also, the teacher was asked to identify 
explicitly the connections she saw between the lesson she was teaching and the content covered in 
the professional development algebra class. The final stage of the study was a follow-up interview 
that asked teachers to contextualize this PD experience with their other PD experiences and within 
the greater narratives of their careers.  

Non-task-based interview data from the second and fourth stages of data collection and relevant 
tangential comments from the third stage were analyzed within the value framework developed by 
Wigfield and Eccles (2000) in order to produce a motivational portrait of each teacher. This was done 
by isolating references teachers made to their reasons for participating in the PD program, statements 
that revealed their attitudes toward particular concepts, and any other remarks that revealed aspects 
of their affect. While many of these pieces of data were explicitly prompted by actual interview 
questions, some telling comments arose amidst other portions of the interviews. The task-based 
portion of the second stage of data collection and the mathematical observations and interview 
excerpts from the first and third stages were analyzed for the algebraic perspectives put forward by 
the teachers or PD instructors. This was done by placing solutions within contrasting frameworks for 
algebra established by Pimm (1995), Kaput (2008) and Kieran (2007). Teachers’ written work from 
the task-based interviews was used in conjunction with the interview transcripts to provide further 
clarification. 

The importance of motivation theory to this study became apparent after a cursory analysis of the 
data. Teachers’ reasons for participating in the PD program appeared relate strongly with their initial 
expectations for the program and its usefulness to their teaching, prompting the explicit use of 
motivation constructs in analyzing the data.  

Findings 
This paper will focus on one teacher: Felicia. At the start of her progress through the content-

based PD program, Felicia was beginning her tenth year in the profession. Her confidence in her 
mathematical ability was very high, often referring to herself in interviews as a “math person,” and 
saying that, as a teacher, “Math has always been my thing. And I think I'm really really strong in it, 
so I teach to my strength.” Felicia did not think the mathematics in the PD program would be much 
of a challenge for her, an opinion she retained throughout most of the program. Felicia's motivations 
for enrolling in the PD program were a mix of personal and professional goals. Her eventual career 
goal was to move into administration, and she was hoping that a Master's in Middle School 
Mathematics Teaching Leadership, paired with a Master's in Educational Leadership, would help 
propel her into more leadership positions. Although her interest in mathematics created some amount 
of interest value in the PD program, Felicia mostly held utility value for the program, as she felt it 
would help her career. Felicia also had a high level of self-efficacy as a teacher of mathematics: “I 
think the level that I'm at and where I am with classroom management and building those 
relationships with the kids, I think I'm there. There's a lot of things I can still learn from older 
teachers, but then again too, I have a different – better – different way of doing it that I think is 
better.” 

Felicia's overall contentment with her mathematical abilities (especially in algebra) and 
instructional style led her to expect that she would not be prompted to change as a mathematics 
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teacher due to her participation in the PD program. The nature of the utility value that she held for 
the PD program – professional, not practical – also signals her expectation that the content of the PD 
program (and specifically the PD Algebra course) would hold mainly interest value for her. 
Moreover, her idea of “relevant” content was very narrow: the mathematics had to directly mirror the 
mathematics her students would be expected to learn. Felicia referred multiple times to the fact that 
she taught sixth grade and that most of the content of the PD Algebra course was not appropriate for 
sixth-grade students. Moreover, Felicia viewed her own ongoing mathematical development mainly 
as an opportunity to develop more and better “tricks” or solution strategies for traditional algebraic 
tasks. Otherwise, Felicia described her gains from the PD program as mostly personal: “I like math... 
I mean, honestly, that's what it comes down to. I like math, and I like some of the times it was a 
challenge and I was like, ooh! Something new let's go find out how to do it, it was for me. Because 
I'm a math nerd. It's a challenge. Some of the things were challenges.” 

While the PD instructors emphasized certain perspectives of the algebraic concepts and 
encouraged teachers to explore those perspectives, during the task-based interview, Felicia fell back 
on her previous understandings of algebra to solve the given problems. For example, consider the 
following item from the task-based interview:  

Construct a function with the following properties if possible or explain why it would not be 
possible. 

1. One element in the domain and four elements in the range. 
2. Four elements in the domain and one element in the range. 
3. Four elements in the domain and four elements in the range. 

Felicia's solution to this item relied heavily on her visualization of functions in the Cartesian 
coordinate plane. She concluded that the first set of properties could not describe a function, since 
“technically, if you're graphing it, it'd be a vertical line, and it won't pass the vertical line test, so it 
won't be a function.” Similarly, she identified the second set of properties as a horizontal line, so it 
would describe a function that was not one-to-one. The third set of properties described a one-to-one 
function, “because for every unique domain there's a unique range.” In her pedagogical analysis of 
this task, Felicia connected her solution strategy with how she thought students would approach the 
task, asserting that seeing (or knowing) graphical representations of the sets of properties given 
would make this task easier for students to complete. Although she brought up the “circles” 
representation of functions (i.e. the map-between-sets representation) that was emphasized in the PD 
Algebra course as another possible visual representation that might be meaningful for students, 
Felicia admitted that she did not find much meaning in that representation herself, and that she was 
unlikely to present it to students. She explained her conception of functions as follows: “When it 
comes to functions, I automatically think of something that can be graphed or can't be graphed. I 
don't think of the circles like we were taught in class.” Although she said that the more abstract 
visual representation of functions was new to her, it is clear that this representation held little 
meaning for her, since she followed the previous statement by saying, “I don't think I would teach it 
this way because I'm not comfortable with it. I would go directly to the graph, because graphing is an 
easy way to see it.” Felicia referred multiple times to graphical representation being “easier” to 
understand – either for herself or for her students. 

Felicia's work on and reflection about all the tasks in the task-based interview diverged a great 
deal from the PD instructors' presentation and development of the concepts. For three of the tasks, 
Felicia used or advocated the use of numerical solution strategies, making her mathematical 
perspective of those tasks non-algebraic (Kaput, Blanton, & Moreno, 2008). In general, the PD 
instructors did not encourage the teachers to use numerical solutions, choosing instead to focus 
teachers' attention on algebraic structure. In fact, Felicia's work only reflected the mathematical 
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perspective of the PD Algebra course on one task, possibly because she had no other solution 
strategy outside of the one she had learned in the PD Algebra course. Even her emphasis on the 
Cartesian-coordinate-graph-representation of functions to the exclusion of the more abstract map-
between-sets representation placed more weight on a representation that the PD instructors 
introduced almost as an afterthought in that unit. Felicia's lack of alignment with the development 
and presentation of mathematics in the PD Algebra course provides an important context for 
understanding how she viewed algebraic content in the PD Algebra course and its relevance to the 
algebraic content of her own classroom. 

Felicia's conception of her role as a teacher (and especially in her role as an interventionist) was 
as a provider of different strategies for her students. She considered her job to be finding different 
ways of teaching the material, stating that the “traditional” methods and algorithms “don't really 
work for this generation.” She also equated “better ways” of teaching the material with showing 
students different strategies for approaching problems. As a result, Felicia considered the main utility 
of content-based professional development to be as a way to help her learn or create different 
strategies and algorithms to teach her students: 

Felicia: [The PD courses] have helped me realize the reason why it works, or the reason behind 
the actual math, the algorithms or the operations or whatever. So it helps me develop a trick, 
per se, that the kids might get a little bit easier than the traditional here's how you do it type 
of thing. 

In turn, she would then present the alternate algorithm or strategy to her students. Unfortunately, 
Felicia did not see many opportunities in her classroom to develop different strategies or alternate 
explanations with respect to the content of the PD Algebra course.  

In one episode from the observations of Felicia’s classroom, a student asked her for help with the 
one-step equation: v – 3.7 = 8.78. Felicia's interaction with the student around this problem reflected 
this belief about professional development, since she did not in any way mirror the PD instructors’ 
approach to similar problems, which were discussed extensively in the PD Algebra course: 

Felicia: I explained to her: a number minus this number is going to give me this number right? 
And she's like, yeah. I'm like, okay, so what are we going to do with this number that we're 
minusing? And at first, she said subtract. And I'm like, so wait a second, if I subtract that 
number from [the answer], I'm gonna get a smaller number right? She said yeah. And I'm 
like, but if we have a smaller number over here, for the variable, is that gonna make sense 
that you subtract something and get a bigger number? She's like, no. And I'm like, so... She 
said we were going to add it to it, and I'm like, okay why? And she was like, because we 
want a bigger number over in the variable spot than we do over in the equals spot. In other 
words, of course. 

Notice that Felicia emphasizes the relative sizes of the known numbers, implying that the 
operation of subtraction should diminish the unknown. 

Felicia: So, I'm like, good, good, good. So I'm like, well look at this, it's the opposite of the 
operation that's happening to that number, to the variable, to other side, right? She's like, 
yeah. I said, so whenever you do this, you're going to do the opposite of what's in there to 
isolate the variable…and I'm like, what's negative 3 point blah blah blah plus that same 
number, and she's like zero. I said, okay, well that's gone. All we have left over here is the 
variable, and then we add this over here and that's how we get our answer. 

Felicia uses this emphasis to highlight the use of opposite operations in order to isolate the 
unknown. The PD instructors’ emphasis throughout the first unit of the PD Algebra course was on 
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the importance of equivalence when working with equations, a concept that Felicia barely uses in her 
explanation of the problem. In the PD Algebra course, the PD instructors emphasized the 
transformational aspects of tasks involving solving equations (Kieran, 2007). In this transcript, 
Felicia conceptualizes the task as a generational one for the student; although the equation in 
question is already formed, Felicia focuses the student on the unknown v in order for the student to 
reason about the relationship between v and the other two numbers. In essence, she prompts the 
student to reason backwards from the given equation to the formation of the equation. Although the 
PD instructors encouraged meaning-building with expressions in the PD course, they did not 
emphasize meaning in the solving of algebraic equations. Moreover, Felicia prompted the student to 
do some numerical reasoning with respect to the possible size of the unknown. This reflects Felicia's 
own work in the task-based interviews, where she would diverge from the presentation and 
development of algebra from the PD Algebra course in favor of numerical reasoning. 

Discussion and Implications 
These examples, when put into the context of Felicia’s motivational structure, have serious 

implications for understanding how teachers learn new mathematics content in content-based 
professional development. Sowder, et al (1998) recognized that teachers’ retention and usage in the 
classroom of new content relied in part on how comfortable they were with the content to begin with. 
However, the example of Felicia introduces a new dimension to our understanding of how teachers 
learn. Although Felicia’s mathematical self-efficacy was very high and she was comfortable with 
particular approaches to the content, her largely utility value for the PD course seemed to strongly 
influence how she approached new and unfamiliar content. Her tight focus on her students (which 
reflects the findings of Nipper, et al (2011)) prompted her to filter all the content in the PD Algebra 
course through her perception of what would be useful to her students.  

The frameworks of motivation theory present us with a different perspective through which to 
examine teachers’ participation in professional development. Further study on professional 
development done through this lens may illuminate new considerations for the designers and 
facilitators of content-based PD programs.  
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This study reports teachers’ insights and challenges after one year of adopting a curricular material 
designed to move students through carefully engineered, small steps and encourage learners through 
success and accessible challenges. The analysis of interviews showed that teachers ‘followed’ the 
material in different ways, not necessary in-line with its underlying principles. Two of these 
principles—bonusing and breaking down concepts into smaller elements—were particularly difficult 
for many teachers, suggesting the need of a specific teachers’ mathematical knowledge. 

Keywords: Mathematical Knowledge for Teaching; Elementary School Education; Teacher 
Education-Inservice (Professional Development); Teacher Knowledge 

Introduction 
While there is extensive research on both mathematics teachers’ knowledge and the quality of 

curricular materials, the number of studies combining these two factors is limited. In an effort to 
address this gap, Charalambous and Hill (2012) reported a multiple case study suggesting that 
curricular materials can increase quality of instruction if they are supported and followed properly. 
Understanding the relationships between mathematics teachers’ knowledge, curricular materials, and 
student performance would inform policy decisions regarding adoption and implementation of new 
resources, as well as the design of corresponding professional learning opportunities for teachers. 

This paper analyzes one case of an elementary school adopting new curricular material and 
engaging teachers in corresponding professional learning over the course of one year. The study was 
conducted as part of a broad, longitudinal project, the Math Minds Initiative, involving a school 
district in western Canada, researchers from the University of Calgary, and the JUMP Math (2015) 
organization. The initiative focused on a particular school with a history of low performance in 
mathematics. The purpose of the initiative was to improve mathematics teaching and learning at the 
elementary level and to understand the relationship between curricular resources, teachers’ 
knowledge and students’ performance. We are interested in what teachers need to know in order to 
teach mathematics well, and how this knowledge can be supported through access to particular 
resources and related teacher professional development. As design-based research, this study draws 
on multiple sources of data informing next steps in the initiative. However, the focus of this paper is 
on teachers’ experience of adopting the JUMP Math program. Specifically, we address the question: 
what were the insights and challenges perceived by teachers during the first year that all teachers at 
the school adopted the JUMP material? 

Understanding teachers’ insights sheds light on teachers’ learning through the year, as well as 
knowledge required to adopt the JUMP Math materials. Teachers’ challenges during this project 
provide information about the knowledge required not only for the adoption of the material, but also 
for quality mathematics instruction in general. 
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Curricular Material and Mathematics Knowing for Teachers 
Teachers’ disciplinary knowledge of mathematics has been a focus of research since the 1970s. 

With an initial emphasis on formal mathematics content, over the last few decades, the main interest 
has shifted to more varied aspects of mathematics knowing such as access to a diversity of meanings 
for concepts, beliefs on the nature of the subject matter, and how knowledge is enacted in the 
classroom (Davis & Renert, 2014; Thompson, 2015). While there are efforts to measure this knowing 
through tests, such as the instrument proposed by Thompson, we concur with Davis and Renert’s 
argument that such knowing includes an open disposition and cannot therefore be readily measured 
with tests and other instruments. Two features of this disposition are relevant for this report. First, 
teachers have to be responsive to students’ mathematical conceptions and misconceptions. They 
should be continuously aware of students’ potential interpretations of a concept. Second, school 
mathematics is not limited to standard definitions, notations and algorithms such as those reflected in 
a program of studies. Teachers should be open to enact mathematics as a creative, emergent activity, 
which involves mathematical explorations and inquiry beyond textbooks that may result in insights 
not only for students, but also for teachers. 

Teachers draw from a variety of resources including textbooks, teachers’ guides, online material, 
electronic devices, and the community (Clark-Wilson et al. 2014; Gueudet, Pepin, & Trouche, 2013; 
Gueudet & Trouche, 2009). Following Gueudet, Pepin and Trouche, we conceive the adoption of 
curricular material as a creative act: “teachers’ work with resources includes selecting, modifying, 
and creating new resources, in-class and out-of-class” (p. 1003). Gueudet and Trouche proposed the 
term documental genesis for the evolving process of the manner in which teachers use a resource. A 
document, for a particular teacher in given moment, consists of a resource and a scheme of 
utilization. As the scheme of utilization changes over time, a document is dynamic, whereas the 
resource may remain unchanged. The process of document genesis is twofold: “The 
instrumentalization dimension conceptualizes the appropriation and reshaping processes … .The 
instrumentation dimension conceptualizes the influence onthe teacher’s activity of the resources she 
draws on [emphasis added]” (Guedet & Trouche 2009, p. 205). Most recently, Gueudet et al. (2013) 
considered a collective dimension of document genesis including joint work on selecting and 
adapting educational resources. We extend the idea of document genesis to a more ecological 
perspective in which the community includes not only other teachers, but also the research team and 
professional learning facilitators. The teacher participants are coupled with the researchers and 
facilitators in a process of mutual influence (Preciado Babb, Metz, Marcotte, 2015). In this sense, our 
perception as researchers of curricular material is also influenced by our interactions with teachers 
and informed by the data collectively gathered and analyzed for research purposes. 

The Math Minds Initiative 
The Math Minds Initiative is a five-year project started in 2012. While the school district 

provided a research school as a main focus for the study, the team from the University of Calgary 
provided professional support to teachers from this school as well as from other schools in the 
district. The JUMP Math organization contributed the mathematics program as well as further 
support for professional learning. During the first year of the initiative, two teachers started mid-year 
to use the program with no further support. In 2013 all the teachers were required to adopt JUMP 
Math as official curricular material and to attend the corresponding professional development 
sessions through the year.  

The curricular material provided by JUMP Math consisted of teachers’ guides, an assessment and 
practice book for each student, and access to pre-designed SmartBoard slides. Additionally, students 
were provided with individual mini-whiteboards—a suggestion from the research team to assist with 
the continuous assessment recommended by the resource package. 
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JUMP Math Principles 
The Canadian version of JUMP Math is based on both the Western-Northern Canadian Protocol 

for Collaboration in Education (WNCP, 2006), which provides guidelines for the curriculum in 
several provinces in Canada, and the Ontario program of studies. The teachers’ guide (Mighton, 
Sabourin, & Klebanov,2010) provides lesson plans with references to each particular outcome in the 
corresponding program of studies—WNCP or Ontario. The lesson plans correspond to the 
assessment and practice book and include individual and group activities and explanations. The guide 
shows teachers how to introduce one concept at a time, explore concepts and make connections in a 
variety of ways, assess students quickly, extend learning with extra bonus questions and activities, 
and develop problem-solving skills. It also provides support material for each strand. 

The JUMP Math program is based on a number of principles, including confidence building, 
guided practice, guided discovery, continuous assessment, rigorously scaffolded instruction, mental 
math, and deep conceptual understanding. While the assessment and practice book consists of 
sequences of exercises, the teachers’ guide has numerous suggestions for engaging students in 
discovery and problem solving. The guide also encourages students’ independent thought and work: 
“When you feel your students have sufficient confidence and the necessary basic skills, let them 
explore more challenging or open problems” (Mighton et al. 2010, p. A-5). The JUMP material 
shows teachers how to break the material into steps and assess component skills and concepts. It 
teaches “fundamental rules, algorithms, and procedures of mathematics for mastery, but students are 
enabled to discover those procedures themselves (as well as being encouraged to develop their own 
approaches) and are guided to understand the concepts underlying the procedures fully” (p. A-6). 

Despite the seemingly direct approach to instruction, every lesson in the teachers’ guide refers to 
at least one problem solving strategy, including: looking for patterns; changing into a known 
problem; reflecting on other ways to solve a problem; doing a simpler problem first; making and 
investigating conjectures; using mental math and estimation; representing; guessing, checking and 
revising; selecting tools and strategies; using logical reasoning; justifying the solution; and revisiting 
conjectures that were true in one context. An important component of the program is bonusing, 
which involves extensions of concepts and skills in each lesson. The teachers’ guide advises teachers 
to “be ready to write bonus questions on the board from time to time during the lesson for students 
who finish their quizzes or tasks earlier” (Mighton et al. 2010, p. A-8). Lessons in the teachers’ guide 
include examples of such questions, and teachers are encouraged to create their own. Strategies to 
create bonus question include: change to larger numbers or introduce new terms or elements; ask 
students to correct mistakes; ask students to complete missing terms in a sequence; vary the task or 
the problem slightly; look for applications of the concept; look for patterns and ask students to 
describe them. 

Method 
The Math Minds Initiative is design-based research (Cobb, Confrey, diSessa, Lehrer, & 

Schauble, 2003) that includes the implementation of the curricular material, as well as professional 
development aimed at improving mathematics literacy in a school with a long history of low 
achievement—as well as other schools in the district. The initiative also aims at further research and 
theory on mathematics teacher knowledge. The research project includes multiple sources of data 
such as video-recorded lessons, class observations, longitudinal results of the Canadian Test of Basic 
Skills (CTBS, Nelson 2014), and interviews with teachers and students. In this paper we present the 
analysis of six semi-structured interviews with teachers who taught during the school year 2013-2014 
at the research school. Examples of the interview questions are: What specific advice would you give 
to new teachers joining Math Minds? Have you found [JUMP Math] materials to be helpful?  
Restrictive or difficult? To what extent did you follow the teachers’ guide?  SmartBoard lessons?  
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Workbook?  In what ways did you improvise / extend / elaborate? Have you found [JUMP Math] 
principles helpful?  Restrictive or difficult? What are your goals or priorities for improving your 
teaching of math? 

Transcripts of the interviews were coded using NVivo with a particular focus on the manner 
teachers used the resources to capture the documentation process. The initial codes were compared 
each other, forming broader categories. Four major categories resulted from the analysis, which 
included the codes with higher prevalence. These categories are consistent with class observations 
conducted by different members of the research team. 

Results 
 We present the results in four sections, corresponding to each major category. While the first 

category refers to how teachers used the material in general, the other three are more specific to 
JUMP Math principles. Excerpts from the interviews are included as evidence to support our 
findings. 

Document Genesis 
Teachers claimed that they followed the teachers’ guide and used JUMP Math materials 

consistently at the beginning. Some tried to fully complete all the pages in the assessment and 
practice books that applied to the official program of studies and to use all of the associated lessons 
in the teachers’ guide and, often, all of the associated SmartBoard slides. This is evident in the 
following excerpt: 

Teacher: Whereas I think when you first begin, you feel like, okay, I’ve got to go through each 
one, and it just wasn’t working. So again, it’s just the experience and sort of knowing, 
okay—and obviously previewing the slides and saying, okay, we don’t—we can skip this 
one, or this—unless they’re really struggling or—and just being able to know where can I 
stop and how much do I really need to go through all of this. 

While it was clear for teachers that some slides or parts of a lesson would have to be selected, the 
motivation for such decisions varied. The previous excerpt suggests that the teacher made the 
decisions based on assessment of students’ struggles. However, other motivations included both time 
pressures and a-priori judgments that some steps were not needed, as is evident in the following 
excerpt: 

Teacher: Towards the end, when I was trying to catch up a bit, I was taking the teacher guide and 
I was looking at the outcomes and what our curriculum outcomes were, and if it was like …  
number sense … in four lessons, then I would look at those four lessons, see what the big 
picture was, because then I could condense them maybe to two lessons instead of four. 

A third type of motivation identified in the interviews was familiarity with another, previously used 
resource. One teacher commented that it was easier to use a resource she was already familiar with, 
as long as it was similar to what was suggested in the JUMP Math materials: 

Teacher: Well I have one that’s very similar that will still teach the same outcome, but it’s a 
different game in a little bit of a different way…. Taking what I’ve had from my past as a 
teacher, because it worked, it was good. Is it the activity in the JUMP lesson? No, but it 
worked. And so it would save me some time that way, because it does take a lot of time to 
prep for these, so I would have something like that, maybe use that game instead. 

Finally, another manner in which teachers used the material was to select pages from the practice 
book for bonusing:  
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Teacher: I try to follow [the teachers’ guide] exclusively. The SmartBoard lessons, like I say, 
some of them—if they’re very hands-on, I will use a lot of them.  … I just make sure that 
I’ve looked through [the material] and then I just pull up those two or three that I need. And 
the workbook, I look at it: is this going to be for everybody or is it going to be a bonus page? 

This last excerpt shows a decision based on two JUMP Math principles: continuous assessment and 
bonusing. 

Continuous Assessment 
All teachers mentioned continuous assessment in the interviews. They also consistently referred 

to the use of the small whiteboards to assess students in-the-moment. Overall, the material seemed to 
impact teachers’ knowledge regarding this fine-grained presentation of concepts and procedures, as 
well as the corresponding assessment practice. Continuous assessment not only served to break the 
content into small pieces, so everybody understands the concept, skill or instruction in class, but also 
to inform decisions about whether to skip parts that might already be mastered. These decisions, 
however, seemed to be more difficult to make, as suggested in the following teacher’s comment: 

Teacher :I feel like I need to speed up. I don’t know. I need to become better at just moving on 
and not getting hung up on things and being able to recognize when we can move on and at 
the same time—and so it’s not—at the same time, not compromising that in-depth study of 
things. Like knowing where, hey, they got it, we can go. We don’t need to keep doing this. 

Breaking down into smaller steps and constantly assessing students was particularly relevant to a 
teacher who had been a successful mathematics student: 

Teacher: I was very successful in math as a student, and I just get it, and I find it difficult to do 
those microsteps back as to how to make it simpler for the kids and simplify it. And when I 
taught it that way, I’m like, oh my God, I don’t know how to teach it a different way, because 
I just get it. And so I don’t see a different way to get there, and I think that’s my biggest 
challenge because I’ve never struggled with math. As a student, I was very, very successful, 
but that makes teaching math harder, because I don’t know how to attack a problem from a 
child’s perspective. 

This excerpt is consistent with Davis and Renert’s (2014) notion of the teacher being an expert who 
is able to appreciate the struggles of a novice. 

Bonusing 
All teachers made reference to bonusing. However, all but one claimed that finding and creating 

bonus questions and tasks was challenging. Although the teachers’ guide shows how to create bonus 
questions and the assessment and practice book has bonus questions, one teacher perceived the need 
to find bonus questions beyond the material: 

Teacher: You need to find bonus questions often from a variety of other sources beyond the 
JUMP resource in order to find the proper challenge for each individual child. 

This comment also highlights a perceived need to personalize bonus questions. The following 
statement reflects a similar assumption: 

Teacher: Coming up with really good ones has taken a lot of time, a lot of effort. But I feel now 
I’ve got a better idea of kind of what works for the kids as well and also just realizing not 
every kid’s going to have the same bonus question, right? Like you’re going to change the 
bonus question based on the kid and kind of the extra challenges that they need. 
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In contrast, the teacher who found it easy to create bonus questions claimed:  

Teacher: Everybody is so engaged in the workbooks and so it gives me an opportunity to 
continually assess their learning and because there—there is generally enough in the 
workbook that everybody has enough to do, and it’s easy. Having said that, it’s very easy to 
create challenges from—because of the way that the questions are structured, because of the 
way the work is structured. It’s very, very easy to just create challenges on the spot for those 
who need it. And in a lot of cases, the students will create challenges on their own—their 
own challenges. 

For this teacher, bonus questions and tasks were easy to create on the spot by following the 
structure of questions in the material. The excerpt also suggests a culture of self-bonusing in her 
classroom.  

Inquiry and Problem Solving 

Teachers consistently indicated a lack of opportunity for problem solving or inquiry in the JUMP 
Math approach. However, most of them indicated that going through the mini-steps was necessary, 
and that the program did this very well. An example of a teacher’s perception on inquiry in the 
material follows: 

Teacher: And when I—and as far as inquiry goes, that is our direction in education in the next 
ten years, and as soon as I heard that, I thought, well, JUMP doesn’t lend itself to inquiry. 
But in thinking about it, it certainly can, it just has to—it’s maybe how we’re going to start 
praising things but once again, I still think we—we need the foundation before we can even 
[missing word?] an inquiry. 
And so my struggle this year is sometimes should it—should I just do like an inquiry lesson 
or should I stick with my microsteps, but I want to do the microsteps because I’m learning so 
much about what I missed teaching them. So to me, right now, that’s more important and 
maybe we throw in an inquiry day on Fridays or something. Throw in everything and just 
give them an open-ended question and maybe change that next year. It’s just this year I’m 
just sticking to my recipe. 

In the previous excerpt, the teacher gave second thought to the possibility of including inquiry in the 
JUMP Math approach. However, the last comment regarding sticking to the recipe suggests that she 
did not see inquiry addressed in the material.  

There was a particular comment regarding students not being used to more complex, or multistep 
problems: 

Teacher: So all of a sudden, when [students] had to do this sort of a—in a way, it was a multistep 
problem, whereas the vast majority of this program is very one step questions and these 
microsteps. So as soon as you throw a multistep problem at them, I was very surprised at how 
many kids were just like, whoa, what am I going—how do I solve this? And there was just 
no—not even an attempt to work through the problem. 

Overall, teachers’ perceptions of inquiry and problem solving seem to be contrary to the problem 
solving strategies included in the teachers’ guide. 

Discussion 
The analysis of teachers’ interviews presented in this paper yields several conclusions regarding 

the interactions of the classroom resources and mathematics knowledge for teaching. First, the 
analysis of document geneses showed that teachers’ interpretation of what it means to follow JUMP 
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Math were very different. The initial approach of having all students cover all the material contrasts 
with the approach based on assessing students and selecting pages from the assessment and practice 
book for bonus. The latter approach seems to be more aligned with the philosophy of the program.  

Second, all the teachers made reference to the incremental steps and to continuous assessment. In 
particular, the use of the mini-whiteboards supported continuous assessment during class. It is 
particularly interesting that the teachers who claimed having no problem with mathematics when she 
was a student found it difficult to break concepts into smaller steps. The use of the resources enabled 
this realization; however, the resource did not seem to enable her to deconstruct concepts 
appropriately. This suggests that even if teachers know that the resources were designed around 
microsteps, they may experience difficulty in breaking concepts and skills into smaller elements 
themselves. This research finding is consistent with a most recent analysis of teachers’ perception of 
scaffolding in the year proceeding the interviews reported in this paper. Sabbaghan, Metz, Preciado 
Babb, and Davis (in press) found that teachers with less experience in the initiative tended to use 
traditional strategies for scaffolding—such as modeling and coaching—in contrast to teachers with 
more than one year in the initiative who considered micro-level scaffolding strategies. 

Third, even though the teachers’ guide provides advice on bonusing, most teachers found this 
very challenging. The idea of bonusing has been evolving during the Math Minds initiative. The 
research team has compiled examples from teachers implementing the program. The team has also 
identified connections to the literature on intrinsic motivation, shaping the collective understanding 
of the bonus principle of the JUMP Math program. Moreover, in contrast to the teachers’ guide’s 
emphasis on creating bonus for early finishers, Mighton (2007) also advised to consider bonus 
questions for everyone: “I always make up special bonus questions for the most challenged students, 
too, so they can feel that they are doing harder work as well” (p. 106). We have come to perceive 
bonusing as a strategy for both fostering a positive attitude towards mathematics and deepening 
mathematical understanding. 

The longitudinal results for student performance on the CTBS tests—omitted in this paper due to 
limited space—showed a significant improvement after one year of adopting the JUMP Math 
program (Metz, Sabbaghan, Preciado Babb, & Davis, in press). This was particularly reflected in 
students who initially had low performance. However, scores leveled or decreased for some students 
with initially high performances. Our principal hypothesis for this situation is that it might be 
attributed to teachers’ lack of confidence in creating bonus questions for students. This hypothesis is 
supported by the fact that the students of the one teacher who reported confidence with bonusing 
showed significant improvement across the board (Preciado Babb, McInnis, Metz, Sabbaghan, Davis, 
in press).  

Finally, the general agreement that a resource like JUMP Math does not include inquiry contrasts 
with the problem solving strategies included in each lesson in the teachers’ guide. This is probably 
due to a strong focus on the assessment and practice book instead of the suggested activities in the 
guide and the SmartBoard slides. The research team considers that both bonusing and the selected 
sequence of tasks (Metz, et al., in press) in the assessment and practice book afford opportunities for 
mathematical inquiry. There is, therefore, a need to better understand the mathematical knowledge 
required for bonusing and for breaking down concepts into smaller elements. 
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We explore early childhood teachers’ lived experiences learning and teaching mathematics with 
young children, adding finer-grained context and detail to broader research descriptions.  We 
interviewed ten early childhood teachers in a university laboratory school about their mathematics 
training, classroom mathematics curriculum, who controls their mathematics curriculum, and their 
mathematics teaching and learning philosophies for young children.  Analysis included coding for 
Bourdieu’s (Grenfell, 1996) social field theory.  Results highlight social factors that influence what 
early childhood teachers do and teach, such as standards, regulations, administration, research, 
university organization, parents, and children.  Teachers worked with autonomy and competence; 
mathematics teacher educators should leverage early childhood teachers’ interest in young children. 

Keywords: Early Childhood Education; Teacher Knowledge; Teacher Beliefs; Pre-School Education 

Purposes 
Early childhood education, for children ages birth to age eight (NAEYC, 2013), is changing due 

to advances in neuroscience (Shonkoff & Phillips, 2000) and greater public awareness of the effects 
and benefits of early childhood education (Grunewald & Rolnick, 2006).  In the past, early childhood 
teachers taught little mathematics to children, so they received limited or no professional 
development related to mathematics instruction (National Research Council [NRC], 2009).  This left 
teachers with limited knowledge and experience with mathematics, mathematics pedagogy, and the 
mathematical processes and thinking strategies of young children (Early, Maxwell, Burchinal, 
Bender, Ebanks, Henry, et al., 2007; Sarama & Dibiase, 2004).  Therefore, limited research exists 
concerning early childhood teachers’ mathematics knowledge as derived from their experiences and 
the mathematics they plan for and identify in the activities and centers they create for children.  
While large-scale studies of early childhood teacher characteristics focus on teacher demographics, 
training, working conditions, and years and experiences in the field, finer-grained studies are 
required to give context to teachers’ lives and work in order to inform teacher educators, policy-
makers, and other stakeholders who develop training and policies for the evolving early childhood 
field (Early et al., 2007; NRC, 2009).  In particular, researchers should examine sources that early 
childhood teachers draw on to make decisions and judgments about their mathematics instruction 
(Brown, 2005). 

In this study, we examine finer-grained interview data that adds detail and context to these 
broader descriptions of early childhood teachers’ training and that captures social and cultural 
influences on what teachers do and think in their teaching.  In addition, we highlight aspects of early 
childhood teachers’ attitudes, knowledge, and practice that are affected by their varied professional 
development opportunities and activities (Pianta, Barnett, Burchinal, & Thornburg, 2009).  Our study 
attempts to give voice to often unheard or hidden early childhood teachers and addresses gaps 
regarding the mathematics that they plan for and identify in activities by recording their lived 
experiences and concerns regarding the learning and teaching of mathematics (Early et al., 2007; 
Brooks, 2007).   We hope to provide a counter-narrative to one that portrays early childhood teachers 
as lacking in mathematics knowledge and understanding, both in their own thinking about 
mathematics and in their understanding of the mathematical thinking of the children in their 
classrooms. 
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Theoretical Perspectives and Background Literature 

Bourdieu’s Social Field Theory 
Because the knowledge-beliefs – we consider beliefs a form of knowledge – with which early 

childhood teachers operate emerge from social and cultural influences (Pajares, 1992), it is 
appropriate to look at the work and characteristics of early childhood teachers through a sociocultural 
lens (Edwards, 2003).  Bourdieu developed a sociological perspective that can be used to objectively 
study early childhood teachers’ relations, actions and the evolution of their dispositions for teaching 
mathematics (Grenfell, 1996; Grenfell, 2012; Noyes, 2004).We use his constructs of habitus, 
field,capital, mechanisms of change, and structures.  Next, we describe Bourdieu’s constructs using 
examples from early childhood education. 

The field of early childhood education. A field is a social context involving a network of 
structures, relations, laws for functioning and specific institutions (Grenfell, 1996; Grenfell & James, 
2004; Noyes, 2004).  Fields exist on a continuum between heteronomy and autonomy based on the 
degree to which they can generate their own dilemmas rather than unknowingly reproduce repressive 
power structures or be affected by external forces.  The working environment (or field) of early 
childhood teachers includes different groups of collaborators.  Social structures are created between 
teachers, between teacher and parents, and between teachers and the children in their classrooms.  
Teachers structure the field, i.e., the classroom environment and activities, for the children, 
considering what they know about the children and the implicit feedback the children give (Cadwell, 
1997). 

Several authorities influence the early childhood field.  The National Association for the 
Education of Young Children (NAEYC),professional organization for the field, provides guidance 
through publications, position statements, conferences, and accreditation.  Those who teach young 
children refer to “developmentally appropriate practice,” (Bredekamp & Copple, 1997), a framework 
developed by NAEYC to guide those in the early childhood field, both nationally and world-wide, 
for the best research-based practices regarding young children’s learning and development.  Also, 
state early childhood standards play a central role in the lessons that teachers plan (FSSA, 2006).  
These authorities act as mechanisms of change (Grenfell & James, 2004) by changing, for example, 
what early childhood teachers are required to teach. 

Ways of shaping early childhood teachers’ knowledge (habitus). Habitus is a set of 
dispositions or tendencies that are created in and by individuals’ social interactions, and shape and 
orient how they see the social world (Grenfell, 1996; Grenfell, 2012; Noyes, 2004).  Early childhood 
teachers’ habitus is influenced by professional development opportunities and their teaching 
experiences.  Training opportunities for both in-service and pre-service early childhood teachers 
range from no mathematics courses, courses not specifically related to the mathematics of young 
children (i.e., college algebra), content courses related specifically to the mathematics of young 
children, methods courses focused on the mathematics of and pedagogy of teaching young children, 
and general early childhood curriculum courses that include some content and pedagogy for teaching 
mathematics (NRC, 2009).  Professional development previously focused on developmentally 
appropriate curriculum and the importance of play (Bredekamp & Copple, 1997; NRC, 2009), but 
now includes research on children’s thinking and learning and using technology to provide training 
and support to full-time teachers who are part of a large, diverse workforce (NRC, 2009; Sarama & 
DiBiase, 2004).  Research-based interventions have also shaped early childhood teachers’ knowledge 
for teaching (Herron, 2010; Jung & Reifel, 2011).In addition, early childhood teachers’ practices are 
influenced by the experiences they have as teachers, such as working with children and families from 
different socioeconomic backgrounds and under various state requirements (Lee & Ginsburg, 2007). 
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Knowledge-beliefs (capital). Capital refers to different types of assets that individuals possess, 
such as economic, status, position, or knowledge (Grenfell & James, 2004; Grenfell, 2012; Noyes, 
2004).  Examining teachers’ beliefs is often used to learn about what teachers do and think in their 
teaching (Pajares, 1992).  Pajares described beliefs as created through a process of enculturation and 
social construction, thoroughly intertwined with knowledge.  For example, teachers’ beliefs changed 
after implementing constructivist instructional strategies, evidence that beliefs are grounded in social 
experiences (von Glasersfeld, 1993, as cited in Philipp, 2007, p. 276).  Although we can participate 
in shared physical and social experiences, our individual understandings of these shared experiences 
are unique to each of us, not consensual (Philipp, 2007).  Because teachers operate as if their beliefs 
regarding mathematics, teaching, and learning are true for themselves, they operate as if knowledge 
and beliefs are a single construct (Beswick, 2010).  Therefore, as knowledge is constructed from 
experiences, so too are beliefs.   

The literature on early childhood teachers’ knowledge-beliefs about mathematics includes 
general survey information as well as small qualitative studies.  Early childhood teachers tend to 
support more social-emotional development rather than the development of children’s mathematical 
thinking (NRC, 2009).  Knowledge-beliefs focus on when children are ready to begin mathematics 
instruction, as early as age 2 (Sarama & DiBiase, 2004).  Counting, adding, subtracting, and shapes 
constitute the most necessary mathematics topics.  Teachers ordered mathematics activities with 
counting first, followed by sorting, numeral recognition, patterning, number concepts, spatial 
relations, making shapes, and measuring. They use manipulatives, number songs, and games to 
accomplish their objectives, but not workbooks or software.  Teachers preferred that children explore 
mathematics activities and engage in open-ended free play rather than large-group lessons.  
Misconceptions that early childhood teachers hold about young children’s mathematics teaching and 
learning focus on which young children are ready for mathematics education and the content of 
curriculum, classroom environment, and mathematics assessments; and they might be overcome with 
sustained research-based professional development(Lee & Ginsburg, 2009). 

Mechanisms of change. Change mechanisms challenge the status quo and indicate the amount 
of autonomy a field possesses.  Mechanisms can be internal or external. In order to understand what 
teachers do, we need to understand both the evolving fields in which they are situated and the nature 
of their evolving habitus.  Disjunction is a mechanism of change that teachers experience between the 
structuring of their habitus and current field, causing change in their practice (Noyes, 2004). 

Structures.  Structures explain how field, habitus, and capital interact, and are both the product 
and source of tensions, described as “structuring and structured” (Grenfell, 2006, p. 293).  Because 
habitus cannot be seen, the relational structures that underlie practice and knowledge-beliefs must be 
explored (Grenfell, 2012). 
Women, Their Work, and Mathematics 

This study joins other studies that document women as participants in mathematical activity in 
their work within a traditional female context, such as sewing or caring for young children (i.e., 
Hancock, 2001).  A goal of this study is to allow the teachers to make sense of their own thinking, 
and to correct the invisibility and distortion of their experiences by giving voice to their multiple 
perspectives and ways of knowing, creating more knowledge and a broader picture, as each woman’s 
experience tells something different and valuable (Brooks, 2007).  Lather (1988) cautioned that by 
attempting to explain others’ lived experiences, the others’ reality would be violated.  In other words, 
we will only attempt to explain the teachers’ lived experience, knowing that this is just our own 
understanding of the teachers, not a replica of their experience. 
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Research Questions 
Using a portion of data from a larger research study, we investigate the following research 

questions:  What experiences do early childhood teachers have learning and teaching mathematics? 
What do these experiences mean for their teaching mathematics with young children?  What can their 
stories of lived experiences as learners and teachers of mathematics tell early childhood teacher 
educators, policy makers, and other stakeholders? 

Methods 

Participants 
A purposive, convenience sample was recruited from an early childhood development laboratory 

school at a Midwestern state university.  Ten early childhood teachers volunteered.  Table 1 includes 
their education, years at the center, and teaching assignments. 

Table 1:  Participant and Classroom Descriptions 

Classroom 
Team Teacher Position Degree Years at 

Center 

Classrooms 
# of 

Children 
Ages 

(years) 

Ducks 
D1 Head BS ECE 17 

20 3 – 5 D2 Associate BS Child Dev 11 
D3 Assistant AS EC Dev 6 

Eagles E1 Head MS C&I/BS ECE  16 20 3 – 5 

Squirrels 
S1 Head BS Child Dev 22 

14 2 S2 Student 
Teacher 

BS ECE Just 
Hired 

Tigers T1 Head BS Child Dev 5 14 2-1/2 

Koala 
Bears 

K1 Head MS Child Dev 19 
14 2-1/2 – 

4-1/2 K2 Associate BS Ed Studies 1 
K3 Assistant CDA Credential 6 

Data Collection Process 
Here, we report on one of three data collection activities of the larger study, initial semi-

structured interviews with classroom participant teams regarding their experiences learning and 
teaching mathematics.  Because teachers collaborate on planning and implementing curriculum, 
initial interview data was gathered from each teaching team (see Table 1).  During one-hour 
interviews, teams were asked to describe their training related to teaching early childhood 
mathematics; classroom mathematics curriculum, activities, and experiences; issues related to who 
has control over mathematics curriculum in their school setting; and philosophy regarding teaching 
and learning mathematics with young children.  Researchers used a semi-structured interview 
protocol that was developed from literature (Frid & Sparrow, 2009; Lee & Ginsburg, 2009) and 
prompted teachers for additional information during interviews as needed.   

Analysis 
Several rounds of analysis were conducted in order to gain a sense of the underlying “web” 

(Grenfell, 1996) of relations and tensions (Clandinin, Murphy, Huber, & Orr, 2009) that teachers 
experience as they learn and teach mathematics.  First, each transcript from the initial interviews was 
divided into chunks expressing a cohesive idea focused on the same idea or activity.  Each chunk was 
coded using Bourdieu’s constructs of habitus, field, structuring structures, capital, and mechanisms 
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of change, with subconstructs generated from the data (Grenfell, 1996; Grenfell, 2012; Grenfell & 
James, 2004); teachers’ experiences learning and teaching (Early, et al., 2007; NRC, 2009); and 
mathematics content (FSSA, 2006).  Anecdotal snapshots of each classroom were developed, and 
short narratives of each teacher were created that included a timeline and dominant themes found in 
their individual transcripts.  From these pieces, we developed narratives of the teachers as learners 
and teachers of mathematics with young children, along with their philosophies. 

Results 
The data describes autonomous early childhood teachers affected by external forces as they teach 

and learn, through interactions with children and adults.   

Bourdieu’s Social Field Theory “Web” 
Habitus and experiences. Teachers described experiences in their classrooms that have affected 

their teaching habitus (Grenfell, 2012). For example, E1 and D2 explained that they did not like 
geometry as students and had trouble learning it (structured structure), but as early childhood 
teachers, they have learned about geometry with and from the children and found engaging geometry 
activities (structuring structure).  T1 explained that most of the children in her classroom of 2-1/2-
year-olds speak English as a second language (structured structure), so she has adjusted her learning 
activities to use multiple media to share new words with the children (structuring structure).  T1 also 
noted that most of the teachers at the center obtained their degrees from the university (structuring 
structure), which she says explains why many teachers sing the same songs and do many of the same 
activities (structured structure). 

Social fields and power. Teachers alluded to social fields that exert power on their practice and in 
their classrooms (Grenfell, 2012).  S1 and E1 noted that the center is part of a university, and therefore, 
they teach pre-service teachers in practicums and student teaching, in addition to the children in their 
classrooms.  They also noted that the state department of education has made changes in center and 
teacher licensing regulations that have affected the early childhood education field in which they work; 
all of the teams reported that standards exert control over their practice, both in what they plan and how 
they record and communicate their plans.  Most teachers referred to components of NAEYC that 
influence their practice, including accreditation, developmentally appropriate practices, and state and 
national conferences.  K1 and T1 mentioned that parents expect their children will have fun and receive 
academic instruction, while D1 indicated that parents share their concerns about their children with her.  
Most of the teachers noted that children exert control in their classrooms in various ways, as their 
interests and development/age drive curriculum, and through interactions and language.   

Capital and knowledge-beliefs.  All of the teachers talked about learning about mathematics with 
young children from their methods courses, conferences, other professional development, and other 
teachers.  They all also discussed their ideas about what constitutes mathematical activity.  For example, 
teachers in the Duck room incorporate patterning into their line up routine.  Veteran teachers 
appreciated the new knowledge that D3 and S2 brought to their classrooms from their recent 
coursework, as well as knowledge gained from early childhood research.  Half the teachers (K1, S1, S2, 
D2, D3) described instances of gaining knowledge from working with the children.  The teachers all use 
their knowledge of the curriculum and typically developing children to integrate mathematics into the 
daily schedule. 

Mechanisms of change. E1 described a major event in the history of the school that challenged the 
status quo immensely and has caused a great deal of disjunction for her.  Previously, two early 
childhood settings co-existed on the university campus, one providing child care and the other operating 
as a laboratory school that provided instructional settings for undergraduate students and research 
opportunities.  Recently, the school and center merged, and the department under which they operated 
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has been subsumed into another department, resulting in less observation time with young children and 
fewer connections to research, both as participants and implementers.  S1 also mentioned fewer 
undergraduate students working in the center and conjectured that the economics of working in the early 
childhood field affected the number of students in the program.  Degree programs that an assistant (D3) 
and a student teacher (S2) are completing have affected activities in the Ducks and Squirrel classrooms, 
such as by adding mathematics to everyday contexts (mathematizing).  Several teachers mentioned that 
they experienced change in their practice after having the opportunity to put theories learned in 
coursework or training into practice with children. 

Interactions between habitus, field, and capital – Structuring & Structured Structures. The 
data also includes examples of the field of the teachers using their capital in their interactions with 
the children.  The teachers described mathematics activities and materials they created for the 
children and classroom environment.  These practices are the result of teachers’ experiences and 
knowledge of young children, interacting with external forces including center rules, standards, 
NAEYC accreditation, state regulations, and the university.  The teachers acknowledge children’s 
reactions to the activities and materials as they provide the next activity or materials, or introduce the 
activity to children in a future classroom.  This example of a structured and structuring structure can 
be explained by Maton’s (as cited in Grenfell, 2012, p. 51) equation:  [(habitus)(capital)] + field = 
practice.  The teacher has power imposed on her by the outside fields, while she exercises power and 
capital in her classroom, all the while adjusting her practice according to feedback she receives from 
the children. 

The teachers’ experiences as learners of mathematics were often frustrating, leaving the teachers 
feeling that they were “not good at math,” “math was hard,” and “math was not my favorite subject.”  
However, their experiences teaching math with young children have been rewarding, leaving the 
teachers feeling that “this math is fun,” and they want the children to continue having “fun” 
experiences with math so they grow up to enjoy it, develop positive dispositions toward mathematics 
(unlike some of the teachers), and succeed as students and mathematicians.  It is interesting to note 
that eight of the ten teachers in this study were seasoned veteran teachers, with five to 22 years of 
experience.  However, the two novice teachers in our study reported more positive experiences 
learning mathematics than the veteran teachers.  Perhaps their stories point to improvements in K-12 
mathematics since the veteran teachers were in those learning environments. 

Women, Work, and Mathematics 
Double consciousness (Brooks, 2007) means that women know their own lives, work, and 

knowledge, but they also know the dominant culture’s knowledge as well because they have to 
navigate between both.  For the early childhood teachers, this means that they know their own 
experiences and thinking about mathematics.  They also have a sense of the “finished product,” the 
mathematics created by the dominant male culture the children in their care will eventually be 
expected to know.  They work back and forth between the two different experiences of mathematics, 
the math that they find “fun” and “enjoyable” with and for young children, and the mathematics they 
know the children will eventually be expected to learn.  Teachers also work between their training 
and experiences in child development and requirements of the standards, many stating that the 
standards “validate” the choices they previously made based on their knowledge of children and 
development. 

Conclusions 
Although the veteran teachers in our study described many negative and less-than-productive 

experiences as K-12 and college mathematics learners, all of the teachers in our study currently draw on 
their experiences with young children and more recent research-based professional development and 
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state standards in their practice as early childhood mathematics teachers. In descriptions of their work, 
teachers expressed autonomy, confidence, and competence.  Their initial habitus upon entering the field 
of early childhood education has evolved during interactions with the children in their classrooms, their 
families, professional development activities, and state standards.  Despite acquiring a negative habitus 
while learning mathematics, they all now enthusiastically teach mathematics with young children, 
planning activities based on their understanding of early childhood mathematics and the children’s 
development and interests. 

This study illuminates several social factors that influence what early childhood teachers do and 
teach, such as standards, center regulations and administration, research, university organization, 
parents, and children.  Some factors affected all teachers at a center in a similar way, such as the use 
of standards, while other factors only affected individual teachers, such as each teacher’s training. 
Implications are that early childhood teachers may benefit from examining their early experiences 
learning mathematics and the role those experiences have on their teaching.  Teacher educators might 
ask preservice teachers to examine these early experiences and then provide tasks that support them 
to reflect on and integrate new information with their knowledge-beliefs developed earlier (Brown, 
2005).  They might also highlight the fixed nature of structures such as standards and ask preservice 
teachers to consider ways they could adjust their notions of practice.   

The results from our study suggest that both veteran and novice early childhood teachers bring a 
lot of capital to their work, which should be respected by stakeholders, including early childhood 
teacher educators and policy makers.  In addition to appreciating veteran teachers’ capital, teacher 
educators might emphasize to their students that, although novice teachers expect to learn from 
veteran teachers, the capital novice teachers bring to teaching is often appreciated by veteran 
teachers.  Our results also suggest that grounding math methods or content training in experiences 
with young children could engage early childhood teachers when they feel less competent about the 
training subject, such as geometry with young children.  This would connect and value the work that 
these women do with young children with more formal mathematics. 
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This paper examines the possibilities of using standardized assessments to assess elementary and 
secondary novice teachers’ skills with leading problem-based mathematics discussion. The findings 
reveal that our standardized assessments were able to elicit and reveal variations in skills across 
teachers; provide fine-grained detail about the performance of particular teachers for feedback 
purposes; and account for existing classroom norms.  This suggests that such tools could be useful in 
assessing and supporting beginning teachers.   

Keywords: Teacher Education-Preservice; Instructional Activities and Practices; Assessment and 
Evaluation; Classroom Discourse 

Theoretical Framing 
The preparation of beginning teachers has received increased attention in recent years with calls 

to ensure that beginners are prepared to take responsibility for all students’ learning upon entry to the 
teaching force. This call has spurred changes towards preparing beginners to do core tasks of 
teaching. In a number of teacher preparation programs, course content is shifting to focus on high-
leverage teaching practices such as eliciting and interpreting student’s thinking and leading 
discussions (Ball, Sleep, Boerst, & Bass, 2009; Davis & Boerst, 2014; McDonald, Kazemi, & 
Kavanagh, 2013). This shift means that teacher education programs must also develop ways to assess 
the doing of teaching. Many current assessments of teaching, including observation tools (e.g., 
Danielson, 2011) and portfolios (e.g., Darling-Hammond, 2010), offer information about beginning 
teachers’ skills with respect to broad domains of work like planning, instruction, or assessment. But 
we need additional tools to improve estimates of beginners’ skill with particular practices of 
teaching. 

One practice that has received considerable attention in teacher education is the practice of 
leading a discussion in mathematics. Mathematics discussions are important for supporting students 
in developing conceptual understanding (e.g., Michaels, O’Connor, & Resnick, 2008) and learning 
disciplinary norms and practices (e.g., Lampert, 2003; Yackel & Cobb, 1996).For these reasons, a 
number of current efforts are focused on helping novice teachers learn to enact this complex practice 
(Boerst, Sleep, Ball, & Bass, 2011; Lampert et al., 2013). Given this, teacher educators will also need 
ways to assess novices’ skill with leading mathematics discussions, beyond relying on plans for 
leading a discussion, reflections, or analysis of others’ enactment (e.g., through video analysis). 

Many factors beyond sheer skill influence novices’ enactment of specific practices. As teachers 
lead whole class discussions, for example, factors related to students, the content, and the 
environment, matter for the unfolding of the discussion (Cohen, Raudenbush, & Ball, 2003). 
Teachers’ knowledge of the content, the “discussability” of the mathematics task, students’ prior 
experiences participating in discussions, and teachers’ knowledge of and relationships with their 
students all shape how discussions play out. All of this can make it difficult to appraise novices’ 
skills in ways that are comparable and fair. We sought to investigate whether it is feasible to design a 
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standardized assessment that is capable of: (a) eliciting and revealing variations in skills across 
teachers; (b) providing fine-grained detail about the performance of particular teachers for feedback 
purposes; and (c) accounting for existing classroom norms. Below we begin by articulating and 
specifying what we mean by a “mathematics discussion” then turn to the describing the assessment 
development. 

Work of leading a discussion 
We grounded our assessment development in a particular decomposition (Grossman et al., 2009) 

of the practice of leading a mathematics discussion. We define classroom discussion as “a period of 
relatively sustained dialogue among the teacher and multiple members of the class” in which students 
respond to and use one another’s ideas to develop collective understanding (TeachingWorks, 
2015).Our decomposition is informed by research on practices for orchestrating productive 
discussions (Smith & Stein, 2011), the concept of talk moves (Chapin, O’Connor, & Anderson, 
2013), and research on decomposing practices so that novices can learn them (Boerst et al., 2011). 
We differentiate discussion-enabling practices (Boerst, Moss, & Blunk, 2009), such as anticipating 
student thinking and monitoring student work, and discussion- leading practices used to manage a 
discussion, such as eliciting student thinking. We distinguish between three stages of the discussion: 
launch, orchestration, and conclusion. The launch comprises the work a teacher does to frame the 
discussion (Engle, 2006) and is separate from the actual setting up of the task. Within each stage, 
teachers engage in particular discussion-leading practices. For example, orchestration includes 
practices such as eliciting contributions and probing student thinking. Figure 1 shows our 
decomposition of discussion-leading, as well as examples of discussion-enabling practices. Within 
each discussion-leading practice, we further identify techniques (Boerst et al., 2011), including 
particular talk moves.  

Discussion Enabling Discussion Leading 

Anticipating student thinking 

Setting up the problem 

Monitoring student work 

Launching Orchestrating 

- Eliciting                         - Probing 
- Orienting                       - Making Contributions 

 

Concluding 
 

Recording  
Figure 1: Decomposition of Leading a Mathematics Discussion 

Assessing beginning mathematics teachers’ discussion leading practice 
Because beginning teachers are more often assessed on their ability to plan, we set out to design 

an assessment focused squarely on the interactive work of leading a discussion. We also wanted the 
assessment to be classroom-based, since so much of the work of leading a discussion involves 
responding to student thinking in the moment. We wanted our assessment to elicit and capture both a 
range of and variation in performance, as well as provide fine-grained detail about the demonstrated 
skills of individual teachers. Because we intended to use the assessment in real classrooms, it was 
important that it account for variations in classroom norms and grade levels.   

With these goals in mind, we developed parallel elementary and secondary assessments to be 
implemented in novice teachers’ classrooms. Simultaneously, we sought to design the assessments 
with as much standardization as possible to allow for comparing teachers’ performances. Because 
discussion-enabling practices are critical to the work of preparing for a discussion (e.g., Jackson, 
Garrison, Wilson, Gibbons, & Shahan, 2013), we provided supports for teachers to prepare for the 
discussion so that our assessment could focus squarely on their discussion-leading skill. Both the 
elementary and secondary level assessments required teachers to lead problem-based mathematics 
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discussions, in which students work on a mathematical task and then participate in a discussion about 
their work on the task. We selected mathematical tasks that have been extensively piloted in K-12 
classrooms and can be found in existing materials (Ball & Shaughnessy, 2014; Mathematics 
Assessment Resource Service, 2012). Table1 provides an overview of each of the tasks. These tasks 
offer opportunities to compare and connect a range of solutions, strategies, or approaches, which 
represents one discussion structure (Kazemi& Hintz, 2014). The tasks were also selected because 
they focus on high-leverage mathematics content (Ball & Forzani, 2011), can be used across grade 
bands, and because we conjectured that they could be implemented as a “drop-in lesson” without 
necessarily being connected to the current instructional focus of a classroom.  

Table 1: Elementary and Secondary Mathematics Tasks  

Elementary: You will lead a discussion of solutions to the 
problem, “Make number sentences for 10,” a problem with 
multiple solutions. The students will first work 
independently or in pairs on the problem. Then, you will 
lead a discussion of the task.  The goal of the discussion 
will minimally be to elicit several solutions to the problem 
and to have students explain why they are or are not 
solutions and to notice similarities and differences among 
the solutions. The focus for your discussion will vary 
depending on student solutions. A table of possible student 
solutions is included to help you organize your discussion. 

Secondary: You will lead a discussion of solutions to 
the problem “Proofs of the Pythagorean Theorem?”  
The students will first work on the task, then you will 
lead a discussion of the task.  The task asks students to 
evaluate several attempts at proving the Pythagorean 
Theorem. The goals of the discussion include eliciting 
several solutions to the problem, ensuring that the 
merits and limitations of each solution are explained, 
and identifying features of a strong mathematical 
proof. It is not necessary to complete a standard proof 
of the Pythagorean Theorem.  

 
By specifying the mathematics tasks, we sought to control for the variation that would arise if 

teachers led discussions on different topics. This was important for achieving our goal of designing a 
tool that could compare performances. Prior experiences teaching methods courses led us to believe 
that providing a discussable task was a support that could enable the assessment to focus on assessing 
teachers’ discussion-leading skills.  
 
Grades 2-3  
Generate number sentences for 10 
using multiple operations  
determine whether the value of a 
proposed expression is 10 
listen to classmates and provide 
justification for agreeing or  
disagreeing with specific 
explanations 
begin considering the idea of 
infinitely many solutions 
make a claim regarding the number 
of possible solutions with 
justification  

Students will likely generate number sentences for ten that move beyond 
integer pairs that sum to 10 (e.g. 1 + 9).  Their expressions are likely to 
contain multiple terms and are likely to incorporate subtraction, although 
some students may need prompting 
The types of expressions that students might generate include: 
1 + 1 + 1… = 10, 2 + 3 + 5 = 10, 11 – 1 = 10, 83 – 73 = 10 
Students might notice number patterns that allow them to generate many 
expressions quickly, e.g. 12 - 2, 22 - 12, 32 - 22…. 
Students may also incorporate multiplication and division. 
If students use subtraction, multiplication and/or division, they are likely to 
think that there is a very large finite number of solutions to the problem . 
Students may state that the number of solutions to the problem is infinite. 

Figure 2: Support for Differentiation of Learning Goals and Anticipating Student Thinking 

We also built in supports around other discussion-enabling practices. For example, the assessments 
included supports for understanding the mathematics, anticipating student thinking (Smith & Stein, 
2011), and adapting the task for different grades. Figure 2 shows an excerpt of the support materials 
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for differentiating the goals of the task and anticipating student thinking. Both assessments also 
included lesson plans with suggested timing, participation structures, and guidance for setting up the 
task. 

We also developed a scoring tool that could be used to analyze and assess videos of teachers’ 
leading these discussions. This tool was designed to focus on the discussion-leading practices core to 
our decomposition of the work: launching a discussion, eliciting responses, probing students’ 
thinking, orienting students to one another’s contributions, making contributions to the discussion, 
recording/representing content, and concluding the discussion. Our tools also focused on specific 
techniques. These techniques were selected for their importance to skillful beginning teaching. For 
example, ”orienting students to the contributions of peers” had five associated techniques: (1) 
students are prompted as needed to talk to the whole class; (2) the teacher poses questions to students 
about others’ ideas and contributions; (3) students are asked to comment on, add to, or restate other 
students’ ideas; (4) listening is supported by moves that ask all students to respond to one another’s 
work; and (5) students are encouraged to listen, and respond to maintain productive and focused 
interactions. We included this level of detail in the scoring tool to reflect our decomposition of 
practice and to meet the goal of developing an assessment that would allow us to capture differences 
in performance across and within performances. Importantly, we were assessing teachers’ skills in 
responding to student contributions, not whether students responded in a particular way (e.g., 
students might not respond to a well-formulated question intended to probe their thinking).  

In developing the scoring tool, we recognized that there are many ways to score or assess 
instruction, including rubrics that differentiate levels of performance in particular domains. We chose 
to use threshold statements to record the presence or absence of particular techniques with respect to 
a defined threshold. This choice motivated the goal of using of the tool for identifying whether 
teachers were enacting techniques in the different practices. This format could be particularly useful 
in identifying patterns across groups of teachers as well as within an individual teacher’s 
performance. Additionally, we built in a “not applicable  (N/A)” choice because some specific 
techniques may not be needed in particular cases. Finally, we developed a section that captures 
common issues that may arise in discussions. A codebook was developed with definitions of each 
technique, examples of what it was, and examples of what it was not.  

Methods 
We piloted the assessment with 17 first-year teachers (9 elementary teachers across grades 1-5 

and the 8 secondary teachers across grades 7-12). We recruited a diverse sample of teachers with 
respect to grade level, school district, and teacher preparation program. The purpose of the pilot was 
to gather data from a range of first-year teachers and was not intended to be representative of all first 
year teachers. We provided the plan for the discussion and gave participants 45 minutes to prepare.  

The discussion was video-recorded by the research team. One camera was set up in the back of 
the classroom and focused on teacher and student interactions. Discussions ranged from 
approximately 15 to 45 minutes in length, although the full lessons were longer. Participants also 
completed a background survey indicating their prior experience and training in discussion leading 
practices. All teacher names used in the subsequent sections are pseudonyms. 

The analysis of the discussions was conducted by the research team through independently 
watching and scoring each video using the tool described previously. Then the team, comprised of 
members with expertise in both elementary and secondary mathematics teaching, met together to 
discuss the scoring and reach a final consensus. When there were discrepancies across scores, the full 
team examined the video and resolved the issue, referencing the codebook as needed. A subset of the 
videos (>20%) was additionally coded by a trained rater, yielding an inter-rater agreement of 85% 
(Miles & Huberman, 1994). 
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Findings 
We analyzed the 17 discussions to examine how well the assessment was able to: (a) elicit and 

reveal variations in demonstrated skills across teachers; (b) provide fine-grained detail about the 
performance of particular teachers for feedback purposes; and (c) account for existing classroom 
norms. We address each of these in the following sections.  

Eliciting and revealing variation in demonstrated skills 
In looking across all performances elicited by the assessment, we found that the scoring tool was 

able to reveal a range of skill with respect to all of the discussion leading practices. For example, 
within the domain of orchestration (including the practices of eliciting, probing, orienting, and 
making contributions), the assessment and tool revealed skills that varied from a minimum of three 
demonstrated techniques to performances that revealed use of all 15 techniques associated with 
orchestration. Additionally, the assessment and tool was able to elicit and reveal a range of 
performance within each discussion leading practice. For example, Table 2 shows a range of 
performance on each of the four discussion leading practices used during the orchestration stage of 
the discussions. 

Table 2: Range of performance within discussion leading practices 
 Eliciting Probing Orienting Contributing 

Range of techniques 1/3 to 3/3 0/4 to 4/4 0/5 to 5/5 1/3 to 3/3 
 

Our study suggests that the assessment and scoring tool are capable of revealing variation in 
performance. We found that the tool was capable of revealing variation in skills at multiple levels, 
including higher-level variations between discussion leading practices and more fine-grained 
variations in performance within particular discussion leading practices. As an example of this 
variation, within this sample, teachers demonstrated greater skill at eliciting student thinking than 
probing student thinking or orienting students to the contributions of peers. All of the elementary 
teachers demonstrated skill with every eliciting technique/move, and six out of eight secondary 
teachers did as well. In contrast, only two out of 17 teachers engaged in all aspects of orienting, many 
of them engaged in only some aspects, and a few teachers engaged in almost no orienting. This 
means that the tool enabled us to discern differences in the skills of groups of novice teachers with 
respect to discussion-leading practices. 

The assessment and scoring tool were also able to capture fine-grained variations of performance 
within particular discussion-leading practices. For example, with the practice of probing student 
thinking, which included four different techniques, 14 out of 17 teachers engaged in probing 
students’ mathematical processes, while only nine teachers probed students’ understanding of key 
mathematical ideas. For example, one secondary teacher, Ms. Mason, first elicited student ideas 
about which of three attempted proofs of the Pythagorean Theorem is most valid and complete. A 
student replied “In attempt number one, you have to find the area of the squares in order to get the 
triangle in the middle”. Ms. Mason responded by probing the student’s process, “Okay, how do I find 
the area of a square?” The tool showed that almost all of her probing focused on process. In contrast, 
another secondary teacher, Mr. Jacobs, probed both for student process and understanding. In one 
case, as students were defending their choice of one potential proof as being the best, a student said 
“I said that number two…it explains things. There’s a lot of information”. Mr. Jacobs responded, 
“What do you mean by the most information?” probing the students’ understanding of what 
“information” meant in the context of a proof. This suggests that the structure of the scoring tool 
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used with the discussion assessment data was able to highlight differences in teachers’ demonstrated 
skill with particular practices. 

Providing fine-grained detail about the performance of particular teachers  
The assessment and scoring tool were able to elicit and capture variations of performance within 

teachers’ discussions. To illustrate this capability, we describe what the scoring tool revealed about 
the performance of one fourth grade teacher. Mr. Weber launched his discussion efficiently and 
framed the mathematics to be discussed, although he did not have all students’ attention before 
beginning. Within the practice of eliciting, Mr. Weber enacted all of the techniques that we sought to 
capture, including eliciting multiple solutions/strategies. He demonstrated less skill in the practices of 
probing and orienting, posing no questions that probed students’ processes or understanding. Mr. 
Weber also did little to orient students to each other’s contributions. He occasionally reminded 
students to listen to each other and asked for signs of agreement/disagreement with a contribution, 
but he did not ask students to comment on, add to, or restate others’ ideas. Mr. Weber did enact 
techniques within the practice of making contributions. He revoiced and asked questions to engage 
students in substantive discussion of the key ideas; however, the mathematical contributions he made 
did not enrich the core ideas of the discussion nor did they keep the discussion focused on the 
learning goals. Throughout he demonstrated skill with recording and representing content as he 
recorded students’ number sentences on the board, although he did not always attend to the 
mathematical accuracy of his records. Mr. Weber concluded by taking stock of the discussion and 
worked to support students in remembering that they had determined that there could be infinitely 
many solutions to the task. This highlights how the assessment and scoring tool allowed us to capture 
detail and nuance within individual teachers’ practice. 

Accounting for classroom norms 
Across the performances the scoring tool appeared to be able to account for variations in existing 

classroom norms. In some classrooms, students added on to another’s thinking and spoke to the 
whole class without prompting from the teacher. The designation of N/A allowed us to recognize that 
students were doing these thing while still acknowledging that the teacher did not visibly employ 
moves that supported students in participating in this way. Yet, only two techniques received a 
substantive number (>3) of N/As. This indicates that the assessment and tool were able to elicit and 
capture demonstrated skill with the majority of the techniques. The two techniques that were 
frequently coded as N/A were (1) supporting students to speak to the whole class and (2) supporting 
students to listen to contributions of peers. Both techniques are used in the service of orienting 
students to the contributions of peers. The high frequency of N/A suggests that the standardized 
assessment and scoring tool may not be suitable for systematically eliciting and capturing teachers’ 
skill in this area.  

Discussion and Implications 
We examined the utility of using a standardized assessment to assess novices’ discussion-leading 

practice. The assessment and tool prompted and captured a range of performance and revealed 
variations across groups and within individual discussions. We also found that it was able to account 
for existing classroom norms.  

To consider the implications of these findings, we begin by acknowledging the limitations of 
how we designed and piloted the assessment and scoring tool. One limitation is that the assessment 
and tool are grounded in a particular decomposition of the practice of leading a discussion. A 
different decomposition might reveal different capabilities of the assessment and scoring tool 
because if teachers are more familiar with other decompositions of the practice, they may perform 
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differently. A second limitation concerns the design of our scoring tool, which used threshold 
statements, yielding information about the presence or absence of each technique within a practice. 
This meant that the scores did not always distinguish the quality or quantity of teachers’ enactments 
above the threshold. Finally, these analyses did not consider the validity of the assessment with 
respect to whether it accurately reflects a teacher’s typical practice. Despite these limitations, our 
findings suggest that a standardized assessment of discussion-leading practice can reveal important 
information about teachers’ skill. As we were not intending to make claims about this sample of 
teachers or a larger population of novice teachers, the small sample was appropriate for our goals. 
However, the variations in performance that are used to illustrate the capabilities of the assessment 
and tool cannot be interpreted as representing the skills of a larger population of teachers.  

This standardized assessment accomplished many of our design goals. Its ability to capture a 
range of skill and to distinguish patterns across groups and within individual teachers’ performances 
could make the assessment and scoring tool useful in teacher education. Teacher educators and 
programs could use such assessments to track teacher candidates’ growth over time and to identify 
areas of strength and weakness with respect to the practice, which would allow for targeted support 
and program-level curriculum design. The use of scaffolds for particular parts of a lesson also 
showed promise for allowing the assessment to focus on a single instructional practice.  

Additionally, the subject matter standardization allowed for comparison across performances, as 
well focusing the assessment squarely on discussion leading practices through providing standardized 
supports. Standardized mathematics content supported the efficiency and manageability in using both 
the assessment and scoring tool, as scorers did not need to familiarize themselves with the content 
and task of each discussion. Even with standardization of content and content supports built into the 
materials, there were instances in which subject matter knowledge appeared to be a factor in 
teachers’ discussion-leading practice. In these cases it was unclear whether we were accurately 
capturing a teacher’s skill with discussion leading or whether we measured indirectly his/her use of 
content knowledge in teaching. Subsequent work will need to take this into consideration. 

We found that the practice of recording and representing content was challenging to assess using 
this assessment. Although the assessment materials asked teachers to record student contributions 
and other relevant mathematics, a number of elementary and secondary teachers involved students in 
the recording or relied completely on student-generated records. This may have been a reasonable 
choice given existing norms and routines and in some cases it appeared to support students in 
providing explanations to the class, but this choice made it difficult to see evidence of how these 
teachers record content. The materials may not have specified clearly enough that while students 
often contribute to recording, the assessment was asking teachers to record contributions. Future 
versions of the assessment will need to keep this challenge in mind; we see several different 
possibilities for addressing this challenge. 

Future research could consider how well the assessment of novices’ discussion-leading practice 
corresponds to their typical practice when leading discussions. Another important direction will be to 
further take up the questions about the role of subject matter knowledge in assessing teachers’ skill 
with discussion-leading practices. Finally, further research could also investigate the impact of 
scaffolding materials for novices with different conceptions of what makes a mathematics discussion. 
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Noticing students’ mathematical thinking is recognized as a key element of effective instruction, but 
novice teachers do not naturally attend to and make sense of student thinking. We describe a design 
experiment in which prospective teachers were engaged in analysis of minimally edited classroom 
video in order to support their ability to notice important student mathematical thinking within the 
complexity of classroom instruction. We discuss evidence of prospective teachers’ learning in five 
iterations of the intervention, including the extent to which they developed a focus on students’ 
mathematics, changes in the ways they discussed that mathematics, and the extent to which they 
focused on instances of student mathematics that had potential to be capitalized on to support student 
learning. Aspects of the intervention that seemed to support teachers’ noticing are discussed, as well 
as future directions for the work.  

Keywords: Classroom Discourse; Design Experiments; Teacher Education-Preservice 

Research has shown that a key distinction between novice and expert teachers is their ability to 
notice what is important in complex classroom situations (Berliner, 2001). Because teachers’ use of 
student thinking has been identified as a key element of effective instruction (e.g., NCTM, 2014) and 
has been linked to increased student learning (Fennema, Carpenter, Franke, et. al, 1996), one 
particularly important focus of teacher noticing is student mathematical thinking. However, research 
suggests that teachers, particularly novices, do not naturally attend to and make sense of student ideas 
(Jacobs, Lamb, & Philipp, 2010). Fortunately, noticing student mathematical thinking is a skill that 
can be learned (e.g., Jacobs, et al., 2010; Sherin & van Es, 2005) and has thus become a focus in 
many teacher preparation programs. 

Many recent prospective teacher noticing interventions, focused on what has been termed 
professional noticing of children’s mathematical thinking (Jacobs, et al., 2010), have supported 
noticing through analysis of student written work (e.g., Fernández, Llinares, & Valls, 2013; 
Haltiwanger, & Simpson, 2014) or short video excerpts of one-on-one student interviews (Schack, 
Fisher, Thomas, et. al, 2013). This work has also typically focused on student thinking related to 
specific mathematical content, for example, proportional reasoning or early numeracy. Evidence 
across these interventions suggests that prospective teachers’ noticing skills can be successfully 
developed in “environment(s) in which the number of salient features was limited and, therefore, a 
manageable focus for discussions” (Schack, et. al, 2013, p. 395). Mathematics classrooms, however, 
are not limited in the scope of what might be noticed. This raises questions of whether prospective 
teacher noticing can be supported in a more complex context that simulates that of classroom 
noticing, and whether prospective teachers’ professional noticing skills can be developed using 
classroom artifacts that include a range of mathematical foci.  

Evidence suggests that using classroom video as a medium to promote professional noticing 
might be enhanced by providing a way to scaffold teacher noticing, such as targeted questions or a 
framework (e.g., Roth McDuffie, Foote, Bolson, et al., 2014; Santagata, 2011). Santagata (2011), for 
example, found that posing targeted questions to focus teachers on the relationship between a 
teacher’s actions and students’ learning of mathematics supported teachers in providing more in-
depth analyses of these interactions. Similarly, Roth McDuffie and colleagues (2014) found that 
providing carefully designed prompts supported prospective teachers in higher level noticing, 
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including making connections between key components of teaching and learning. In short, research 
suggests that specific prompts support the noticing of what is valued within classroom interactions. 
This study builds on this work by examining the use of an explicit analytic framework to scaffold 
prospective teachers’ mathematical noticing.  

In this study, we examine the effects of an intervention designed to promote prospective teachers’ 
noticing of student mathematics that could be used by a teacher to support students’ understanding of 
the mathematics. In particular, we focus on the following research questions: (a) In what ways does 
prospective teacher noticing change as a result of the intervention?; and (b) How do variations in the 
viewing framework appear to affect prospective teacher noticing? 

Theoretical Framework 
Consistent with Jacobs and colleagues (2010), we aim to promote the professional noticing of 

[student]’s mathematical thinking. We follow their definition of this practice to include three 
interrelated skills: (a) attending to student thinking, (b) interpreting what students are saying 
mathematically, and (c) deciding how to respond. In this study, we focus on just the first two 
components of the practice. Our choice of this noticing focus stems from its close connection to our 
goal of helping prospective teachers learn to enact ambitious teaching (Lampert, Beasley, 
Ghousseini, Kazemi, & Franke, 2010)—“deliberately responsive and discipline-connected 
instruction” (p.130) that supports all students in developing deep understanding of mathematics.  

Although our work is firmly grounded in the noticing of student mathematics, we also take the 
perspective that not all instances of student mathematical thinking have the same potential to enhance 
student learning. Thus, we focus specifically on noticing instances of student thinking that have 
significant potential to be used during the lesson to support the learning of important mathematics. In 
particular, we draw on Leatham, Peterson, Stockero, and Van Zoest’s (2015) definition of 
Mathematically Significant Pedagogical Opportunities to Build on Student Thinking [MOSTs] as 
occurring at the intersection of three characteristics: (a) student mathematical thinking, (b) significant 
mathematics, and (c) pedagogical opportunity. The MOST analytic framework uses two criteria to 
determine whether an instance of student thinking embodies each of these characteristics. For student 
mathematical thinking the criteria are that there is sufficient evidence to reasonably infer the student 
mathematics and that one can articulate a mathematical point closely related to this student 
mathematics. The significant mathematics criteria are that the mathematical point is appropriate for 
the mathematical development level of the students and is central to mathematical goals for their 
learning. The pedagogical opportunity characteristic requires that the student mathematics creates an 
opening to build on student thinking to help develop an understanding of the mathematics and that 
the timing is right to take advantage of the opening. Instances that satisfy all six criteria, and thus all 
three required characteristics, are MOSTs (see Leatham et al., 2015 for more details). In this study, 
the MOST analytic framework was used as a tool to focus participant noticing. 

Methodology 

The Intervention 
The participants in the study were 17 prospective mathematics teachers (PTs) enrolled in an early 

field experience course between fall 2011 and fall 2014. They participated in the study in five 
cohorts, each with three to four PTs. Each PT was assigned to observe a local, experienced secondary 
mathematics teacher’s classroom. Participants recorded videos of mathematics lessons in these 
classrooms on a rotating basis; over the course of each semester, efforts were made to collect video 
from a range of grade levels with varied mathematical topics. The instructional portions of the 
classroom video were left mainly unedited for analysis, although portions in which students could not 
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easily be heard were removed. The PTs and researchers used the Studiocode (SportsTec, 1997-2015) 
video analysis software to individually analyze one video each week, marking mathematically 
important moments a teacher should notice in the classroom. The PTs included a description of why 
they chose each moment. The researchers met weekly to agree on instances that were MOSTs in the 
video and to discuss the instances PTs had identified as important, including which instances would 
be discussed at a weekly group meeting among the PTs and researchers. These group meetings were 
facilitated by the first author and focused on building PTs’ skills in noticing mathematically 
important moments.  

Because the intervention was conceived as a design experiment (Cobb, Confrey, diSessa, Lehrer, 
& Schauble, 2003), the specific scaffolding activities varied by semester. All of the PTs were initially 
prompted to identify mathematically important moments that a teacher should notice during a 
lesson, with the definition of this construct left open ended to provide baseline data for PT noticing. 
All of the cohorts except cohort 5co-developed labels in the weekly group meetings to describe and 
categorize types of mathematically important moments. These labels drew on Stockero and Van 
Zoest’s (2013) pivotal teaching moment categories, but the categories were not made explicit to the 
PTs. After the creation of these labels, PTs assigned labels to moments they marked in subsequent 
videos. Each cohort was introduced to a variation of the MOST framework at some point during the 
semester. This framework evolved over the four years of the study, so cohorts 1 and 2 used a general 
version of the framework in which the MOST criteria were only loosely defined in terms of student 
thinking, important mathematics, and pedagogical opportunity. Cohorts 4 and 5 used the most 
explicit, analytical version of the framework as defined in Leatham and colleagues (2015). The 
MOST framework was introduced to the first four cohorts five to six weeks into the semester and to 
cohort 5 two weeks into the semester. After the introduction of the framework, PTs were expected to 
focus on moments in the videos that were MOSTs, as defined by the version of the framework 
available at the time. Cohort 5 was pushed to most explicitly discuss each characteristic of the 
framework. 

Data Collection and Analysis 
The study data was the PTs’ video analyses and video recordings of the weekly meetings. To 

analyze how the PTs’ noticing changed during the intervention, we analyzed the video instances the 
PTs had marked and their reasoning. APT’s written description of an instance received the most 
weight. When available, aPT’s label and what (s)he said about the instance in the meeting were also 
considered. To minimize the possibility that PTs influenced each other’s thinking, the meeting 
commentary received more weight if a PT was the first to speak about an instance. 

The unit of analysis was a PT-identified instance. Drawing on frameworks used in previous 
research (Stockero, 2008; van Es & Sherin, 2008), each instance was coded for the agent of the PT 
noticing and the level of specificity with which the mathematics was described. If there was any 
student focus in an instance, an additional code was assigned to describe the nature of the PT’s 
noticing of the student(s). Figure 1 gives the coding categories, definitions and codes.  
Coding 
Categories Description Codes 

Agent Who or what was the focus of 
the noticing* 

Teacher (T), Teacher/Student (T/S), Student/Teacher (S/T), 
Student Group (Sg), Individual Student (Si), Math (M) 

Math Specificity 
(MS) 

Whether and how the 
mathematics is discussed  

Non-math (NM), General Math (GM), Specific Math (SM) 

Nature of 
Noticing (NoN) 

For instances with some student 
focus, what about the students 
was attended to 

Affective Interaction, General Understanding, Mathematical 
Interaction, Noting Student Math (NSM), Analysis of 
Student Math (ASM) 

*Student-teacher interactions are coded as teacher/student if the teacher is the primary focus and student/teacher if the 
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student is the primary focus 
Figure 1:Coding Framework 

To give a sense of some of the key codes that we will discuss, consider the three instances in 
Figure 2. These all focus on the same instance of an individual student’s thinking so were all coded 
as Si for the agent. Although instance 2 is focused on a student mathematical question, we have no 
idea what the related mathematics is, so it was coded GM for math specificity. The mathematics is 
discussed in a much more specific way in instances 2 and 3, however, so these were coded as SM. 
Instances 1 and 2 describe the important student mathematics, but do not go beyond this, so were 
coded as a NSM focus. Instance 3 on the other hand, is making sense of why the student asked the 
questions she did, so was coded as an ASM focus. 

 
 Description of Instance MS NoN 
1 I think that this is a very good question that is necessary to further learning (making examples 
similar). The student describes her question in depth to infer her thinking.  

GM NSM 

2 Student is curious as to why they need to divide by the determinant to find the inverse [matrix] 
in this example, but not in the previous example. 

SM NSM 

3 [S]he does not know why we are multiplying by 1/2 in one example and not the other. The 
student does not understand that they have to multiply by 1/det[A], probably because the 
multiplication of 1/det[A] was not shown in the previous example because the det[A]=1. We 
{we]re multiplying the matrix [d -b –c a] by 1, which is trivial. The students should understand 
that if two matrices multiplied together give the identity, that they are inverses of each other. 

SM ASM 

Figure 2:Coding Examples 

In the analysis process, each PT-identified instance was individually coded by either two or three 
researchers. The researchers then met to reconcile the coding; when there was disagreement about 
one or more codes for an instance, the instance was discussed among the group until agreement was 
reached. In cases where two researchers were unable to reconcile their coding, the third researcher 
was brought into the discussion to help resolve any coding differences. 

Results 
The goal of the intervention was to promote the noticing of instances of student mathematics that 

have the potential to be capitalized on during a lesson to support student learning. Thus, our analysis 
focused on the extent to which we were able to promote such noticing. We discuss both changes in 
the PTs’ noticing as a result of the intervention, as well as the extent to which the PTs met our 
“target” for noticing: individual students, specific mathematics, and noting or analyzing student 
mathematics. In this discussion, baseline refers to the PTs’ noticing in the first two videos each 
semester, before there was any attempt to focus their noticing. Final refers to the noticing in the last 
four videos each semester—an indication of the PTs’ most refined noticing. We use four videos to 
report the final noticing because most of the PTs noticed significantly fewer instances in these later 
videos. In fact, PTs noticed an average of 8.8 instances per video early on, and less than half that 
amount (3.75 instances/video) in the final four videos, an indication of becoming more selective 
about the instances deemed important to notice. 

Agent 
Table 1 shows the percent of PT noticing focused primarily on students (coded Sg, Si, or S/T), 

primarily on the teacher (T or T/S), and on the mathematics itself in the baseline and final data. At 
the start of the intervention, a significant percent of the PTs’ noticing was focused primarily on the 
teacher in the video, and to a lesser extent, on the mathematics itself. This non-student focused 
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noticing accounted for between 25% and 81.2% of the baseline noticing. Except for cohort 1, 51.0% 
or fewer of the instances noticed by the PTs in the baseline data had a primary student focus. At the 
end of the intervention, however, the majority of each cohort’s noticing was focused on the students 
in the video, ranging from 85.5% to 100% of instances.  

Table 1: Participant Noticing by Primary Agent 
  Cohort 1 Cohort 2 Cohort 3 Cohort 4 Cohort 5 

Primary Student Focus 
Baseline 75.0% 46.7% 51.0% 18.8% 28.4% 
Final 88.9% 100.0% 90.0% 98.3% 85.5% 

Primary Teacher Focus 
Baseline 22.7% 33.3% 42.9% 59.4% 62.5% 
Final   9.5%   0.0%   6.0%   1.7% 14.5% 

Math Focus 
Baseline   2.3% 20.0%   6.1% 21.9%   9.1% 
Final   1.6%   0.0%   4.0%   0.0%   0.0% 

 
Although the primary focus on students was encouraging, we were particularly interested in the 

extent to which PTs focused on individual students and their mathematics. Thus, we further analyzed 
the subset of instances with a primary student focus to determine whether the PTs’ focus in these 
instances was on individual students, groups of students, or student-teacher interactions (Table 2). At 
the start of the intervention, each cohort’s student-directed noticing was either focused mainly on 
groups of students (cohorts 1, 2, and 5) or on student-teacher interactions (cohort 4); cohort 3’s 
noticing was evenly split between the two. With the exception of cohort 1, the PTs’ final noticing 
was primarily focused on individual students (79.7% to 90.3% of instances), indicating that the 
intervention was successful in focusing the PTs on what individual students were saying or doing 
during the lesson. 

Table 2: Primary Student Noticing 
  Cohort 1 Cohort 2 Cohort 3 Cohort 4 Cohort 5 

Individual Students 
Baseline 39.4% 21.4% 16.0% 38.9%   4.0% 
Final 37.5% 90.3% 84.4% 79.7% 85.1% 

Groups of Students 
Baseline 51.5% 57.1% 44.0% 16.7% 68.0% 
Final   8.9%   9.7% 11.1%   6.8%   8.5% 

Student/Teacher 
Baseline   9.1% 21.4% 40.0% 44.4% 28.0% 
Final 53.6%   0.0%   4.4% 13.6%   6.4% 

Focus of Noticing 
Instances with any student focus (coded Si, Sg, S/T and T/S) were also coded to characterize 

what about the students the PTs had noticed. As a reminder, the goal was to focus PTs’ attention on 
what students were saying mathematically, so the target was noting or analyzing the student 
mathematics, with analyzing deemed to be the higher-level of the two foci. Due to space constraints, 
we discuss just these two noticing foci. 

There was a wide difference in the percent of the student-focused instances coded as either noting 
or analyzing student mathematics for each cohort in the baseline data (Table 3). The first two cohorts 
had a total of 47.5% and 46.4% of such instances coded with one of these foci, while the latter three 
cohorts had a significantly lower percent, ranging from only 2.3% to 20.4%. In the baseline data, 
only cohort 2 demonstrated any analyzing; this was all attributable to just one PT. All of the cohorts 
increased their noticing with these two foci. In fact, with the exception of cohort 1, the final data 
shows that 85.5% or more of the PTs’ student-centered noticing was coded as noting or analyzing 
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student mathematics, with noting instances accounting for the majority of the instances for cohorts 2, 
3 and 4, and a more even split between noting and analyzing (47.3% and 38.2%, respectively) for 
cohort 5. Cohorts 2 and 5 demonstrated the highest percentage of analyzing, but again, cohort 2’s 
analyzing was largely attributable to one PT. Cohort 5’s percent of analyzing was not only the 
highest among all cohorts, but was also more consistent among the PTs in the cohort. Collectively, 
the data suggests that the intervention was successful not only in focusing the PTs’ attention on 
students, but also on the important mathematics that came from these students in the lessons. More 
specific versions of the framework were generally more effective in supporting noticing. The higher 
percent of analysis by the last cohort also suggests that providing a framework earlier in the 
intervention and engaging PTs in a more structured use of the framework better supported noticing 
than earlier iterations of the intervention.  

Table 3: Participant Student-Centered Noticing Focus 
  Cohort 1 Cohort 2 Cohort 3 Cohort 4 Cohort 5 

Noting Student 
Math 

Baseline 47.5% 32.1% 20.4% 15.6%   2.3% 
Final 59.0% 76.7% 78.0% 89.8% 47.3% 

Analyzing 
Student Math 

Baseline   0.0% 14.3%   0.0%   0.0%   0.0% 
Final   1.6% 20.0%   8.0%   8.5% 38.2% 

Specificity of Mathematics 
The specificity of the PTs’ noticing indicates whether and in what level of detail the mathematics 

in an instance was discussed. Non-mathematical noticing was present in the baseline data for all 
cohorts and was most prevalent for cohort 5, with 39.8% of their noticing focused on non-
mathematical features of classroom interactions (Table 4). There was no non-mathematical noticing  

Table 4: Specificity of Participant Noticing 
  Cohort 1 Cohort 2 Cohort 3 Cohort 4 Cohort 5 

Non-math 
Baseline 15.0% 10.7% 2.0% 3.1% 39.8% 
Final 0.0% 0.0% 0.0% 0.0% 0.0% 

General 
Math 

Baseline 32.5% 14.3% 38.8% 26.0% 30.7% 
Final 24.6% 26.7% 12.0% 13.6% 5.5% 

Specific 
Math 

Baseline 52.5% 75.0% 59.2% 70.8% 29.5% 
Final 75.4% 73.3% 88.0% 86.4% 94.5% 

 
present in the final data, however. Perhaps surprisingly, most cohorts discussed the mathematics in a 
specific way more than half of the time from the start (between 52.5% and 75% of instances),  
although cohort 5 only did so 29.5% of the time in the baseline data. All of the cohorts maintained or 
became more specific in their discussion of the mathematics through the intervention, with the final 
three cohorts most consistently discussing the mathematics in a specific way in the final data and 
cohort 5 showing the most significant change in specificity. This again suggests the benefit of a more 
explicit analytic framework. 

Noticing of MOSTs 
An additional measure of PT learning was whether they became better able to identify instances 

of student mathematics that had potential to be used to support student learning of mathematics—that 
is, instances that were MOSTs. Table 5 gives the percent of the instances that PTs marked that 
coincided with instances the researchers identified as MOSTs. As seen in the table, all of the cohorts 
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increased in the percent of moments that aligned with the researchers’ moments, but the data needs to 
be interpreted with caution. Ongoing analysis is focused on determining whether the PTs talked 
about these instances in a way that indicates they were focused on the student mathematics, rather 
than for some other reason. 

Table 5: Participant Noticing of MOSTs 
 Cohort 

1 
Cohort 
2 

Cohort 
3 

Cohort 
4 

Cohort 
5 

Baseline 60.0% 32.1% 44.7% 25.0% 17.0% 
Final 86.9% 66.7% 68.0% 67.2% 67.3% 

Discussion and Conclusions 
The findings of this study add support to a growing body of research demonstrating that it is 

feasible to develop prospective teachers’ professional noticing skills. In fact, we developed these 
skills at the start of a teacher preparation program, when the prospective teachers had very little 
knowledge of students to draw upon. Key differences between this and many other interventions are 
that the noticing intervention used longer unedited classroom video recorded in local teachers’ 
classrooms and focused on a range of mathematical topics, depending on the topics of the recorded 
lessons. Thus, these findings suggest that there may not be a need to narrow either the scope or 
length of classroom artifacts used to develop noticing skills (i.e., use short transcripts or video clips), 
nor the mathematical focus of the noticing activities. 

The data also showed a general trend that when a more explicit analytic framework was 
provided, the PTs came to discuss the mathematics in a more specific way, and more often noted and 
analyzed what the students in the video were saying mathematically. Although the total percentage of 
instances in which the PTs noted or analyzed student mathematics was a bit lower for cohort 5, they 
and cohort 4 showed the greatest increase in these foci from beginning to end of the intervention. 
Furthermore, cohort 5 reached the analyzing level in 38.2% of all instances in the final videos—
significantly more than any other cohort. These findings suggest that, although using even a loosely 
defined framework can support prospective teacher noticing (cohorts 1 and 2), using a more 
structured framework can significantly improve the outcomes of a noticing intervention. The fact that 
cohort 5 was given the framework earlier and was prompted to use the framework in a more 
structured way likely also enhanced their learning, although additional analysis is necessary to 
confirm whether this is the case.  

Although the findings are noteworthy, there are still open questions that need to be addressed. 
For instance, we do not yet know how the participants’ interactions with each other during the 
weekly meetings or the facilitation of these meetings supported the PTs’ noticing, nor have we yet 
examined the PTs’ proposed teacher responses to identified moments. Ongoing work is also focused 
on understanding how the noticing skills developed during this intervention transfer to noticing 
student ideas during the PTs’ own instruction. Addressing questions such as these holds potential for 
helping novice teachers learn to enact the type of student-centered instruction the field has been 
striving to achieve (e.g., NCTM, 1989; 2014). 
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This paper explores the ways preschool teachers orchestrate instructional environments to promote 
mathematical play related to early number and, how they intervene during play to promote 
children’s engagement with early number. We highlight these practices to identify resources for the 
growing numbers of early childhood teachers. This is important as many prospective and practicing 
teachers do not have access to the knowledge of teaching that supports young children’s math 
learning because of the constraints of mathematics methods courses and the dearth of research on 
early childhood mathematics in mathematic education journals – particularly in-depth attention to 
early number and teaching mathematics in play. 

Keywords: Early Childhood Education; Number Concepts and Operations; Teacher Education-
Preservice 

One of the most important challenges for young children in mathematics is gaining fluency with 
foundational concepts related to number, which include developing an understanding of the number 
word list, 1-to-1 correspondence, cardinality and related concepts like subitizing, and relationships of 
more, less, and the same (National Research Council, 2009). Generally, children develop 
understandings of these number concepts from ages 2 to 6 (Ibid.), meaning that the early years of 
public schooling are important to helping children master more advanced concepts, such as 
conceptual subsidizing (decomposing larger sets into easily identifiable subsets), and to helping 
children who come to school without mastery of early skills related to number quickly catch up. 
Increasingly, research has demonstrated that early and successful mastery of these early number 
concepts is predictive of later success in mathematics in particular and in schooling more broadly 
(e.g., Duncan et al., 2007; Jordan Kaplan, Locuniak & Ramineni, 2007).  For example, in a large-
scale longitudinal study, Duncan and colleagues (2007) found that early math skills are better 
predictors of later school success than measures of reading, attention skills, or socio-emotional 
behaviors, with little difference across gender and socio-economic status. More specifically, in a 
study of low-income families, Ramani, Row, Eason and Leech (2015) found that caregivers’ 
engagement of children in activities aimed at teaching about number and caregivers’ use of advanced 
number talk predicted children’s understanding of cardinality, ordinal relationships, and early 
arithmetic. Additionally, Ramani and colleagues found no relationship between demographic 
variables, such as parent education, home language, or family income and children’s knowledge of 
the number core. 

Other research has shown that adults’ intentional engagement of children around the number 
core, particularly in relation to constructs, such as cardinality and subitizing, improves children’s 
understandings of these concepts. For example, Gunderson and Levine (2011) found that children’s 
understanding of cardinality increased when adults counted sets and labeled them simultaneously 
(e.g., “1,2,3. That’s 3.”) in comparison with counting or naming sets in isolation. In a study of three-
year-olds, Mix and colleagues (2012) found similar results. This body of work, generated primarily 
by developmental psychologists, demonstrates the importance of attending to early number and 
suggests that there are particular strategies that early childhood teachers could draw on to promote 
children’s mastery of the number core. Yet, relatively little attention is paid to early number in 
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mathematics education research, particularly in relation to teacher education practices for prospective 
elementary teachers (Parks & Wager, 2015).   

Indeed, none of the studies cited above about the importance of early number concepts for 
predicting later mathematical success were published in mathematics education journals. In a recent 
review of 20 years of mathematics education and early childhood education journals, we found that 
only 28 of the 239 articles published about early childhood mathematics attended to the number core 
at all. In addition, the mention of early number concepts in many of these 28 articles was quite 
cursory – often an aside to a broader discussion. In fact, cardinality was explored in depth in only one 
article; 1-to-1- correspondence was explored in two articles, and subitizing was examined in four. 
(As a point of comparison, 66 articles mentioned fractions, 11 in some depth, and this was within a 
dataset of articles identified as attending to pre-K-Grade 3 contexts). In addition, only three articles 
concerned with early number concepts focused on strategies for helping preservice or practicing 
teachers support children’s early number learning (Schack et al, 2013; Tirosh, Tsamir, Levenson & 
Tabach, 2011; Tsamir et al, 2013), which suggests a need for greater attention to developing 
strategies to help teachers promote early number understandings. 

Recent increases in publically funded prekindergartens and staffing of these programs with 
teachers who have been certified in elementary education makes this need more pressing. In the 
2012-2013 school year, 28 percent of four-year-olds in the US were enrolled in state-funded 
preschool programs (Barnett, Carolan, Squires & Brown, 2013). More than half of the states require 
that teachers in these prekindergarten (pre-K) programs have four-year degrees in education, which 
means they have likely learned to teach mathematics in university methods courses.  Given current 
interest in universal pre-K (Barnett et al., 2012), these numbers are likely to increase, resulting in 
greater numbers of future pre-K teachers in elementary mathematics methods courses across the 
country. Additionally, given the lack of attention to early number in research (and anecdotally on 
methods course syllabi), future kindergarten teachers almost certainly also need more support in 
attending to early number than they have been getting in typical mathematics methods coursework. 

In addition to requiring more in-depth attention to early number (and geometry), these future pre-
K and kindergarten teachers also need strategies for helping their children maximize opportunities to 
learn mathematics in play settings in the classroom. Recommendations for best practices in early 
childhood settings almost universally include calls for time for play, which promotes cognitive 
development, language learning, and social growth (Copple & Bredekamp, 2009). Typical classroom 
play materials, such as blocks, games, and toy collections, offer potentially rich opportunities for 
children to learn and practice early number concepts (Wager & Parks, 2014; Seo & Ginsburg, 2004; 
van Oers, 2010); however, without teachers who intentionally intervene to mathematize play by 
attaching mathematical language to play, scaffolding more complex play, and directing student 
attention toward potential mathematics, children are unlikely to get the full benefits from their 
mathematically oriented play (Ginsburg, 2006; Graham, Nash & Paul, 1997). Yet, there is also little 
attention to teaching strategies for mathematizing play in the research literature. In the review 
described above, we found only one study (Eberly & Golbeck, 2001) that focused on understanding 
ways that practicing or preservice teachers learned about or implemented strategies to mathematize 
play.  

In order to address these gaps in the literature, this study draws on a rich library of data from two 
broader studies in order to identify productive strategies that practicing preschool teachers used in 
order to promote mathematical play in their classrooms and to mathematize that play for children. 
The research questions guiding our analysis were: How do preschool teachers orchestrate their 
instructional environments to promote mathematical play related to early number? And, how do these 
preschool teachers intervene during play to promote children’s engagement with early number 
concepts? 
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Theoretical Framework 
In this study, we take the perspective that early number learning develops not only as a result of 

maturation, but is significantly influenced by context and engagement with knowledgeable others 
(Vygotsky, 1978). Although Piaget is best known for his stage theories of development, which argue 
that children move through predictable stages of learning (e.g., going from more concrete to more 
abstract understandings of quantity) as they mature (Piaget, 1962), Piaget also did not believe that 
these stages operated independently of the environment or of social interactions with others (Piaget, 
1964). Similarly, Vygotsky argued that adults can and should provide instruction that “marches 
ahead of development” (Vygotsky, 1962, p. 104) to foster children’s learning.  

This perspective is important because it means that rather than waiting until a child is 
“developmentally ready” for a particular mathematics concept, teachers must take responsibility for 
guiding children toward new understandings. In relation to early number, this means that primary 
grade teachers should not simply wait until understandings of the number core develop before 
beginning instruction in early arithmetic nor should they assume that children who come to school 
without competence with cardinality, 1-to-1 correspondence, and subitizing will develop these skills 
by engaging with instruction aimed at early arithmetic. Rather, they must both create instructional 
environments that foster children’s growth in relation to these early number understandings and 
engage in intentional instructional practices that will move children along the developmental 
continuum (Parks, 2015). Both Vygotsky (1968) and Piaget (1962) saw play as an important context 
for these kinds of instructional interactions, both because play is motivating for children and because 
it encourages exploration with physical objects, which often leads to more sophisticated 
understandings of quantity. 

Mode of Inquiry 
The analysis presented here is drawn from data collected in two broader studies, both aimed at 

understanding mathematical learning and teaching in early childhood classrooms. Both studies were 
designed within a tradition of interpretive research that values attention to meaning-making by 
participants and understanding the role of context in human interactions (Erickson, 1986; Graue & 
Walsh, 1998). The first study provided an intervention of sorts as teachers engaged with professional 
development explicitly designed to support their understanding of mathematics learning in play-
based pre-K classrooms, whereas the second study observed existing phenomena – what math was 
happening. Thus, we have examples from teachers who were supported to think about math in pre-K 
and from a teacher who was not. 

The first study involved a Professional Development (PD) program designed to promote 
culturally and developmentally responsive early number teaching. The project team designed, 
facilitated, and studied the PD for three cohorts of pre-K teachers who were teaching in a local 
districts’ new 4-year-old kindergarten. Each cohort took four graduate courses over a two-year 
period. Data included audiotaped group discussions and artifacts from the course, interviews with 
teachers, and bi-weekly observations in a subset of participants’ classrooms. For the current analysis, 
we focused on artifacts – in particular, 51 learning stories (narrative assessments of young children’s 
learning, Carr, 2011) teachers wrote to identify what they noticed and how they responded to 
children’s mathematics engagement in play.  

The second study was a longitudinal examination of the mathematical experiences of a cohort of 
children as they moved from preschool to Grade 1 in a rural public school. Data included video of 
classroom events, assessment interviews, and out-of-school engagements, as well as interviews with 
teachers and parents. For the current analysis, we focused on video data collected in the preschool 
classroom of mathematics-related interactions in both formal and informal settings. The teacher in 
this pre-K was an experienced, white, female teacher with more than 15 years of experience in pre-K 
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and kindergarten. The majority of children in the cohort were African American (13 out of 16) and 
all children in the cohort came from low-income families. 

For this analysis, we identified episodes in both sets of data that had been previously coded as 
involving cardinality, 1-to-1-correspondence, and subitizing as well as adult interactions. We then 
coded these episodes as relating to organization of the instructional environment or intervention in 
the moment. Then, each of these sets of data was analyzed (by each researcher and through 
conversation and writing with each other) to identify strategies used by the teachers in both studies to 
promote students’ understandings of early number. 

Findings and Discussion 
We found that teachers engaged (or had the opportunity to engage) children in rich math 

interactions in three instructional spaces: (a) activities purposefully planned for whole class 
engagement in math; (b) play with math-like materials in the room or in specific math centers (e.g. 
board games, counting manipulatives) and; (c) during play that might not obviously be seen as 
mathematical (Wager, 2013). For each of these instructional spaces we provide vignettes from 
classroom observation (either ours or reported by the teacher) and identify strategies teachers used. 

Planned activities 
Teachers in both projects planned activities that were purposefully designed to engage children in 

counting related activities, although teachers in the professional development project were more 
likely to design activities where children routinely got to handle objects as they practiced counting. 
In the classroom observed without intervention the most frequent counting activities involved 
reciting the number sequence, singing a song prompted with cards to practice number recognition, 
and counting during calendar time, when only the teacher or a single child handled objects while 
counting.  

Activities when children could handle objects and count typically occurred during transitions, 
meals, or other routines such as morning meetings. Sometimes these were whole group activities 
while other times individual children ‘led’ the activity for the class. A common practice among 
teachers was to start each class period by having a child count how many children were present. In 
the following examples we see how a teacher supports a child who is still working on 1-to-1 
correspondence and another who is moving toward problem solving. In Vignette 1, Betty reflects on 
her observation of Bob counting his classmates during circle time. The children had been doing this 
activity for about six weeks. 

Vignette 1: When I asked [Bob] to count how many children were sitting in the circle, he was not 
exactly sure where to start. With a little guidance he started with the child that was sitting 
next to me. He counted with 1:1 correspondence tapping each child on the head, however, he 
skipped one girl and she said, “hey you missed me”. He turned to me and looked confused. 
He started again and I encourage him to slow down. He skipped another child and then the 
aide assisted him so he could finish counting all the way around. (Betty, Counting Children) 

In the next example, Marley shares how she supported Sam to make counting his classmates a more 
challenging activity. She had previously noticed that Sam would write addition problems on a dry 
erase board and ask, “how much is this?” 

Vignette 2: I asked Sam to first count the girls and then count the boys as I wrote the numbers on 
the easel. I used this opportunity to also explain what the + and = signs mean. After I 
recorded the numbers I had all the children stand up to be counted showing that 5 girls plus 6 
boys equals 11 children all together. (Marley, Math problems…) 
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Snack time is another space that teachers engaged children in counting activities. Sadie had a snack 
helper in her class whose job was to count out 14 plates and put 4 orange slices on each plate. 

Vignette 3: I helped Clara with the first plate, working to count out 4 orange slices. She put 3 
slices on the second plate, then counted the number on the first plate and the number on the 
second plate and asked me, “that the amount?” When I asked her what she thought, she put 
on more on to make 4. Then on the 4th plate she put 5 slices and asked again. I helped her 
take one orange slice away, using the words more, less, and take away, until she discovered 
the plates had the same amount. (Sadie, Clara’s Snack Task) 

The teachers in these vignettes used a variety of strategies to support children’s early number 
development. In vignette 1, Betty recognizes that Bob can count using 1-to-1 correspondence to 
about 3 or 4 before he switches to rote counting. Her strategy was to encourage Bob to slow down so 
he could match a number to each child that he taps, and ultimately have an adult count with him. In 
vignette 2, Marley modeled a joining problem by using a practice the children regularly engaged with 
in the class. In vignette 3, Sadie does not directly tell Clara whether she is right or wrong but rather 
asks her what she thinks. Sadie then modeled how to compare sets. Both Sadie and Marley modeled 
strategies for children using math vocabulary. 

Math games and materials 
Preparing the environment for children to engage with learning is a critical aspect of any early 

childhood classroom, and certainly true for mathematics learning. Yet providing materials and 
organizational structures that encourage interactions around math is not enough. We found in both of 
our studies that teachers provided varying levels of support to children as they played with math 
games and activities. All the classrooms had several math games both teacher-made and commercial. 
In addition, teachers made decisions to highlight the mathematical nature of materials. For example, 
Sarah organized collections of small toys, such as cars and animals, on a shelf along with a balance. 
By placing these objects in proximity, she encouraged her students to engage with them in a 
mathematical way. Vignette 4 describes the impact of Sarah’s decision to organize unifix cubes in 
sticks of 8, rather than loose in a bucket. 

Vignette 4: Clay sat down among a pile of unifix cubes that other children had been playing with 
and began, without prompting to organize them into sticks of 8. He began by touching each 
cube as he counted it to ensure he had the correct amount. After he  made a few sticks of 8, 
he started using his previous sticks as points of comparison, holding up a new stick and then 
removing two cubes when he noticed that it was too long. After watching Clay for a moment, 
two other boys began to make sticks of 8, touching each cube as they counted. 

Sarah intentionally asked the students to keep the unifix cubes in sticks of 8 (a number chosen 
because it was the number of spaces on their bingo cards) because she knew it would provide 
opportunities to practice meaningful counting whenever the cubes were cleaned up; however, she did 
little to deepen students engage with these cubes across the year, such as changing the goal number 
for the size of sticks or asking students to articulate the strategies for composing sticks from smaller 
groups of blocks or comparing finished lengths. Sarah, who did not receive professional development 
around early mathematics and who reported that she’d had little preparation around the counting core 
in her preparation program, was not as adept as the teachers receiving PD as recognizing 
mathematics in play and intervening to highlight it for children, as demonstrated in the next 
vignettes. 

In analyzing teachers’ interactions when playing games with children or observing children play 
the games, we were particularly interested in those examples of teachers finding alternative ways to 
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ask ‘how many’ or go beyond asking ‘how many’. The ways in which teachers did this included 
general comments about sets that encouraged the children to count such as “wow, that is a lot” or 
asking which one has more when children had more than one set of objects. In vignette 5, Betty 
observes John at the math center working on a Counting Book. 

Vignette 5: On the first page, he wrote the numeral 4 and then stamped 4 stamps. On the second 
page he wrote 1-10 saying each number to himself as he wrote. I asked him, “what did you 
write”, he told me the numbers up to 10. I asked, “how many will you stamp” and he started 
stamping and counted each one up to 10. On the next page he stamped 7 stamps, counted 
them and wrote the number 7. Then he stamped on more and stopped. I asked, “what now”. 
He crossed out the 7 and asked me how to write 8. I showed him a picture of the numeral 8 
and he tried it. (Betty, How Many Stamps?) 

In this next vignette, Chela describes how Kiki used the balance scale to count and compare various 
objects in the room. Kiki had filled the cups with different objects from the science table, putting 
insect and spider counters in one and one-gram yellow weights in the other. Then using a chart that 
Chela had made for children to compare the number of objects in different sets, Kiki lined up the 
insects on one side and weights on the other. 

Vignette 6: In a very precise manor, Kiki had lined up the yellow grams and commented, “wow 
this is lots!” At this point I prompted him to also line up the insects and spiders, which Kiki 
thought was a great idea. Kiki had a difficult time knowing for certain which one had more, 
but thought that it was the yellow grams because there were lots. I asked him how he could 
know which was more and he counted each. (Chela, Measurement and Balance Activity) 

In Vignette 5, Betty asks the question ‘how many’ but does so in a way that encourages action to 
count out rather than how many are already in a set. She also asks John ‘what now’ so that he could 
choose between crossing out a stamp or changing the numeral. In Vignette 6, the nature of the 
materials Chela has in class encourage the practice of counting. By asking the child how he could 
find out which set had more, she encouraged him to think of counting rather than directing him to do 
so.  

Mathematizing Play 
Perhaps one of the most challenging responsibilities that early childhood teachers face with 

respect to supporting math learning is mathematizing the activities children engage with in free play. 
To do this effectively, teachers must recognize the mathematics that children are engaging with and 
make in-the-moment decisions to support further learning. We found examples of situations in which 
teachers were able to recognize and respond to math in a variety of classroom environments. In 
Vignette 7, Sadie observes Clara in the housekeeping area as she was making food for her friends. 
Clara was the mom and her friends were her babies. 

Vignette 7: They all started talking about birthdays and her babies said they needed 4 ‘cupcakes’ 
because they were 4 years old, or 5 ‘cupcakes’ because they were 5. She counted 4 cupcakes 
for one of her babies and 5 for the other. When I was invited over to share in the birthday 
festivities, I was given a plate and a pile of food. I asked how many cupcakes I had and Clara 
counted 8 of them and stopped (there were more pieces on my plate). When I said I want 2 
cupcakes because I am 2, Clara removed some pieces of food off my plate and left me with 2 
and said “there, now lets sing”. (Sadie, Clara’s Counting Kitchen) 

In Vignette 8, Sadie observed Sam using 3D shapes to build “a huge castle”. Although play with 
shapes could be coded as mathematical materials, in this situation we are examining the interaction 
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around counting and thus we coded this as play. There was considerable conversation about the 
different shapes Sam used for his castle. Here we pick up where Sadie’s reflection shifted to a 
discussion of counting.   

Vignette 8: While the conversation continued we talked about the various heights of his towers. 
He counted with 1:1 correspondence up to 4, which was the tallest tower. He noticed that the 
lower tower was only 2 shapes tall and compared them saying “this one is shorter than that 
one.” We talked about how the tallest tower did not have the most shapes. (Sadie, The Castle 
King) 

Vignette 7 provides a wonderful example of how teachers can enter children’s play to support 
mathematical thinking. Clara was already counting and showing evidence of 1-to-1 correspondence 
and cardinality but Sadie was able to push on this without disrupting the play by having Clara think 
about how to remove enough ‘cupcakes’ to leave Sadie with two. Sadie could have taken this further 
by asking how many cupcakes Clara took off her plate. In vignette 8, Sadie joined Sam in his castle 
building and raised questions about the height of his towers, which encouraged him to compare 
heights, count, and ultimately see that more blocks did not always mean a higher tower. 

Not surprisingly we found more instances when teachers recognized the opportunity to 
mathematize but did not do so in the moment or did not engage with mathematics at all, despite the 
opportunity to do so. For example, students in Sarah’s classroom routinely built tall towers of blocks 
and argued with each other about whose was the largest, but the teachers in the room never 
intervened to ask the children to find out. Similarly, while mathematical games were available, 
teachers did not intervene to teach children the rules of the games, which would have supported 
mathematical thinking, but instead let them play however they wanted, which often resulted in play-
acting with the pieces (intellectually valuable, no doubt, but unlikely to lead to development of the 
skills highlighted in the number core).  

Implications 
The vignettes provide examples of how teachers who have had PD explicitly focused on early 

number were able to provide activities and materials, and respond to children’s engagement in these 
activities, materials, and play in order to support early number development. In interviews and 
classroom discussion about the PD, each of these teachers shared that they would not have attended 
to math in these ways without the PD. The purpose of the above is not to argue for the effectiveness 
of the particular PD but to see the possibilities of early number engagement when teachers are 
supported to develop the skills for these interactions. Many of our prospective teachers do not have 
this opportunity because the constraints of programs are such that mathematics methods courses are 
intended to cover a broad grade band and the early counting is often left out. Without more research 
in mathematics teacher education journals on the practices that support early math and the content 
knowledge required, our future early childhood teachers will not be able to engage in these kinds of 
interactions and the children in their classrooms will not interact with the math thinking that research 
shows is important.  
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In this paper, we describe teachers’ learning of an instructional practice related to launching a 
cognitively demanding task. Using a multi-case study design, we analyze eight teachers’ 
participation in a rehearsal of the instructional practice in professional development and the ways 
these teachers enacted this practice in their classroom instruction. Our findings suggest that what 
teachers attended to in their rehearsal related to their classroom practice and the degree to which 
the cognitive demands of the task were maintained. 

Keywords: Teacher Education-Inservice  

Introduction 
As a model of teaching, student-centered mathematics instruction supports students in engaging 

in tasks that build conceptual understandings, communicating and evaluating mathematical 
reasoning, and making connections among mathematical concepts. Such instruction has been shown 
to lead to increased student learning (Fennema et al., 1996; Boaler & Staples, 2008) and may address 
issues of equitable instruction for traditionally marginalized students (Myers, 2014). Though a 
consensus among researchers suggests that expert teaching involves understanding and using 
students’ thinking to guide instruction (Bransford, Brown, & Cocking, 2000; Darling-Hammond, 
2008; Kilpatrick, Swafford, & Findell, 2001), mathematics teaching in the US remains largely 
teacher directed, focused on procedures, and marked with few opportunities for intellectual 
engagement (Stigler & Hiebert, 2004; Wiess et al., 2003).  

Professional development (PD) that relates new learning to teachers’ practice can influence their 
instructional strategies (Darling-Hammond et al., 2009; Goldsmith, Doerr, & Lewis, 2013), yet many 
teachers have difficulties implementing new instructional strategies in their teaching. In PD, 
mathematics teacher educators (MTEs) have found that guiding frameworks for instructional 
practices are often insufficient to support teachers in enacting new practices in their classrooms 
(Boston & Smith, 2009; Munter, 2014). Recently, work around rehearsal in pre-service teacher 
education is showing promise as an approach for assisting novice teachers in learning and enacting 
student-centered instructional practices (Lampert et al., 2013). Our research adopts rehearsal as a 
pedagogy for supporting teacher learning of new instructional practices for a PD setting. In this 
paper, we aim to describe the ways a group of practicing secondary mathematics teachers attended to 
instructional moves for one student-centered instructional practice through rehearsal in PD. 
Specifically, our research is guided by the question: in what ways does teachers’ participation in 
rehearsal of an instructional practice in PD relate to their enactment of the practice in their 
classrooms? 

Background 
A critical foundation for student-centered mathematics instruction is students’ engagement with 

cognitively demanding mathematics tasks. Stein, Grover, and Henningson (1996) described the 
cognitive demands of a mathematics task as “the kind of thinking processes entailed in solving the 
task” (p. 461) and offered a framework for categorizing tasks as low and high cognitive demand. 
Their research showed that though teachers may begin instruction with a cognitively demanding task, 
the demands of the task often decline during implementation. Stein and Lane (1996) reported that the 
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greatest gains in student learning occurred in classrooms where cognitively demanding tasks were 
implemented and maintained during instruction.  

MTEs have developed frameworks for assisting teachers in maintaining the cognitive demands of 
tasks (e.g. Smith, Bill, & Hughes, 2008; Smith & Stein, 2011). Recently, Jackson and colleagues’ 
(2013) investigated the relationship between task setup at the beginning of a lesson and the quality of 
the culminating discussion. They identified four factors that related to its implementation which were 
the degree to which: key contextual features were made salient; key mathematical concepts were 
highlighted and examined; a common language that supported contextual and mathematical elements 
of the task was developed; and the mathematical integrity of the task was maintained. We consider 
the practice of launching cognitively demanding tasks as paramount to teachers success in 
maintaining the cognitive demands of a task. 

Theoretical Perspectives 
We conceptualize PD as a boundary encounter (Sztajn et al., 2014; Wenger, 1998) where both 

the teaching and MTE communities bring distinct practices and identities. In a boundary encounter, 
teachers and MTEs come together to exchange knowledge by interacting around representations of 
knowledge that carry meaning in both communities called boundary objects. Members from differing 
communities introduce, negotiate, and integrate elements of their own practice as they interact and 
make new meanings of the boundary object together. From this perspective, teacher learning is taken 
as changes in their participation in the boundary encounter and the presence of new aspects of 
practice in their classroom teaching. 

In PD, MTEs design professional learning tasks (PLTs) to facilitate participation around 
boundary objects (Edgington et al., 2015). Grossman and colleagues (2009) characterized PLTs as 
representations, decompositions, and approximations of practice. Representations, such as video or 
model lessons, refer to the ways MTEs make visible particular aspects of teaching. Decompositions 
refer to partitioning practice for in depth study, such as introducing a lesson or responding to 
students’ thinking. Approximations of practice refer to opportunities for novices to engage in a 
particular practice, such as analyzing written work. Rehearsal is a particular kind of approximation of 
practice that supports novices by providing opportunities to learn about, practice, and reflect upon 
important aspects of practice while receiving in-the-moment feedback. Emerging research on the use 
of rehearsal has demonstrated its effectiveness in supporting teacher candidates in enacting particular 
instructional practices (Lampert et al., 2013;Tyminski, Zambak, Drake, & Land, 2014). 

Building from this research, we design learning opportunities around boundary objects for 
instructional practices in our work in PD. We use a sequence of PLTs that begins with a 
representation of practice (e.g. experiencing a model lesson) followed by a decomposition of a 
particular aspect of that representation (e.g. debriefing the facilitation of a task). Next, we design a 
PLT that allows teachers to approximate the specific practice (e.g. rehearsing that practice with 
peers). One such PLT is a rehearsal. In our work, rehearsals have three interrelated components: 
teachers rehearse a particular instructional practice with their peers; receive in-the-moment feedback 
to support learning the practice; and reflect on their rehearsing and observations. 

Methods 
Our multi-case study investigates how teachers’ participation in rehearsal relates to their 

classroom enactment of one student-centered instructional practice – launching cognitively 
demanding mathematics tasks. Case study research is useful for understanding a phenomenon 
bounded by a particular context and aims for its detailed description (Stake, 1995). To answer our 
research question, we first examined case teachers’ participation in rehearsals and subsequent 
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enactment in their classrooms. Next, we conducted a cross-case analysis to identify trends across 
case teachers rehearsals and enactments of launching cognitively demanding tasks. 

Context and Participants 
Our study is part of a multiyear PD and research project investigating secondary mathematics 

teachers’ learning of student-centered instructional practices. The 108-hour PD was designed for a 
10-month period, beginning with a 60-hour summer institute followed by 20 hours of face-to-face 
meetings and 28 hours of online work throughout the school year. In the summer institute, we shared 
several research-based frameworks for instructional practices that served as boundary objects through 
sequences of PLTs described above. As a part of the school year meetings, teachers were asked to 
plan and teach several student-centered lessons in their classrooms. This study focuses on teachers’ 
learning the practice of launching cognitively demanding tasks.   

Building from Jackson et al.’s (2013) four factors, we articulated a framework for the practice of 
launching cognitively demanding tasks. For us, the purpose of the practice is to ensure that students 
understand the mathematical goal of the task and can engage productively when the task is 
implemented without lowering its cognitive demands. The framework describes five instructional 
moves for launching: allowing think time (TT); checking for understanding (CU); addressing barriers 
for engagements (AB); sharing approaches (SA); and ensuring students can begin the task (BT). 
Allowing time for students to think about what the task is and what mathematical approaches they 
might take enables students to formulate a plan and identify additional information or questions they 
may have. Prompting students to share their interpretations of the problem ensures that students 
understand the task’s mathematical goal. Addressing barriers provides an opportunity to resolve 
issues that may prevent students from engaging with the mathematics of the task during 
implementation, such as contextual questions, uncertainties about terminology, or mathematical skills 
not directly related to the goal of the task. Sharing approaches encourages multiple strategies and 
representations to be made public and allows students who may not have an approach to hear other’s 
ideas. Ensuring that students can begin the task gauges whether enough students are confident about 
their approaches for the class to productively and collectively engage. 

In the summer institute, each teacher completed one rehearsal to approximate launching. For 
each, three participants simulated “students” based on profile cards that outlined particular 
understandings, strategies, or barriers to engagement. One participant served as “teacher” and 
rehearsed launching the task. A MTE served as facilitator and provided in-the-moment feedback to 
the teacher while they rehearsed. Upon conclusion of each teacher’s rehearsal, all participants 
reflected on what they learned by rehearsing and observing. During the school year, participants 
planned and taught student-centered lessons in their classrooms. These enactments served as a basis 
for continued reflection and discussion during the school year PD meetings. 

Seventeen teachers from four suburban and rural school districts in the Southeastern United 
States volunteered and received a stipend for participation in the PD. Of the twelve teachers 
completing the PD, ten completed the activities used for this research, with eight teaching tasks of 
high cognitive demand. These eight teachers served as cases for this study.  

Data Sources and Analysis 
Data consisted of transcribed video recordings of the rehearsals and classroom enactments and 

written reflections following the rehearsals. We specified our unit of analysis as a teacher’s talk turns 
in the transcripts and their written responses to reflection prompts. For the within-case analysis, we 
first coded each of these units in relation to the boundary object (TT, CU, BA, SA, and GS) to 
identify moves from the launching framework. Four researchers collaboratively coded the units for 
one of the eight case teachers, discussed discrepancies, clarified code definitions, and reached 
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consensus. The remaining cases were double coded independently by members of the research team 
who then met and resolved discrepancies. This procedure allowed us to characterize each teacher’s 
participation in the rehearsal in relation to classroom enactment. 

For the cross-case analysis, we first used constant comparative methods (Strauss & Corbin, 1998) 
to identify noticeable trends relating teachers’ participation in the rehearsal with their enactments. 
Next, we used a subset of the Instructional Quality Assessment (IQA) rubrics (Junker et al., 2006) 
related to Academic Rigor to determine the quality of the instructional task (AR1) and its 
implementation (AR2). After reaching agreement on three classroom videos with the IQA rubrics 
(IRR 88%), we used the IQA to rate the remaining lessons. To assess whether the cognitive demands 
of the task were maintained in the lessons, identical scores on AR1 and AR2 were taken to indicate 
that the cognitive demands of the task were maintained; a decreased in scores indicated a decline. 
Together, these two approaches allowed us to understand the relationships across teachers’ 
participation in the rehearsal, their enactments in classrooms, and the maintenance of the cognitive 
demands upon task implementation. 

Findings 
Our cross-case analysis identified three trends in teachers’ launches of cognitively demanding 

tasks. During rehearsal, teachers’ launches varied in attention from addressing barriers to 
engagement to ensuring students’ understanding. This variation corresponded to the degree to which 
their classroom launch attended to students’ thinking and the degree to which the cognitive demands 
of the task were maintained. Instructional moves made in each teacher’s rehearsal and enactment, 
and the maintenance of cognitive demands are summarized in Table 1.  

Table 1. Instructional moves and related maintenance of cognitive demands. 
Rehearsal  Classroom Enactment 

Case TT CU AB SA BT TT CU AB SA BT Cog. 
Demand 

Eli  X X X X X X X X X Declined 
Mia  X X  X X X X  X Declined 
Cal X X X X X X X X  X Declined 
Tea  X X X  X X X X X Maintained 
Pat X X X   X X X X X Maintained 

Ema  X X X X X X X X X Maintained 
Amy   X   X X X X X Maintained 
Ann  X X   X X X  X Maintained 

Removing Barriers 
Cal, Eli, and Mia used a variety of the instructional moves from the launching framework during 

rehearsal. Though they demonstrated the ability to use the moves as a tool to support them in 
launching, their launches had a marked emphasis on addressing barriers of context and language. 
During rehearsal and feedback, teachers’ focus on barriers prevented them from the ultimate goal of 
launching– ensuring student understanding so that students may begin the task productively. 
Similarly, their reflections centralized the importance of addressing barriers without attention to the 
overarching goal of launching. For example, Eli began his rehearsal with the question, “Are there any 
words you do not understand?” He continued to focus on seeking out contextual and language 
barriers throughout his rehearsal despite feedback that encouraged him to move forward. The 
facilitator attempted to redirect Eli to move beyond barriers by saying, “So let’s assume that issue is 
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resolved and move on from there.” He persisted with moves to clarify context through the end of the 
rehearsal. In his reflection, Eli stated, “What do you do when the issues don’t go away? Redirect 
them with another question?” His primary focus on removing barriers overshadowed the ultimate 
goal of ensuring understanding and allowing students to engage with the task.  

In their classroom enactments, Cal, Eli, and Mia demonstrated most of the launching moves. 
They proactively sought to resolve ambiguous features they anticipated would prevent students from 
making progress on the task. Though they were successful in addressing contextual and language 
barriers, this preemptive approach directed students’ attention toward the mathematics central to the 
task, endorsed particular strategies, or supplied particular mathematical tools that resulted in a clear 
path for students to take to solve the problem. Additionally, in all three of these cases, the cognitive 
demands of their task declined. For example, Cal’s lesson was organized around a task about landing 
an airplane with a goal of using trigonometric ratios to solve problems. Prior to introducing the task 
to his students, he discussed the context of plane flight and drew students’ attention to mathematical 
features important to the task. 

C: So what do you think as a pilot flying a plane or making a landing – what kind of math is 
going through a pilots head or should he be thinking about? 

S1: A lot. The angle that the plane has to – the angle that you have to have the plane at when 
you’re landing it. 

C: The boy mentioned angles. What have we been talking about for 7 days? [S: Angles] Great. 
What else? 

S2: Triangles. 
C: How does a triangle work when you’re flying a plane? How would it relate to flying a plane? 

How would it relate to flying a plane? 
S2: Cause you’re using the degrees. 
C: Okay. Degrees. 
S3: How high it goes? 
C: Alright. How high you’re going. 
S4: How fast you gotta be going. 
C: Speed. Okay, what else? 
S5: How far you have until you gotta be up in the air. 
C: Okay. So we’ve heard angles, triangles, speed, height. Okay. When you get this, keep your 

pencils down. Take a few seconds to read over it. Read over this, see what questions you 
might have after you read it. 

In his attempt to contextualize the task prior to introducing it, Cal’s attention to barriers he 
anticipated included the mathematical ideas central to his learning goals. His launching moves 
directed students towards a specific approach without allowing them the opportunity to consider 
other possibilities. During implementation, his students used triangles and trigonometric ratios as 
discussed in the launch to solve the task. The lack of ambiguity along with teacher-endorsed 
mathematical strategies led to a clear path for students to solve the task.  

Though the rehearsal provided opportunities for them to try most of the launching moves, there 
was a marked emphasis on addressing contextual and language barriers. In their classrooms, their 
launching practice removed the ambiguities of the task that they anticipated and supplied students 
with the key mathematical concepts needed for the task. We infer that their focused attention toward 
removing barriers to engagement and supporting students in accomplishing the task successfully 
related to the lowering the task’s demands. 
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Emphasizing Understanding 
Ema, Pat, and Tea also demonstrated many instructional moves from the launching framework 

during the rehearsal, but their participation differed in significant ways. Their rehearsals centralized 
the importance of ensuring students’ understanding by integrating requests to re-voice the problem 
with responses to contextual or language difficulties that emerged. In their reflections, they noted the 
importance of students understanding the problem, addressing barriers, and making sure students 
could begin the task. For example in Ema’s rehearsal, the first five questions she posed focused on 
ascertaining whether the “students” understood the problem. When a contextual barrier emerged 
from this questioning, Ema paused and the facilitator questioned her thinking. She responded, “in my 
head, I’m thinking I have to go back to what the problem is, but it was a good time to go ahead and 
get that [context barrier] out of the way.” In her reflection, she noted the struggle of ensuring 
understanding while not overemphasizing aspects that were peripheral to the mathematical goal of 
the task in a timely manner. 

In their classroom enactments, Ema, Pat, and Tea used all of the launching moves. Their 
emphasis on ensuring student understanding in the rehearsal led to moves that elicited and responded 
to their students’ thinking about the task as it arose in the launch discussion. They worked to refine 
students’ understanding of the task through questions like, “in your own words, what is the problem 
asking us to do?”, clarifying terminology and contextual information, sharing different ideas about 
how to approach the task, and checking to make sure that students felt confident to begin working on 
the task. As an example, Pat began her lesson by allowing students time to think and discuss the 
problem. While listening to this discussion, she noted different students’ questions and then 
strategically introduced them to the whole class. 

P: Okay, I was asked a couple of good questions so I want to make sure that everybody hears 
the answers to them. Roman, will you ask your question first? 

S1: Do you have to find out how much, how many toothpicks it takes to build all of the figures 
combined or just 1 individual? 

P: Okay, do you all understand what Roman’s question is? 
S2: Yea, like the 8th or all of the 8 together. 
P: So he is asking, are you trying to find the number of toothpicks in general for just the 8th or 

the 8th, the 7th, the 6th… the 2nd, and the 1st all together. Which one do you think that we’re 
trying to find? 

Ss: [multiple responses aloud] “The 8th,” “all of them”, etc. 
P: Just the 8th? [multiple responses aloud, “No,” “Yea”] So from the… let’s come to a consensus 

of what we think overall. I’ve heard a lot of people say just the 8th. Which one do you think 
would make more sense? When you’re normally trying, would you be finding, if you’re 
trying to find your square, do you really care about all of the squares that came before it? 
[Students “no!”] Or just the specific square? 

S3: Just the specific square. 
P: Just the specific square. So let’s go with the assumption that we’re only trying to find that 

specific square. Ok Zack, what was your question? 

Pat’s launch continued by introducing other questions for whole class discussion, addressing 
contextual barriers as they arose, and ensuring that one member from each small group was confident 
to begin.  Her integrated use of the launching moves suggests her attention to ensuring students 
understood the problem so that they could productively engage with the task.  

The rehearsal provided opportunities to use the launching moves with a goal of ensuring 
understanding. In their classroom enactments, they addressed context and language barriers as they 
arose in discussion, had students share a variety of strategies for approaching the task, and verified 
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that students could engage with the task. We infer that their attention toward ensuring students could 
engage with the mathematics of the task by eliciting and responding to students’ ideas supported the 
maintenance of the cognitive demands of the task. 

Removing Barriers to Emphasizing Understanding  
Amy and Ann did not demonstrate many of launching moves during the rehearsal. Similar to Cal, 

Eli, and Mia, they focused almost exclusively on addressing barriers of context and language. Yet in 
their reflections, both noted the importance of not leading students through a launch and to leave the 
essential mathematical question open for students to resolve. In Ann’s self-reflection, she stated that 
she learned, “how difficult it is to not directly lead the student to the solution.” Similarly, Amy’s 
reflection emphasized the difficulty of addressing “student misconceptions without leading their 
thinking too far into the task.”  

In their classroom enactments, Amy and Ann used most of launching moves to both respond to 
students’ thinking as well as highlight anticipated barriers related to context and language. They 
provided time for students to think about the problem, probed to ensure students’ understanding, and 
verified that all students could begin the task. Amy prompted students to publically share the 
approach they were going to use for the task.  

For Amy and Ann, their attention when launching shifted from addressing barriers in rehearsal to 
emphasizing students’ understanding in enactment. The rehearsal provided opportunities to reflect on 
the importance of listening and responding to students rather than leading to a particular approach. 
Their rehearsal was similar to Cal, Eli, and Mia – both teachers responded to students’ thinking as 
well as highlighted anticipated barriers related to context and language. However, their enactments 
were more like Ema, Pat, and Tea. Their launches allowed students to engage with the mathematics 
of the task and maintained its cognitive demands. 

Discussion 
Our findings describe three ways secondary mathematics teachers participated in rehearsal of 

launching cognitively demanding tasks, enacting the practice in their classrooms, and whether the 
practice maintained the cognitive demands of the task. For teachers focused on removing barriers 
during their launches, their participation in the rehearsal related to instructional moves that lowered 
the cognitive demands in their lessons. For others focused on ensuring students’ understanding, their 
participation led to a use of the framework in ways that maintained the demand. For Amy and Ann, 
participation in the rehearsal sensitized them to the importance of attending to students’ thinking and 
led to launches that maintained task demands.  

Our findings suggest that rehearsals are a viable pedagogy for MTEs to address the “problem of 
enactment.” Opportunities for teachers to rehearse, receive feedback, and reflect on instructional 
practice may assist them in enacting the practice with students. Our results underscore the importance 
of clearly communicating both the moves and the purpose of a particular instructional strategy in PD. 
We urge PD designers and facilitators using rehearsals to carefully consider how they communicate 
the purpose of an instructional practice and align feedback and reflection opportunities with this 
purpose. 
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This study examined pre-service elementary teachers’ change in their understanding of fraction 
operations while taking a mathematics methods course. Specifically, their explanations and 
justifications for common algorithms for multiplication and division of fractions were coded using an 
existing framework (SOLO; Biggs, 1999) for the assessment of understanding. Results indicated that 
most students made improvement in terms of their level of understanding around fraction algorithms. 
Implications for mathematics teacher educators are discussed.  

Keywords: Elementary School Education; Teacher Education-Preservice; Mathematical Knowledge 
for Teaching; Reasoning and Proof 

Currently, the amount of conceptual understanding pre-service elementary teachers hold around 
common algorithms is weak (Ball & Bass, 2002; Simon, 1993); however, a push for conceptual 
understanding is being deemed necessary for all students (CCSSO, 2010; NCTM, 2000; Stylianides, 
Stylianides, & Philippou, 2007). This means that pre-service elementary teachers need to hold a 
deeper understanding of common algorithms if their own elementary students are expected to 
understand the meaning behind each algorithm (Ball & Bass, 2002; Ball, Thames, & Phelps, 2008). 
Although previous studies have focused on elementary teachers’ conceptual understandings (Simon 
& Blume, 1996; Yackel & Cobb, 1996) more work is needed around fraction algorithm 
understanding and how teachers justify those algorithms for their students. The current study aims to 
begin to fill that void.  

The purpose of the study was to examine how pre-service elementary teachers provide 
explanation and justification for algorithms around fraction operations. Specifically, the two research 
questions were:  (1) What are pre-service elementary teachers’ levels of understanding of algorithms 
for the multiplication and division of fractions before and after experiencing instruction focused on 
fractions in a mathematics methods course?; and (2) How do pre-service elementary teachers change 
in their level of understanding of the algorithms?  

Theoretical Framework and Related Literature 
This study draws on the work of Skemp (1976) who defined the ideas of relational versus 

instrumental understanding. According to Skemp (1976), relational understanding is equivalent to 
conceptual understanding such that it is knowing why something happens, whereas instrumental 
understanding is similar to procedural understanding such that it is taking a rule and using it without 
understanding. In the past twenty years, there has been much attention to developing relational 
understanding in pre-service teachers (e.g., Ball, 1990; Ball & Bass, 2002; Simon, 1993;). 
Researchers have noted the specialized content knowledge that is specific to the work of teaching 
(Ball, Thames, & Phelps, 2008) and have emphasized that in order for teachers to be able to answer 
students’ questions of “why,” they must have a more robust relational understanding than that of 
their students.  

One such study, performed by Eisenhart et al. (1993), followed Ms. Daniels, a student teacher 
who tried explaining the “invert and multiply” rule to a student in her class and abandoned the 
explanation midway through when she realized the example she was using pertained to 
multiplication, not division. Another study, performed by Ball (1990), gave the example of Allen, an 
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elementary education major who also struggled with the “invert and multiply” rule for division of 
fractions and could not generate an example that did not reference multiplication. Much of the 
challenge for our work as mathematics teacher educators is to prepare pre-service teachers to answer 
these types of questions effectively and not give the reasoning “because it’s the rule”. To do so 
requires the development of a deep conceptual understanding of the mathematics for pre-service 
teachers.  

To measure understanding in mathematics, researchers have typically used open-ended 
assessments and interviews that then must be analyzed. One analysis tool, and the tool used in this 
study, is the Structure of the Observed Learning Outcome Taxonomy (SOLO; Biggs, 1999) as 
displayed in Figure 1. The nature of the SOLO Taxonomy is one such that student learning is 
examined as they move from a lower level of understanding to a higher, more abstract, level of 
understanding. As students progress through the levels, they retain the traits from the previous level; 
in other words, each level builds on the previous. According to a study performed by Ball (1990), 
pre-service teachers’ mathematical understandings typically are found to be at the Unistructural level 
where they are simply reciting algorithms in their explanations to students. 

 

 
Figure 1: SOLO Taxonomy(Biggs, 1999, p. 67) 

With the continued emphasis on conceptual understanding in documents such as the National 
Research Council’s Adding it Up (2001) and in the Common Core State Standards for Mathematics 
(2010), there is a need to better understand pre-service teachers’ conceptual understanding so we can 
better prepare them for their future work. Furthermore, historically, fractions have been difficult for 
both children and adults in the United States (Lamon, 2005). This speaks to the need for further 
research focused on fraction operations and namely pre-service teachers’ understanding of them, as is 
in the case in the current study.  

Methods 

Participants 
The participants in this study were forty-eight juniors in an elementary education program who 

were enrolled in a mathematics methods course, the second in a two-course sequence and focused on 
multiplicative reasoning in grades 3-5. Data was collected from two sections of this course, which 
were taught by a total of four instructors, two teaching one section and the other two teaching the 
other section. All lessons were created as collaboration between the four instructors; therefore, all 
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students experienced the same tasks and activities during the class sessions. Of the students enrolled 
in the methods course, 96% had taken one or two Calculus courses, either in high school or at the 
college level, or they had taken Calculus for Elementary Teachers, which focuses on a conceptual 
understanding of Calculus-related topics. The mathematical background of these students is 
important to note because the focus of this paper is on the pre-service teachers’ conceptual 
understanding and level of justification they can provide to students. One can see from the level of 
mathematics achieved by these students that they have experienced the content they will be expected 
to teach; however, they may or may not be able to explain the ideas conceptually. 

Intervention 
After the pre-service teachers completed the pre-assessment, they participated in a five-week unit 

of instruction during which they learned about algorithms for fraction operations and also had 
opportunities to examine student work. Examples of tasks completed during the instruction period 
are shown in Figures 2 and 3.  

 

 
Figure 2: Misconceptions with Fraction Multiplication. Adapted from Sybilla Beckman 

“Mathematics for Elementary Teachers” fourth edition. 

 

 
Figure 3: Building Towards the Fraction Division Algorithm. 
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The activities were selected to build pre-service teachers’ conceptual knowledge of fraction-
based algorithms as well as their ability to recognize common student errors relating to fraction 
multiplication and division. Class readings were also given to help further pre-service teachers’ 
understanding related to the given topics. 

Measure 
Before and after the instructional sequence, participants were asked to complete an assessment 

(see Figures 4 and 5) related to algorithms for fraction multiplication and division. Prior to 
instruction, the participants had not worked with multiplication and division of fractions in either of 
their methods courses. 

 

 
Figure 4: Questions 1 & 2 from Pre/Post Assessment regarding fraction multiplication. 

 

 
Figure 5: Questions 3 & 4 from Pre/Post Assessment regarding fraction division. 

Analysis 
Answers were coded according to the levels of the SOLO taxonomy with numbers from 0 to 4 

assigned to each of the levels, with Preoperational being a 0 and Extended Abstract being a 4. Two 
independent raters coded 25% of the pre- and post-assessments in order to check for inter-rater 
consistency. 98% of the two raters' codes were either exact matches or within one scale point of each 
other (with 76% exact match agreement). Table 1 provides an example for each level in the SOLO 
taxonomy as well as a justification for the assigned code. 

Beyond the example in Table 1, we now provide a general overview of the coding scheme. 
Responses coded as the Prestructural level meant the pre-service teacher misinterpreted the question 
or did not provide an answer. The Unistructural level meant the pre-service teacher did not explain, 
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but instead recited the algorithm to the student as a means of justification. In terms of examining 
student work, they identified something was wrong, but could not pinpoint exactly where the mistake 
was occurring. The Multistructural level meant the pre-service teacher recited the algorithm, but gave 
a further justification for the specific example; however, the justification was not complete or was 

Table 1: Examples of Student Responses for each Level. 
SOLO 

Taxonomy 
Level 

Example of Student Response Justification 
for SOLO Level 

Preoperatio
nal (0) 

 

Incorrectly 
answered the 
problem. 

Unistructur
al (1) 

 

Recited the rule 
of turning the 
mixed numbers into 
improper fractions. 

Multistructu
ral (2) 

 

Recited the 
rule, but began to 
display signs of 
conceptual 
understanding in 
the reasoning of 
estimating the 
answer. 

Relational 
(3) 

 

Understood the 
numbers were not 
fully decomposed 
and wanted to teach 
Henry how to view 
the problem in 
terms of an area 
(array) model.  

Extended 
Abstract (4) 

N/A – an example might include generalizing the 
problem to that which includes variables instead of 
numbers. 

No examples of 
student work 
provided. 

 
incorrect. In terms of examining student work, the pre-service teacher described what had been done 
and identified the student’s mistake. Within the Relational level, the pre-service teacher provided an 
explanation in which the idea was fully explained conceptually in terms of the specific example. In 
regards to examining student work, they correctly identified the problem and explained what it meant 
in terms of the particular example. Finally, the highest level of justification was the Extended 
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Abstract in which the pre-service teacher gave a generalized proof in terms of variables, and 
explained the student’s method in terms of a generalized approach.  

Results 
For question #1 on the assessment, the average score was a 0.50 on the pre-assessment and a .96 

on the post-assessment (change of 0.46) on a scale of 0-4. Question #2, resulted in a 0.63 for the pre-
assessment and a 1.15 for the post-assessment (change of 0.52) on a scale of 0-4. Question #3 
resulted in a 0.40 for the pre-assessment and a 0.77 for the post-assessment (change of 0.37) on a 
scale of 0-4. Question #4 resulted in a 0.71 for the pre-assessment and a 1.46 for the post-assessment 
(change of 0.75) on a scale of 0-4. A total score for the entire pre-assessment was .56 and a 1.08 for 
the post-assessment. A paired t-test was performed for each question with 95% confidence, and all 
questions showed statistically significant improvement from pre to post assessment (all p-values < 
.05). A breakdown of the count of students for each level and question for the pre and post 
assessment is shown in Table 2: 

Table 2: Count of Students in each Level and Question. 
SOLO Taxonomy 

Level 
Question #1 Question 

#2 
Question 

#3 
Question 

#4 
 P

re 
Post P

re 
Post P

re 
Post P

re 
Po

st 
Preoperational (0) 3

4 
20 1

9 
13 3

0 
28 2

5 
19 

Unistructural (1) 7 13 2
8 

19 1
7 

9 1
7 

7 

Multistructural (2) 4 12 1 12 1 5 1 3 
Relational (3) 3 3 0 4 0 6 5 19 
Extended Abstract 

(4) 
0 0 0 0 0 0 0 0 

  
As one can see from Table 2, no student was classified as Extended Abstract. This may have 

been because the course did not focus on formal proof and the questions were worded in such a way 
that they did not suggest giving a formal proof. Before instruction, students typically fell between 
Preoperational and Unistructural. In other words, pre-service teachers either did not know how to 
explain the problem to the student or they just simply recited the algorithm. After instruction, most 
students were between Unistructural and Multistructural; therefore, many students were still reciting 
an algorithm, but several were also making sense of the algorithm conceptually. The most 
improvement occurred on question #4 regarding Abby’s invented solution to dividing fractions. 
Many students on the post-assessment recognized the answer of was not correct because the 

leftover  piece referred to a whole of 1 and not a whole of . Therefore, the leftover  piece was 

actually  of the whole of .  

Discussion 
In terms of the course, the students were not asked to work formal proofs, but instead use an 

example to explain a rule in mathematics; therefore, it was expected that no student would fall in the 
extended abstract category. Second, the questions were given to the student in terms of a particular 
example and they were asked to explain to the student why the algorithm worked. There might have 
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been students who fell into the Extended Abstract category if the questions were reworded more 
generally, such as: “explain why the algorithm for multiplying fractions works”.  

Additionally, the results found from the study hold true with the study performed by Ball (1990), 
such that prospective teachers’ “notions of mathematical explanation seemed to mean restating rules” 
(p. 138). Although there was a positive increase in levels, work needs to be done to better develop 
pre-service teachers’ conceptual understanding. Finally, some of the increase in scores may have 
been attributed to fraction division being discussed during the same day of the post-assessment due to 
time restraints in the course. If the study were performed again, a period of time should be given 
between the instruction and the post-assessment to check for continued understanding beyond the day 
of instruction.  . 

Elementary teachers need to have a deep understanding of the material in order to “handle certain 
mathematical issues that may arise in the classroom and recognize rudimentary versions of 
mathematical [proof] in their students’ arguments” (Stylianides et al., 2007, p. 148).  By 
strengthening pre-service teachers’ conceptual knowledge of mathematics and helping them form 
solid justifications as to why procedures work, the difficulties secondary students face when they are 
abruptly introduced to proof in the upper grades may be diminished (Stylianides, 2007).  Therefore, 
in order to improve our education system, we need to improve teachers’ knowledge of mathematical 
content as well as their overall concept of justification (Ball & Bass, 2002; Toluk-Uçar, 2009). The 
ways in which this can be achieved were highlighted throughout this paper such as: providing more 
courses in explanation and justification, spending more time on difficult topics, explaining in detail 
why algorithms work, and providing examples of teachers who teach conceptually through videos or 
classroom observations. Additionally, more courses involving various elementary mathematics topics 
are needed to improve pre-service teachers’ conceptual understanding. 

This paper only touched upon instruction given to students for a fraction-related unit. More 
research needs to be done to see how students provide justification for other mathematical 
algorithms, not just for fractions. Also, further research is needed to investigate whether higher-level 
mathematics courses are a factor in pre-service teachers’ ability to justify solutions to students or if 
there are other factors involved. Finally, interviews of students who performed at the Relational level 
would be beneficial to see if those students could move into the Extended Abstract level with more 
time and guidance. Overall, instruction in this study was successful in helping to improve students’ 
scores between levels of the SOLO taxonomy. Therefore, instruction seems to be one stepping stone 
in helping pre-service teachers in their endeavor to become proficient in explanation and 
justification.  
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In this mixed methods study, we use positioning theory to analyze teachers’ professional discussions 
about students’ mathematical work over the course of 60 hours of professional development focusing 
on a learning trajectory. After identifying a category of speech actions that suggested student 
learning is limited by their age or grade level, a quantitative investigation revealed that teachers’ 
discussions grew to include elements of the learning trajectory over time. A subsequent qualitative 
analysis revealed changes in the structure of these discussions, where teachers came to recognize 
and use students’ prior experiences in instruction, and student learning was more influenced by prior 
experiences than their age or grade level. 

Keywords: Learning Trajectories (or Progressions); Teacher Education-Inservice (Professional 
Development) 

Introduction 
Teachers’ professional conversations about students often focus on what students cannot do 

(Franke & Kazemi, 2004) and take evaluative perspectives (Visnovska, Zhao, & Cobb, 2006). Such a 
focus may lead to limited expectations of students (Rosenthal & Jacob, 1968). In this mixed methods 
study, we examine teachers’ discourse in a professional development setting to consider the ways 
their learning of a framework for students’ mathematical thinking can foster changes in their 
discourse. We use positioning theory (van Langenhove & Harré, 1999) to frame an analysis of 60 
hours of professional development discussions among 22 elementary teachers and examine how 
certain discourse patterns related to students’ ages or grade levels changed during the yearlong 
professional development. Specifically, our research answers the question: In what ways does 
teacher learning of a mathematics learning trajectory relate to changes In their discursive patterns 
about students as mathematics learners ,and themselves as mathematics teachers, I na professional 
development setting? 

Background and Theoretical Framework 
Professional development (PD) based on students’ thinking results in changes in teachers’ 

discourse (Horn, 2007; Kazemi& Franke, 2004). As teachers learn details of students’ mathematical 
strategies, their discussions shift from a focus on students’ struggles to more nuanced discussions that 
attend to students’ strategies and levels of sophistication in students’ mathematical thinking 
(Kazemi& Franke, 2004). Teachers’ use of more refined language to describe the complexities of 
student mathematics supports teachers in incorporating student thinking into their model of practice 
(Horn, 2007). Some researchers have explicitly used student thinking to structure the discourse in a 
professional development program. For example, Battey and Chan (2010) worked to counteract 
metanarratives about race and mathematics learning by drawing teachers’ attention to student 
thinking and what students can do—as opposed to what they cannot do. A focus on student thinking 
led to changes in teachers’ discourse about students as they began to base their claims about students 
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in evidence of students as mathematical thinkers instead of assumptions formed by other 
characteristics. 

van Langenhove and Harré (1999) proposed positioning theory as an approach to understanding 
how psychological phenomena are constructed through social interactions in conversations. In 
contrast to the “roles” people take in interaction which may be static and limiting, positions in 
conversations are dynamic, negotiated in the moment, and may be accepted or contested. They argue 
that conversations can be understood through an examination of three mutually constitutive 
constructs called positioning-triads: the intention of a speech action (speech acts), positions, and 
storylines. Whereas speech actions are the actual words that one says, speech acts are the meanings 
intended by the speaker and are taken up in conversation. Speech acts in conversations tend to follow 
particular patterns called storylines, which refer to narratives that exist within a culture. Storylines 
provide a socially constructed image which participants in the conversation use to interpret each 
other’s actions and positions. Speech acts relative to a particular storyline lead to positions, or the 
ways these speech acts may be heard by other participants. Positioning can be interactive, where 
speech acts along with a particular storyline frame another person as competent/incompetent, 
powerful/powerless, etc., or reflexive, where a speech act frames one’s self in a particular away, such 
as unknowledgeable, skilled, agentic, etc. Together, speech acts, storylines, and positions describe a 
structure of conversations and provide a way to understand shared meaning in social interactions.  

Researchers in mathematics education have used positioning theory in a variety of ways, 
including studies of student interactions (e.g., Langer-Osuna, 2011) and classroom interactions 
(Herbel-Eisenmann and Wagner, 2010). Suh, Musselman, Herbel-Eisenmann, and Steel (2013) used 
positioning and storylines to study nine teachers’ talk in PD and revealed how teachers’ speech acts 
positioned students and themselves in relation to teaching and learning. They identified two 
particular storylines present in the PD discussions related to “low students.” First, teachers’ 
discussions followed an “institutional tracking” storyline, where students in less advanced 
mathematics tracks were unlikely to move to take advanced courses. Second, discussions followed an 
“individual maturation” storyline, where students’ lack of maturity prevented them from being 
successful in mathematics. In both storylines, students were positioned with characteristics that were 
beyond the teachers’ control, thus limiting teachers’ self-positioning as agents of change. They report 
that when teachers were introduced to a new storyline, they positioned students differently and 
themselves with more agency.  

Suh et al.’s (2013) work both demonstrates the utility of positioning theory to examine teacher 
discourse in PD as well as the possibility of changing discursive patterns about students through the 
introduction of new storylines. Our research aimed to understand the degree to which teacher 
learning about a learning trajectory (LT) affected the discursive patterns in PD. Specifically, we 
focused on speech actions, speech acts, storylines, and positions in teachers’ discussions about 
students’ mathematical work to understand the ways their learning of a LT affected their 
conceptualizations of students as learners and themselves as teachers. 

Methods 
Our study used an exploratory sequential mixed methods design to investigate the changes in 

teachers’ discursive patterns about students as mathematics learners (Teddlie & Tashakkori, 2009). 
We followed a two-phase approach. First, we investigated whether teachers’ learning of the LT 
affected their discussions of students’ mathematical thinking through a quantitative analysis of their 
speech actions. Next, we investigated qualitatively teachers’ discussions by examining changes in the 
speech acts, positioning, and storylines over time to understand the ways teachers’ discourse patterns 
incorporated the LT. 
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Context 
Our study is a part of the Learning Trajectory Based Instruction (LTBI) project, a multiyear PD 

and research project that investigated teacher learning of students’ mathematics LTs and an 
instructional model where LTs provide guidance for teachers’ instructional decisions (Sztajn et al., 
2012).LTs are mappings based on empirical research and represent the ways student thinking within 
a specific mathematical domain evolves over time (Daro, Corcoran, & Mosher, 2011). They outline 
the partial understandings, common alternative conceptions, and expected tendencies of how learning 
proceeds in relation to particular forms of instruction (Confrey 2009). 

In the first implementation of the PD, we shared Confrey’s (2012) equipartitioning LT with 
teachers and sought to understand how their learning of the LT affected the ways they conceptualized 
students as mathematics learners and themselves as mathematics teachers. The equipartitioning LT 
describes how students’ informal understandings of fair sharing might evolve to an understanding of 
partitive division, including students’ strategies and common errors related to fairly sharing 
collections, wholes, and multiple wholes to produce equal-sized groups or parts. The 60-hour PD was 
designed for a 12-month period, beginning with a 30-hour summer institute during which participants 
engaged in professional learning tasks (PLTs) that included video analysis of students’ working 
through mathematical tasks, videos of classroom instruction, and analysis of students’ written work. 
Throughout the year, teachers and researchers met monthly after school to discuss the 
implementation of instructional tasks with their students and refine their understanding of the LT. 
The PD ended with a two-day follow-up summer meeting.  

The research team partnered with one elementary school in a mid-sized suburban school 
district in the Southeastern United States. The school had approximately 600 students, 35% 
Caucasian, 29% Hispanic, 25% African American, 7% Asian, and 4% other; 54% of the children 
qualified for free or reduced lunch. Twenty-two K-5 teachers completed the project at years end.  

Data Collection and Analysis 
Data sources included video and audio recordings of teachers’ discussions while engaging in 21 

selected PLTs that focused teachers on students’ mathematical thinking. During the summer, teachers 
engaged with various practice-based artifacts to learn about students’ thinking of equipartitioning. 
During the school year meetings, teachers discussed various classroom-based activities aimed at 
eliciting and understanding their own students’ thinking. Recordings for these 21 PLTs, totaling 41 
video and 55 audio files, were transcribed.  

During the PD, patterns in teachers’ discussions about students’ mathematical work began to 
emerge, often attributing students’ lack of success to their grade level or age. Statements such as, “we 
don’t do that in third grade” or “he is low,” revealed some of the narratives about students as learners 
that were accepted and used in the group. We conceptualized these statements as categories of speech 
actions related to storylines that were used to position students as mathematics learners and 
themselves as mathematics teachers. Upon completion of the PD, we developed a codebook to 
identify these speech actions based on the field notes collected during implementation (Wilson, 
Edgington, Sztajn, & Decuir-Gunby, 2014). Four codes defined the categories and described 
teachers’ speech actions as suggesting student learning is dependent upon their: 
Ability/Achievement; Age/Grade; Effort; and Luck. In this paper, we focus exclusively on speech 
actions related to Age/Grade.  

Phase one. For the quantitative analysis, we specified the unit of analysis as a speech action. 
Four independent coders first identified speech actions related to Age/Grade (85% inter-rater 
reliability). To understand if learning the LT resulted in changes in their speech actions, the research 
team revisited the coded units for evidence from the LT. Evidence was taken to be both explicit use 
of LT terminology (e.g., direct reference to the LT structure, specific student strategies described 
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within the levels) as well as implicit where teachers used less formal language to describe ideas from 
the LT. In both cases, these units were assigned an additional code of LT, resulting in three variables: 
Age/Grade with LT, Age/Grade without LT, and total Age/Grade. Next, we organized the total 
speech actions within each of the 21 PLTs chronologically (see Table 1). We hypothesized that as the 
PD progressed, teachers’ speech actions would increasingly include references to the LT and thus 
subjected each variable with its associated time to Spearman rank-ordered correlation tests of 
significance. 

Phase two. To understand the ways and the extent to which teacher learning of the LT resulted in 
changes in speech acts, positioning, and storylines in the PD, we identified episodes in teachers 
discussions, that is segments of discussion around one idea that begins when a speech action is made 
and taken up by other participants in the discussion (Harré & van Langenhove’s, 1999). We then 
used a constant comparative method (Strauss & Corbin, 1998) to discern themes across all episodes, 
meeting regularly to discuss emerging patterns, deviations from those patterns, and reconcile them 
with the data. We considered the resulting themes as storylines teachers used to conceptualize 
students as mathematics learners and themselves as mathematics teachers. Next, we applied the 
positioning-triad as an analytic tool to the episodes to understand the ways, and extent to which, 
teacher learning of the LT resulted in changes in the storyline and positions across the PD. For each 
PLT, two members of the research team summarized the speech acts, teachers’ positioning of 
themselves and students, and variations in the storyline for all episodes occurring during the PLT. 
The entire research team then looked across the summaries to mark shifts in teachers’ discussions as 
the PD proceeded and understand the ways the LT affected teachers’ discursive patterns.  

Findings 
Results from the two phases of analysis indicate that teacher learning of a LT affected the 

discursive patterns about students as mathematics learners in a PD setting. First, we show how the 
speech actions related to Age/Grade changed quantitatively over time. We then qualitatively examine 
how the speech acts, storylines, and positions changed. 

Phase one analyses indicated that teachers’ speech actions related to Age/Grade remained present 
throughout the PD (n = 143; ρ = - 0.052; p = 0.411). Further, speech actions related to Age/Grade 
that also used the LT significantly increased over time (n = 40; ρ = 0.352; p = 0.059). For the subset 
coded no LT, no significant decrease was found (n = 103; ρ = - 0.079; p = 0.367). These findings 
confirm our hypothesis that, as the PD unfolded, teachers learned about the LT and came to use LT-
language in Age/Grade discussions of students as mathematics learners. These analyses show that 
teachers’ speech actions changed, yet they do not characterize the changes in positions or storylines 
used to conceptualize students as mathematics learners. 

Phase two analyses focused on the episodes related to Age/Grade in order to examine positioning 
and storylines. As seen in Table 1, a total of 46 episodes related to Age/Grade occurred in the focus 
PLTs. Table 2 summarizes the speech acts, storylines, and positions across these episodes. Whereas 
the initial storyline of the discussions indicated that age and grade level are key influences of student 
learning, the storyline changed such that students’ prior experiences influenced learning. Though 
teachers’ speech actions still referred to age and grade, these actions were intended more as 
descriptions of the student. Teachers began the PD by positioning themselves as one who had 
experiences with students and expertise to make sense of students’ mathematics but had no 
instructional recourse if a student did not meet their age or grade level expectations, because 
students’ capacities to learn were limited. Over time, teachers began to note that students had 
experiences, beyond their age or grade level, that they may bring to instruction, and began to indicate 
that they could include these experiences in their instructional decisions. Eventually, teachers 
positioned students as having resources that support their mathematics learning and could tailor their 
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instruction to make use of these resources. In what follows, we provide two episodes to illustrate 
these shifts. 

 

Table 1. Number of Age / Grade speech acts and episodes by Time and PLT. 
Time PLT Speech Actions Episodes Time PLT Speech Actions Episodes 

LT No LT Tot. LT No LT Tot. 

Su
m

m
er

 In
st

itu
te

 1 0 31 31 5 Dec. 12 0 0 0 0 
2 0 1 1 1 Jan. 13 3 1 4 2 
3 0 13 13 7 Feb. 14 5 7 12 5 
4 0 0 0 0 Mar. 15 2 2 4 2 
5 1 3 4 2 Apr. 16 3 2 5 1 
6 0 0 0 0 17 0 2 2 1 
7 1 1 2 1 May 18 0 1 1 1 
8 2 11 13 5 19 0 0 0 0 

Sept. 9 3 2 5 1 June 20 2 5 7 1 
Oct. 10 9 7 16 6 21 6 4 10 3 
Nov. 11 3 11 14 2 Total 40 104 144 46 

Table 2. Number of Age/Grade episodes & related speech acts, storylines, and positions. 

PLT N Speech Act 
Examples Storyline Teacher Positioning Student 

Positioning 

1-3 13 
“I would have 
expected that from 
the third grader”  

Learning is 
limited by a 
student’s age or 
their grade level 

Teachers have 
expertise in 
understanding 
students and have 
expectations based 
on age / grade level  

Students’ age or 
grade level are 
expected to be 
successful at 
certain 
mathematics 

5-12 17 

“That radial cut 
has not appeared 
yet…kids have the 
idea from [their] 
experience that it’s 
supposed to look 
like a triangle” 

Learning is 
influenced by 
age or grade 
level and prior 
experiences 

Teachers have 
expertise and 
expectations but 
recognize the role of 
prior experiences 

Students have 
prior experiences 
beyond their age or 
grade level that 
influence learning 

13-21 16 

“We think that 
because kids are 
older, they’ve had 
experiences, but 
that’s not 
necessarily true” 

Learning is 
influenced prior 
experiences 

Teachers can use 
students’ prior 
experiences to 
support learning 

Students’ prior 
experiences are 
resources that 
support their 
learning 

 
As an example of initial positioning during the summer institute (PLTs 1–3), the following 

example occurred during the first task (PLT 1). Teachers viewed two clinical interviews of two 
students completing a series of equipartitiong tasks where they were sharing 24 coins among four and 
three people (Wilson, Edgington, & Confrey, 2010). The following episode was part of a group 
discussion about what they described as surprising about the students’ work: 
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G1: Well, the kindergartner did what I thought starting back over with a pile in order to move 
from four to three. I thought that. But she surprised me with what she did after that.  

A1: Well, the most surprising thing was that she seemed to know quickly that it was eight. And I 
was trying to decide if that was just a guess or if it was an intuitive understanding because 
she did seem to even recognize that if you took the six coins that the fourth person had, you 
could distribute those three ways and have eight. She almost seemed to know that intuitively 
–[D5 agreeing] – which I would never have expected.  

D5: No. Me neither. 
A1: I would have expected that from the third grader and yet I felt dismayed that formalized 

classroom mathematics education had stifled her, so that she [G1, D5 agreeing] didn’t see it 
at all that way and immediately suggested that you couldn’t do it because three was an odd 
number.  

G1: Right - and there would be some leftover. 
A1: You know? Certainly the five year old wasn’t encumbered by that. [D5 agreeing] She 

probably -- she might know odd from even, but that wasn’t part of the discussion.  
G1: Yeah, that – 
A1: was a real stumbling block for the third grader, I thought. 

As teachers explained students’ mathematical approaches in this discussion, they used the grade 
levels or age of the students to support their expectations and understanding of what the student did. 
Speech acts, such as “The kindergartener did what I thought…but surprised me when”, “which I 
never would have expected…I would have expected that from the third grader”, and “the five year 
old wasn’t encumbered,” positioned themselves as competent in inferring students’ mathematical 
understanding based on their expectations of students at a particular grade level or age. 
Simultaneously, students were positioned according to these expectations in comparison to students 
of other age or grade levels, resulting in teachers’ surprise. Taken together, the teachers’ speech acts 
and positions follow a storyline that students’ mathematical understandings are defined by their age 
or grade level. 

As the PD progressed through the fall (PLTs 5-12), PLTs were based on students’ written work 
and videos of whole classroom instruction. Although teachers’ speech acts still referred to students’ 
ages or grade levels, they began to include terminology and ideas from the LT to describe student 
thinking in more detail. For example, in an episode where teachers were examining a set of student 
work, one teacher commented, “Developmentally, that radial cut has not appeared yet…kids have the 
idea from [their] experience that it’s supposed to look like a triangle. But when they’re dividing, we 
only had one that actually tried to use those radial cuts.” The teacher attributed students’ lack of 
success on the task to their age (development), but also recognized that students’ experiences 
influence their thinking. In such episodes, teachers continued to position themselves as competent in 
understanding students’ thinking but began to expand their explanations beyond age or grade level to 
include other students’ experiences. In turn, students were positioned as having experiences that may 
support them in learning. These nine episodes followed a storyline that shifted from learning being 
limited by age and grade to include opportunities to learn and prior experiences also influencing 
student learning. 

By January (PLT 13),a stable positioning-triad emerged in the episodes related to Age/Grade and 
persisted for the duration of the PD. At this point, speech acts incorporated ideas from the LT and 
referred to age and grade level not as a limiting factor for learning, but as a descriptor. These 16 
episodes followed a storyline where students’ prior experiences affected learning, teachers positioned 
themselves as able to use those experiences as resources for instruction, and students were positioned 
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as bringing resources to instruction. To illustrate, the following example episode from the summer 
follow-up in June occurred as teachers revisited the two clinical interviews from the example above. 

A4: If we believe learning is along this trajectory and it’s this path way and they need to have 
these things earlier on before they can get to these things, then it does seem that age is less 
relevant. Yes, they have more experiences so hopefully they’re getting there.  

D4: Yeah, isn’t it both? Because they don’t necessarily have to have- it’s not really linear. I 
mean, they can jump certain things, you know, levels.  

[one speech act omitted from the episode] 
D3: I liked what D4 was saying about like with age, we often link that to experiences, that 

because they’re older, they’ve had more experiences. And so I think a lot of what we do is 
that we do learn from our experiences and we often make the assumption that because kids 
are older, they have consistently had experiences and they’ve learned through that. But I 
don’t think that’s necessarily true when you look at home backgrounds that kids come from 
or look at being in a different classroom or a different school, different things like that. That’s 
going to come into play. So each child comes to the table with a different set of experiences. 
And so that’s where like sometimes the high kids do surprise us because they don’t know 
something. Because maybe we’ve made that assumption before and not provided them with 
those experiences, or those experiences have always been done for them at home.  

Teachers’ speech acts incorporated ideas from the LT (e.g. “trajectory,” “levels”) and referred to 
age and grade level, not as a limiting factor for learning, but as a descriptor. The storyline suggests 
that student learning is influenced by prior experiences and opportunities and is not limited to their 
age and the expected school experiences for students at particular grade level. Teachers positioned 
themselves with agency – they could provide learning opportunities for students that draw upon, or 
even provide, such experiences as resources to foster learning. Students were positioned as having 
these resources that could be used when learning mathematics.  

Discussion 
Learning the LT changed teachers’ discursive patterns about students as mathematics learners 

and themselves as teachers. Similar to Suh et al.’s (2013) individual maturation storyline, we found a 
storyline with elementary grades’ teachers that a student’s age or grade level limits their learning. 
Yet in our study, teachers grew to acknowledge and use prior experiences as a resource for 
supporting learning rather than viewing students’ learning as bounded by their age or grade level. 
Thus, we conclude that learning a framework for students’ thinking may led to changes in the ways 
teachers position students from a more strengths-based perspective. Further, such learning may 
support teachers’ agency.  
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This study explored the connections between teacher leadership and a professional development 
model focused on problem-solving, Math Teachers’ Circles (MTC). Surveys were completed by 213 
MTC participants resulting in three years of data across multiple sites. A mathematics education 
leadership framework provided a data analysis tool. Findings suggested MTCs did impact 
participant teacher leadership, as survey results attended to all three areas of leadership from the 
analysis framework. 

Keywords: Middle School Education; Teacher Beliefs; Teacher Education-Inservice; Teacher 
Knowledge 

Objectives & Purpose of Study 
With the implementation of the Common Core for State Standards in Mathematics (CCSSI, 

2010), the need for mathematics teachers to be learners and leaders in mathematics education is 
stronger than in the past. Mathematics teachers are being called upon to not only improve their own 
mathematical content knowledge and how to teach that content, but also to lead students, parents, 
colleagues, administrators, and communities in understanding and meeting the new standards 
presented in the CCSS. Math Teachers’ Circles (MTCs) are one form of professional development 
that may help teachers reach these standards for teaching and leading.  

In this study, the researchers highlight the potential of MTCs to develop mathematics teacher 
leaders.   Both are experienced MTC leaders, and they use their knowledge of MTCs, of teacher 
leadership, and of teacher professional development—augmented with quotes from national surveys 
of MTC participants—to highlight the potential of MTCs to develop mathematics teacher leaders.  

After preliminary background on MTCs, their history, and sample problems, the authors use the 
PRIME Leadership Framework (NCSM, 2008) as a lens with which to view the work of MTCs. The 
paper ends with some concluding remarks on growing MTCs as a means for teacher leader 
development.  

Math Teachers’ Circles 
MTCs are a form of professional development, aimed primarily at middle school math teachers, 

which tap into the instinct that mathematicians have to share their love of mathematics with others. 
This makes MTCs an accessible entry point for mathematicians interested in starting to work with 
teachers and for teachers interested in working with mathematicians to learn more mathematics 
through problem solving.  With the advent of the CCSS, this partnership is particularly timely for 
both parties. 

The canonical model for an MTC involves a leadership team consisting of two mathematicians, 
two middle school math teachers, and one administrator.  After attending a summer training 
workshop, teams spend a year securing funding and then launch their own MTC the following 
summer, generally with a 4-5 day residential workshop.  Academic year sessions follow, generally 
about three per semester, with each 2-2.5 hours in duration.  Each MTC tailors this basic model to 
meet the needs of their local setting. 

Sessions typically begin with a leader presenting a rich problem that fosters exploration involving 
multiple levels of deep mathematical content. As the session develops, problems lend themselves, for 
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example, to discussions of symmetry, algebraic representations and functions, and arithmetic and 
algebraic properties like the commutative, associative, and distributive laws.  From a problem-
solving perspective, problems may lend themselves to the techniques of “ask a simpler question” and 
“work backwards.”  Related to the CCSS, it requires teachers to use most, if not all, of the Standards 
of Mathematical Practice as they explore the various facets of the problem. 

A final key feature of some problems is the “low-threshold, high-ceiling” property.  That is, an 
entry-level problem requires minimal mathematics background to understand and begin to explore it, 
yet it can be connected to research-level mathematics. In addition to in-depth explorations, 
participants also investigate shorter problems.  For example, the following two problems can be 
discussed in a meaningful way in about 30 minutes: (1) What is the last (units) digit of 7503? (2) What 
are the last two digits of 503? 

Computing either of these by hand would be quite cumbersome, and plugging them into a 
calculator provides an estimate in scientific notation, but does not help directly with finding the last 
few digits.  Thus, one needs to use mathematical reasoning, in particular concepts of place value and 
the process of multiplication, to both find and justify a pattern for the last tens and units digits of the 
powers of 7 that allows one to answer each question.  In working through these problems, teachers 
work directly with content relevant to their students, but at a level that develops their own 
mathematical reasoning skills. Fernandes, Koehler, and Reiter (2011) and Donaldson, et al. (2014) 
provide a more in-depth discussion of a problem unfolding in a MTC session, while White (2015) 
provides a more in-depth description of one MTC. 

In addition to working on engaging mathematical problems, many MTCs include sessions or 
portions of sessions that directly connect to the classroom. These comprise diverse topics such as 
effective questioning strategies, how to translate lessons learned in MTCs to the classroom, and how 
to implement the CCSS. Two valuable texts the authors have found to help lead some of these 
sessions are Boaler and Humprey’s (2005) Connecting Mathematical Ideas: Middle School Video 
Cases to Support Teaching and Learning and Burago’s (2010) Mathematical Circle Diaries, Year 1: 
Complete Curriculum for Grades 5 to 7. 

A somewhat unexpected (at least to the original organizers) consequence of the MTC program 
has been the development of teacher leadership. This was first discovered on a national survey of 
MTC participants in 2010, where a surprising number of respondents made comments that indicated 
that they had emerged as informal or formal leaders in their schools or districts.  Moreover, they 
attributed this to their participation in MTCs. In the remainder of this paper, we discuss how MTCs 
connect directly with the PRIME Leadership Framework (NCSM, 2008), augmenting our narrative 
with illustrative quotes from participants. 

Literature Review & Theoretical Framework 

Need for Teacher Leaders 
Reform documents emphasize K-12 students should be learning mathematics through problem 

solving (National Council of Teachers of Mathematics [NCTM], 2000; CCSSI, 2010).Mathematics 
Standards call for students to discuss, collaborate and justify their thinking through engaging tasks 
(NCTM, 2000; CCSSI, 2010) and for teachers to support such work (NCTM, 2014). 

Despite this push for reform, middle school mathematics teachers still often teach content in 
traditional teacher didactic manners emphasizing textbooks and lecture (Grouws & Cebulla, 2000; 
Kent, Pligge, & Spence, 2003; Weiss, Pasley, Smith, Banilower, & Heck, 2003). With so many 
barriers to instructional change (Anderson, 1996; Roehrig, Kruse & Kern, 2007), teachers need to 
feel empowered to make changes to their instruction that benefit student learning (Fullan, 2001).  
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Professional Development 
Professional development is one avenue for empowering teachers to make changes. Effective 

professional development should build teachers’ content knowledge, immerse them in authentic 
experiences, address beliefs, involve collaborative communities, and provide long term support 
(Darling-Hammond, Chung Wei, Andree, Richardson, & Orphanos, 2009;Johnson, 2006; Loucks-
Horsley, Hewson, Love, & Stiles, 2003). Flowers and Mertens (2003) described a need for 
professional development specific to middle school teachers’ content and student learning needs. 
Teachers who attended professional development experiences longer than 8 hours and connected to 
other school-based initiatives reported the experiences improved their teaching while shorter 
unconnected experiences did not (Flowers & Merten, 2003). Other studies show long-term 
professional development of more than 80 hours is needed for teachers to enact inquiry-based 
practices (Porter, Garet, Desimone, & Birman, 2003). Professional development focused on 
mathematical problem solving increases teachers’ content knowledge and improves pedagogical 
strategies (Anderson & Hoffmeister, 2007). MTCs are designed using these research-based 
characteristics: focused on building teacher content knowledge through problem solving strategies, 
was long-term, and involved building collaborative communities between teachers, mathematics 
educators, and mathematicians. This study further investigated the connection between high quality 
professional development and teacher leadership (Yow & Lotter, 2014).  

Teacher Leadership 
Due to teacher influence on student learning (Darling-Hammond, 1999), developing teacher 

leadership in mathematics education is one of the most important factors in schools (Pellicer & 
Anderson, 2001). Dozier (2004) defined teacher leaders as “good teachers who influence others.” 
Before the phrase teacher leadership (Barth, 2001; Lieberman & Miller, 2004), teacher empowerment 
was the phrase used to describe a similar construct: teachers believing they had the “skills and 
knowledge to act on a situation and improve it” (Graham & Fennell, 2001; Short, 1994). Subject 
specific teacher leadership is a recent phenomenon; professional organizations define educational 
leaders in teaching (NBPTS, 2010; NCTM, 1991). Characteristics specific to mathematics teacher 
leaders are described in the literature (Langbort, 2001; Miller et al., 2000; Yow, 2007); however, few 
empirical studies exist (Webb, Heck, & Tate, 1996; Yow, 2010).  Therefore, our research question 
asked How does teacher involvement in a Math Teachers’ Circle impact their enactment of teacher 
leadership? 

Theoretical Framework 
The National Council of Supervisors of Mathematics (2008) developed the Principles and 

Indicators for Mathematics Education Leaders (PRIME) leadership framework responding to a lack 
of attention to the importance of school leadership in improving teaching and learning (Spillane, 
Halverson, & Diamond, 2004). The framework “aims to describe actions for mathematics education 
leaders across all settings, preK-12, in all its complexity” (NCSM, 2008, p. 2). We see teachers as 
educational leaders closest to student learning and therefore choose to focus on their data.  

The framework lists specific actions that fall along a continuum of three stages of leadership 
growth. The continuum includes knowing and modelling leadership (leadership of self) as stage 1, 
collaborating and implementing structures for shared leadership on a local level (leadership of others) 
as stage 2, and advocating and systematizing improvements into the wider educational community 
(leadership in the extended community) as stage 3 (NCSM, 2008, p. 2).  With this focus on 
leadership in mathematics education, we employed this framework as our data analysis tool.  
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Methods 
Data was analyzed from a national survey distributed to all MTCs in 2010 and to the authors’ 

local MTCs in 2013 and 2014. Collectively, 213 participants completed the survey measuring MTC 
teacher impact. The survey contained Likert scale and open-response items asking teachers to rate 
and address their gains in mathematical content knowledge, attitudes and dispositions toward 
mathematics, classroom instructional practices, and professional activities.  Data was analyzed 
through the three areas of leadership put forth in the PRIME Leadership Framework (NCSM, 2008). 
As shared earlier, the framework consists of: Stage 1 Leaders, considered Leadership of Self, “know 
and model” good teaching practices in their own classrooms; Stage 2 Leaders, considered 
Leadership of Others, “collaborate and implement” these good teaching practices with all students 
and other teachers and administrators; and Stage 3 Leaders, considered Leadership in the Extended 
Community, “advocate and systematize” these good teaching practices on a larger scale helping to 
create instructional change at the district, state, national, or international level. At each stage, leaders 
are respected for the self-knowledge, influence of others, and advocacy on a larger scale, 
respectively. 

Data was coded using the above three foci. For example, when teachers mentioned impact of 
MTCs on their own practice, those comments were coded as Leadership of Self. Comments that 
reflected MTC impact on collaborative work, such as “we all worked as a team to try and learn 
together,” or encouraged teachers to invite others to learn with them (e.g., “I’ve started bringing my 
colleagues from the department to the Circles as well”) were coded as Leadership of Others. Lastly, 
comments were coded as Leadership in the Extended Community when they spoke to the impact of 
MTCs on teachers expanding their sphere of influence to a larger community: “I have started giving 
presentations at meetings and conferences, have become the mentor for new math teachers, and am 
peer reviewer of math activities for the classroom at my level for the region.” 

Results, Discussion, and Conclusions 
Findings showed MTC participant responses attended to each of the three stages of leadership put 

forward in the PRIME Leadership Framework. 

Stage 1: Leadership of Self 
MTCs allow teachers to develop their content and pedagogical expertise, change practice, and 

take risks (Yow, 2007), all part of leadership of self. A prerequisite to knowing and modeling good 
teaching practices is knowing and understanding the content and the disciplinary practices of 
mathematics. With the advent of the CCSS, many teachers are being asked to teach in ways that are 
often quite different from how they were taught. MTCs provide an opportunity for teachers to take on 
the role of learners of mathematics, and to revisit what that role looks and feels like.  In fact, in initial 
end-of-workshop surveys of the MTC program, comments about being back in the role of a learner of 
mathematics were so prevalently cited as a benefit of MTCs that it was incorporated as a question on 
the most commonly used end-of-workshop survey form, and has been widely reported at conferences 
as one of the key outcomes of MTCs.  

Math Teachers’ Circles focus on building teacher content knowledge through problem-solving 
while also strengthening teachers' problem-solving skills and fluency with implementing the CCSS 
Standards of Mathematical Practice.  They also learn the habits of mind and the disciplinary practice 
of mathematics, whereby the “answer” in not always known and uncertainty followed by exploration 
is the norm.  As noted by one participant, “I have not participated in a workshop where I as a person 
have to struggle through, and the presenter did not share the correct answer.” Often times, “answers” 
to the problems are not immediately given to participants at the end of problem-solving sessions so 
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they can continue to grapple and discuss the problem. This directly addresses the first mathematical 
practice of perseverance in the CCSS (2010). 

Teachers see what is modeled in the MTC and develop their pedagogical expertise in their own 
classrooms: 

In the meetings, they deliberately have us talk about our techniques and approach to the problem. 
When we think out loud as a group, we start to see patterns, and together we think about tools we 
can use. When possible, I like to integrate this approach in my classroom, giving my students the 
tools they need to figure out an overarching problem and then letting them chip away at it 
collectively until they figure it out. 

MTCs provide an opportunity for teachers to be Stage 1 Leaders by allowing them to improve 
their own content knowledge as well as problem-solving skills. MTCs allow teachers to work in 
community to learn mathematics and solve problems that they can then implement in their own 
classrooms. “My classroom teaching has become more student-centered and engaging. Students are 
working together and discussing problems in groups, or exploring individually before sharing with a 
larger group.” 

Stage 2: Leadership of Others 
MTCs focus on building community and learning how to solve problems alongside colleagues 

which lends itself to Stage 2 Leadership of Others by “collaborating and implementing.” One teacher 
noted 

We all worked as a team to try and learn together…As different participants have different 
backgrounds and learning styles, the group work revealed to be very effective because we used 
our previous knowledge and our personal ways of seeing, interpreting and solving each problem. 
The support and the conversation with other members of the circle were always positive and 
enriching. 

Teachers become a part of a community of learners within the MTC and then use this structure to 
begin similar communities at their schools. Seeing the model of mathematical discussion among the 
mathematicians, mathematics teacher educators, and teachers helps teachers learn how to facilitate 
mathematical discussions with their own colleagues. They gain a broader sense of what it means to 
be a part of a mathematics education community: “I feel that working on mathematics with my 
colleagues gives me a wider perspective on how to view mathematics and what it means to teach 
mathematics.”  

MTCs provide the opportunity for teachers to be Stage 2 Leaders by their returning to their 
schools and sharing what they learned with their fellow teachers and administrators. For example, 
following the intensive summer workshop, teachers invited colleagues from their schools to join us at 
our monthly Saturday meetings so they could see for themselves the types of mathematics and 
problem-solving in which we engaged. Some of these guests came to more than one Saturday 
meeting to extend their own learning and take what they were learning back to their schools and 
classrooms. In addition, one of the mathematics teacher educators invited her preservice teachers to 
come to the Saturday sessions. Their visit introduced them to current practicing teachers and offered 
them an opportunity to see what types of professional development are available to teachers and how 
they may incorporate such problem-solving approaches into their own future classrooms.  One 
teacher wrote, “I’ve started bringing my colleagues from the department to the Circles as well, and 
that helped them realize that there really is something to this approach. It’s also helped us cohere as a 
group back at school, and our students benefit immensely.” 
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Stage 3: Leadership in the Extended Community 
MTCs provide an opportunity for teachers to be Stage 3 Leaders by their sharing what they have 

learned on a larger scale. For example, teachers from MTCs have presented at state mathematics 
conferences.  During these presentations, teachers advocate for strong instructional practices by 
explaining what happens during MTC meetings and then present rich problems that they themselves 
have spent time solving with their students. They discuss the rich mathematical content of the 
problem and the mathematical directions they or their students may take to solve the problem. One 
teacher shared, “I have started giving presentations at meetings and conferences, have become the 
mentor for new math teachers, and am peer reviewer of math activities for the classroom at my level 
for the region.”  

Because MTCs often span several schools and school districts, teachers are able to interact with 
an extended community of math teachers within a region and increase their ability to systematize the 
practices used in MTCs. This leads to teachers building a wider network of colleagues with whom to 
learn and collaborate: “Participating in the MTC meetings has encouraged me to network with others 
and attend conferences with them.” This newfound agency of being a member of a professional 
community also builds confidence in MTC participants, which results in taking on more of a 
leadership role in areas outside of their classrooms as well: “[Being a part of an MTC] has given me 
the confidence to step into more of a leadership role and a role in developing curriculum and lesson 
plans.”  Another participant who has become an instructional coach credited MTCs with helping in 
her job transition. “My leadership role in our math circle has correlated directly with my role change 
in my district from classroom teacher to teacher leader (instructional coach).” Strengthened by 
belonging to a professional mathematics education community empowers teachers to be mathematics 
teacher ambassadors (Yow, 2007) charged with telling others about the work they are doing in the 
MTCs and in their classrooms with students. 

Concluding Remarks 
MTCs provide a valuable professional development experience for mathematicians, mathematics 

teacher educators, and mathematics teachers. A powerful outcome of MTCs is the sense of 
community and broader understanding teachers gain of mathematics and the mathematics education 
community as a result of their participation. Even more, they provide an opportunity to develop 
mathematics teacher leaders by offering teachers the opportunity to develop in the areas of leadership 
of self (e.g. developing their content and pedagogical expertise, changing practice, and taking risks), 
leadership of others (e.g. becoming a part of a learning community), and leadership of the extended 
community (e.g. teaching their colleagues). 

MTCs have the potential to impact mathematics teacher leadership on a national level given there 
already exists a national community and network of MTCs.  Preliminary research has already been 
published on MTCs (White et al., 2013) and their relationship to mathematical knowledge for 
teaching. Also, Marle, Decker, and Khaliqi (2012) report that at one MTC, after a year of 
participation, classroom observations showed increases in the use of inquiry-based learning and in 
pedagogical content knowledge. More research is needed among long-standing MTCs to measure 
how extended participation in an MTC aides the continued evolution of a mathematics teacher leader 
from Stage 1 leadership to Stage 3 leadership (NCSM, 2008).  
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This paper briefly describes a lesson analysis tool, and its embedded conceptual framework, 
designed to help teachers analyze their mathematics instructional practice from a culturally 
responsive standpoint. The tool consists of six dimensions: cognitive demand, depth of knowledge 
and student understanding; mathematical discourse; power and participation; academic language 
supports for English learners, and cultural/community funds of knowledge. These six dimensions 
have theoretical underpinnings in culturally responsive pedagogy and pedagogical content 
knowledge. 
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This brief report describes a lesson analysis tool, and its embedded conceptual framework, 
designed to help teachers analyze their mathematics instructional practice from a culturally 
responsive standpoint. The Culturally Responsive Mathematics Teaching – Lesson Analysis Tool 
(CRMT6-LAT) consists of six dimensions: (a) cognitive demand, (b) depth of knowledge and 
student understanding, (c) mathematical discourse, (d) power and participation, (e) academic 
language supports for English learners, and (f) cultural/community funds of knowledge and social 
justice (Aguirre, et al., 2012). These six dimensions have theoretical underpinnings in culturally 
responsive pedagogy and pedagogical content knowledge, and an empirical basis in research that has 
documented positive effects on mathematical learning and identity development. The tool can be 
used to analyze real-time, videotaped, or written lessons, or to support lesson planning, reflection, 
and refinement. The power of this tool is its combined multi-dimensional focus on traditionally 
separate constructs of equitable mathematics instruction. 

Theoretical Framework 
Culturally responsive mathematics teaching (CRMT) is an equity-based instructional approach 

that integrates attention to mathematics, mathematics thinking, culture, language, and power to 
comprehensively support and strengthen student mathematics learning, engagement, and positive 
mathematics identity development (Aguirre & Zavala, 2013; Leonard et al, 2010). CRMT reflects the 
scholarship intersection between culturally responsive pedagogy and pedagogical content knowledge. 
Gay (2000) argues that culturally responsive pedagogy “simultaneously develops, along with 
academic achievement, social consciousness and critique, cultural affirmation, competence and 
exchange; community building and personal connections; individual self-worth and abilities and an 
ethic of caring (p.43-44).” Pedagogical content knowledge is the specific knowledge needed to teach 
content, including knowledge about the purposes of teaching mathematics, children’s content 
understandings or misunderstandings, curriculum, and instructional strategies and representations 
(Grossman, 1990). Both literatures are robust in teacher education yet rarely connected to help 
support instructional practices needed to advance the mathematical learning of today’s youth.     
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CRMT6-Lesson Analysis Tool 
To help mathematics teachers teach from a culturally responsive approach this tool supports the 

comprehensive examination of teaching practice including lesson design, implementation, and 
reflection. The full tool, available from the TEACH MATH (Teachers Empowered to Advance 
Change in Mathematics) website, includes a reflection prompt for each dimension as well as rubric-
style descriptors with progressive scores 1-5 reflecting a range of practices.  

Cognitive Demand 
From a culturally responsive stance, providing all students with access to high cognitive demand 

tasks is an equity issue. Research consistently finds that students who are placed in “lower” 
mathematics classes, and who are members of non-dominant groups, are less likely to be exposed to 
mathematical tasks that demand higher order thinking (Mosqueda, 2010; Oakes, 2005).  

Depth of Knowledge and Student Understanding 
This dimension highlights how knowledge and understanding are expressed in mathematics 

lessons, through activities such as reasoning, explaining, justifying, and engaging in complex 
problem-solving. Research shows that when teachers support mathematical learning by attending, 
interpreting, and responding to students’ mathematical thinking, student understanding deepens 
(Carpenter, Fennema, Peterson, Chang, & Loef, 1989).  

Mathematical Discourse 
Mathematical discourse is an important component of deepening and communicating 

mathematics understanding. Research shows that all children, including young children and children 
learning mathematics in another language can showcase their mathematical knowledge when given 
opportunities to participate in mathematical discussions (Celedón-Pattichis & Turner, 2012; Herbel-
Eisenmann & Cirillo, 2009; Turner & Celedón-Pattichis, 2011; Yackel & Cobb, 1996).  

Power and Participation 
Important considerations for understanding and supporting student participation are issues of 

power, status, and authority in the classroom. The way (whether intended or not) a teacher positions 
students as valuable contributors or “uninvited guests” can determine who has legitimate 
mathematical authority in the classroom (Spencer, 2006; Turner et al, 2012; Yoon, 2008). 
Developing worthwhile mathematical tasks that promote mathematical thinking, have multiple entry 
points, and tap into a wide range of knowledge can help to minimize status issues and foster a shared 
authority over mathematics (Featherstone, et al, 2011; Horn, 2012).  

Academic Language Supports for ELLs 
Academic language is vital to the way students learn and communicate their understanding of 

mathematics (Moschkovich, 2010). Therefore it is important to consider the instructional supports 
needed to facilitate student development and use of academic language. This is particularly true for 
students who are learning mathematics in an additional language (Celedón-Pattichis & Ramirez, 
2012; Civil & Turner, 2014). This dimension focuses attention on lesson structures and language 
scaffolding strategies (e.g. revoicing, use of cognates, graphic organizers, realia) that support 
academic language development especially for students learning English as another language.  

Cultural/Community Funds of Knowledge and Social Justice 
This dimension highlights the important mathematical knowledge and practices that occur 

outside of school in children’s homes and communities, specifically cultural funds of knowledge 
(Gonzalez, Moll, & Amanti, 2005). Examples of connections to children’s funds of knowledge 
include mathematical investigations of family/community gardens, sewing techniques, family 
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budgeting practices, as well as practices of community businesses such as auto painting, flower 
shops, fire stations, and mercados (Civil, 2007; Civil & Kahn, 2001; Taylor, 2004; Turner, Varley 
Gutiérrez, Simic-Muller, & Díez-Palomar, 2009). Mathematics is an analytical tool to make sense of 
socio-political issues that impact their world and life experiences including issues of civic 
engagement, overcrowding, and fairness (Gutstein, 2006; Turner & Strawhun, 2007).  

Lessons Learned From Project Uses of the Tool 
The central aim of TEACH MATH is to transform mathematics teacher education so that 

teachers will be equipped with powerful tools and strategies to increase student learning and 
achievement. We have used the CRMT6 tool with new teachers in several ways:   

Analysis of lessons in mathematics methods classes. Prospective teachers have used the 
CRMT6-LAT tool to analyze a lesson they designed and/or taught during the mathematics methods 
course. Based on their analysis, prospective teachers wrote a critical reflection describing the 
strengths and limitations of the lesson and specific ideas for improvement supporting teachers to 
simultaneously synthesize different dimensions of culturally responsive mathematics teaching.  

Observation of practice. The tool was also used when observing lessons during student 
teaching. Used in this way, the tool enabled the mathematics teacher educator to understand which 
dimensions of culturally responsive mathematics teaching prospective teachers felt confident with, 
which dimensions might warrant further exploration, and which dimensions were still quite 
challenging for them to attend to in lesson planning and implementation. 

Providing targeted feedback to early career teachers. As part of our longitudinal study, we 
also observed and provided targeted feedback to early career teachers using this tool. For example, to 
support professional learning and growth, we encouraged teachers to select two dimensions from the 
CRMT6-LAT. The most prevalent choice was mathematical discourse (30% of observations) 
followed by cognitive demand (17%), power & participation (16%), depth of knowledge (14%), 
academic language (12%); funds of knowledge (11%), suggesting teacher hesitancy to focus on the 
equity-oriented dimensions addressing language, culture, and power.  

Conclusion 
There is a need for pedagogical tools, such as the CRMT6-LAT, that help teachers to be 

culturally responsive with content area teaching. These tools need to be analytical, applicable, and 
flexible in order to maximize pedagogical discourse about mathematics teaching and learning and 
support a robust and equitable instructional practice in mathematics. The CRMT6-LAT is such a 
tool. 
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Students come to the learning of categorical association with many misconceptions. The purpose of 
this study was to determine the effectiveness of novel curriculum materials to improve mathematics 
teachers’ knowledge of students’ conceptions regarding categorical association. Results showed that 
prior to use of the materials, teachers’ knowledge was mostly limited to variations on one 
misconception. Following use of the materials, they were more broadly aware of a number of 
different misconceptions and improved their ability to analyze categorical data for association. 

Keywords: Teacher Knowledge; Data Analysis and Statistics 

Background 
Statistical association is one of eight big ideas in statistics (Garfield & Ben-Zvi, 2004). This is 

reflected in the inclusion of the study of categorical data for association in curriculum documents 
such as the Common Core State State Standards for Mathematics (Standards 8.SP.4 and HSS-ID.B.5) 
(CCSSI, 2010) and the Guidelines for Assessment and Instruction in Statistics Education Report 
(Franklin et al., 2007). Researchers (e.g., Batanero, Estepa, Godino, & Green, 1996; Watson and 
Callingham, 2014) have established that students have great difficulty and many misconceptions 
when analyzing bivariate categorical data presented in contingency tables for association. For 
students, Batanero et al. (1996) and Watson and Callingham (2014) found the following 
misconceptions to be most prevalent: 

• Deterministic (D): Students conceive of association from an ‘all-or-none’ perspective: all 
cases must show an association with no exceptions in order for an association to exist. These 
students believe that the cells in the two-way table that do not agree with the association 
should have zero frequency. 

• Unidirectional (U): Students believe association only occurs when it is direct, and do not 
recognize that inverse association is possible. These students tend to give more relevance to 
positive cases than negative cases that confirm a given hypothesis. 

• Localist: Students examine only a part of the data-often the cell with the highest frequency 
(L-S) or only one conditional distribution (L-RC)-to determine if an association exists. 

• Ignore the data (I): Students ignore the data at hand and instead use their previous 
theories/knowledge about the variables under investigation to decide if they are associated. 

• Lack of Proportional reasoning: Students compare frequencies rather than percents in their 
analysis (P-S), or claim that one cannot compare two groups of unequal sizes (P-M). 

Students come to the learning of categorical association with conceptions, including the 
misconceptions described above. Teachers tasked with teaching students the topic of categorical 
association need to make their teaching responsive to students’ various conceptions of it. This can be 
supported through knowledge regarding what students may think about particular content topics and 
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how this thinking can progress, known in the Mathematical Knowledge for Teaching theoretical 
framework (Hill, Ball, & Schilling, 2008) as Knowledge of Content and Students (KCS). Thus, the 
purpose of this study was to determine the effectiveness of novel curriculum materials to improve 
mathematics teachers’ KCS for teaching categorical association. This manuscript presents 
preliminary results from a larger study concerning the effectiveness of the materials to develop 
mathematics teachers’ knowledge for teaching statistics more broadly. 

Method 
Forty-two teachers in statistics and education courses at three large universities in the United 

States during the Fall 2014 semester participated in the study. Eight were in-service teachers and the 
remaining were pre-service teachers. All participants were enrolled in a course that utilized new 
curriculum written by the first two authors of this report. The curriculum materials were designed to 
develop the knowledge teachers need to teach categorical association, including KCS. One section 
that focused on KCS in particular was based on Batanero et al. (1996) and Watson and Callingham’s 
(2014) identification of common misconceptions in interpreting contingency tables. It presented real 
excerpts of students’ reasoning about contingency tables and asked the teachers to do three things: 
describe each student’s misconception, look for relationships between pairs of students’ 
misconceptions, and respond to the student as his or her teacher. After the teachers discussed the 
misconceptions, the instructor provided the formal terms for the identified misconceptions (e.g., 
unidirectional). The homework for this section asked the teachers to (a) write their own definitions of 
three of these misconceptions and (b) create a short classroom lesson plan (not including homework 
or exam assessments) to address at least two of the misconceptions. 

This manuscript reports results from the first item on a pre- and post-assessment designed to 
evaluate teachers’ knowledge for teaching categorical association (Figure 1). It required participants 
to write a correct response and distracters for a multiple choice question (adapted from Batanero et 
al., 1996) about association between categorical variables. The directions emphasized the idea that 
distracters should reflect common student misconceptions about an item, allowing participants to 
exhibit their knowledge of an array of empirically-observed student tendencies when dealing with the 
content. This empirical grounding helped make the item an authentic means for eliciting participants’ 
KCS (Hill, Ball, & Schilling, 2008) in regard to categorical association.  

Analysis of the responses began with three of the authors independently coding teachers' answer 
choices as Correct (C) (corresponding to the correct answer on the item, which they were directed to 
write as an answer choice) or one of the misconceptions included in the curriculum materials. Any 
that did not fit these categories were classified as Other (O). The use of the coding scheme was 
piloted with a subset of six teachers’ answer choices. Based on the pilot results, the coding scheme 
was expanded to include new categories for common responses: 1 –Students treat the problem as a 
one variable problem, looking at the marginal distribution for one of the variables only; N- Students 
believe that there is not enough information to determine if there is an association. All of the coding 
categories except N are grounded in research regarding common student misconceptions. In the next 
phase of analysis, all teachers’ pre-and post-assessment answer choices and associated reasoning 
provided on the assessment task were coded. After comparing codes, any discrepancies were 
resolved through discussion by the coders and a final code was determined.  
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Figure 1: Assessment Item 1 

Results 
The analysis of the responses provided to represent the correct answer choice for the item 

revealed that 69% of the teachers provided a correct answer with sound reasoning on the pre-
assessment. This rose to 95% on the post-assessment, providing evidence that the curriculum 
materials improved teachers’ abilities to analyze a contingency table for association.  

Table 1 presents the results of an analysis of the responses meant to be distracters for the item, 
representing common student misconceptions identified by the teachers in the study. The percent 
reported in the table identifies the percent of the total responses each misconception was referenced 
for that assessment (pre or post). Multiple copies of the same code per student are counted multiple 
times. 

Table 1: Identification of Common Student Misconceptions on Assessment Item 1 
Misconceptio
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L
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4
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1

17 
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% 
3

% 
6

% 
0

% 
1

4% 
3

4% 
1
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9

% 
1

% 
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6% 
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1

14 
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2

% 
0

% 
2

% 
-

1% 
5

% 
-

14% 
8

% 
-

9% 
-

1% 
8

% 
   

The L-RC misconception was predominant on the pre-assessment, identified in nearly half (48%) 
of the 117 distracters written by the participants. In fact, 22 of the 42 participants applied the L-RC 
misconception in different ways (i.e., different rows and columns were isolated) to write multiple 
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distracters on the pre-assessment.  Interestingly, for those 13 teachers who provided an incorrect 
response for the correct answer choice on this item, 7 of them had the L-RC misconception 
themselves. A related misconception, 1, was the second-most common misconception identified on 
the pre-assessment, accounting for 18% of the distracters.  

L-RC was still the most commonly identified misconception on the post-assessment, but it 
declined to be identified in approximately one-third (34%) of the distracters and was only used 
multiple times by 9 of the participants. Instead, the teachers on the post-assessment shifted to 
increase their identification of I, L-S, D, and P-M misconceptions. Few identified the U 
misconception on either assessment, but that is as expected given that the item displays a table with 
no association. A preliminary paired analysis showed essentially the same results as those presented 
above. 

Discussion 
This study found that prior to instruction many teachers understood that students commonly 

mistakenly analyze a contingency table for association by focusing on a single row or column-
whether in the body of the table (L-RC) or in the margin (1). In addition, that misconception was also 
held by 17% of the participants prior to use of the curriculum materials and they generally were 
unaware of other misconceptions. Thus, an implication of this work is the need for teachers to have 
learning experiences specific to their knowledge for teaching categorical association. The curriculum 
materials evaluated in this study were effective at providing such learning experiences, facilitating 
teachers’ learning of how to correctly analyze a contingency table for association and increasing their 
KCS with respect to their recognition of student difficulties with the topic (particularly the L and I 
misconceptions). Future work will involve more detailed analysis of the responses classified as O in 
this study (which accounted for 16% of the post-assessment responses) and connecting the results 
regarding this first item on the assessment to the results of the other three items to give a more 
complete picture of the participants’ KCS for teaching categorical association before and after use of 
the curriculum materials. Also, based on this study’s results, adaptation of the curriculum materials 
will be made to draw teachers’ attention toward less commonly recognized student misconceptions. 
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This qualitative study examined how preservice secondary teachers with strong content backgrounds 
reported using their content knowledge in beginning teaching. Data included 3 interviews with 4 
preservice teachers enrolled in a one-year master’s program designed for content experts. Interviews 
spanned their teacher education program and first year of teaching. We mapped how participants 
described using their content knowledge to the construct of mathematical knowledge for teaching 
(MKT). We found that participants used various aspects of their MKT in making pedagogical 
decisions and providing explanations.They struggled to use their knowledge to make content 
accessible to their students. Participants’ confidence in their content knowledge obscured the need 
for them to develop knowledge of content and students.  

Keywords: Mathematical Knowledge for Teaching, Teacher Education-Preservice  

 In recent years, several agencies have offered certification programs to content experts in STEM 
fields to become high-quality teachers of mathematics (e.g., Robert Noyce Scholarship, National 
Science Foundation’s STEM-TP). The assumption underlying these programs is that, given a strong 
content background, this population of preservice teachers needs only coursework in pedagogy and a 
teaching practicum to be prepared to be highly qualified teachers (Selke & Fero, 2005). Our research 
is directed towards understanding how prospective teachers’ strong STEM background contributes to 
their teaching. This population is of interest because of their in-depth content knowledge and how 
they might call on that knowledge in teaching. Our institution has created an intensive one-year 
master’s program leading to secondary mathematics teacher certification for those individuals who 
have earned an undergraduate degree in a STEM discipline. We are reporting how the prospective 
mathematics teachers in one cohort of program candidates described using their content knowledge 
in teaching.  

Framework 
Content knowledge is a necessary but insufficient prerequisite for effective mathematics teaching 

(Ball, Thames, & Phelps, 2008; Monk, 1994). Effective teachers also need pedagogical knowledge 
(Brown & Borko, 1992; Goos, 2013).Research tells us that both extensive subject-specific content 
knowledge and pedagogical knowledge are needed for teaching mathematics(e.g., Ball et al., 2008). 
Rather than considering teacher knowledge as a distinct knowledge of content or of pedagogy, a 
critical component of teacher knowledge is the interaction between content and pedagogy, what 
Shulman (1986) termed pedagogical content knowledge (PCK). PCK goes beyond knowing how to 
teach. It involves creating and analyzing multiple representations; making the subject accessible, yet 
challenging; increasing critical thinking skills; and aiding students in their understanding of broad 
mathematical concepts (Shulman, 1986).  

Ball (2003) expanded Shulman’s construct in context of teaching mathematics. What she termed 
mathematical knowledge for teaching (MKT) is composed of both subject-matter knowledge and 
pedagogical content knowledge. Subject matter knowledge is subdivided into common content 
knowledge (CCK), specialized content knowledge (SCK), and knowledge of the mathematical 
horizon. CCK refers to the ability to do mathematics accurately and efficiently, whereas SCK 
involves the mathematical skills that are unique to teaching, such as assessing the generalizability of 
students’ nonroutine strategies. Pedagogical content knowledge contains subcategories of knowledge 
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of content and students (KCS), knowledge of content and teaching (KCT), and knowledge of content 
and curriculum. KCS includes the ability to anticipate student thinking and misconceptions, and 
KCT includes the development, selection, and sequence of content to achieve a particular goal. In 
this study we considered how participants’ called on different aspects of their MKT in beginning 
teaching.  

Program 
Our teacher preparation program is for STEM professionals and for outstanding recent college 

graduates with degrees in STEM fields, who want to earn a master’s degree in teaching and middle 
(Grades 4–9) or secondary  (Grades 7–12) teacher certification in mathematics or science. During 
one full academic year teacher candidates complete coursework on curriculum, learning, 
adolescent/child development, content-specific methods, and making connections between STEM 
disciplines and Grades 4–12 school mathematics and science. Three distinctive program features 
provide context for this paper:1) courses focused on all STEM content areas and the connections 
among them, 2) a year-long student teaching placement, and 3) meetings of candidates, mentors, and 
program faculty throughout the year to build relationships, discuss candidates’ progress, and engage 
in professional development.  

Methods 
We collected data on 4 mathematics teacher candidates (hereafter participants)from the same 

cohort and 3 of their mentor teachers. All participants were seeking initial licensure for Grades 7–12 
mathematics, had earned their bachelor’s degree within the previous two years, and had prior 
informal teaching experience (e.g., tutoring, teaching assistants). Data were collected through 3 
interviews: at the outset of their teacher preparation program(first), at the end of the year-long 
internship (second), and at the end of their first year of teaching (third). We asked participants to 
describe the connections among their backgrounds and work experiences in relation to their STEM 
content knowledge and current teaching. We interviewed their mentor teachers once about their 
mentees’ backgrounds, teaching styles, and educational philosophies. At least two researchers 
independently open-coded transcripts. From the coded transcripts, we identified salient themes. We 
also examined the mentor interview transcripts for confirming or disconfirming evidence of these 
themes.  

Results 
Participants called on various aspects of their MKT in several ways and with a range of success: 

to make pedagogical decisions about what and how to present content, to provide multiple 
explanations and in-the-moment adjustments, and to unpack content to make it accessible for Grade 
4–12 students. 

Content Informs Pedagogical Decisions 
Several participants described both large-scale curricular decisions and small-scale pedagogical 

decisions that were informed by their aspects of their CCK and KCT. The participants spoke 
positively of their decisions concerning both what was taught and how it was taught. For example, 
Alex described how his CCK affected what he taught: 

Being able to understand, like understand where everything comes from, is really important. I 
think it’s only helped me, because you have to pick and choose what you’re going to spend the 
most time – or … perceive to be most important, right. And you also have to weigh does it matter 
if … the students understand this to a certain level? (Alex, third interview) 
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Gerald used KCT to determine how he supplemented the textbooks saying, “My textbook will break 
[a problem] down differently [than I will]. I’ll show both ways [to the students]” (second interview). 
In other instances, Gerald, drawing on CCK to inform his KCT, explained: 

Are you going to mark off points if it’s not in standard form, like exponents going from greatest 
to least? I said, for Algebra I it’s not important. It’s really only important when you’re dividing 
polynomials. I was like if [students] get it in any form, I’ll take it. (second interview) 

Others used their KCC to provide a better sense of “what was the most important thing that 
[students] had to understand” and their KCT to consider “how to make that [concept] clear in many 
different ways” (Jennie, second interview). Similarly, Alex used CCK to explore his own 
understanding, saying, “It's always important for me to understand what's going on [with particular 
content],” and KCC to determine “what do they really need to understand right now?” (second 
interview). Jennie credited her CCK for providing the ability to see the connection between 
disciplines, but we say that she relied on her knowledge of the mathematical horizon. 

Participants used KCT and KCS to make decisions about how they taught. All participants 
developed long-term projects and/or connected applications of mathematics to student interests. 
Jennie used CCK and KCC to create a project-based lesson integrating mathematics and science. To 
develop students’ conceptual understanding, Reagan called on KCT to create lessons with real-world 
applications that required students to discover, explain, and justify common mathematical 
algorithms. Using KCS, Alex drew on students’ interests by using the popular game, Angry Birds, as 
a context for mathematical modeling of flight paths with parabolas, applying concepts of physics, 
and comparing paths with lines of best fit; stating “all of[creating the project] came through my math 
background” (Alex, second interview). 

Content Informs Explanations and In-The-Moment Adjustments 
Participants also gave positive reports of specific ways that their CCK helped them make in-the-

moment pedagogical adjustments and provide alternate explanations. Reagan referred to the power of 
her CCK in managing the unexpected questions and providing multiple explanations: 

I think that majority of teaching is about the content and the fact that I’m a content expert…I can 
explain concepts in multiple ways. Kids can ask me questions that are not entirely related to what 
we're talking about and I can give them answers or let them know that I’m going to look them 
up….I can answer questions students ask all the time..… Also, I’ve had poor teaching moments 
where there has not been enough planning and prep time put into classes. It is easier to on-the-fly 
talk about things as well. (second interview) 

Jennie agreed saying that because of her knowledge of mathematics “I think I am better able to 
explain things and give different examples” (second interview). Additionally, Reagan used her CCK 
to elaborate off-the-cuff on topics of interest to students: “There’s a lot where they’ll say, ‘Hey is that 
related to this?’ And I know whether or not it is and I can talk to them a little bit more and I can give 
them more applications and when is this used” (second interview).  

Making Content Accessible to Students 
What the participants referred to as “present[ing] [content] to the kids in a way that was at their 

level” (Jennie, third interview), Reagan described as the “biggest stumbling block related to my 
education” (third interview).It was in this pedagogical skill that we found their CCK was an 
inadequate substitute for their limited KCS. Gerald was challenged by “breaking the math down” and 
was forced to “rethink what I did in high school and what I've learned throughout” (second 
interview). Gerald’s mentor noted these struggles as well: “the only thing is with him being at such a 
high level sometimes it has been very difficult to bring it back down to the level that some of these 
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kids are at.”  Similarly, Jennie’s mentor observed that though “the content for her was somewhat 
simple,” she struggled in “bringing learning [the content]…down to the eighth grade level. And 
display[ing] the content in an understandable way to the students.” Jennie continued working on this 
struggle in her first year of teaching,“I found myself at the beginning of the year kind of teaching 
above them,” and noted the dissonance between their knowledge and her own, “I assumed going into 
it that they knew more than they actually knew, because of where I was at” (second interview). 
Reagan explained: 

I’m struggling with ways to explain what seems elementary to me … I think that that’s been my 
biggest frustration because I am so familiar with the content that it doesn’t make sense to do it 
any other way. (second interview) 

Though participants became aware that “not everybody see[s] it like I see it,” they still focused on 
making content accessible by breaking down problems “into extremely small steps” (Gerald, third 
interview).They began to recognize that they needed to consider the mathematics they were teaching 
from the perspective of their students. At this early time in their teaching career, their KCS was 
underdeveloped and their only pedagogical strategy for making content accessible was decomposing 
content into smaller, manageable pieces. In taking this approach, they may have inadvertently 
overemphasized a procedural view of mathematics while underemphasizing the development of 
conceptual understanding. 

Conclusions 
In programs tailored to prospective teachers with strong STEM backgrounds, it is commonly 

assumed that they have in-depth understanding of content and, hence, their programs focus primarily 
on pedagogy. However, our participants’ general pedagogical focus did not fully support them in 
making connections between their content knowledge and pedagogical preparation. We suspect that 
our participants’ struggles (e.g., making content accessible) were the result of a lack of PCK, in 
particular KCS. One remedy is to provide teacher candidates who have content expertise with early 
experiences that make them aware that CCK does not provide all that is needed for MKT. There is, 
however, an underlying challenge in implementing this remedy: their initial confidence in CCK 
obscured the need to develop their PCK. Hence, there is a need for experiences that disturb their 
complacency regarding content to motivate them to attend to their KCS. 
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How mathematics student teachers (MSTs) develop their pedagogical content knowledge (PCK) 
during their preparation is an important question to teacher educators. This proposal is based on the 
first author’s Ph.d dissertation on the changes In Chinese MST’s PCK over two years to further 
discuss the changes in the interrelationships among components of PCK. The PCK in this study was 
defined as three components--- knowledge of students (KOS), knowledge of teaching (KOT) and 
content knowledge (CK). The focus of this proposal is the changes regarding the interrelationships 
between KOT and KOS, and KOS and CK. The types of these changes are reported by examples, and 
a discussion is made on a hypothesis model on interpreting MSTs’ PCK development from an 
integrative and transformative perspective.  

Keywords: Mathematical Knowledge for Teaching; Teacher Education-Preservice 

Research Background 
Pedagogical content knowledge (PCK), first proposed by Shulman (1986), as an important 

indicator of teaching competency, continues to attract attention of researchers from different 
disciplines. PCK has been described as the unique teaching knowledge that distinguishes teachers 
from scholars in a given subject. A number of studies in PCK have focused on its definition and 
components, and its development within individual cognitive domains. These studies suggested that 
PCK composes of several major knowledge components, for example, knowledge of learners, 
teaching, curriculum and content (e.g., Tatto et al., 2008). However, for the development of PCK of 
mathematics teachers, there remains to be further explored on a specific model to explain its change. 
In the field of science teacher education, integrative and transformative perspectives were adopted to 
interpret science teachers’ PCK and PCK development (e.g., Gess-Newsome, 1999).The 
transformative model views PCK as the transformation of different constructs into a unified form, 
while the integrative model assumes that PCK does not exist as an epistemic entity, rather it is an 
incorporation of accessible knowledge components such as knowledge of students. This proposal 
tries to provide some insights on a possibility of a hypothetic model- an integrative and 
transformative process to explain (pre-service) mathematics teachers’ PCK development.  

Theoretical Framework  
The general ideas of integrative and transformative point of views can be considered as 

promising in applying the field of mathematics teacher education. It can be found that for those, who 
classified the PCK into different components, might have the tendency to adopt integrative 
perspectives to understand PCK where it is understood as a mixture of different knowledge 
components. In addition, another strand tending to interpret mathematics PCK as a derivation of 
mathematics subject matter knowledge (SMK). For example, in knowledge quartet (KQ) model (e.g., 
Rowland, et al, 2005) described the different levels of melting between mathematics knowledge and 
teaching .The integrative and transformative perspectives also have the potential in explaining the 
process of PCK development especially among mathematics pre-service teachers. Since there existed 
studies to document the difficulties and dilemmas that pre-service teachers met in mathematics 
teaching in relationship to their teaching knowledge (e.g., Inoue, 2009; Kinach, 2002). These 
difficulties and dilemmas, in some extent, reflect pre-service mathematics must experience a process 
from possessing unified and unstable PCK (i.e., separate PCK components) to an integrative and 
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mature PCK unit. For example, Even (1993) found that insufficient SMK might lead to MST’s 
adoption of teaching strategy for an emphasis on procedure mastery rather than on conceptual 
understanding. Some isolated literatures documented pre-service or novice teachers’ teaching 
explanation and representation reflecting fragmentary and unstable teaching knowledge 
(Charalambous, Hill, & Ball, 2011; Inoue, 2009). Inoue (2009) reported that the MSTs under studied 
basically possessed SMK for solving mathematics problem, but a majority of them could not give 
pedagogically meaningful representation to support students to understand the concept. However, 
few studies in the past documented the process of MSTs’ PCK development, in particular, how the 
different components of PCK becomes a unified one. PCK in this study is consisted of knowledge of 
teaching(KOT), knowledge of students(KOS) and content knowledge(CK). This proposal tries to 
interpret the identified types of interrelationships between KOT and KOS, and between KOS and CK 
through integrative and transformative perspectives.  

Methods 
This proposal is built on a portion of the first author’s PhD dissertation on tracing changes in the 

PCK of a group of Chinese MSTs during the final two years of their four –year teacher education. 
The selected preparation program aimed to nurture future secondary mathematics teachers. To 
capture MST’s PCK change, both quantitative and qualitative approaches were adopted. In this 
proposal, only the data collected from three video-based interviews (the qualitative approach) were 
focused. Three video clips were selected from Hong Kong TIMSS video study to serves as prompts 
for stimulated recall. Three teaching topics were selected: Three-term ratio (R3), Distance formula 
(DF), and Pythagoras theorem (PT). The video clips were edited with research purpose, including a 
coherent teaching process on teaching the key content of the topic, and students’ responses reflected 
from either blackboard exercises or questions. The detailed content and major snapshots 
representative of student blackboard work of the video clips, and the interview questions about KOS, 
KOT and CK categories will be elaborated during the presentation. All 36 video-based interviews (6 
PSTs* 3 topics* 2 stages) were recorded and transcribed verbatim by the first author. Data collected 
from the three video-based interviews were examined and analyzed. A total 20 questions (10 KOT 
questions, 7 KOS questions and 3 CK questions) across three topics were discussed in this proposal. 
The MSTs’ response to each question in each stage was analyzed in terms of a level (either one 
among Low, Intermediate and High). In this proposal, the interrelationships between KOT and KOS, 
and between CK and KOS were examined and major types of these changes are presented. 

Results  

Changes in Interaction between KOT and KOS  
In general, for KOT and KOS interaction, the changes reflected in Stage Two indicated the 

development of a degree of awareness of student learning trajectory in designing teaching strategies. 
The KOS revealed in the six STs’ KOT are mainly general knowledge about students’ characteristics 
and interests, and their perception on students’ effective learning including developing learning 
habits, standardized ways of solving mathematical problems.  The three types of changes are 
illustrated below and the specific examples will be shown in presentation. 

Type 1: Regarding students’ comprehension as an important measurement of the 
effectiveness of teacher instruction. The commonality in MSTs’ commentaries on teacher 
instruction in Stage Two was that the MSTs showed a more careful analysis of the teacher’s 
instructions in the video clips to strategize on how teacher instruction can match student 
comprehension. This confirms a transition from a more teacher-directed teaching approach shown in 
Stage One to a more student-centered teaching approach that was evident in Stage Two where 
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student comprehension was regarded as an important measurement of the effectiveness of teacher 
instruction.  

Type 2: Facilitating students’ development of learning and thinking habit through teaching. 
Five STs displayed this type of change which refers to STs’ concern about students’ development of 
a learning habit. Phrases such as “experiencing by themselves”, “learning habit” and “standardized 
methods for solving mathematics problems” were used in STs’ responses to KOT questions. All 
examples of this type of change reflect MSTs’ concern about students’ examination performance 
which can be seen as a kind of integration between KOT and KOS.  

Type 3: Taking students’ interest and prior knowledge into account when designing 
teaching strategy. This type of change was mainly identified among MSTs whose paired responses 
improved from Low to Intermediate level in Stage Two. In general, in Stage One, these MSTs 
showed little or no awareness of the students’ interests or prior knowledge. In Stage Two, they began 
to integrate student concerns into their teaching approaches like encouraging student participation, 
offering fewer abstract exercises and more real-life examples, activities with manipulatives and 
sensing student diversity. In addition, the idea of creating real-life examples or scenarios was widely 
used by the MSTs in considering their strategies in Stage Two. 

Change in the Interaction between CK and KOS 
For the interaction between KOS and CK, the two types of KOS-CK change reported related to 

the changes in how MSTs attributed students’ mistakes, difficulties and confusions. Compare to the 
interaction between KOT and KOS, the interaction between KOS and CK seemed to plays a more 
important role in terms of promoting these MSTs’ PCK development in a more advanced level. With 
the involvement of CK, MSTs’ KOS became more content-specific and tend to focus on students’ 
mathematical thinking. In particular, MSTs were able to elaborate their thinking of students’ thinking 
which was a KOS-CK interaction.  

Type 1: A shift from a focus on the correctness of students’ answers to the interpretation of 
students’ mathematical thinking. Two STs displayed this type of change. In the Stage One, they 
focused on correctness of students’ answers, but paid more attention to why the student thought that 
way from a mathematical perspective in Stage Two. For example, one MST tried to analyse why a 
student made a mistake by examining the sequence of content topics in the curriculum, while the 
other more able to interpret explicitly students’ thinking process such as what caused student 
confusion.  

Type 2: Developing a more sophisticated interpretation of student’s thinking from a 
mathematical standpoint. Three STs showed this type of change. In Stage One, these MSTs 
inclined to either characterize the student’s method as simple trial and error or make a quick 
conclusion of students’ thinking based on their observation from video clips. In Stage Two, these 
MSTs were able to reinterpret students’ methods from a mathematical perspective, or evaluate the 
students’ thinking in terms of mathematical learning trajectory.  

Discussion 
The analysis above in identifying major types of changes through the paired responses supports 

the emerging of connections between KOS and KOT and between KOS and CK in the MSTs’ PCK 
development during the period under studied. It was found that both the relationships between KOT 
and KOS and between KOS and CK became more integrated. The MST’s awareness of relationships 
among teaching strategy, student perspective and mathematics increased and the boundaries between 
these knowledge domains became less rigid. The current evidences focused on relationships between 
KOT and KOS and between CK and KOS, these types of change suggest an integrative-
transformative PCK model to explain these MSTs’ PCK evolution process from a relatively 
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integrative compartmentalized PCK to a transforming PCK with its components interacting and 
merging, which can be visualized as Figure 1.  

 
 MSTs Stage One PCK                 MSTs Stage Two PCK  

Figure 1: An integrative compartmentalized PCK with three components evolves 
into a transforming PCK with several components interacting and merging 

The tentative model proposed in this study highlights the interactive relationship among three 
PCK knowledge domains, and suggests the possibility of PCK transformation trajectory. This model 
has heuristic value in terms of helping teacher educators to think deeper about potential 
developmental trajectories for a better design of training courses. This study is an initial attempt to 
build a PCK model and evidences were provided to support its soundness. More discussion will be 
made in the presentation.  
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Research suggests that teachers’ knowledge and beliefs about teaching and learning mathematics 
are among the key factors for effective teaching. This study explores the extent to which K-12 
mathematics teachers’ educational beliefs and mathematics knowledge for teaching (MKT) have an 
impact on students’ math achievement. The effects of students’ prior math achievement and teachers’ 
years of experience and mathematics degrees earned were also examined. Hierarchical regression 
analysis results indicated that prior achievement was a significant student-level predictor of 
mathematics achievement. Teachers’ MKT and teaching experience also had a significant effect on 
the relation between prior achievement and current achievement. Results may have implications for 
teacher professional development programs as well as education policies at both district and state 
level. 

Keywords: Mathematical Knowledge for Teaching; Teacher Beliefs; Teacher Education-Inservice; 
Teacher Knowledge 

Purpose of the Study 
A significant body of research highlights the integral role that teachers’ domain-specific 

knowledge for teaching and their educational beliefs about teaching have on their knowledge 
development, decision-making and planning, and instructional practices (e.g., Pajares, 1992; Philipp, 
2007). Adding to this line of research, this report extends our findings from a larger study that 
examined both antecedents and outcomes of teachers’ beliefs about teaching and learning 
mathematics (Ekmekci, Corkin, & Papakonstantinou, 2015) by connecting teachers’ beliefs and their 
mathematical knowledge for teaching (MKT) to student outcomes. Specifically, the current study is 
guided by the following research questions: (a) to what extent does a student’s prior mathematics 
achievement relate to their subsequent mathematics achievement, (b) to what extent do teacher-level 
characteristics (e.g., experience, beliefs, and MKT) relate to students’ math achievement, and (c) to 
what extent do the effects of student-level factors on math achievement vary by teacher-level 
characteristics? 

Literature Review   
Teachers’ personal and domain-specific educational beliefs should not be overlooked in the 

evaluation and development of effective instruction (Stipek, Givvin, Salman, & MacGyvers, 2001). 
There are various types of educational beliefs that math teachers possess such as self-efficacy beliefs, 
locus of control beliefs, and epistemic beliefs about mathematics that influence their instructional 
approaches (e.g., Stipek et al., 2001). Teachers’ self-efficacy can be defined as the degree to which 
teachers believe they can successfully perform teaching-related tasks within a particular domain or 
context (Enochs, Smith, & Huinker, 2000). Teachers’ locus of control may be defined as the extent to 
which teachers attribute student outcomes (i.e., achievement) to themselves or other (external) factors 
(Hofer & Pintrich, 1997). Epistemic beliefs can be perceived as beliefs about the nature of 
knowledge—i.e., where it comes from, its essence, and how one comes to know (Muis, 2004).  

Prior studies have found a strong association between teachers’ beliefs and students’ 
achievement-related outcomes (e.g., Goddard, Hoy, & Woolfolk-Hoy, 2000; Love & Kruger, 2005). 
However, the vast majority of these studies focused on only one type of belief (e.g., self-efficacy) 
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and failed to scrutinize the collective impact of different types of beliefs on student achievement. 
Moreover, the relation between teachers’ domain-specific beliefs and student outcomes has not been 
adequately addressed in previous research.  

In addition to teachers’ educational beliefs, MKT, defined as “the mathematical knowledge that 
teachers use in classrooms to produce instruction and student growth” (Hill, Ball, & Schilling, 2008, 
p. 374), has been found to positively relate to student performance (Hill, Rowan, & Ball, 2005). 
While previous findings indicate that each of the aforementioned beliefs and knowledge are 
associated with student achievement, no studies were identified that examined the varying effects of 
each of these beliefs on students’ mathematics achievement.  Questions remain as to whether certain 
educational beliefs have stronger effects on students’ mathematics achievement compared to other 
educational beliefs.  Preliminary findings suggest that certain beliefs may play a more important role 
in student achievement in mathematics given that Ekmekci, Corkin, and Papakonstantinou (2015) 
found that among these three beliefs, a teachers’ epistemic beliefs about mathematics is the strongest 
predictor of a teachers’ MKT, which is a reflection of their instructional practices (Hill et al., 2008).  

In terms of teachers’ professional background, years of teaching experience has been positively 
associated with teacher quality (see Rice [2003] for review; 2010). A second teacher background 
variable that has been linked to student achievement is teachers’ educational background in the 
subject matter that they teach. The majority of the research that examines the influence of 
educational background in a teaching discipline assesses its impact on student-related outcomes 
(Barry, 2010). Given the significant relations that have been found between teachers’ educational and 
experiential background with student achievement, the current study will examine the extent to 
which teachers’ beliefs and MKT explain the variation in student performance after accounting for 
these variables.  

 Conceptual Framework 
The conceptual model in Figure 1 provides a representation of our multilevel research design.  

Arrow A displays the direct link between the student’s prior math achievement (level-1) and math 
achievement as the outcome variable.  The main effects of the teacher-level variables (level-2) on 
math achievement are depicted by arrow B.  Arrow C represents the effects of teacher-level variables 
on the relation between students’ prior math achievement and current math achievement (e.g., does 
the predictive value of prior achievement change by level of teacher experience?). 

 

 
Figure 1: Conceptual Model of the Study 

Methodology 
The teacher-level data for this study has been collected as part of a project that was partially 

funded by Teacher Quality Grants Program at the Texas Higher Education Coordinating Board under 
Grants #496 and #531. For the past two years, consistent measures were administered to assess 
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teachers’ educational beliefs after a summer campus program (SCP)—a three-week intensive 
professional development program aimed at improving mathematics teachers’ MKT. Participating 
teachers took a post-survey on the last day of the SCP assessing teachers’ self-efficacy for teaching 
mathematics, internal locus of control, and non-availing epistemic beliefs about mathematics.  The 
teachers also took the Learning Mathematics for Teaching (LMT) assessment, a standardized 
assessment that measures MKT (Hill, Ball, & Schilling, 2008), on the last of day the program. More 
specifically, elementary teachers took El NCOP 2008 scale and middle and high school teachers took 
MS PFA 2007 scale.  

In addition to these measures, teacher level variables included professional background variables 
such as years of teaching experience and whether teachers had earned a mathematics degree. Student 
level data requested from the school district included student scores on a standardized mathematics 
test that was administered at the end of the academic year. The ongoing study will continue to collect 
data from 2014 teachers and students. Although 2014 teacher data is readily available, since the 
student achievement data for this cohort is not available yet, this brief only reports the findings for 
the 2013 cohort.  

Among the 51 K-12 teachers who participated in the 2013 SCP, 76% were female; 39% were 
African American, 30% Hispanic, 20% White, 10% Asian, and 2% other. Students’ ethnic 
background breakdown in the school district is as follows: 29% are African American, 58% 
Hispanic, 9% White, 10% Asian, and 2% other. About 25% were high school teachers; 25% were 
middle school; and 50% were elementary teachers. We used SPSS to conduct Linear mixed effects 
(multilevel regression) analyses. The complete between-teacher model is as follows: 
 

Level-1 (student level):   

Level-2 (teacher level):   
 

Results and Discussion 
The results showed that teacher-level variation accounted for 22% of the variation in math 

achievement (Model 1: Unconditional Model). Table 1 displays the results for the within-teacher 
(Model 2) and between-teacher  (Model 3) models predicting the student achievement outcome. 
Findings showed that the only significant stand-alone predictor was students’ mathematics 
achievement in the previous year (corresponds to Arrow A in Figure 1). None of the three types of 
teachers’ beliefs were significantly associated with student achievement in math (Arrow B). Whether 
teachers’ had a mathematics degree or not was also not significant (Arrow B). However, teachers’ 
LMT scores and years of experience both had a statistically significant effect on the relation between 
prior achievement and current mathematics achievement (Arrow C). This implies that the predictive 
value of prior achievement on students’ mathematics achievement varies by teachers’ MKT and 
teaching experience. More specifically, higher MKT (i.e., LMT scores) and greater years of teaching 
experience strengthens the relation between students’ prior and current mathematics achievement. 
Although statistically not significant, teachers’ beliefs were positively associated with students’ math 
achievement. 

These results suggest that teacher educators should pay close attention to developing teachers’ 
math knowledge, especially MKT. Urban school districts may consider hiring more experienced 
teachers to boost their students’ academic achievement. Lastly, teacher preparation programs should 
look for ways to offer more mathematics content and methods courses to improve their MKT. 
  



Teacher!Education!and!Knowledge:!Brief!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

887!

Table 1: Linear Mixed Effects Model Results 

 
Model 2 Model 3 

Independent Variable Coeff. SE Coeff. SE 
Intercept 92.01** 16.08 72.10** 42.51 
Prior Math Achievement 0.83** 0.02 1.05* 0.45 
Math Degree 

  
115.47 91.10 

Years of Teaching 
  

3.58 2.92 
Self-Efficacy 

  
23.95 51.93 

Locus of Control 
  

30.70 51.55 
Non-Availing Epistemic Beliefs 

  
-29.06 47.53 

LMT 
  

38.09 20.57 
Prior Math Achvmt * Math Degree 

  
-0.23 0.13 

Prior Math Achvmt * Years of Teaching 
  

0.01** 0.00 
Prior Math Achvmt * Self-Efficacy 

  
-0.07 0.06 

Prior Math Achvmt * Locus of Control 
  

0.06 0.07 
Prior Math Achvmt * Non-Avail. Epistemic Beliefs  

  
 -0.01  0.06 

Prior Math Achvmt * LMT 
  

0.07** 0.02 
* p < .05. ** p < .01  
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Leading mathematics discussions is an important practice for beginning teachers. Assessments 
designed to determine skill with this practice are critical. But it is important to determine if such 
assessments yield performances that correspond with teachers’ typical discussion leading practice. 
In this paper, we investigate the validity of one standardized assessment that was designed to assess 
novices’ skill with discussion leading practices, providing evidence of its alignment with typical 
practice. Analyses suggest that a standardized assessment has the potential to accurately reflect 
teachers’ typical discussion leading practice and provide opportunities for teachers to use additional 
practices. 

Keywords: Instructional Activities and Practices; Classroom Discourse; Assessment and Evaluation; 
Teacher Education-Preservice 

The assessment of teacher candidates’ skills with core practices of teaching, such as leading a 
discussion, is crucial as teacher education shifts toward preparing beginners to do these core tasks of 
teaching (Ball & Forzani, 2009; McDonald, et al, 2013). As part of a larger project, we are 
developing a standardized assessment of beginners’ skill with leading mathematics discussions. We 
use “standardized” to refer to having teachers lead a discussion with a provided mathematics task, 
and an accompanying lesson plan, including instructional goals. However, one may wonder if this 
standardized assessment will yield performances that differ from “typical” practice when leading 
discussions. This study investigates the concurrent validity of the assessment by examining how 
novices’ performances on the standardized assessment corresponded with how they lead discussion 
in regular classroom practice.  

Leading a discussion is challenging and complex with many interacting practices at play. Given 
the complexity, we sought to standardize some of these practices in order to assess others. To 
determine where to standardize, we turned to a particular decomposition of the work of leading a 
mathematics discussion that draws on research around practices for orchestrating discussions (Smith 
& Stein, 2011) and talk moves (Chapin et al, 2013). As illustrated in Figure 1, our decomposition 
distinguishes between three stages of discussion: launch, orchestration, and conclusion. Within each 
stage, teachers engage in discussion-leading practices using particular techniques (Boerst et al., 
2011), including talk moves. 

 
Discussion Enabling Discussion Leading 

Anticipating student thinking 

Setting up the problem 

Monitoring student work 

Launching Orchestrating 

- Eliciting                         - Probing 
- Orienting                       - Making Contributions 

 

Concluding 
 

Recording  
Figure 1: Decomposition of Leading a Mathematics Discussion 

We chose to focus the assessment on discussion-leading practices and to standardize the 
discussion-enabling work by providing scaffolds similar to those teachers might encounter in 
curricular materials including the task (Figure 2), lesson plan, and anticipated student thinking. We 
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then developed an assessment of beginning elementary teachers’ skill with leading mathematics 
discussions that asked teachers to do the following: 

You will lead a discussion of solutions to the problem “make number sentences for 10” with an 
eye to the similarities and differences among presented solutions. Your goal is to elicit several 
solutions to the problem and to have students explain why they are or are not solutions and to 
notice similarities and differences among the solutions. Depending on the level of your students, 
your discussion may also focus on the number of solutions to the problem. You may modify the 
lesson as necessary for your students. 

The task was selected to engage students across grades and skill levels with opportunities to generate 
and compare solutions.  

The assessment includes a scoring tool designed around the stages of work and practices outlined 
in Figure 1. This tool further decomposes the practices into related techniques, which represent a 
sample of possible techniques that we selected as crucial for beginning practice. For example, 
orienting students to the contributions of peers occurs during the orchestration stage of the discussion 
and is specified by five techniques such as “the teacher poses questions to students about other’s 
ideas and contributions.” In developing this tool, we recognized that there are many ways to score or 
assess instruction, including rubrics that differentiate levels of performance. For the purposes of 
identifying correspondence of techniques used by teachers in their typical practice with those used in 
an assessment, we chose to record the presence or absence of each technique in relation to a given 
threshold. A choice of N/A (not applicable) was built into the tool to recognize that some techniques 
may not be needed depending on the norms of the classroom. To investigate the degree to which a 
standardized assessment of discussion leading practices yields performances that correspond with the 
same teachers’ typical practice, we piloted this assessment with 9 first through fifth grade elementary 
teachers and also documented a mathematics discussion that they led as a part of their regular 
classroom practice. 

Methods 
The participants in this study were nine first-year elementary school teachers who served as a 

proxy for candidates at the end of their program. We sampled teachers from a range of grade levels 
(1-5), school districts, and teacher education programs. While we sought a diverse sample to elicit 
variation in performance, this sample is not meant to be representative of all first-year teachers. Data 
sources for this study include video recordings of a discussion led as a part of regular classroom 
practice (observation discussion) and the assessment discussion. Observations were captured in order 
to compare typical discussion leading practice with teachers’ assessment performance. Teachers were 
given the assessment described above and were encouraged to spend no more than 45 minutes 
preparing. Observations were conducted prior to the assessment discussion so that teachers’ typical 
practice would not be influenced by the assessment.  

To investigate the concurrent validity of the assessment, we used the developed scoring tool to 
analyze both the observation and assessment discussion videos. Multiple members of the research 
team scored all of the videos. For this study, scoring refers to recording the presence or absence of 
particular techniques at a particular threshold. Any discrepancies were resolved through discussion 
and reference to the codebook. A subset of the discussions (> 20%) was coded by a trained rater, 
yielding an inter-rater agreement of 85%. All nine individual teachers’ scores were compared for 
consistency between the observation and assessment discussion both at the level of discussion 
leading practices and at the level of the techniques associated with them. We coded the techniques 
and the discussion-leading practices for whether teachers received the same rating in both contexts or 
not. Changes in use of techniques from “not present” on the observation to “present” on the 
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assessment will be referred to inconsistent favoring the assessment. All teacher names used in the 
subsequent analyses are pseudonyms. 

Findings 
To examine the correspondence between the assessment discussion and teachers’ typical 

discussion leading practice, we first describe the patterns of consistency that we found across the 
sample and then use cases of three teachers to illustrate some of the nuances of these patterns. 
Overall, when comparing individual teachers’ use of particular techniques across observation and 
assessment, we found that many techniques were used across both contexts. Additionally, many of 
the techniques that were not used on the observation were used during the assessment. When 
examining performances at the practice level, we found that eliciting student thinking and concluding 
the discussion were well matched with most teachers matching or showing more skilled performance 
during assessment on all techniques. To get a clearer picture of the correspondences between 
performances on the assessment and observation, we consider the practice of orienting students to 
one another’s thinking. When we compare the use of particular orienting techniques, we find that the 
techniques were often different across performances; in other words teachers used different orienting 
techniques across contexts, lowering the number of matching techniques used. However, Figure 2, 
which shows the number of orienting techniques that received a score of N/A and present for both 
instances of instruction, highlights that at the level of the discussion leading practice, teachers were 
fairly consistent in the number of different orienting techniques that they were using with 
inconsistencies favoring use of more techniques in the assessment. For example, T25 used four 
orienting techniques in both the observation and assessment discussions, and also earned one N/A in 
both instances, showing high levels of consistency across discussions. 

 

 
Figure 2: Orienting techniques across observation and assessment contexts  

Cases of comparing teachers’ discussion leading practice 
To further illustrate the findings, we selected three teachers representing different cases of 

technique use: consistent (T08), inconsistent, favoring the assessment (T02), and inconsistent, 
favoring the observation (T33). 

Consistent. Ms. Bryan (T08) presents a case of a teacher whose performance was consistent 
across contexts. In both discussions, her launch engaged students in the key mathematical work, 
though in neither case was she efficient. In both instances she consistently elicited student thinking 
and probed for both process and understanding. One area of her orchestration that varied slightly was 
around orienting. Though she did the same number of orienting techniques in both instances, the 
techniques she used varied slightly.  

Inconsistent, favoring the assessment. Mr. Dawson (T02) performed significantly better on the 
assessment than the observation. His launch and work around eliciting student thinking was quite 
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similar in both instances but in all other areas he did demonstrated more skill on the assessment. 
Most notably, his work around the practice of orienting students to one another’s thinking increased 
from no orienting during the observation to use of all five techniques during the assessment 
discussion. We noted that his treatment of the content in his observation, recording the mass of 
objects in different units, did not seem discussion-worthy. We wondered if his choice of task and 
content impacted his performance.  

Inconsistent, favoring the observation. Ms. Jordan (T33) performed significantly better in 
some areas during the observation that she did on the assessment. In both cases she launched the 
discussion efficiently with a tight mathematical focus and was able to elicit and probe student 
thinking. However, she did much more work orienting students to the contributions of others during 
the observation. We noted that in her assessment discussion, Ms. Jordan made critical errors while 
attempting to respond to a student contribution. This prompted us to wonder if her content 
knowledge impacted her use of particular techniques.  

Discussion and Implications 
In this investigation of the concurrent validity of a standardized assessment of beginning 

teachers’ discussion-leading practice, we found that the assessment was reflective of teachers’ 
discussion-leading practice in their typical instruction in many cases. When this was not the case, 
inconsistencies favored better performance on the assessment. This may mean that the scaffolds built 
into the assessment could support beginners and show their potential to utilize discussion-leading 
practices even if they are not yet consistently using them in their typical practice.  

The findings suggest that the standardized assessment could reflect teachers’ typical discussion 
leading practice and could reveal better performances when provided with scaffolds, (e.g. the lesson 
plan appeared to support beginners’ ability to conclude a discussion). This indicates that the 
assessment may make visible teachers’ potential to use the discussion leading practices given the 
right supports and content. Although we did not set out to account for differences in performances, 
we did observe a number of interesting features of lessons with discrepancy including the role of the 
task, subject matter knowledge, and learning opportunities built into the assessment. Future research 
could examine systematically the ways in which these and other factors contribute to differences in 
performances. 

Although there were several limitations to the study including the sample, the limited number of 
observations, and the design of the scoring tool around a particular decomposition of discussion 
leading practice with threshold statements, the findings suggest that a standardized assessment has 
utility for assessing beginners’ skills and should be further investigated. 
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This study explored how prospective elementary teachers described their past experiences engaging 
in the first of the Common Core Standards for Mathematical Practice, which requires students to 
“make sense of problems and persevere in solving them.” Through a process of grounded theory we 
found that prospective teachers’ responses varied between whether or not they described the problem 
solving process as one that relied on non-routine thinking, or as a process of following prescriptive 
steps. Just under one third of the 41 students gave examples of the practice that demonstrated an 
understanding of solving problems as a sense making process, and many cited that this happened in 
the contexts of “geometry” and “word problems”. These findings suggest that teachers’ past 
experiences may have afforded few opportunities to engage in this practice, and teachers may need 
support in developing new understandings. 

Keywords: Teacher Education-Preservice; Standards; Elementary School Education 

Objectives 
The Common Core State Standards (CCSS) (NGA, 2010), adopted by the majority of U.S. states 

and territories, include Standards of Mathematical Practice (SMP) that describe practices students 
should develop when learning mathematics. A challenge currently facing many prospective teachers 
is that the Standards for Mathematical Practice (SMP) require them to learn to teach mathematics in 
ways distinct from how they learned mathematics. We sought to examine how prospective teachers 
interpret the SMP through the lens of their previous experiences with mathematics. In this study we 
focused on the first SMP, which requires students to “make sense of problems and persevere in 
solving them.” More specifically, we investigated the following question: What are prospective 
teachers interpretations of the CCSS.MP.1 based on their past experiences? 

Perspectives 
In this study we focus on the first SMP because it is a core practice with broad application to all 

levels of mathematics. This practice emphasizes student thinking and persistence through solving 
non-routine problems, which contrasts traditional ways of learning mathematics through rote 
memorization and an emphasis on skill over understanding.  

One enduring challenge in mathematics education is how teachers (and teacher educators) can be 
responsive to the various conceptions of mathematics held by their students. The literature of the 
field supports that an emphasis on reasoning and sense making should be inherent in all mathematics 
learning (e.g., NCTM, 2009; Schoenfeld, 2009), but in order to teach in this manner teachers 
themselves need a conceptual understanding of mathematics (e.g., Ball, Hill, & Bass, 2005). 
Prospective teachers in the U.S. may not be adequately prepared to teach the demanding mathematics 
curriculum required by the Common Core State Standards (Education Policy Center, 2011), and 
many of them may hold conceptions of mathematics that do not easily align with the SMP. 

Prior to entering teacher education programs, prospective teachers have spent many years as 
students in mathematics classrooms, often learning mathematics in ways that do not align with 
current standards. Lortie’s (1975) theory of “apprenticeship of observation” suggests that a teacher’s 
past experiences observing and engaging in learning as a student are a major contributor to how they 
learn to teach. Prospective teachers’ understandings of mathematics and teaching are strongly 
influenced by their past experiences as students of mathematics. If they did not develop a conceptual 
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understanding of mathematics, they may have difficulty interpreting the Mathematical Practices, and 
struggle to support their future students in developing them.  

In this study we explored prospective teachers understandings of how they had engaged in the 
practice described in CCSS.MP.1 in their past experiences as a mathematics student. We took a 
grounded theory approach (Glaser and Strauss, 1967) in this study because there were no existing 
frameworks with which to analyze the data.  

Methods 

Context  
This study was conducted in two sections of a Number Theory content course designed for 

prospective elementary and middle school teachers at a private university in the Midwest. 
Prospective teachers were in their freshman or sophomore year and this was their first mathematics 
course at the university. The population consisted of 41 prospective teachers: 38 females and 3 
males.  

Data  
The data collected for this study were from an online survey given prior to the first day of class. 

We asked demographic questions as well as items pertaining to attitudes and beliefs. The focus of 
this study was on how pre-service teachers make sense of the first Common Core Mathematics 
Standard through the lens of their past experiences as prospective teachers. More specifically, the 
survey asked prospective teachers to read the description of CCSS.MP.1 and think about what it 
meant to them. “Describe any past experience you have had as a student of math, in which you feel 
like you participated in a way that met this standard.” The description of CCSS.MP.1 that was 
provided to the prospective teachers is available at http://www.corestandards.org/Math/Practice/. 

Analysis 
Qualitative data pertaining to prospective teachers’ understanding of the CCSS.MP.1 were 

imported into an Excel spreadsheet with all identifiers removed. The two co-authors began the 
grounded theory process (Glaser and Strauss, 1967) by reading and rereading all prospective 
teachers’ responses, and engaging in constant comparison to search for possible themes. We met to 
discuss our initial observations and concluded that an observable variation between responses was 
whether or not the individual described the problem solving process as one which relied on non-
routine thinking, or as a process of following prescriptive steps. After discussing this variation, the 
co-authors separately returned to the data and categorized responses according to these two 
categories. This categorization was done by reading and rereading responses and underlining words 
or phrases that indicated an understanding of problem solving as either a thinking process, or a 
process of relying on prescriptive steps. After both authors conducted this analysis separately, we 
met to discuss our categorization and to examine together the responses that were particularly 
difficult to classify. This process of categorizing, sharing, and discussing helped us to further clarify 
our understanding of the criteria that differentiated responses in each category.  

The prospective teachers’ responses that we categorized as demonstrating an understanding of 
the practice were those who indicated that thinking and reasoning was an integral part in coming to a 
mathematical solution. Some examples of phrases used by prospective teachers that indicated the 
importance of their own reasoning to help them arrive at solutions were: “thinking about the problem 
critically and from different angles”, “support our answers”, “problem solve and explain our 
reasoning to how we got our answers”. Responses that we did not categorize as demonstrating an 
understanding of the practice fell into one of two cases: a) they indicated a reliance on rules, steps, 
and procedures to arrive at a solution rather than their own thinking, or b) they were vague and 
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lacked enough detail to make a determination. When responses emphasized prescriptive steps and did 
not indicate the use of their own thought processes in arriving at a solution, it fell short of offering 
enough evidence to indicate understanding of CCSS.MP.1. Once all responses were categorized 
according to whether or not they indicated an understanding of the practice, we conducted further 
analysis by reading and rereading the responses within each category, and noting themes that 
emerged within each group. In the following sections, we describe the findings.  

Results 
Of the 41 responses, 13 prospective teachers demonstrated an understanding of CCSS.MP.1 as 

representing a thinking process. All 13 of the responses that we categorized as “understanding” 
indicated that the prospective teacher saw this standard as being about a thinking process in which 
the ideas and strategies come from the student (i.e., “I had to figure out…”). Student-centered 
thinking was indicated through verbs and phrases such as: plan, questioning, pondering, discovering, 
think out, thoroughly considers the question, determine the best way to solve. In 9 of the 13 
responses, prospective teachers mentioned the existence of “different methods” to solve. Four of 
those responses also mention a goal of trying to come up with the best solution or determine the best 
way to solve the problem. Three of the responses included a reference to a geometry course, and 4 
responses referenced “word problems” as contexts in which they had participated in the practice in 
the past.  

Of the 41 prospective teachers who completed the survey, the remaining 28 did not show ample 
evidence to demonstrate an understanding of CCSS.MP.1 as a thinking process. In 15 of these 28 
cases, the prospective teacher restated phrases directly from the standard or gave a vague response 
and did not provide any elaboration on what the standard meant to them or how they had experienced 
it. In 13 of these 28 cases, we categorized the response as "procedural," because they described the 
problem solving process as one that attempted to minimize it to a procedure. Another theme that 
surfaced from our analysis was that 7 of the 28 responses emphasized the importance of checking 
and rechecking their work using multiple methods. In the presentation, we will support findings with 
examples of prospective teachers’ responses.  

Discussion/Conclusions 
Just under a third of the prospective teachers were able to show evidence of understanding that 

CCSS.MP.1 was about a student-centered thinking process, by giving examples and drawing on their 
past experiences. Of those prospective teachers who showed evidence of understanding CCSS.MP.1, 
about half of them referenced either geometry or word problems as contexts in which they had had 
opportunities to participate in this standard in the past. These findings suggest that prospective 
teachers’ past experiences may have offered them little opportunities outside of those two contexts to 
engage in the practice promoted by CCSS.MP.1.  

Current emphases on problem solving across the field of mathematics education focus on 
“reasoning and sense making” (NCTM, 2009) and “make sense of problems and persevere in solving 
them.” These ideas clearly delineate the need for students to develop their own thinking strategies for 
working through non-routine problem solving, and necessitate that these practices become a part of 
“every mathematics classroom every day” (NCTM, 2009, p.5) instead of limited to narrow contexts 
such as geometry and word problems.  

There is risk that prospective teachers who do not conceptualize mathematics as a discipline of 
reasoned sense making may not understand the importance of developing students’ thinking 
strategies, and may attempt to reduce problem solving to procedural steps. Close to one third of the 
prospective teachers we surveyed interpreted CCSS.MP.1 as describing a problem solving process 
that could be minimized to a procedure. They emphasized activities such as circling, highlighting, 
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underlining, and double checking rather than activities that have the potential to scaffold the 
development of students’ own thinking strategies.  

This is a time of transition for teacher educators as we develop our programs to prepare teachers 
for new expectations established by the Common Core. The findings from this study are significant 
as they illuminate prospective teachers’ early understandings of the first SMP, and identify a need for 
teacher educators to support further development of their understandings of the SMP that they will be 
responsible for promoting in their future classrooms.  

Without extra support, teachers (both prospective and practicing) are limited to the examples 
provided within the Common Core documents. Past experiences may not have provided them with 
the relevant conceptions and understandings needed to enable them to generalize the meanings of 
each of the SMPs. Thus, mathematics teacher educators should explore ways to help prospective 
teachers understand these ideas through engagement in mathematical inquiry and subsequent 
reflection aimed to help them understand the thinking processes that should be an inherent part of 
doing mathematics.  

Further research is needed to explore ways of supporting the development of prospective teachers 
understandings of these ideas, and to examine the conditions that help prospective teachers come to 
see mathematics as a sense making process.  
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REFLECTING ON A DECADE OF CURRICULUM DESIGN: 
THE IMPORTANCE OF SETTING THE TONE 
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For over a decade I have led a collaborative effort to develop, enact and revise curriculum materials 
for a Number and Operations course for prospective elementary teachers (PTs).  A main focus of this 
course is on justifying one’s thinking by relying on elementary-age appropriate meanings of numbers 
and operations, rather than rules. This article summarizes some of the key aspects of the curriculum 
development project, changes in the style and content of the curriculum, and recommendations for 
the importance of tone setting guidance for PTs and their instructors. 

Keywords: Teacher Education-Preservice; Number Concepts and Operations; Curriculum; 
Mathematical Knowledge for Teaching,   

Framing the Issue 
Although the issue of what knowledge teachers need to teach has been debated since teacher 

education programs began, there has been a surge in the intensity and depth of the conversation in the 
last few decades.   Most notable are two recent efforts, both based on a systematic examination of 
practice.  Ball and colleagues have been working on developing a theory of the mathematical 
knowledge need for teaching by analyzing the work of elementary mathematics teaching (e.g., Ball, 
Bass & Hill, 2004; Hill, Rowan & Ball, 2005).  Other efforts are geared at designing mathematics 
education courses for PTs by adopting a collaborative, systematic and iterative process of lesson 
development, analysis and refinement (e.g., Ball, Sleep, Boerst & Bass, 2009 and Berk & Hiebert, 
2009).  While some consider this to be the work of teaching, Berk & Hiebert (2009) highlight the 
similarities between this work and design research. 

For over a decade I have led a similar project focused on developing and revising the Number 
and Operations course for PTs that facilitates the ability to justify one’s thinking in ways appropriate 
for elementary students.  This work began in 2003 when I was one of the main authors on the NSF-
funded Understanding Mathematics Deeply for Teaching (UMDT) project (Flowers & Rubenstein, 
2003 – 2007).  A main product of this project was a set of instructor notes including a 1-page 
overview of the lesson (Brief Notes), and a set of Detailed Notes of varying length, but typically 10+ 
pages.  Interspersed among activity descriptions were stand-alone essays called Teacher Notes 
(loosely modeled after a similar feature from the Investigations in Number, Data and Space 
curriculum, TERC, 1998).  These included activity-specific notes, such as examples of student work 
and related mathematical issues, and more general notes on issues like social norms, 
sociomathematical norms (Yackel and Cobb, 1996), and tone setting for new topics.  [Although I 
have found no literature defining tone setting, practitioner articles discuss suggestions for tone setting 
activities.  The idea is to find an activity that conveys and motivates the goals of a course and 
introduces students to class norms.]  

Following this project, I led my institution’s efforts to continue to develop these materials in an 
incremental way.  Our cyclical process included weekly meetings and impromptu conversations 
about the lessons that all instructors would use, and suggestions for future alterations.  This work was 
also informed by research conducted with colleagues on PTs’ understanding mathematics (e.g., Lo, 
Grant & Flowers 2008, Lo & Grant, 2012).   
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Setting the Tone for a Meaningful Approach to Mathematics 
Over the years I have come to more fully appreciate the difficulties faced by PTs in both 

embracing the course goals and making the necessary shifts in thinking.  Thus in the summer of 
2012, I abandoned the idea of accomplishing tone setting in the first class (or two), and instead 
created a new 4-week unit to address the multi-faceted issue of setting the tone for making this 
fundamental shift from rule-based to meaning-based thinking.  The new unit was designed to support 
PTs as they built a new foundation for doing mathematics, while simultaneously working on their 
understanding of number.  Foci included: recognizing when rules are being invoked; generating and 
exploring age-appropriate meanings; and learning to focus on meanings by generating and analysing 
diagrams of problem situations before solving them.  As we experimented with the new unit over 
four semesters, the Instructor Notes remained relatively sparse.  With the new unit solidified, I 
devoted a portion of my sabbatical to generating detailed Instructor Notes and reflecting on how the 
curriculum had changed over the last decade. 

Methodology 
I structured my work on Unit 1 in three phases:  1) immerse myself in the activities; 2) refine the 

activities and create detailed Instructor Notes; 3) compare the resulting unit with the first few weeks 
of the UMDT curriculum. Since I was not teaching during my sabbatical, I invited an experienced 
mathematics education instructor to participate in more intense variation of our curriculum design 
process – thus providing a means of immersing myself in the activities.  I chose an instructor who 
was essentially new to the course (she had not taught it in over 10 years), but not new to teaching 
PTs, nor new to working collaboratively on curriculum design for PTs.  My goal was to: 1) reflect on 
the activities and their function in the unit; 2) identify sticking points of both instructors and PTs as 
they navigated the first unit, and 3) use this information to refine activities and create detailed 
Instructor Notes.   For every lesson in Unit 1, I offered pre-lesson planning, observed the lesson, and 
had post-lesson discussions with the instructor. During and immediately after each observation I 
recorded my own reflections.  

The process of creating detailed Instructor Notes and analyzing field notes from observations, 
interviews, and my own reflections, was a cyclical one.  For each identified theme, I considered how 
to most effectively address it in the Instructor Notes; and in the course of writing up each activity, I 
reflected on its relation to larger themes.  At several points I consulted with the instructor about 
sticking points and developing themes.  Drafts of the Instructor Notes were shared with several 
instructors for feedback.  Once satisfied with the newly designed Instructor Notes, they were 
compared to those from the original UMDT project, both for content and style. 

Results and Discussion 

The Instructor Notes:  An Overview 
Many of the suggestions raised by the instructor for inclusion in the Instructor Notes were not 

surprising:  expected student responses; suggestions for what ideas to pursue and which ones not to 
pursue; a clear sense of the goals of each individual activity, and how this related to overall unit and 
course goals.   Although this kind of information had been included in some Instructor Notes, 
particularly for well-established activities, it did not necessarily exist for every individual activity, 
particularly those in the new first unit.  Furthermore, in instances where such information was 
included, the format of this information greatly impacted its usefulness.  For example, there were 
some activities for which I provided a written description of expected student work.  In discussing 
one such activity, it was clear that this description had little impact or staying power, however when I 
drew pictures to match these descriptions, the instructor quickly understood the important issues 
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raised by the different approaches.  Finally, it was also clear that a better organizational system was 
needed facilitate the quick location of particular information while teaching. 

After making these and other alterations to Unit 1, I compared the notes to those from the 
original UMDT project.  The new Instructor Notes were of similar length and maintained many of the 
original features of the notes, with some new features added including activity-specific goals.  Also 
notable was a difference in the number and type of activities.  In the original course, there were 
typically fewer activities in one 100-minute class.  For example, Day 1 had been one activity:  
grappling with the reasoning behind the divisibility rule for 4.  This was not an easy task for PTs and 
required a great deal of understanding and skill to facilitate in such a way that students stayed 
engaged without becoming discouraged.  The current content focus of the first lesson is on even and 
odd numbers – something that is more accessible to many than proving divisibility rules.  The lesson 
is also divided into three related, though separate activities.  In addition, there is a distinct shift from 
generally open-ended activities with broad goals, to open-ended activities that are more focused on 
achieving specific goals, particularly in the first unit.  This transition was due to a recognition of PTs 
need for more focused activities to make issues more clear, as well as instructors expressed needs for 
more clear and specific goals.  

Broader Issues:  A More Nuanced Approach to Norms, Goals and Tone Setting 
Two broader sticking points emerged from the analysis of the data, particularly for classes 1 

through 4:  the unproductive use of generic teaching moves; and a need for a “big picture” view of 
the first unit.  Consider the following generic teaching moves that could be considered standard 
moves in a stereotypical “student-centered classroom”:    

• A reluctance to tell anything, accompanied by the assumption that 
generalizations/insights/conclusions will always be articulated by students. 

• Encouraging the sharing of many ideas, rather than delving into a few in greater depth. 
• An overreliance on general why questions (e.g., What do others think? or Can anyone add to 

this?), rather than questions designed to help focus PTs on particular issues. 

The result of these moves was that important mathematical ideas were not always pursued and many 
activities wound up taking twice the amount of time intended.  My conversations with the instructor 
indicated that the richness of individual tasks, and the lack of prior knowledge of how PTs react to 
the task, led her to lose focus on the goal of a particular task.  Which brings me to the second, related 
sticking point:  the critical role of having clear goals for individual tasks, how these relate to the 
goals for the lesson/unit/course as well as the progression PTs go through as they learn to do 
mathematics meaningfully. 

As I worked on the cyclical process of writing Instructor Notes and considering these broader 
sticking points, I returned to the impetus for creating the new Unit 1:  the need for a more detailed 
and multi-faceted approach to setting the tone for PTs.  I realized that the Instructor Notes needed to 
provide explicit suggestions for doing so, thus better setting the tone for instructors.  In the original 
UMDT notes for the first day, there had been a Teacher Note titled Expectations and Initial Tone 
Setting, containing a sample script of how an instructor might explain the goals of the course and 
their relation to expected norms.  In the newly created Instructor Notes, tone setting was supported in 
a multitude of ways:  1)  all goals for activities were refined, and activity descriptions were altered to 
more clearly reflect goals;  2) whenever possible, summary suggestions were included pointing out 
the relationship between the activities on a particular day and both course goals and PTs future work 
as teachers.  These additions were designed to help set the tone for both PTs and their instructors as 
they worked on individual activities.  In addition, more general Teacher Notes were created to deal 



Teacher!Education!and!Knowledge:!Brief!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

899!

with bigger issues, most notably, two general Teacher Notes addressing the two main sticking points:  
Confronting the Taboo of Teacher Telling and Confronting the Sanctity of Student Sharing.  As the 
titles suggest, the notes were aimed at confronting extreme views of a “student-centered” classroom 
and highlighted the struggles PTs face in moving from rule-based to meaning-based mathematics in 
the area of number and operation, thus setting the tone for instructors.  

Conclusions 
One of the enduring challenges of mathematics education is preparing PTs to teach K-12 students 

to reason mathematically.  Many things contribute to this dilemma, including a lack of agreement on 
what it is that PTs need to know. While progress is being made, a recent national survey of those 
teaching mathematics content courses for PTs concludes that as a group, these individuals “likely 
have not had opportunities to think deeply about important ideas in elementary mathematics, and 
most institutions do not provide training and/or support for these instructors” (Masingila, Olanoof, & 
Kwaka, 2012, p.357).  Thus it is imperative that we create educative materials for this varied 
population.  I propose that in addition to features common to the university-based curriculum projects 
cited earlier (e.g., specific learning goals, rationale for the activities, expected student responses, 
etc.), careful attention must be paid to providing the kinds of tone-setting guidance necessary for 
students (PTs) and their instructors alike to navigate the complex process of basing mathematical 
work on reasoning rather than rules.  
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This paper reports on the development of attitudes about mathematics, as well as the construction of 
theory-practice connections among elementary preservice teachers engaged in site-based 
mathematics methods coursework. Using the attitudes scale from the Mathematics Experiences and 
Conceptions Surveys, preservice teachers engaged in site-based methods coursework had more 
negative entering attitudes than control groups, but demonstrated higher growth rates at two 
subsequent time points. Further, preservice teachers were able to saliently describe theory-practice 
connections during reflections on the site-based experience.  

Keywords: Affect and Beliefs; Teacher Education-Preservice 

This paper focuses on the designs and outcomes of field-based mathematics methods coursework 
organized around opportunities for elementary preservice teachers (PST) to make solid, lasting 
theory-practice connections using an apprenticeship model. The design of such courses is predicated 
on the notion that live demonstrations, engagements and reflections on work with real students in 
classroom settings provide critical experiences on which theory practice connections are constructed 
{c.f. \Cochran-Smith, 1999 #457}. When mathematics methods courses are taught onsite in 
elementary schools, PSTs are offered ongoing opportunities to explore strategies that support 
children’s mathematical thinking under the guidance of their methods course instructor and the 
classroom teacher {Hodges, 2014 #534}. After working directly with children or witnessing a live 
teacher demonstration, PSTs return to their methods classroom with their methods instructor to 
engage in immediate reflective conversations that help them learn to theorize from practice. 

Objectives of the Study 
Little is known about the impact site-based courses have on PSTs conceptions of mathematics 

teaching and learning, nor the types of theory-practice connections PSTs are able to construct 
through their participation in such contexts. Consequently, we undertook an exploratory mixed-
methods design aimed at unpacking PSTs development as a consequence of their experiences in the 
site-based methods course. The Mathematics Experiences and Conceptions Surveys [MECS] (Jong & 
Hodges, in press) were administered to (n = 38) PSTs at three time points: (a) at the beginning of 
mathematics methods coursework; (b) at the end of mathematics methods coursework; and (c) at the 
conclusion of the student teaching semester. The MECS measure, in part, PSTs attitudes towards 
mathematics. Since attitudes are felt less intensely, and are more apt to change than beliefs {Philipp, 
2007 #160}, we focused our attention on the attitudes scale as growth might be more readily visible 
over the short duration of a methods course and/or the student teaching experience. Additionally, the 
MECS contain contextualized sets of experiences items which help to explain any changes in 
attitudes as a consequence of prior and/or ongoing experiences within teacher education. 
Additionally, we drew upon artifact collection and analysis to explore the types of theory-practice 
connections PSTs developed as they participated in the site-based design. 

The overall aims of this research were to (a) determine what, if any, changes occur in attitudes 
towards mathematics over the duration of the site-based mathematics methods course and into 
student teaching; (b) compare changes in attitudes among those engaged in the site-based course to 
populations of students which participate in a more conventional campus-based coursework; and (c) 
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explore the types of theory-practice connections PSTs are developing within the site-based design. 
This focus contributes to the knowledge base on mathematics teacher development by observing both 
affective and cognitive aspects of experimental site-based PST mathematics methods course designs. 

Perspectives 
The MECS measurement of attitudes focuses on participants’ ways of feeling and thinking about 

mathematics, maintaining a focus on PSTs enjoyment of and inclination to see mathematics as a 
worthwhile activity from both teaching and learning perspectives.  Many elementary PSTs enter 
teacher education coursework with negative attitudes towards mathematics {e.g. \Connor, 2011 
#387}. Our own work has suggested that elementary PSTs attitudes towards mathematics are 
strongly linked to their experiences in K-12 classrooms, and can be positively influenced through 
attention to methods experiences centered on reform practices in mathematics education (Jong & 
Hodges, in press). Ultimately, subcomponents of the affective domain, including attitudes, influence 
PSTs orientations to their own classroom in relation to students’ mathematical thinking, use of 
curriculum materials, and student achievement (Philipp, 2007). 

Given the link between attitudes and attention to reform practices in methods coursework, we 
wished to maintain a dual focus on the development of attitudes alongside the types of theory-
practice connections PSTs were able to make. Theory-practice connections were considered in two 
ways: (a) those that analyze the instructional routines present in mathematics classrooms; and (b) 
those that investigate students’ thinking about mathematics within classrooms. As an example, 
observations of instructional routines often focused on Smith and Stein’s {, 2011 #446} 5 Practices 
for Orchestrating Productive Mathematics Discussions, as these practices have shown significant 
promise in their ability to attend to critical features of inquiry-based mathematics instruction. 
Examples of the types of frameworks that investigate students’ mathematical thinking include 
students’ (a) views of the equal sign {Falkner, 1999 #442}; (b) levels of geometric thought {Wu, 
2005 #565}; and (c) placement along an equipartitioning learning trajectory {Confrey, 2009 #564}.  

Methods 
The data presented here include thirty-eight PSTs enrolled in mathematics methods courses at 

one university in the United States during fall 2013. MECS-1 was administered during the first week 
of class while MECS-2 was administered during the final week of class. MECS-3 was administered 
following full time student during the spring 2014 semester. The Rasch Rating Scale Model was 
selected to create a common metric and rating scale. MECS-1 was selected for anchoring and 
subsequently the rating scale thresholds from MECS-1 were anchored using additional coding in a 
Winsteps control file. The attitudes scales from MECS-2 and MECS-3 were reanalyzed with the item 
and rating scale in place. Once quality control checks for stability, reliability, and fit were completed, 
the anchored items scales for MECS-2 and MECS-3 were deemed valid. Subsequently, more 
traditional parametric tests could be completed on the logit values. Data from the university of 
interest were then compared to data from two other institutions where MECS were administered at 
each time point. The other institutions, however, offered their mathematics methods coursework in a 
conventional campus-based course. We followed quantitative analyses with a qualitative thematic 
analysis of PSTs narrative reflections on theory-practice connections constructed during methods 
coursework. 

Results 
Results of the mixed methods design are organized sequentially by data type. 
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Quantitative Analyses 
Results of an RM-ANOVA analysis indicated significant changes (p < .001) in all pairwise 

comparisons from MECS-1 (.522), to MECS-2 (1.296), to MECS-3 (1.928) among those enrolled in 
the site-based methods courses. Similar growth occurred in those enrolled in campus-based methods 
coursework at comparative universities. Furthermore, using Levine’s test of homogeneity, there were 
no statistically significant differences between site-based and campus-based attitudes at any of three 
time points. Mean values for each university are presented in Table 1.   

Table 1: Mean Attitudes Scores by University  
University MECS-1 MECS-2 MECS3 
Site-Based .522 1.296 1.928 

Campus-Based 1 .540 1.012 1.322 
Campus-Based 2 .711 1.303 1.979 

 
Despite a lack of statistical significance between groups, the site-based methods mean values 

were lowest among the three institutions, yet exceeded the attitudes scores of campus-based 1 and 
were nearly identical to campus-based 2 at the end of the methods course. Further, the site-based 
attitudes maintained high levels of growth, along with campus-based 2, at the conclusion of the 
student teaching semester.  

Qualitative Analyses 
During observations of the experienced classroom teacher and their methods course instructor, 

PSTs maintained a five practices evidence log detailing the extent to which the classroom teacher and 
their instructor attended to each practice. These evidence logs provided a shared context to discuss 
mathematics lessons during debriefing sessions. Analyses suggest that PSTs were able to attend to 
the five practices in their observations, and could note “missed opportunities” in the experienced 
classroom teacher’s attention to each practice. Observing these “missed opportunities” resulted in 
discussions of lesson modifications that would lead students to important mathematical 
understandings. Further, PSTs were able to generalize effective teacher moves that encourage the 
development of productive sociomathematical norms {Yackel, 1996 #227} towards argumentation. 
The following quote from a preservice teacher is indicative: 

Discussions should focus on students’ thinking (both correct and incorrect) to develop instruction 
and help make applicable connections through representations. I learned using these resources 
that structure is essential in scaffolding appropriate math discussion. This discussion is important 
in supporting students in taking risks and asking questions to further their own understanding. 

Three themes were developed through analyses of PST’s responses to experiences focused on 
students’ mathematical thinking: (a) differentiating instruction, (b) the use of curriculum materials; 
and (c) attention to multiple representations. The frameworks often highlighted misconceptions in 
core prerequisite knowledge, which supported PSTs in seeing that instruction must address holes in 
conceptual understanding, even if instructional guides and materials assume such knowledge. The 
following quote is illustrative of students’ attention to representation of prerequisite knowledge: 

All of the students I interviewed seemed to have a clear understanding on moving from symbol to 
picture. They all knew how to shade in an area model. One pattern I noticed was that all three 
students had difficulty moving from picture to symbol. This made me think they were better at 
partitioning than unitizing fractions. 
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Discussion 
The use of MECS indicated significant growth in PSTs attitudes over the duration of the 

mathematics methods course and into student teaching. The growth in attitudes among those engaged 
in site-based coursework was not statistically different from that of comparative campus-based 
courses. This finding is in and of itself important. Much like many comparative studies of reform 
mathematics curricula, which provide a “do no harm” comparison to traditional curricula, this study 
indicates that experimental site-based methods courses provide analogous growth across in attitudes 
across the teacher education program.  Furthermore, we find that although not statistically 
significant, those engaged in site-based methods courses did show higher growth rates than 
comparative institutions.  

The link between attitudes development and reform mathematics experiences in methods courses 
is clear. Given PSTs’ direct attention critical aspects of reform instruction, the development of those 
attitudes might well be linked to certain critical experiences embedded in the site-based design. 
Although only an initial step, unpacking the design of methods courses, particularly carefully crafted 
theory-practice connections provided here, continues to be a fruitful area of research in mathematics 
teacher education. 
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In this study, we asked 19 preservice elementary teachers who had completed content courses and 
were enrolled in a methods class first to solve multidigit addition and subtraction problems and then 
to demonstrate how they would explain the same solution to a child using base ten blocks. We found 
that even those with conceptual understanding of place value and multidigit arithmetic faced 
challenges providing explanations using base ten blocks that children would be able to understand. 
In particular, only some gave explanations with base ten blocks that had quantitative coherence—
that is, the meanings associated with concrete objects and their transformation remained stable 
across the explanation. Additionally few PSTs’ explanations corresponded with their initial solution 
because they did not coordinate the sequence of representation transformation with the sequence of 
their initial solution. 

Keywords: Teacher Knowledge; Elementary School Education; Instructional Practices 

Providing instructional explanations that students can understand is a critical part of teachers’ 
work. Teachers who know what a clear explanation involves and can perform one themselves are 
better able to orchestrate a discussion that functions as a student-voiced explanation. Leinhardt 
(1987) contrasted the instructional explanations of novice and experts and provided a description of 
the key features of expert explanations. High quality explanations address a specific student audience 
by using representations that students understand, featuring strategic examples, avoiding errors, and 
highlighting important connections. Existing studies of preservice teachers have documented 
generally poor facility in explaining a wide range of mathematical ideas, including standard 
multidigit algorithms (e.g., Ma, 1999; Thanheiser, 2009).  

In this study we identified features of preservice teachers’ (PSTs) explanations involving base ten 
blocks that would prevent or impede student understanding. By interviewing PSTs who had already 
completed a sequence of content courses and were enrolled in a methods class, we were able to 
interview many participants who had conceptual understanding of place value yet still offered 
problematic explanations. Our study addressed this research question: What challenges do preservice 
elementary teachers face providing instructional explanations with concrete representations? We 
found that PSTs may not maintain quantitative coherence in their use of concrete representations and 
also may not coordinate their actions with the concrete representation and the sequence of the 
solution they aim to explain.  

Theoretical Framework 
 In this study we envision teaching that is responsive to various conceptions of mathematics. In 

particular, we assert that instructional explanations that use representations are accessible to a wide 
range of students only if the underlying quantitative meanings of the representations and of the ideas 
that are being explained are made explicit and connected. According to Smith and Thompson (2008), 
quantities are constituted in people’s conceptions of measurable attributes of objects, events, or 
situations. For example, in a situation where a girl started with 187 seashells, picked up more, and 
finished with 400, using quantitative reasoning (Thompson, 1994) could involve thinking about the 
situation as a starting amount, an unknown change, and the final result. Starting with 187 and 
keeping track of how many must be added on before arriving at 400 is a solution that might be 
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generated from such quantitative reasoning. In contrast, we use numeric reasoning to refer to 
calculating and either not selecting calculations based on quantities or not explicitly connecting the 
component values and results of calculation to corresponding quantities. To extend the seashell 
example, someone reasoning numerically might subtract 187 from 400 to find the answer but not be 
able to provide a quantitative meaning for subtraction (e.g., subtraction as take away) that makes 
sense in the problem situation. While the differences may seem subtle, numeric reasoning without an 
understanding of the associated quantitative relationships can result in difficulties selecting 
appropriate calculations and in difficulties interpreting and using the results of calculations (Lobato 
& Siebert, 2002). We consider explanations to be quantitatively coherent if the quantitative meanings 
associated with concrete objects and their transformation remained stable across the explanation.  
Additionally, we argue that explanations must follow an appropriate sequence to be understandable 
for children. 

Methods of Inquiry 
In Fall 2014, we recruited 20 PSTs at a large public university in the Midwestern United States 

enrolled in two sections of a methods course. They had completed one content course in number and 
operation and a second in geometry and measurement. The interviews took place before multidigit 
addition and subtraction was discussed in the methods class. The first author was the instructor of 
one section of the methods course, and conducted semi-structured (e.g., Bernard, 1994) hour-long 
interviews with each pair of PSTs. We present data from 17 PSTs work on two tasks and 2 PSTs 
worked on only one task. One PST arrived late and did not work on either task. The first task was 
“187 plus what number is 400?” The second task was “Find 120 plus 96.” Participants were first 
asked to explain their solution to the problem and then to demonstrate how they would explain the 
same solution to a child using base ten blocks. A main goal of the interviews was to examine how 
teachers’ coordinated their initial solutions with their explanations of these solutions using base-ten 
blocks. The authors watched the videos and reviewed the transcripts many times. In each pass, we 
examined talk, gesture, and inscription for evidence of what the PSTs were thinking. 

Analysis and Findings 
For each task, we report representative cases and summarize findings for all participants.  

Task 1: 187 Plus What Number Is 400? 
To solve the problem, 16 of the PSTs used the standard algorithm for subtraction and 3 PSTs 

used different methods. When using blocks to explain their solutions, 12 of the PSTs maintained 
quantitative coherence and 7 did not. None of the explanations, however, corresponded in sequence 
with the initial solution supposed to be explained.  

Erin did not maintain quantitative coherence. To solve the first problem for herself, Erin 
wrote the missing value equation 187 + __ = 400 and then used the standard algorithm for 
subtraction. She crossed out the digits 4, 0, and 0 writing 3, 9, and 10. Then she subtracted by place 
value starting with the ones to find the answer 213. She checked her work by adding 213 and 187 
using the standard algorithm for addition to get 400. When asked to explain her strategy with base 
ten blocks, Erin counted out a collection for 187 using one flat, eight rods, and seven cubes. Erin then 
asked if she should “show 400 and then breaking it down” to which the interviewer agreed. She made 
a pile of 4 flats and stated she would show subtracting the 187 from the 400. She then removed 2 
flats from the 400 pile to form a new pile and then took one rod and three cubes from the bank of 
extra material and placed them on top of the two flats she had moved. Two flats remained in her 
original pile, and she placed these back in the bank. She stated that the pile with 187 and the other 
with 213 would combine to make 400. 
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Abby maintained quantitative coherence. Abby initially solved the problem using the same 
method as Erin. To explain her solution using blocks, Abby laid out 4 flats to represent 400 and she 
stated she wanted to “take away 100, 80, and 7”. To do this she removed 1 flat, traded a second flat 
for 10 rods and removed 8 of them, and finally traded a rod for 10 cubes and removed seven of them. 
She described her result as “200, 10, and 3 which would be 213”. 

Interpretation. Erin’s explanation with blocks did not have quantitative coherence because the 
single rod and three cubes she used to form 213 came from the bank of extra material rather than 
from the collection representing 400. Abby’s explanation did have quantitative coherence in that she 
used equivalent trades with the bank and constructed 213 by removing 187 from the initial collection 
of 400. However, her explanation using blocks did not correspond with her initial solution because 
she reversed the sequence of ones, tens, and hundreds. Thus, we judged that neither PST used blocks 
to explain her initial solution in a way children could understand. 

Task 2: Find 120 Plus 96. 
Of the 17 who worked on the task, 14 used the standard algorithm and 3 used different methods. 

When using blocks to explain their solution, 14 PSTs maintained quantitative coherence and 3 did 
not. Only 7 PSTs gave explanations that corresponded in sequence with their initial solutions. 

Alan did not maintain quantitative coherence. To solve the second problem, Alan said he first 
“rounded up” 96 to 100, added 100 to 120 to get 220. He then subtracted 96 from 100 to get 4 and 
finished by subtracting 4 from 220 to get 216. To explain his solution using blocks, Alan formed a 
collection of 1 flat and 2 rods. He placed 1 more flat below this (Figure 1a). He pointed to the single 
flat, held up 4 cubes, and said he “could not really get 96” so he added 4 to it and showed 100. He 
put the 4 cubes in his hand back in the bank of extra material. Next, he moved the single flat next to 
the collection of 120 (Figure 1b). He then moved the 2 rods from the collection to the side and put 4 
cubes from the bank next to them (Figure 1c). He said, “I would take the 20 minus 4 to just get 16.” 
He then moved in 2 cubes and 1 rod from the bank (Figure 1d) and removed 2 rods to leave a 
collection of 16 next to the two flats (Figure 1e).  

 

 
              a.                             b.                           c.                             d.                          e. 

Figure 1: Alan’s Representation of 120+96 with Base Ten Blocks 

Cara maintained quantitative coherence. Cara used the standard algorithm to solve the 
problem initially. She wrote 120 above 96, wrote 6 in the ones place on the third line, noted 1 above 
the 1 in 120, wrote 1 in the tens place on the third line, and finally wrote 2 in the hundreds place. 
When Cara was asked to explain her solution, she formed a collection for each addend, one 
positioned above the other. The upper collection had 1 flat and 2 rods, and the lower collection had 9 
rods and 4 cubes. In each collection, she organized the different blocks in sub-groups ordered from 
left to right and vertically aligned (Figure 2a). She then said 0 plus 6 would be 6 and moved 6 cubes 
down (Figure 2b), and that 2 tens plus 9 tens would be 110 and moved 11 rods together (Figure 2c). 
She moved one rod down, and slid the remaining 10 rods left and underneath the flat from the first 
collection, covering them with a flat from the bank (Figure 2d & e). She said the final answer was 
216. 
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               a.                            b.                           c.                            d.                            e. 

Figure 3: Cara’s Representation of 120+96 with Base Ten Blocks 

Interpretation. Alan’s explanation did not have quantitative coherence because he said “twenty 
minus four” and then used the same 4 blocks (originally representing “minus four”) with another 2 
cubes and 1 rod from the bank to form a collection representing 16. Cara’s explanation had 
quantitative coherence because the meanings of the blocks in her original collections remained stable 
throughout her explanation. The new flat from the bank covered up 10 rods, effectively replacing 
them. Unlike Abby on the previous task, Cara’s explanation directly corresponded to her initial 
solution. We judged that Cara’s explanation of her initial solution could be understood by children 
but that Alan’s explanation of his initial solution could not. 

Conclusion 
We found that PSTs who have completed content courses still struggle to provide understandable 

explanations using concrete representations. To be understood, instructional explanations that 
involve concrete representations require that transformations of the concrete representation 
correspond to the sequence of the solution that is being explained. Moreover, quantitative coherence 
must be maintained to provide instructional explanations that are numerically accurate, grounded in 
representations, and build from students’ intuitive and informal strategies. Only 6 explanations of the 
36 we analyzed maintained quantitative coherence and corresponded with the sequence of the initial 
solution that was supposed to be explained. Our finding suggests that an important goal for 
elementary mathematics methods classes is supporting PSTs in maintaining quantitative coherence 
when using concrete representations and may require explicit focus on the sequence of representation 
use. 
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In order to help more children to be successful in mathematics, teachers are searching for new ways 
to leverage children’s out-of-school knowledge and experiences while teaching mathematics, 
specifically with regard to contexts of art and music. The following paper details a subset of a larger 
phenomenological pilot study about seven elementary teachers as they worked with three artists to 
craft mathematics lessons that incorporate art and music. The presentation will detail how Kara and 
Miranda, two third grade teachers, discussed the tensions of teaching elementary mathematics 
through art and music. Implications for future research and practice regarding the practicality these 
lessons will be discussed.  

Keywords: Elementary School Education; Instructional Activities and Practices; Teacher Education-
Inservice 

Objectives and Background for the Study 
Research in mathematics education suggests that many students, particularly those in traditional 

classrooms, feel disconnected from their in-school mathematical learning (Greer, Mukhopadhyay, 
Powell, & Nelson-Barber, 2009). To help more students be successful in mathematics, teachers can 
explicitly incorporate students’ out-of-school knowledge and experiences into their practice (Turner, 
Gutierrez, Simic-Muller, & Diez-Palomar, 2009). Research frameworks such as those on culturally 
responsive mathematics teaching (Bonner & Adams, 2012; Gay, 2000), children’s multiple 
mathematical knowledge bases (Turner et al., 2012), and STEAM education (Science, Technology, 
Engineering, Art, and Mathematics) has provided concrete examples of how teachers might 
contextualize their practice in the familiar experiences of their students.  Research-based frameworks 
that leverage children’s familiar experiences and knowledge for teaching mathematics are 
particularly important for children who are not typically successful in traditional classrooms (Greer et 
al., 2009).  When teachers use more authentic, non-traditional contexts of art and music, as related to 
the diversity of children’s particular cultures and native languages, more students might learn 
mathematics more easily (Courey, Balogh, Siker, & Paik, 2012). The purpose of this study was to 
explore the perceptions of seven elementary teachers as they learn to craft tasks, related to 
mathematical concepts of fractions and geometry, within Latin@ children’s knowledge and 
experiences with art and music. (It should be noted that the author is using “Latin@” specifically to 
honor those who do not identify as male or female.) The guiding research questions for this pilot 
study ask: (1) Prior to the Te’ALaMO (Teachers, Art from Latin@ cultures, and mathematical 
MOdeling), how did teachers utilize art and music as a context for teaching elementary mathematics, 
and (2) during the Te’ALaMO, what affordances, tensions, and/or implications for future practice do 
the teachers describe when considering art and music as a context for teaching elementary 
mathematics? For this particular brief research report, the authors will focus on the experiences of 
two third grade colleagues, Kara and Miranda. 

Methodology 
Te’ALaMO was designed as a qualitative, phenomenological study (Creswell, 2007) that 

explored the experiences of seven in-service teachers as they learned from a musician, an actress, and 
a muralist about how to integrate elements of art and music in their mathematics instruction during 
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the summer of 2014. The setting for the study was in a large city in a south-central area of the U.S. 
where the author is a mathematics teacher educator at a large urban university. Three pre-K, three 
third grade, and one fifth grade teacher were purposefully recruited for the study from schools that 
serve large populations of Latin@ children and non-native English speakers and that were nearby a 
Latin@ community cultural arts center, where the workshop was housed. Prior to the workshop, the 
teachers discussed their beliefs and prior experiences about using art and music to teach mathematics 
and then worked on activities with the artists that situated mathematics within playing mariachi 
music, acting, and designing murals. The research team conducted focus group interviews and 
collected observational field notes of the activities, teachers’ quick reflections at the conclusion of 
each day regarding their experiences, and an optional demographic survey about the teachers’ 
backgrounds. The researchers also created transcriptions of video and audio recordings of the 
participants during the workshop.  

Because phenomenological research is described through the perspective of the participants, 
findings based on the data analysis emerged from the teachers’ experiences during Te’ALaMO. Data 
analysis began by reading the transcripts and observational field notes and identifying the ways in 
which teachers discussed how and why (or why not) they might use art and music as a context for 
teaching mathematics. Memos (Creswell, 2007) about these emerging themes were created for each 
day of the workshop and across all three days. The researchers compiled and compared their detailed 
memos about the teachers’ experiences regarding the affordances and tensions of using art and music 
to teach mathematics as a way of conducting member checks of their findings.  

Preliminary Findings 
Over the course of the three-day workshop, the teachers learned about mariachi music, 

performance art, and murals with respect to teaching elementary mathematics concepts such as 
rational number operations (e.g., equivalent fractions, ratios and proportions) and transformational 
geometry (e.g., shape attributes, patterns, reflections). As an example, the musician and teachers 
compared how the structure of music note values (e.g., whole notes, half notes, and quarter notes) 
was similar to how elementary teachers might introduce the meaning of creating and operating on 
fractions equivalent to one whole (e.g., one whole note is the same duration as two half notes or four 
quarter notes when played at the same tempo; 1 = 2/2 or 4/4). Later, the Chicana actress described 
the nine equal sectors of a performance stage and how this these sectors referred to the actors’ 
relative stage position. Finally on the last day, the muralist extended the discussion about rational 
numbers by helping the teachers to use proportions and scale to replicate a small picture on a larger 
poster board.   

Many of the teachers like Kara and Miranda, two third grade teachers in the workshop, already 
utilized some elements of art and music in their daily practice as a mathematics teacher (e.g., children 
illustrating mathematical representations through drawings, singing songs to help memorize basic 
facts, students learning about area and perimeter by creating their name in block letters on graph 
paper). Throughout the workshop, Kara and Miranda were two vocal participants who discussed at 
length about how the challenges and tensions that they might face if they wish to situate more of their 
mathematics teaching within the contexts of art and music.  

Preparing Students for Standardized Testing While Developing Their Flexible Mathematical 
Thinking  

Although Kara and Miranda discussed many ways that they used art and music to address 
elementary mathematics concepts with their students, they still recognized that the pressures of 
standardized testing could be in conflict with their goal to help children develop a flexible 
understanding of mathematics. Because Kara and Miranda taught in a grade level that was subject to 
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statewide standardized testing, they assumed that other colleagues might not agree that art and music 
could be a viable context for helping children to learn mathematics. Specifically Kara stated:  

It's hard to sell something like this [teaching mathematics through art and/or music] to other 
people if you don't have, like, evidence. You know? Especially, when you teach a [name of the 
standardized test] grade. Oh my God. It's…it's, well ‘how's it going to affect the data?’ That's like 
[laughs], always on everybody's mind. But, just with, especially with the first day Te’ALaMO, 
the [mariachi] music, I could see how much higher order thinking is involved when you're having 
to count and clap… 

In this moment, Kara concluded that she felt the pressure of using art and music to teach elementary 
mathematics when each moment of her practice as a teacher needed to be tied to some measurable 
outcome or goal as it related to the state’s standardized test. Kara continued her thought by claiming 
that even though she felt pressure of the standardized test, she still maintained her belief that art and 
music could help her students to develop a flexible understanding of mathematics. She stated that  

I think a lot of, well, even what we're trained on is that sometimes it's you're teaching the child 
how to think in ways that they're not used to, and sometimes that's hard, you know? They're 
being assessed in a certain way, but we're training them to think this one way, and then it's hard 
for them to think differently. So, giving them all these avenues to express the same sort of idea, 
you know, I think is important. And I think, you know, as teachers when we come to things like 
this, we have to be advocates for it at our own campus, you know? I think it's hard to do at third, 
fourth, and fifth grade, because… You can get other teachers on board with this sort of model [of 
teaching mathematics through art and music].  

Kara concluded that she could address this tension of creative teaching while preparing her students 
for the yearly standardized test if more of her colleagues adopted non-traditional methods of teaching 
mathematics by leveraging elements of art and music.  

Finding Resources for Implementing Mathematics Lessons that Incorporates Art and 
Mathematics  

Miranda, Kara’s colleague at the same school, agreed with Kara’s belief that art and music could 
serve as a flexible context and proposed that she could also address the required elementary standards 
across multiple content areas. At first, Miranda suggested that art and music “ might open some 
avenues for some of them [the students], you know, and show them how the art can be integrated into 
math, and engineering, and science, and you know, you can find it everywhere. I think it’s, it’s 
fantastic for the kids.” Then after the muralist concluded her session on using proportions and scale 
to create murals from smaller pictures, Miranda reiterated her perception on the final day of the 
workshop when she stated that  

And I find that I use art, I integrate it a lot with social studies because it’s easier…like when 
we’re studying, let’s say Cinco De Mayo You know, where we can talk about the history and 
then we can make something. They make it, a piñata. And so I have two grades. I have my social 
studies, you know my actual… about the history, and what they wrote in their journals, you 
know, that grades then I also have an art grade. But now with this [the mural lesson in the 
workshop], I can integrate it with math. 

Miranda described how she already leveraged her Latin@ students’ particular students’ out-of-school 
knowledge and experiences (e.g., Cinco De Mayo and piñatas) while teaching social studies, history, 
art, writing. Now after the mural activity, Miranda could see how she might use a mural about Cinco 
De Mayo and piñatas that could help her address her mathematics standards as well.  
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Shortly after the muralist’s activity, Kara and Miranda mentioned yet another challenge to 
implementing similar lessons like the mural activity with their students. Specifically, Kara stated 
“materials and supplies. Some schools are, you know, really, uh, considered wealthy, right? You get 
to go into the supply room and get whatever, and then, not all campuses are like that.” Because all of 
the teachers who participated in the workshop worked at schools that served children from mostly 
economically challenged communities, Kara in particular recognized that although she could teach a 
lesson that addressed multiple state standards by utilizing elements of art and music, she would have 
a challenge of finding enough supplies and resources for these lessons.  

Implications and Conclusion 
As teachers find new ways to support their students’ mathematical thinking, they are exploring 

new contexts by which to connect their lessons to children’s out-of-school mathematical knowledge 
and experiences (Gay, 2000; Wager, 2012).  Findings from this study suggest that elementary 
teachers are working to negotiate both the inherent challenges and potential opportunities for 
situating their instruction within the contexts of art and music.  More research is needed to explore 
the potential tensions and challenges that teachers might face if they elect to use art and music as a 
context by which to teach mathematics, particularly with the growing popularity of STEAM 
education. Furthermore, more research is needed explore how teachers can successful negotiate the 
challenges with the affordances of using art and music to teach mathematics so that more children 
develop a flexible understanding of mathematics that is connected to their out-of-school knowledge 
and experiences.  
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This paper reports on an empirical study that examined the language and word choices of three 
prospective teachers (PTs) of secondary mathematics as they facilitated group discussions with 
elementary PTs. In the context of a university elementary mathematics content course, groups of PTs 
collaborated to solve problems involving whole-number and fractional operations. This paper 
reports on the participation in one such activity that asked PTs to find fractional parts of pattern-
block designs. Through a narrative-genre framework, I analyzed how particular language choices of 
the facilitators functioned to help PTs make sense of problem-solving tasks. 

Keywords: Teacher Education-Preservice; Classroom Discourse; Problem Solving 

Purpose of the Study 
Communication process standards, published by the National Council of Teachers of 

Mathematics (NCTM, 2000), have emphasized that students should communicate their mathematical 
thinking clearly and use mathematical language to express ideas precisely. From these ideas we can 
construe that teachers need to understand how language is used to diagnose student thinking, 
compare that thinking with desired mathematical understandings, and give appropriate responses 
through mathematical discourse. However, according to Schleppegrell (2012), using aspects of 
mathematical language necessary to help all students learn and construct meaning is a key challenge 
for prospective teachers (PTs). One reason may be that PTs lack classroom experiences and 
opportunities to converse with students about mathematical ideas. Additionally, PTs may not yet see 
a need for care in their expression and word choice. 

In response to the above and a concern for issues of equity in mathematics education, I draw on 
the social nature of learning mathematics and argue that language is a primary tool that structures 
participation discourse practices (Halliday, 1978). And if language can be viewed as the principal 
resource for making meaning in the classroom, in what ways does this happen? How do particular 
choices of words function to communicate meaning, negotiate understanding, and invite participation 
in mathematical discussions? The purpose of this paper is to contribute to the scarce literature on the 
preparation of secondary mathematics PTs as related to awareness of their language choices and the 
impact of those choices on student understanding and sense- making. Through a narrative-genre 
perspective of language, I report findings that explicate ways in which this structure of language is 
appropriate to the facilitation of mathematical discourse. 

Theoretical Perspectives 
One way that studies have illuminated important facets of language-use in mathematics is with a 

semiotic perspective. Language can be described as a semiotic system because it involves sets of 
meaningful choices in human learning and meaning-making (Halliday & Matthiessen, 2004). 
According to Eggins (2004), when making a choice of language, what someone says gets its meaning 
by being interpreted against the background of what could have been said in a particular context – 
but was not. 

While much of mathematical meaning is communicated through the expression of signs and 
symbols, the use of words and grammatical structures associated with these representations remains 
the fundamental processes for a shared construction of mathematical meaning (Halliday & 
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Matthiessen, 2004). Different language structures trigger different resulting behaviors, or functions, 
based on the particular choices made. This has been described as a functional-semantic approach to 
language which explores both how people use language in different contexts, and how language is 
structured for use as a semiotic system (Eggins, 2004). In alignment with a semiotic perspective, I 
have drawn on Labov and Waletzky’s (1997) six stages of narrative-genre for discourse (see Table 1) 
in an analysis of PTs’ language choices as they facilitated problem-solving discourse in group 
discussions. Here I focus my attention on the question: In what ways do secondary PTs facilitate and 
structure mathematical discourse through their choices of language and words? 

Table 1: Six Stages of Narrative Genre Adapted for Mathematical Discourse 

 

Data Sources and Analysis 
This study took place in a content course for PTs of elementary mathematics. Four secondary 

PTs volunteered to facilitate group discussions because they wanted to strengthen their abilities to 
communicate effectively with others whose perspectives of what it means to ‘do mathematics’ might 
differ from their own. Despite apparent differences in elementary and secondary curriculums, there 
are overlapping algebraic and geometric concepts, and novice teachers in high schools are often 
asked to teach beginning algebra and geometry courses. The primary source of data came from 
audio-recorded mathematical dialogues between 16  elementary PTs in the course (hereafter referred 
to as students) and the four secondary PTs (hereafter referred to as facilitators). Four students and 
one facilitator comprised each group. 

Audio-recordings of six problem-solving activities were distributed over 15 weeks, resulting in 
24 transcripts total. Additional data (interviews/debriefs) helped me pay specific attention to each 
facilitator’s personal recollection of the problem-solving events. As the instructor, I chose tasks 
specific to the course’s curriculum involving whole-number and fractional operations. 

T his paper highlights an analysis of three transcripts of audio-recordings in which three groups 
(each with a different facilitator) discussed the task: The yellow hexagon pattern tile is 3/2 of the area 
of a second pattern tile design. Use pattern tiles to make what could be the second pattern design. 
These three transcripts were selected from a larger set of classroom observations collected over one 
spring semester. Using Labov and Waletzky’s (1997) six stages of narrative-genre analysis, I 
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systematically coded excerpts of each facilitator’s language choices, which were then analyzed as to 
how closely they followed the narrative-genre scheme of abstract (A), orientation (O), complication 
(C), evaluation (E), resolution (R), coda (C/R) (see Table 2). Subsequent interviews and debrief 
sessions provided insight into the ways that particular excerpts of language choices functioned to 
direct and structure meaningful discourse. 

Table 2: Order of Narrative-Genre Codes Used by Facilitators 
 

 

Facilitator 
Brice A O C C/R E C C E C/R C C/R E C/R E C C/R E C E R C R 
Beatrice O O O E E R E C R E R            
Linda O C E E R C C/R C E C R E R E R        

 
 

 

Findings 
The codes revealed that the facilitators structured discourse in different ways. Overall, Brice was 

more successful helping his group realize that the second shape would consist of two blue rhombi (or 
four green triangles). The number of coded excerpts revealed that Brice had more verbal interaction 
with his group, and that he structured those interactions in a way that restated the task (coda/re-
launch, C/R) for his group five separate times. Each time, he used a different choice of words which 
functioned to draw attention to various aspects of the task’s goals–that is, needing the yellow 
hexagon to be 3/2 of the area of the second shape. This refocused the group’s thinking and helped to 
put a spotlight on what still needed to be accomplished. The following excerpt demonstrates one of 
Brice’s C-E-C/R cycles; Brice restated the task’s goal in this excerpt because his evaluation did not 
connect in a way that made sense for the student: 

Student: Okay, so we broke that [the yellow hexagon] into three [equal parts] with the blue ones 
(rhombi), right? Now there’s 3/2s, so don’t I need-? Now what? [Complication because the PT 
does not connect her idea to the new design asked for in the task.] 

Brice: So you’re saying that this [the PTs’ new design of two blue rhombi] would be the 
whole…and that we’re going to make three halves, so if I were to add (two blue rhombi) plus 
half of this again, it would equal this (the yellow hexagon)? [Evaluation] 

Student: What do you mean? 
Brice: So remember, you are to make sure the yellow hexagon is three of the half-parts that 

make up the new design. [Coda/Re-launch]. 

Beatrice and Linda did not structure their discourse as closely to the narrative scheme as Brice 
did. The codes revealed little use of the re-launch stage (one re-launch used by Beatrice and none 
used by Linda). Consequently, the group members lost focus and conversation slowed. Linda’s 
evaluations were vague (she self-reported not wanting to give out too much information) and 
included such language as “you’re getting close” and “I like your idea”. While encouraging in nature, 
those words did not structure the discourse towards promoting further thinking about the task. 
Beatrice self-reported that she felt at times “unconnected” to the group’s ideas and therefore, felt 
safer in telling them how she was thinking. Beatrice told her group “what they’re trying to tell you is 
that the hexagon is the larger part of a whole. So the whole is going to be smaller than the hexagon, 
right?” These words served to inform the group members how to think and consequently stopped any 
further thinking about the relative sizes of the two designs. 

Discussion and Conclusion 
Mathematics education researchers and linguists (e.g., Halliday & Matthiessen, 2004; Herbel-

Eisenmann & Otten, 2011) have brought increased attention to the ways that language functions to 
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make meaning in mathematical activities. For this study I defined successful facilitation of 
mathematical discourse not necessarily by the lengths of conversation or whether groups found 
solutions, but more by the ways in which the facilitators’ words helped the students make sense of the 
task and take up peers’ ideas. In analyzing discourse patterns revealed in this study, I determined that 
a facilitation cycle of complication, followed by evaluation and then by coda/re-launch [C-E-C/R] 
was more successful than other cycles of discourse. Additionally, this study suggested that the C-E-
C/R cycle may not only be a use of language, but also a way of thinking. That is, this cycle reflected 
the facilitators’ thinking about the task and also served to re-focus the group’s thinking about the task. 
Brice’s use of this cycle (“let’s go back and think about how the yellow hexagon has to compare to the 
new shape we’re trying to build”) functioned to lead the students to find a solution that made sense. 
Mathematical discourse plays an important role in this way by shedding light on the functions of 
various language choices and how those choices structure discussions and thinking towards making 
meaning (Barton, 2008). 

Moschkovich (2010) has maintained that teachers need to create and sustain environments for 
learning and what takes hold across tasks and practices in these environments. As both elementary and 
secondary PTs endeavor to use reform pedagogy and communicate effectively with students, an 
understanding of how their own language choices structure discourse and shape meaning-making 
aspects of understanding mathematics becomes important. Through an analysis of data from a 
linguistic perspective, I was led to posit that a narrative-genre analysis could help both PTs and 
teacher educators identify structures of language-use that facilitate discourse effectively. Further 
research into how discourse structures connect with and promote students’ thinking about 
mathematical tasks can help teacher educators better prepare PTs to facilitate mathematical 
discussions in the classroom. Analyzing word choices through Labov and Waletzky’s (1997) narrative 
framework has the potential to shed light on why some mathematical conversations stall and others 
result in deeper connections of mathematical ideas. 

References 
Barton, B. (2008). The language of mathematics: Telling mathematical tales. New York, NY: Springer. 
Eggins, S. (2004). An introduction to systemic functional linguistics. New York: Continuum Halliday, M. A. K. 

(1978). Language as Social Interpretation of Language and Meaning. 
University Park Press. 
Halliday, M. A., & Matthiessen, C. (2004). An introduction to functional grammar. Routledge. 
Herbel-Eisenmann, B. A., & Otten, S. (2011). Mapping Mathematics in Classroom Discourse. Journal for Research 

in Mathematics Education, 42(5), 451–485. 
Labov, W., & Waletzky, J. (1997). Some further steps in narrative analysis. Journal of narrative and life history, 7(1- 

4), 395–415. 
Moschkovich, J. N. (2010). Language and mathematics education: Multiple perspectives and directions for 

research. IAP. 
National Council of Teachers of mathematics (2000). Principles and standards for school mathematics. Reston, 

VA:NCTM. 
Schleppegrell, M. (2012). Linguistic tools for exploring issues of equity. In Equity in Discourse for Mathematics 

Education (pp. 109–124). Springer Netherlands. 
 



Teacher!Education!and!Knowledge:!Brief!Research!Reports! !

Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+
annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

916!

EQUITY IN MATHEMATICS EDUCATION: WHO IS AN ALLY?

Carlos A. LópezLeiva 
University of New Mexico 

callopez@unm.edu 

Ayse Yolcu  
University of Wisconsin-Madison 

yolcu@wisc.edu 

Beth Herbel-Eisenmann  
Michigan State 

University bhe@msu.edu 

Durrell Jones 
Michigan State University 

jonesdur@msu.edu 

In trying to promote equitable mathematics education systems, we see a need to aim at developing 
the role of allies when we work with mathematics teachers and students. With the goal to better 
understand what being an ally means and what ally-work involves, we review literature outside of 
mathematics education that describe how allies support more equitable systems. In this report, we 
synthesize this work in order to engage the mathematics education community in discussing how we 
might do this work.  

Keywords: Equity and Diversity, Teacher Education-Inservice, Affect and Beliefs 

Although the term “stakeholder” has been common when referring to those that have a vested 
interest in education, such as parents, teacher educators, and community members, we expand the 
function of a stakeholder by focusing on “allies” in our work in schools. Mathematics education 
research clearly shows that the system of schooling and mathematics education result in inequitable 
practices and experiences for many students (e.g., Martin, 2009), aspects of education that the idea of 
stakeholder does not address. Thus, this brief research report focuses on a conceptual exploration of 
ally and ally-work to address issues of equity in mathematics education. As Hand (2003) has argued, 
mathematical teaching and learning for students from dominant versus nondominant racial, ethnic, 
linguistic, and socioeconomic backgrounds have resulted in visible “participation gaps” in 
mathematics classrooms. We believe these disparities must be understood in terms of the distribution 
of opportunities to learn (OTL) (Gresalfi & Cobb, 2006).OTL are not dependent upon students alone, 
but on an equitable system that may ensure powerful mathematics learning for minoritized student 
groups (Martin,2009;Moschkovich,2010). Fair distribution of OTL for diverse students is promoted 
through an “equitable system”, which refers to intersecting levels of synergistic support for these 
students (Hand, Penuel, & Gutiérrez, 2012). This systemic support can be augmented through the 
engagement of allies in disrupting systems of privilege and oppression in education (e.g., Swalwell, 
2012; Tatum, 1994).  

We review literature outside of mathematics education to explore what being an ally means and 
what ally-work involves. We synthesize this literature in order to engage the mathematics education 
community in discussing how we might do this work. We do this not only because we think the idea 
of allies deserves conceptual attention in mathematics education but also because we are hoping to 
negotiate and study an equitable system in an urban district with the goal of promoting a fair 
distribution of OTL for students who have experienced longstanding marginalization in mathematics 
education and for the teachers who teach them. 

Being an Ally and Ally-Work 
We synthesize a series of definitions and stances. First, we describe the roles and functions of an 

ally. Second, we present some challenges and tensions described in the consulted literature.  
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Ally-Work is Cyclical (Inward-Outward) and Expansive (Collaborative) 
Jenkins (2009) and Clark (2010) define who an “ally” is by comparing similar ideas like 

“advocates,” “anti-work,” and “agents,” juxtaposing the levels of social justice commitment, 
empathy, and action. Accordingly, these authors argue that allies are people strongly oriented at 
supporting oppressed groups. Allies’ stances stem from an awareness of the systemic forces that 
maintain oppression and how these systems inherently disadvantage others. Allies’ stances first work 
inwards by recognizing their “unearned privileges” in a community; then their work and stances 
expand outwards by embracing their “obligations of privilege” (Clark, 2010, p. 707).  

Contrastingly, Jenkins (2009) describes an advocate as a defender, one who pleads for a cause. 
An advocate may speak up but may or may not engage in action. Similarly, Clark (2010) 
characterizes “the mere silencing of hate-talk” as “anti-work” (p. 712). Advocates’ work represents a 
type of anti-work through the process of interrupting acts of oppression against marginalized people, 
actions that are effective in the presence of advocates. These changes, however, are situational and 
temporary. Jenkins also contrasts ally-work with an agent’s work. An agent is a person with power to 
act and force change. “Agents may or may not identify with the community or group on whose 
behalf they are acting. Agents orient themselves toward action and go beyond developing empathetic 
relations or vocal oppositions; they work to create change within dimensions of society in which they 
may or may not have power (p. 28).  Furthermore, Philip et al. (2014) define ally as a discursive 
position that educational scholars of color take in their work with teachers by a humble approach of 
learning from teachers, addressing issues of racism with teachers at school, and helping them 
understand the impact on students of neoliberal reforms. Additionally, scholars with teaching 
experience are allies with nuanced understanding of the teachers’ work through own experience, or 
teacher solidarity. 

As a result, ally-work encompasses the work of an advocate and an empathic co-worker, an 
agentive work that is cyclical and expansive. As a cyclical process, it starts through an inward 
questioning and internal transformation of dispositions. Then, this renovated perspective expands 
outwardly to others in joint action to support change. Ally-work addresses a twofold change, first by 
inviting others to engage in a “critical dialogue and discussion, interrogating perceived lines of 
difference and [then] inquiring into the possibilities for creating productive alliances across these 
lines” (Clark, 2010, p. 705). Through this dialogue participants have “an opportunity to come into 
contact with likeminded others and find social support for their struggles” (DeTurk, 2006, p. 44). 
Then a mutual and intercultural understanding is built through “perspective taking and corresponding 
changes in participants’ beliefs, attitudes, and behavior” (p. 47). A relational identity nurtures a 
genuine empathy that naturally leads to action and to effect changes. Clark argues that ally-work 
implies a conscious decision to combat disadvantages and inequities by strategically combining self-
awareness, empathy, commitment, and action to promote change.  

Ally-Work Encompasses an Identity of Tensions and Relative Power  
Being an ally represents “an identity that is achieved by acting on the moral imperatives of 

pursuing social justice and validating differences” (DeTurk, 2011, p. 575).In their support of 
marginalized groups in relation to sex, race, or any other social identity, allies make use of their 
social and cultural capital to effect change and influence others. This means that their social identities 
matter in their context of action. In the U.S. context, DeTurk (2011) asserts that“ being White, male, 
heterosexual, able-bodied, fluent in English, or otherwise equipped with such capital, are relatively 
powerful in their capacity to influence others” (p. 577). For example, an African American man 
described how a Black ally needs the support or “validation” of a White person because a White 
person’s social and cultural capital is privileged by the system (DeTurk, 2011). Thus, allies’ 
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successful efforts to confront racism and sexism depends“ on how much power they had in a given 
situation” (DeTurk, 2011, p. 578). 

Nevertheless, DeTurk (2011) complicates simplistic perspectives on power, arguing that power is 
fluid, multifaceted, and contingent. So, in-group members like African American persons “could act 
as allies to Whites by interrupting anti-White prejudice” (p. 584). Likewise, an ally self-identifying 
as a gay man could promote closer connection as an ally to other gay men. Furthermore and equally 
strong might be when a heterosexual man is an ally of a gay-men group. But overall the matching of 
these different power dynamics highlights the contextualized, fluid, and yet systemic nature of 
power. Membership to a social and cultural group does not determine an absolute power or lack 
thereof. Allies aware of these dynamics need to develop tactics and alliances that crisscross different 
groups to support each other.  

A tension in being an ally concerns preventing allies’ risk (i.e., personal safety, relationships, or 
status) because, at times, allies can feel their personal wellbeing is threatened (DeTurk, 2011). A 
greater ethical and moral tension is related to speaking for others or overprotectiveness. Allies 
asserted that taking actions, of speaking for others, might disempower those who are to be 
empowered and thus, reinforce oppression. DeTurk (2011) warns that overemphasis on dialogue 
might highlight mainstream values as well, and the demanding of such procedures might reinforce a 
laden procedure that only serves “enlightened self-interest” (p. 584). Thus, negotiations need careful 
procedures. 

Finally, Kelly and Chapman (2015) introduce the term “adversarial ally” to identify an issue in 
ally-work for those in disadvantage. An ally might “unambiguously harm a client and in another 
moment unambiguously help that same person” (p. 48). Specifically to the context of health services, 
people with disabilities have limited options for health care. So though patients might experience 
these services as helpful and necessary, they also may experience them as harmful and oppressive. 
The adversarial aspect of being an “ally’ in this situation is that despite health professionals’ stance 
of empathy and caring action towards people with disabilities, their uncritical support for and work in 
an oppressive system that limits health care options for people in need, perpetuates an inequitable 
system. 

Being an Ally in Education and Mathematics Education  
Although an increasing percentage of school children in the United States are children of color, 

poor, and from homes where family members speak languages other than English—all potential 
sources of privilege and oppression—mathematics teachers (MTs) and mathematics teacher 
educators(MTEs) remain fairly homogeneous along these demographic lines (Hollins & Guzman, 
2005). Thus, thoughtful attention to how these differences matter in mathematics classrooms and 
professional development is necessary. Actions of ally educators in their classrooms oppose the 
disadvantages that some students may have by providing “extra time and attention towards those in 
need” (p. 708) and including curricular content that challenges normative notions. Only through 
explicit and critical action will ally-work promote just, equitable, and safer spaces for diverse 
students. For example, many teachers feel that it is necessary to take corrective action in order to help 
students of color to acquire mainstream American English, without acknowledging these student’s 
identities and where they come (Clark, 2010).Ally-work actions need to be critically assessed 
through equity lenses as the OTL mathematics include not only what students learn, but also how 
they learn it (Esmonde, 2009). 

MTEs seeking to promote equitable systems in mathematics education would benefit from ally-
work beyond roles as advocates or agents. Developing an intercultural communication with MTs and 
students could help with constructing an alliance built on mutual understandings and promoting and 
sustaining generative action. We would need to become allies with MTs, students, and each other. 
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Our goal would be to learn from one another through participatory action research, and accordingly 
adapt our work so that MTs work with us, and each other, as agents of change in their own class-
rooms by making curricular adaptations responsive to their students’ interests and needs. Building 
dialectic relationships and transferring them into collective action are central points in ally-work.  

In our presentation, we expand on these ideas in order to prompt discussion about the role of 
allies and ally-work in mathematics education. For this, we will provide transcripts of our team’s 
reflections. As MTEs, we believe acknowledging power is crucial. Being aware of the relative power 
of our social and cultural capital can guide us to examine and contextualize our actions. In our work 
with MTs and students, the success of our roles and relationships must be re-evaluated on a regular 
basis and contrasted with the expectations and goals of students and MTs. Tensions must be 
embraced as learning sources and opportunities to develop stronger connections with others. If 
tensions do not emerge, an exhaustive examination of our stances and actions is required. Likewise, 
diversity should be constantly addressed not only related to race, culture, language, and gender, but 
also academically in how we define what counts as mathematics. 

Acknowledgements 
We thank the National Science Foundation for its support of the project entitled Access, Agency, 

and Allies in Mathematical Systems (A3IMS) and the collaboration and support of our team. Any 
opinions, findings, and conclusions or recommendations expressed in this material are those of the 
authors and do not necessarily reflect the views of the granting agencies.  

References  
Clark, C. T. (2010). Preparing LGBTQ-allies and combating homophobia in a U.S. teacher education program. 

Teaching and Teacher Education, 26(3), 704-713. doi:10.1016/j.tate.2009.10.006 
DeTurk, S. (2011). Allies in action: The communicative experiences of people who challenge social injustice on 

behalf of others. Communication Quarterly, 59(5), 569-590. doi:10.1080/01463373.2011.614209 
DeTurk, S. (2006). The power of dialogue: Consequences of intergroup dialogue and their implications for agency 

and alliance building. Communication Quarterly, 54(1), 33-51. doi:10.1080/01463370500270355 
Esmonde, I .(2009). Ideas and identities: Supporting equity in cooperative mathematics learning. Review of 

Educational Research, 79(2), 1008-1043. 
Gresalfi, M., & Cobb, P. (2006). Cultivating students' discipline-specific dispositions as a critical goal for pedagogy 

and equity. Pedagogies: An international journal, 1, 49-58. 
Gutiérrez, R. (2012).Context matters: How should we conceptualize equity in mathematics education? In Herbel-

Eisenmann, Choppin, Wagner, & Pimm (Eds.) Equity in discourse for mathematics education: Theories, 
practices, and policies (pp.28-50). New York: Springer. 

Hand, V. (2003). Reframing participation: Meaningful mathematical activity in diverse classrooms. (Doctoral 
dissertation, Stanford University). Stanford, CA. 

Hand, V., Penuel, W., & Gutiérrez, K. (2012). (re)framing educational possibility: Attending to power and equity in 
shaping access to and with in learning opportunities. Human Development, 55, 250-268. 

Hollins, E., & Guzman, M. (2005). Research on preparing teachers for diverse populations. In M. Cochran-Smith & 
K. Zeichner (Eds.), Studying teacher education (pp. 477–548). Mahwah, NJ: Erlbaum. 

Jenkins, T. (2009). A seat at the table that I set: Beyond social justice allies. About Campus, 14(5), 27-29.  
Kelly, C. & Chapman, C. (2015). Adversarial allies: Care, harm, and resistance in the helping professions. Journal 

of Progressive Human Services, 26(1), 46-66. doi:10.1080/10428232.2015.977377 
Martin, D. (2009). Researching Race in Mathematics Education, Teachers College Record, 111(2), 295-338. 
Moschkovich, J. N. (Ed.). (2010). Language and mathematics education: Multiple perspectives and directions for 

research. Charlotte, NC: Information Age Publishing. 
Philip, T.M., Martinez, D. C., Lopez, E., & Garcia, A. (2014). Toward a teacher solidarity lens: former teachers of 

color (re)envisioning educational research. Race, Ethnicity and Education, doi:10.1080/13613324.2014.946494. 
Swalwell, K. (2012).Educating activist allies: Social justice pedagogy with the suburban and urban elite. New 

York, NY: Routledge. 
Tatum, B. D.(1994).Teaching white students about racism: The search for white allies and the restoration of hope. 

Teachers College Record, 95(4), 462-476. 



Teacher!Education!and!Knowledge:!Brief!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

920!

THE MATHEMATICS NEEDED BY ELEMENTARY TEACHERS: 
DO TEDS-M AND MET II AGREE? 

Edward Silver 
University of Michigan  

easilver@umich.edu 

Jillian P. Mortimer 
University of Michigan 

jbpet@umich.edu 
We investigated the relationship between two representations of mathematical knowledge for 
teaching: the Mathematical Education of Teachers II (MET II) report and the Teacher Education 
and Development Study in Mathematics (TEDS-M) knowledge assessment. Expert raters matched 
MET II specifications to TEDS-M items, finding a suitable match for almost every item.  Inter-rater 
agreement was high for mathematical content expectations, but much lower for mathematical 
practices. Ratings indicated that TEDS-M released items mapped onto some but not all MET II 
content domains. The findings suggest that the two representations are well aligned in some respects 
though not in others. 

Keywords: Teacher Knowledge; Standards; Elementary School Education; Assessment and 
Evaluation 

Purpose 
A longstanding argument in the educational research literature holds that teachers’ knowledge is 

related to students’ achievement in mathematics. However, there has been a lack of detailed 
examination of the ways in which and the extent to which different specifications agree or disagree 
about the mathematics knowledge that teachers need in order to be effective. Such examination is 
essential to identifying commonalities and sharpening points of disagreement, both of which are 
critical to moving the field forward both in research related to teacher knowledge and in the 
development of programs to prepare novices to be effective teachers. 

In this study we examined the alignment between two representations of essential knowledge for 
mathematics teachers: the Teacher Education and Development Study in Mathematics (TEDS-M) 
knowledge assessment for elementary teachers (using the released items) (Tatto, 2013) and the 
Mathematical Education of Teachers II (MET II) report (including the essential ideas (EIs) for 
elementary and middle grades teachers and the Common Core Standards for Mathematical Practice 
(SMPs)) (CBMS, 2012). Understanding the ways in which and extent to which these two 
representations align should benefit researchers and practitioners alike.  

Conceptual Foundation 
Our study rests on and draws from two distinct research literatures: scholarship on mathematical 

knowledge for teaching (MKT) and studies of alignment between and among key elements of 
educational systems. Each is briefly summarized in this section. 

Teachers’ Mathematical Knowledge 
Shulman (1986, 1987) is widely credited with drawing attention to teachers’ knowledge and how 

the ways teachers know content might differ from the ways it is known by other professionals. As it 
has become known in mathematics education, MKT has been theorized and studied from a variety of 
perspectives including efforts to specify the nature and structure of the knowledge needed for 
effective teaching of mathematics (e.g., Ball & Bass, 2000; Davis & Simmt, 2006), and the 
relationship among teachers’ mathematical knowledge, their instructional decisions and practices, 
and student achievement (e.g., Hill, Rowan & Ball, 2005). This corpus of scholarship illustrates the 
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value of having both theoretically derived conceptions of knowledge for teaching and empirically 
validated assessments that reliably test such knowledge.  

Alignment 
The concept of aligning standards and assessments gained momentum in school mathematics 

with the advent of the NCTM standards (NCTM, 1989). Webb (2002) outlines four criteria that can 
be used in alignment studies between state academic standards and assessments and are a subset of 
his criteria of content focus: categorical concurrence, depth-of-knowledge consistency, range-of-
knowledge correspondence, and balance of representation. The focus of our analysis in this study 
was categorical concurrence.  

Methods 

Expert Raters 
In order to explore the alignment between the TEDS-M elementary knowledge assessment and 

the MET II EIs and SMPs we solicited the judgments of four experts in mathematics and 
mathematics education. We chose two who had been involved in creating and/or reviewing items for 
the TEDS-M assessment and two who were among the authorship team for the MET II document. 
Each pair included one mathematician and one mathematics teacher educator (MTE). The selection 
of expert raters was purposeful in that it allowed us to probe the possible influence of the raters’ prior 
familiarity with one of the representations (TEDS-M vs. MET II) or their professional training 
(mathematician vs. MTE).  

The Rating Task 
Each expert rater was given the released TEDS-M assessment items, the MET II EIs for 

elementary and middle grades teachers, a description of the SMPs, and a recording tool. For each 
item the expert raters were asked to identify, if possible, an EI and a SMP that best fit the item. There 
was an “Other” option for instances when a rater judged that an item pertained to a particular domain 
but did not fit with any of the specific EIs; raters also had an option to identify primary and 
secondary EIs or SMPs in cases where more than one applied. We conducted follow-up interviews 
with individuals and pairs of raters to probe the raters’ thinking for selected items and to gather their 
impressions of the rating procedures.  

MET II Essential Idea and SMP Agreement 
Expert raters could be paired based on their document affiliation (TEDS-M or MET II) or their 

professional training (MTE or mathematician). This resulted in four different pairs: TEDS-M, MET 
II, mathematicians, and MTEs, with each rater belonging to two pairs. Agreement between pairs 
regarding the EIs was calculated in three mutually exclusive ways: Identical Agreement (IA) was the 
percent of cases where rater pairs assigned exactly the same EI to a test item; Domain Agreement 
(DA) was the percent of cases where two expert raters disagreed on the exact EI that fit a test item, 
but the EIs they assigned were within the same domain; and Secondary Agreement (SA) was the 
percent of cases where expert raters disagreed on both the primary EI and MET II domain that fit an 
item, but one rater in a pair identified the primary EI of the other expert rater as a secondary EI. We 
similarly calculated instances of rater agreement for SMPs, except that the DA category was not 
applicable to SMPs because they are not organized by domains. Because the agreement categories 
were mutually exclusive, we were also able to sum across categories for each pair of raters to obtain 
a percent of Total Agreement. 
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Representation of MET II EIs in the TEDS-M Knowledge Assessment 
Following the agreement calculations, we examined the representation of MET II domains within 

the released TEDS-M items by grouping all of the EIs by domain to give a more manageable picture 
of the representation of the kinds of content included in the assessment 

Results 

The Rating Task 
In 99% of cases expert raters were able to assign either a specific MET EI or a rating of “Other” 

within a domain to TEDS-M items. Additionally, expert raters were able to assign SMPs to TEDS-M 
items in 90% of the cases.  

Agreement Between Raters on MET II Essential Ideas and Mathematical Practices 
Table 1 shows the types of agreement for different pairings of expert raters when assigning EIs 

and SMPs to TEDS-M assessment items. The percent of Identical Agreement was near 50% for all 
rater pairs. Given that there are 42 different EIs, assigning the exact same EI to TEDS-M assessment 
items around half of the time is a high level of agreement. Two rater pairs had exceptionally high 
Total Agreement, and the other two had acceptably high agreement of this type.  On the other hand, 
the extent of Identical Agreement and Total Agreement for SMPs was considerably lower. 

Table 1: Inter-rater Agreement for EIs and SMPs by Rater Pair and Type of Agreement  
 

Agreement Type  MET II Pair TEDS-M Pair MTE Pair Mathematician 
Pair 

 
MET EIs  

    

IA 56% 44% 44% 47% 
DA 32% 24% 27% 15% 
SA  3% 6% 21% 18% 
Total  91% 74% 92% 80% 
 
SMPs 

    

IA 21% 35% 29% 24% 
SA 21% 0% 9% 3% 
Total  42% 35% 38% 27% 
 

Representation of MET II EI Domains in the TEDS-M Knowledge Assessment 
There was variation in the degree to which MET II domains were represented in the released 

items. EIs in the domains of “Measurement and Data,” “The Number System” and “Expressions and 
Equations” were assigned more than 25 times. In contrast, none of the EIs in “Counting and 
Cardinality” and “Number and Operations-Fractions” were assigned to any TEDS-M released item. 
Additionally, EIs in “Statistics and Probability” were assigned in only four instances.  

Discussion 
Through this examination of the relationship between the TEDS-M knowledge assessment and 

MET II expectations we found that experts were able to assign MET II EIs to TEDS-M assessment 
items with high inter-rater agreement. This suggests that the MET II document and the TEDS-M 
assessment are viewed by experts as depicting a similar view of the mathematics content knowledge 
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needed by elementary teachers. The highest levels of agreement were found for the MET II and the 
MTE pairs.  

Though the expert raters also mapped SMPs onto almost all TEDS-M items, they exhibited far 
less agreement. In fact, the percent of Total Agreement for SMPs was lower than the percent of 
Identical Agreement for EIs for all four rater pairs. As there are only eight SMPs one might expect 
the levels of agreement to be higher for SMPs than for EIs. On the other hand, the SMPs are not 
described in either the MET II or the CCSSM documents at the same level of detail that characterizes 
the description of content expectations. In follow-up interviews the raters noted both that many of the 
assessment items seemed to align with multiple SMPs and that it was more challenging to identify a 
primary SMP than was the case for EIs. The highest level of agreement was found for the MET II 
pair, and the lowest was for the mathematician pair. The low agreement between the mathematicians 
is surprising given the presumption that SMPs are fundamental to doing mathematics. 

Another noteworthy finding was the unevenness of the correspondence of TEDS-M items to 
MET II content domains. Raters judged very few items to be related to EIs in the domain of statistics 
and probability, and there was a complete absence of items tied to EIs in the domain of fractions. 
Because these two domains are foundational in elementary mathematics education, this finding needs 
further examination to see if it is attributable simply to unfortunate omissions in the selection of 
publicly released items or if it reveals a limitation in the content coverage of the TEDS-M 
assessment.  

Given the array of different conceptualizations and assessments of knowledge needed to teach 
mathematics, a careful examination of similarities and differences seems wise to inform both 
research and teacher education. A clear understanding of different conceptualizations of what 
teachers need to know to be successful will support researchers to study this knowledge and teacher 
educators to nurture its development. The study reported here is a first step in what we hope will be a 
larger scale effort to interrogate and integrate across disparate views of the mathematical knowledge 
needed to teach elementary school mathematics.  
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This paper argues that successful practice-based teacher education requires innovations in 
assessment that can better inform preservice teachers and those who prepare them. Such assessments 
must focus directly on specific teaching practices of novice teachers, as well as offer opportunities to 
assess the use of content knowledge for teaching. Simulations, an assessment type used in other 
professional fields, hold promise as one means for gathering data about and providing feedback on 
teaching. To explain how this could work, we describe an assessment that focuses on preservice 
teachers’ ability to elicit and interpret a student’s mathematical thinking, and we appraise what it 
makes possible. 

Keywords: Assessment and Evaluation; Instructional Activities and Practices; Teacher Education-
Preservice  

The Need for Assessments of Practice 
The increasing focus on specific instructional practices in initial teacher preparation means that 

there is a need to develop ways to assess preservice teachers’ teaching in new and more precise ways. 
Assessing preservice teachers’ ability to describe, analyze, or reflect on practice does not provide 
sufficient insight into their development. Further, novice teachers need specific feedback about their 
practice (Grossman, 2010).   

Assessment of teaching practice is not new in teacher preparation. Approaches have focused on 
appraising preservice teachers in real context of practice, such as in field placements and during 
student teaching, and have included microteaching, field-based performance tasks, and systematic 
field observation of lessons (e.g., Hamerness, Darling-Hammond, & Bransford 2005; NCATE, 
2003). In field-based assessments, however, contextual factors affect preservice teachers’ 
performance. Although context is a reality of practice, field placement contexts are unique for each 
preservice teacher, which makes it more difficult for teacher educators to obtain reliable estimates of 
their preservice teachers’ teaching capabilities. For example, our teacher preparation program, like 
many, used interviews conducted in their field placements to assess our preservice teachers’ skill 
with eliciting and interpreting student thinking. They probed children about their mathematical 
thinking and then they later analyzed the interviews to make claims about the children’s 
understandings (Sleep & Boerst, 2012). Using video records, instructors were able to see and provide 
feedback on the types of questions posed, how well they attended to and used children’s 
mathematical ideas, as well their manner with the children. We were also able to assess the quality of 
their interpretations of the children’s thinking. However, issues of fairness arose because some 
children were less forthcoming with their thinking than others and required different sorts of probing 
questions to elicit their thinking. Further, because instructors did not know the children themselves, 
they could not determine whether the preservice teachers were accurately uncovering children’s 
thinking. As a result, it was also not possible to detect patterns in preservice teachers’ skills overall 
within the program. This paper describes work we have been doing since 2011 to develop and 
investigate the use of simulations as a complementary form of assessment that can address some of 
the shortcomings of previous approaches. 
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The Use of Simulations in Professional Preparation  
Simulations are used in many other professional fields. In many medical schools, doctors in 

training engage in simulations of physical examinations, patient counseling, and medical history 
taking by interacting with “standardized patients,” adults who are trained to act as patients who have 
specified characteristics. Evaluation of medical students’ interactions with standardized patients 
makes possible common appraisal of candidates’ knowledge and skills. In medicine, simulations 
have been used for formative assessment for over 40 years and are currently used in high-stakes 
medical licensure examinations (Boulet, Smee, Dillon, Gimpel, 2009). In nursing schools, 
simulations are used to develop and practice clinical skills, including skills difficult to develop and 
practice on an actual patient. Many of these simulations make use of mannequins (robots) that can be 
programmed to behave in particular ways and to exhibit particular symptoms. Simulations have not 
been widely used in education, for either learning opportunities or assessment purposes. There are 
beginning to be examples of programs using them to support the learning of skills such as managing 
a classroom (Dieker, Straub, Hughes, Hynes, & Hardin, 2014), conducting a parent conference 
(Dotger & Sapon-Shevin, 2009), and school leader development (Dotger, 2014); however, the use of 
simulations for assessment has been limited. 

A Simulation Assessment of Skill with Eliciting and Interpreting Student Thinking 
To concretize ideas of simulations in assessing teaching practice, we turn now to describe an 

assessment that we developed and are now using of preservice teachers’ ability to elicit and interpret 
student thinking. The assessment makes use of a standardized student (i.e., someone playing the role 
of a student) and takes about 25 minutes to complete.  

In the first part of the assessment, preservice teachers are given a copy of the standardized 
student’s work on a problem (see Figure 1) and they have 10 minutes to prepare for an interaction 
with one standardized student about her work. Because the student’s work produces the correct 
answer, the task is to determine how the student reasoned about the problem and what she 
understands. Students can use an array of methods different from those familiar to adults, and an 
important task of teaching is to probe and make sense of students’ mathematical processes and 
understanding, both when they seem obvious and when they do not. This is particularly demanding 
for novice teachers who are likely to know less about non-standard approaches.  
 

 

Figure 1.A Student Work Sample on an Addition Problem 

In the second part of the assessment, preservice teachers have five minutes to interact with the 
standardized student. Preservice teachers are told that they should elicit and probe the standardized 
student’s thinking to understand the steps she took, why she performed particular steps, and her 
understanding of the key mathematical ideas involved. To ensure consistency, the role of the 
standardized student is guided by carefully articulated rules for reasoning and responding, including 
responses to questions that are commonly asked, referred to as the “student profile” (see Figure 2). In 
this case, the student uses an alternative algorithm to solve the problem. The student added the digits 
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in each column, starting with the tens. The student interpreted the 623 in the written work as 6 “tens” 
and 23 “ones” and produced the final answer of 83.  

In the third part of the assessment, the assessor asks a series of questions to elicit the preservice 
teacher’s interpretation of the student’s process and her understanding. Further, the preservice 
teacher is asked to predict, based on what the interaction revealed, how the student would solve 27 + 
48 and what she would understand about several key mathematical ideas.  
 

Student work: 
 
 

The student: 
• uses the column addition method, except that 

the student is working from left to right 
• correctly applies the column addition method 

for solving addition problems 
• can use the same process to solve addition 

problems with more than two digits, 
understands when/why/how to “combine”  

• has conceptual understanding of the procedure 
(e.g., “six hundred and twenty-three” is not the 
answer because we have to combine the tens)  

• is thinking about 623 as 6 tens and 23 ones 
• can tell that the sum of 83 is reasonable  

General orientation to responses: 
• do not make basic facts errors  
• give the least amount of information that is still 

responsive to the preservice teacher’s question 
• if a question is confusing, say something like, “What 

do you mean?” 
• do not write unless you are asked to write 

Specific responses (a subset of them): 
Preservice teacher prompt Response 

What did you do first? I added the tens: 2 + 3 + 1 and I got 6. 
How did you get from 623 to 83? I had to combine the 6 and the 2. 
Why did you need to combine those numbers? Because they’re both tens. 

 

Figure 2.An Excerpt from the Standardized Student Profile 

The assessment is scored using checklists with the criteria for proficient performance, including 
both mathematical and pedagogical aspects as it is being completed. Criteria for eliciting are keyed to 
specific parts of the task (e.g., probes for why the student combines the 6 and the 2) as well as how 
the preservice teacher takes up specific things that the student did or said. The interpreting criteria 
focus on the accuracy of the explanation of the student’s thinking and the use of evidence to predict 
the student’s performance on a similar problem.  

Features of the Assessment Situation 
In designing assessment scenarios, we make choices about the authenticity and familiarity of the 

context. Although the teaching context itself is a simulation, some features are nonetheless authentic. 
For example, the student work is ambiguous with respect to the student’s process (e.g., How did the 
student get from 623 to the final answer of 83?) and understanding of the core mathematical ideas 
(e.g., What does the student interpret the “623” to mean?). This means that preservice teachers 
cannot know in advance how the interaction will unfold. In addition, just as in actual classroom 
practice, the interaction occurs in real time, which requires teachers to generate questions on the fly 
in response to the student. 

The inauthentic aspects of the assessment actually enable more systematic evaluation of skills. 
First, all preservice teachers elicit student thinking about the same mathematics content, which 
avoids the issue of some content being easier or harder to elicit student thinking about. Second, that 
our preservice teachers are all interacting with a standardized student means that we are able to see 
their skills under the same conditions. Third, we are able to focus this particular assessment squarely 
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on eliciting and interpreting student thinking, not on other aspects of teaching –– also important ––
 such as building relationships with students.  

What Simulation Assessments Can Offer  
Simulation assessments present one promising possibility for improving assessment of teaching 

practice. We use these in our program to learn about how our preservice teachers are developing and 
how we can support improvement in their skills. But we also assess their skills on entry to the 
program and this, too, has been useful. One year, for example, we found that almost all our entering 
preservice teachers asked about the student’s process for solving a mathematics problem; however, 
fewer than half of them asked about the student’s understanding. Further, they rarely posed follow-up 
problems (6%) to confirm the student’s process or understanding. When asked to produce a problem 
that could be used to confirm the student’s approach, only 54% of preservice teachers were able to 
generate a numerical example that would present the same conditions as the original problem. These 
baseline data provided crucial information as we set out to develop our preservice teachers’ skills. 
We are also finding that these assessments support us in providing more detailed and specific 
feedback to our preservice teachers that can help them improve their practice. In our current work, 
we are continuing to investigate the validity and practicality of simulation assessments, including 
exploring their feasibility and design entailments. We are also conducting validation studies that 
examine the relationship between performances in simulations with performances in classroom 
contexts. 
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Given the implications of high cognitive demand tasks for student learning, we sought to determine 
how to support teachers in selecting or designing tasks that use Dynamic Geometry Software to 
support students’ high-level thinking.  We discuss the development of a practical framework for 
supporting teachers in this important work of teaching.  The framework integrates Sinclair’s Design 
Principles (2003) and the amplifier and reorganizer metaphor for technology use (Pea, 1987) in 
order to assess the role of technology in relation the thinking requirements of a task.  Following the 
description of the framework and its development, we discuss results regarding how pre- and in-
service teachers used the framework to evaluate and revise tasks found in current Geometry 
textbooks.   

Keywords: Technology, Teacher Education-Preservice; Teacher Education-Inservice; Teacher 
Knowledge 

The Common Core State Standards in Mathematics identify students’ ability to use appropriate 
tools strategically as an important mathematical practice. We believe a similar principle applies to 
teachers: that they must be discerning users of technology in considering how to effectively achieve 
certain mathematical goals with their students. However, there are few practical tools available to 
assess the role of technology in a given task. One lens for analyzing a technology task is the way it 
supports students’ mathematical thinking. Research on student learning shows that students who 
engaged with tasks requiring high levels of mathematical thinking demonstrated a greater ability to 
problem solve, make connections, and communicate their thinking than those who did not (Stein & 
Lane, 1996). Thus, it is important to support teachers in selecting high-level tasks to implement with 
their students. This paper describes a framework for selecting and revising technology tasks to 
support students’ high level mathematical thinking, and efforts to implement it with teachers.  

Theoretical Framework 
Dynamic geometry systems (DGS) support the learning of important mathematics (Hollebrands 

& Dove, 2011) and support students’ mathematical thinking (Sherman, 2014; Cayton, 2012). We 
have analyzed numerous mathematical tasks that use DGS in order to better understand the role of 
technology in supporting students’ mathematical thinking. In this section we describe the theoretical 
and research bases guiding our development of a framework to help teachers judge the potential of a 
DGS task to encourage students’ high-level thinking. 

Sinclair’s Design Principles 
An important principle of using technology strategically for mathematics instruction is that the 

inclusion or exclusion of technology within a given task should depend on mathematical goal(s). 
Only then can a teacher decide which tools, technological or otherwise, may be most effective in 
accomplishing that goal. Sinclair (2003) describes design principles related to how the sketch, i.e., 
technological representation of mathematical objects, and associated prompts for students’ activity, 
should depend on the goal of the task. We use these principles to identify three overarching goals for 
students’ mathematical activity: making mathematically meaningful observations, mathematical 
exploration, and fostering curiosity/modifying thinking. Along each dimension, technology plays a 
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role in achieving the goal, and the metaphor of using technology as an amplifier or a reorganizer 
provides a way to describe the role that technology plays. 

Amplifier and Reorganizer Metaphors of Technology Use 
Pea (1987) introduced the metaphors of amplifier and reorganizer to distinguish two ways in 

which technology may be used to support students’ thinking. As an amplifier, technology can make a 
task more efficient by performing computations and generating representations quickly and 
accurately, but the focus of students’ activity is not essentially changed. As a reorganizer, technology 
can transform students’ activity, supporting a shift in students’ mathematical thinking to something 
that would be difficult to achieve without it. With respect to the goals for students’ mathematical 
activity above, technology use as a reorganizer is interpreted to mean that DGS plays an essential 
role in achieving these goals. We integrated the design principles with the amplifier/reorganizer 
distinction into a single framework (Figure 1) to evaluate the role of technology with respect to each 
goal (row) (for more detail regarding the development of the framework and an example of how it 
may be used to analyze and revise a task, please see Sherman & Cayton (in press)). The framework is 
intended to serve as a practical tool to support teachers in assessing how the use of technology 
supports particular goals for students’ thinking and reasoning, and to suggest ways in which a task 
might be revised in order to accomplish certain goals more effectively. 

 

 
Figure 3: DGS Task Framework 

Implementing the Framework with Teachers 
In order to better understand how mathematics teachers make sense of the framework, and how it 

supports their ability to critically examine and describe various uses of technology, we introduced the 
framework to teachers and had them use it to analyze three tasks and make suggestions for how the 
tasks might be revised. The contexts for this study include a teacher education course and two 
professional development courses at three different universities. Data was collected in spring and 
summer of 2014. Participants included a total of 25 pre-service and in-service teachers with a range 
of teaching experience.  
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Results 
The way in which teachers’ used the framework to evaluate the three tasks we presented them 

with are summarized in Table 1. (The tasks can be found at the following links: Intersecting Chords: 
http://tinyurl.com/lhb7acw, Exploring Properties of Polygons: http://tinyurl.com/mkhho55,and 
Trapezoid Midsegment: http://tinyurl.com/k9vw3d2) The expert evaluation reflects the authors’ 
assessment of each of these tasks along the dimensions represented in the framework in Figure 1. 

Table 1: Teachers’ Evaluations of Three Tasks 
Task: Intersecting Chords  Expert April July August 
Mathematically Meaningful 
Observations  

Amplifier x 5 4 11 
Reorganizer  3 0 2 

Mathematical Exploration Amplifier x 7 4 13 
Reorganizer  1 0 0 

Foster Curiosity and Modify 
Thinking 

Amplifier x 7 3 13 
Reorganizer  1 1 0 

Task: Exploring Polygons      
Mathematically Meaningful 
Observations 

Amplifier  1 1 5 
Reorganizer x 7 3 8 

Mathematical Exploration Amplifier  0 2 2 
Reorganizer x 8 2 11 

Foster Curiosity and Modify 
Thinking 

Amplifier  3 1 0 
Reorganizer x 5 3 13 

Task: TrapezoidMidsegment      
Mathematically Meaningful 
Observations 

Amplifier  4 1 3 
Reorganizer x 4 3 10 

Mathematical Exploration Amplifier x 5 3 3 
Reorganizer  3 1 10 

Foster Curiosity and Modify 
Thinking 

Amplifier x 5 2 3 
Reorganizer  3 2 10 

 

Discussion 
In our discussions with teachers, we found that the differences in how they categorized a task 

along each dimension related mostly to interpretation of the prompts. For example, the Midsegment 
Trapezoid task includes the prompt Drag point A or point B to change the shape of trapezoid ABCD. 
Do not allow segment AD to intersect BC. What do you notice about EF and (AB+DC)/2?Some 
teachers interpreted this prompt as requiring students to drag continuously, and thus called it a 
reorganizer along the first dimension of the framework. Others, however, thought the prompt was 
asking students to engage in a “drag and stop” action, which would merely generate another example, 
and categorized it as being an amplifier. Since the prompt is not explicit, we believe either 
interpretation is valid. From a teacher education perspective, we believe that this ambiguity provides 
a pedagogical opportunity in understanding this dimension of the framework, i.e., that continuous 
dragging leverages the dynamic affordances of DGS. 

Other discrepancies between teachers were also noted. For the first dimension, practicing 
teachers with more years of experience often categorized a task as an amplifier, citing the fact that 
they had taught that particular concept without technology for many years. Thus, teachers did not 
necessarily focus on if DGS was needed to accomplish the goals for students’ mathematical thinking 
within a task. Along the second dimension, teachers tended to focus on the open-endedness of the 
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task rather than the role of DGS in supporting the open-ended features of the task. In response to this 
issue we revised the framework to be more explicit about the criteria for this dimension. For the third 
dimension, teachers assumed students would check their conjectures without an explicit requirement 
to do so leading them to categorize tasks as reorganizer even if an explicit requirement to check 
conjectures was not present. As students rarely check their conjectures spontaneously, it is included 
in the framework as an explicit requirement in the prompts.  

Implications for Teacher Education 
The value of this practical framework is directly related to its effectiveness in supporting 

teachers’ use of DGS to engage students in mathematical reasoning and sense making. Our current 
results demonstrate that the framework was useful in helping teachers understand distinctions in how 
DGS might support student thinking, and that teachers were able to use it to critically evaluate tasks 
that incorporated the use of DGS. Raising teachers’ awareness of the idea that DGS can be used in a 
variety of ways that may or may not promote students’ mathematical thinking is an important step in 
helping them to use DGS more strategically. Fostering this awareness and providing sustained 
opportunities to move beyond evaluation to revising and creating DGS tasks that support students’ 
mathematical thinking represents an important element of mathematics teachers’ technological 
pedagogical content knowledge (TPACK) (Niess et al., 2009) that this framework has the potential to 
address. 
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This study examined preservice elementary teachers’ selection of mathematics tasks for English 
language learners (ELLs) following a three-week field experience. For each of the first three weeks 
of the field experience, the preservice teachers were provided with cognitively demanding tasks for 
which to plan a lesson for a one-on-one session with an ELL. In the fourth week, the preservice 
teachers were asked to select their own tasks. Through the use of a qualitative document analysis 
methodology, we found that the preservice teachers attended to their ELL’s culture, language, and 
mathematics to varying degrees when selecting tasks. Further, they included a number of visual 
representations to accompany the tasks. The findings suggest that further preparation is needed to 
help preservice teachers select appropriate tasks for ELLs.  

Keywords: Teacher Education-Preservice; Equity and Diversity; Curriculum 

English language learners (ELLs) comprise the fastest growing demographic in U.S. public 
schools (Wolf, Herman, & Dietel, 2010). ELLs are a culturally, economically, and linguistically 
diverse group of students who can benefit from particular instructional strategies in the mathematics 
classroom. Many teacher preparation programs in states with historically small proportions of ELLs 
do not address strategies for teaching ELLs. In fact, though it has been estimated that nearly every 
teacher in the U.S. has at least one ELL student, less than one third of teachers have been prepared in 
effective teaching strategies for ELLs (Ballantyne, Sanderman, & Levy, 2009). These realities have 
contributed to the persistent achievement gap (Fry, 2008) between ELLs and their native English-
speaking peers.  

Shulman (1986) described particular aspects of knowledge needed for teaching, including 
curricular knowledge. He referred to these aspects collectively as pedagogical content knowledge 
(PCK). Magnusson and colleagues (1999) later expanded on the notion of curricular knowledge. This 
expansion described two categories of this knowledge: knowledge of goals and objectives and 
knowledge of specific curricular programs and materials. Knowledge in these areas is an important 
aspect of practice for which teachers must be prepared. Because tasks determine students’ learning 
opportunities (Kloosterman & Walcott, 2010), the selection of appropriate curricular resources for 
students is a crucial component of a teacher’s work.  

Although there is some literature related to mathematics curricula and ELLs (e.g., Campbell, 
Davis, & Adams, 2007; Pitvorec, Willey, & Khisty, 2011), a review of the literature on preservice 
teachers (PSTs) did not reveal any studies related to their selection of mathematics tasks for ELLs. In 
this study we examined four PSTs’ selection of tasks for ELLs following three weeks of an ELL-
focused field experience. The following question guided the study: What are the characteristics of 
the tasks PSTs selected for ELLs following a specialized field experience? As we were interested in 
the particular tasks selected, we focused on the first of Stein, Grover, and Henningsen’s (1996) three 
phases through which tasks transition: the tasks as represented in the curriculum materials. Attending 
to this phase is important because teachers’ decisions to select particular tasks can limit or expand 
students’ learning opportunities in the classroom. 
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Methods 
The data for this study were from a larger study investigating a four-week field experience for 

four, elementary PSTs. This field experience paired each PST with an ELL student in weekly 
meetings. For the first three meetings, the research team provided the PSTs with a cognitively 
demanding task. The PSTs were then asked to write up a lesson plan for implementing the task with 
their ELL. The PSTs were allowed to modify or adapt the task in any way they saw fit. In the fourth 
meeting the PSTs were asked to select their own task to use with their ELL. For each meeting we had 
video recordings of the meeting, video recorded pre and post interviews, the PSTs’ lesson plans, and 
the PSTs written reflections.  

In this study we focused on the fourth and final meeting of the PST and ELL pairings because we 
were particularly interested in the features of the PSTs’ selected tasks. We conducted a document 
analysis (Bowen, 2009) in conjunction with an inductive coding scheme to analyze the data. This 
began with open coding (Strauss & Corbin, 1990) the lesson plans and interview transcripts for each 
PST to identify initial themes related to the features of the PSTs’ selected tasks. Axial coding 
(Strauss & Corbin, 1990) was then used to further refine these themes. 

Findings 
The PSTs were asked to adapt an existing task or to develop a task of their own for the fourth 

week. Two of the PSTs elected to create their own tasks and the other two adapted an existing task. 
In the following sections we discuss the common features of all four tasks to better understand the 
factors to which PSTs attended to in support of ELLs.  

Connection to Culture and Context 
Within three of the four tasks, there was evidence that the PSTs attended to the task context for 

their ELLs. This occurred in one of two ways: focusing heavily on the ELL’s culture in selecting a 
task or on a context that the PST thought would be familiar to the ELL, but not necessarily tied to 
their particular cultural background. Morgan and Hannah adapted their tasks based on their ELLs’ 
cultural background. Morgan’s task was situated within an apartment context, which she believed 
Ho-Min would be familiar with, saying “I did try and figure out what kind of living arrangements he 
may have been used to [in S. Korea].” Hannah took a different approach and included a Korean name 
in the problem and made use of her knowledge of Hwa-Young’s upbringing in Japan by selecting a 
common Japanese dessert, imagawayaki, for the task. This was very successful in gaining Hwa-
Young’s interest in the task. Hwa-Young even exclaimed, “Imagawayaki is my favorite dessert, too!” 
Fiona focused on common contexts with which she thought Jin would be familiar, saying “[I] tried to 
do common things, using food and like soccer and basketball, which I know he liked.” Morgan and 
Hannah seemed to select culturally relevant contexts for their students based on their knowledge of 
their student’s, while Fiona selected contexts devoid of Asian culture. In contrast to these cases, the 
fourth PST, Kimberly, did not attend to Kyong-Tae’s cultural interests or contextual familiarity. The 
task she selected was familiar to her because it was going to be on her methods course exam the next 
day. She described her opportunity to work with Kyong-Tae on the task as “totally beneficial.”  

Attention to Mathematical Content 
In three of the four tasks selected, there was evidence that the PSTs attended to the ELLs’ 

mathematical levels when selecting tasks. They did this in two ways. First, they selected tasks 
appropriate for the grade level of the student. For example, Hannah focused her task on 4th grade 
fraction ideas for her 4th grade ELL. This approach of matching the task to grade level standards was 
different than the approach Morgan and Kimberly used. When explaining her choice of task, Morgan 
stated that she focused on area “because he [her ELL] said he liked area, I’m thinking he, at least, has 
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some experience with it or knows how it works.” Similarly, in light of Kimberly’s prior interactions 
with Kyong-Tae and his seemingly advanced mathematics level, Kimberly selected a task related to 
middle grades geometry. Kimberly and Morgan’s selections seemed to be influenced heavily by their 
knowledge of their students, while Hannah instead relied on grade level expectations. 

In contrast to these cases, Fiona did not appear to attend to the mathematical content in choosing 
her task. Fiona’s task consisted of mathematical activities that, during implementation, did not pose 
much of a challenge for Jin. Although Jin was in the fourth grade, Fiona selected tasks that consisted 
largely of single step addition, subtraction, and multiplication. Her task selection was driven by her 
desire to have an interaction that was “more fun than the other tasks when he was like sitting down 
and working through it. I hope he finds it fun.”   

Attention to Language 
There is evidence that all the PSTs attended to language within their tasks. Morgan paid 

substantial attention to language, saying she “tried to keep the wording pretty short and simple” 
while adding in certain words like “dresser” in the prompts to help “expand his [English] 
vocabulary.” Further within the lesson plan, Morgan identified how she would provide linguistic 
support for words if they became problematic. For example, she stated “if he is struggling with the 
word ‘entire,’ [she would] motion that the carpet has to be placed throughout the whole room.” 
Kimberly’s attention to language was evident in her choice of an entirely oral task. She explained her 
decision to do this in her pre-interview: “I would be verbally giving him directions, that this might be 
more challenging for him to pick up on the cues, but it is probably a lot more similar to what he sees 
in school.” She also anticipated linguistic challenges by preloading vocabulary at the start of the task.  

In contrast, Fiona and Hannah’s attention resulted in problematic language in their written tasks. 
Fiona did not anticipate challenges that Jin may face with terms such as digit and number, and 
therefore did not have a plan for how to support Jin. Hannah’s task had multiple spelling errors, 
multiple verb tenses used within a single problem, and overly complex or incoherent sentences. For 
example, within one activity, Hannah used eat, uneaten, ate, eaten, and left over to describe what 
happened to a dessert. In all cases, the PSTs paid attention to language; however, in some instances, 
this attention did not support their ELL’s language development or lessen linguistic demands.  

Inclusion of Visuals 
Three of the PSTs included visual representations in their task. Hannah included pictures of 

desserts, identified as a modification intended specifically for Hwa-Young, and stated, “instead of 
having her draw her own pictures, I make sure that I had a picture for her.” Morgan’s inclusion of a 
bedroom diagram was also seen as a support for her ELL, identifying in her lesson plan that she 
would “walk him through what each picture represents” and point to various places in the diagram to 
assist with linguistic challenges (e.g. unfamiliarity with ‘carpet’). Morgan further adapted the visual 
presentation of the task by increasing the amount of white space. Kimberly’s supports included 
drawing a table and diagram of a circle on the whiteboard prior to Kyong-Tae’s arrival, which she 
saw as supporting him during her orally administered task. In contrast to these three PSTs, Fiona 
included no visual supports for Jin. It is not known why she chose to do this and is in contrast to her 
behavior during the first three weeks.  

Discussion 
We examined PSTs’ task selections for ELLs with whom they were familiar. Each PST used 

their knowledge of their ELL to select tasks that positively impacted their student’s success. 
However, at times, these selections seemed to be problematic or misguided. When selecting 
mathematically appropriate tasks, the PSTs primarily selected activities based upon their student’s 
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grade level, and not from their prior knowledge of the student’s mathematical ability. In all cases, the 
selected task did not pose substantial mathematical challenges or exhibit characteristics of high 
cognitive demand tasks (Stein et al., 1996). Although the PSTs had classroom instruction on 
cognitively demanding tasks, this was insufficient for impacting the level of cognitive demand of 
self-selected tasks for students with whom they were familiar.  

When adapting language for their selected tasks, two of the PSTs were successful at anticipating 
and planning for linguistic challenges. Although all the PSTs had been adapting language during the 
prior three weeks, this, in conjunction with their coursework, was insufficient at fully developing 
their skills in anticipating and planning for language. This is evidence that PSTs need further practice 
at anticipating and planning for language within curriculum materials for ELLs.  

Our findings indicate that completing a four-week field experience with an ELL in conjunction 
with coursework is insufficient to fully prepare PSTs to work with ELLs. Further research is needed 
to better understand how to support and prepare PSTs for their work with ELLs in their future 
classrooms. It is our hope that this study will encourage others to further investigate how teacher 
educators can better prepare PSTs, and potentially in-service teachers, for working with and 
supporting ELLs in the mathematics classroom. 
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Over the past 20 years researchers have made progress in understanding mathematics teachers’ 
knowledge. Although the field has made advances in measuring mathematical knowledge for 
teaching (MKT), much is left undiscovered about the nature of this knowledge. This is due in part to 
the many challenges inherent in studying MKT, which is multifaceted and inextricably tied to 
practice. This paper investigates methods around the study of MKT by looking at tasks from three 
cognitive interview studies. It focuses on how the tasks and the pedagogical contexts within them 
influence what can be learned about the different facets of MKT. This paper has implications for 
future studies that seek to investigate the nature of MKT.  

Keywords: Mathematical Knowledge for Teaching; Research Methods; Teacher Knowledge 

Introduction 
Over the past 20 years, researchers have made progress in understanding the knowledge entailed 

by the work of teaching mathematics and in measuring mathematics teachers’ knowledge. Although 
these studies have conceptualized such knowledge and found valid ways of measuring teachers’ 
knowledge, there is still much left to learn about the nature of this knowledge. This is because this 
knowledge is multifaceted, involves multiple layers of reasoning, and inextricably tied to practice 
(Putnam & Borko, 2000). Many researchers have sought and created measures of teachers’ 
knowledge, yet few have looked closely at the nature of this knowledge. One line of research that has 
looked at the nature of this knowledge stems from Ball and colleagues’ work on mathematical 
knowledge for teaching (MKT). Their research group has used extensive records of practice to build 
and test hypotheses about the nature of mathematics teachers’ knowledge (Ball & Bass, 2003). This 
work has led to an understanding of some of the mathematical demands of teaching mathematics, yet 
many facets of MKT are still not known. Moreover, this is complex work that cannot be easily 
replicated without copious data from mathematics classrooms, and a group of researchers with broad, 
multidisciplinary expertise in teaching, mathematics, and cognition. What is needed is a better 
understanding of how to study MKT. Such an understanding would allow more researchers to 
analyze the complex mathematical knowledge and work that occurs in teaching, leading to a better 
understanding of the unique knowledge demands of teaching mathematics. This paper investigates 
methods around the study of MKT by looking at tasks from three studies that investigated MKT 
using cognitive interviews. The differing types and structures of tasks across the three studies affect 
teachers’ responses and the types of knowledge that are made visible. This affords the ability to look 
at how the tasks themselves and the pedagogical contexts within them influence what can be learned 
about the different facets of MKT from each task. 

Theoretical Framework 
This study draws on the theory of mathematical knowledge for teaching (MKT), the knowledge 

needed to carry out the work of teaching (Ball, Thames, & Phelps, 2008).This notion of MKT builds 
on Shulman’s (1986) conceptualization of pedagogical content knowledge. Pedagogical content 
knowledge, which resides at the core of expert teaching, is a teacher’s ability to turn content 
knowledge into pedagogically powerful forms that can be adapted to students’ varying abilities, prior 
knowledge, and backgrounds (Shulman, 1987). MKT includes both subject matter knowledge and 
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pedagogical content knowledge. Included within subject matter knowledge is a category of content 
knowledge unique to teachers. Other mathematics professionals use mathematics in a compressed 
and finalized form, but teachers must interpret, understand, and share the uncompressed versions of 
mathematics knowledge that their students learn and use. Knowing mathematics in these multiple 
uncompressed forms and mapping between them is a subset of mathematical knowledge unique to 
teachers (Ball et al., 2008). 

This study draws on a situated perspective of knowledge and practices. In this perspective, 
embedded within knowledge are fundamental links to the situations in which it was learned and is 
used (Brown, Collins, & Duguid, 1989). Teachers’ “professional knowledge is developed in context, 
stored together with characteristic features of the classrooms and activities, organized around the 
tasks that teachers accomplish in classroom settings, and accessed for use in similar situations” 
(Putnam & Borko, 2000, p. 13). In this view, teacher knowledge is inextricably linked to the 
contexts, tasks, and practices of teaching. Therefore, knowledge and practices can vary across 
settings. Several examples exist in the literature documenting teachers whose mathematical 
knowledge differed between teaching and non-teaching contexts (Borko et al., 1992; Hodgen, 2011; 
Ma, 1999; Thompson & Thompson, 1994).  

Methods 
This paper presents a qualitative study using tasks and responses from three different studies 

designed to investigate MKT using cognitive interviews (Desimone & Le Floch, 2004). In the first 
study, nine experienced geometry teachers were interviewed while solving nine multiple-choice 
MKT-Geometry tasks, three problems in each domain: knowledge of content and teaching, 
knowledge of content and students, and specialized content knowledge. 

The second study was designed to address a range of teaching practices and mathematics content. 
For each task, participants were presented with a classroom situation and asked to take on the role of 
the teacher. This included providing feedback on student work and using it to further instruction, 
creating formative assessment, and designing learning goals for a lesson. Twelve experienced 
teachers ranging across grades K-12 participated in this study.  

Ten high school Algebra II teachers participated in the third study. The tasks in this study were 
focused on the teaching practices of giving explanations and selecting examples and on the content of 
rational expressions and equations. In each task, participants were either asked to pick examples to 
teach a particular topic, such as simplifying rational expressions, or to give an explanation for 
students of a particular concept, including solving a rational equation.   

While each study was focused on investigating MKT in the context of particular mathematics 
content and teaching practices, this paper presents a broader analysis across all three studies of the 
ways in which the tasks used in each study shaped what could be learned about MKT from the tasks 
and interviews in each study. Each task and its associated responses were analyzed around the ways 
in which the pedagogical context and details of the task, as well as the type of response participants 
were asked for, shaped the facets of MKT that were made visible. 

Results 
The four findings that emerged from the analysis are described below with examples.  

Task Type 
Different types of tasks can allow different facets of teachers’ MKT to be made visible. For 

example, several tasks from the second study asked participants to evaluate student work. For each 
task participants were asked to craft their own response. Because of the open-ended nature of the 
task, participants were more likely to draw on knowledge they would use in doing this task in their 
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own teaching. In contrast, one of the tasks from the first study asked participants to evaluate incorrect 
student work and determine the student’s error. This task provided four options for participants to 
choose from. By providing the possible student misconceptions, the knowledge that could be seen 
was constrained to the choices given. 

Although intended to reveal participants’ knowledge of student thinking, a task that asks 
participants to evaluate student work can surface gaps in participants’ mathematical knowledge. For 
example, one task asked participants to evaluate a student’s construction of a geometric figure. The 
student work was missing a description of how one component of the figure was drawn, making it 
incomplete, but not incorrect. A few of the participants made mathematically incorrect statements 
about the student’s final figure, revealing gaps in their own mathematical understanding. If the 
participants had instead been asked to construct the figure themselves, this knowledge may not have 
been revealed. 

Task Structure 
Small changes in the tasks can reveal or obscure facets of teachers’ knowledge. For example, one 

of the early task designs in the third study presented participants with ten problems from which to 
select examples for teaching simplifying rational expressions. In pilot interviews, participants spent a 
significant amount of time solving all of the problems, which made visible their mathematical 
reasoning. However, the work they engaged in was less authentic to the work of teaching and the 
knowledge used in doing the task was not reflective of how they might actually select examples in 
their own planning. The task was revised to present participants with a list of 30 problems. The list 
was similar to one teachers might find in their textbooks or online, and also included a list of 
answers. Participants who were presented with the later version of the task began by evaluating the 
features of the problem, including the final answer. While many of the participants worked through a 
few of the problems after they had selected them, none of the participants solved all of the problems. 
By changing the task, the work participants did in solving it more closely resembled the work of 
teaching, providing a better window for viewing MKT. 

Another example comes from the second study. One of the tasks presented participants with 
student work on a permutation problem. Participants were first asked in writing what they noticed 
about the student’s work. They were also asked to provide feedback to the student and how they 
might wrap up the problem with the whole class. By asking participants in writing what they noticed 
before they provided written feedback to the student, the task was unknowingly focusing participants 
on aspects of the student work they might have otherwise overlooked and distorted the ways in which 
they would actually engage this work in practice. Removing this question in written form provided a 
better understanding of how participants evaluate student work and provide feedback on it. 

Mathematical Detail 
One task from the first study presented a problem that involved finding the measure of an 

inscribed angle given other known angle measures. Four student solutions were given, all of which 
ended with the correct value, but provided different levels of detail. Participants were asked to 
determine which solution was incorrect. One solution made a mathematical jump, associating the 
value of two unrelated angles. The other answers used correct mathematical reasoning to reach a 
correct answer, including dividing the measure of the central angle in half to find the measure of the 
inscribed angle that intercepts the same arc. However, none of the students mentioned that the 
measure of the inscribed angle was half the measure of the arc it intercepts. Because the problem 
focused on inscribed angles, several participants interpreted these responses to be incorrect, even 
though they were designed by researchers to be correct.  
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Context Unrelated to MKT 
Other details in the problem context can cause teachers to respond to a task without drawing on 

the MKT the task intended to elicit. On one task, participants attributed an incorrect response to the 
verbal mode of communication instead of the student’s underlying misconception. In another case, 
participants chose an activity based not on the underlying mathematics, but on the tools students 
would use in the activity. 

Conclusion 
Creating tasks to study MKT is not straightforward. The types and structures of cognitive 

interview tasks, as well as the pedagogical contexts in those tasks can affect the facets of MKT that 
are made visible. Other task features also matter. Tasks that most closely resemble the work of 
teaching have the potential to better probe MKT. When participants respond in unexpected ways to a 
task, small changes to better approximate the work of teaching may enable participants to draw on 
their MKT as they do in teaching. Further, teachers’ content knowledge may be better accessed 
indirectly through a teaching situation than through mathematics problems. While there is much left 
to consider around methods for studying MKT, the methodological considerations discussed in this 
paper provide a starting point for understanding how best to investigate MKT.  
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One way to strengthen the impact of teacher education, and thus address an enduring challenge in 
improving education, may be to teach prospective teachers (PTs) to systematically study and improve 
their teaching.  In particular, a key skill for teachers is to appropriately notice and evaluate evidence 
of student understanding.  In this study, we examine PTs’ analyses of student learning in a lesson 
transcript, and compare these analyses across populations.  Results indicate that prospective 
secondary teachers conducted higher quality analyses than prospective elementary teachers, but 
both populations of PTs overestimated students’ understanding within the lesson transcript.  
Implications of this study suggest a link between mathematical knowledge and analysis skills, and 
indicate the need to explicitly teach analysis skills to PTs. 

Keywords: Teacher Education-Preservice; Teacher Knowledge 

One of the most persistent and enduring challenges for teacher educators and educational 
researchers is the difficulty of designing teacher education programs which produce strong and long-
lasting positive effects on their graduates.  Multiple researchers have suggested that one way teacher 
education can have long-lasting effects is by preparing prospective teachers (PTs) to be lifelong 
learners who become better teachers over time (Fieman-Nemser, 2001; Hiebert, Morris, & Glass, 
2003).  However, more research is needed on how to best achieve this goal.   

One model for lifelong learning from teaching is composed of a cycle of four skills meant to be 
repeated systematically on a lesson or unit.  This cycle, which is theoretically informed by the work 
of Hiebert, Morris, Berk, and Jansen (2007), is known as a lesson experiment.  The skills of the cycle 
are intended to help teachers structure a personal or collaborative analysis of their own teaching in 
terms of its effectiveness in helping students meet specified learning goals.  These skills are: (1) 
setting mathematical learning goals for students; (2) collecting and analyzing evidence of students’ 
achievement of those mathematical learning goals; (3) developing cause-effect hypotheses that 
connect teaching to students’ achievement; and (4) revising teaching based on the hypotheses to 
better improve students’ opportunity to learn (Hiebert, Morris, Berk, & Jansen, 2007).  Using these 
skills may help teachers both improve a lesson or unit and develop a mindset for thinking about 
teaching in terms of student learning (Phelps & Spitzer, 2012).  Lesson experiments allow teachers to 
analyze and learn from their own teaching, systematically improving over the course of their career.  
Thus, helping PTs learn to conduct lesson experiments might be one way to strengthen the impact of 
teacher education programs.  Learning more about how PTs might acquire and use the lesson 
experiment skills is an essential step in addressing the enduring challenge of designing effective 
teacher education programs.   

Objectives of the Study 
Research suggests that without explicit instruction, PTs hold a variety of misconceptions about 

analyzing teaching, and while they can enact some skills of the lesson experiment model, these skills 
are fragile and context-dependent (e.g. Morris, 2006; Spitzer, Phelps, Beyers, Johnson, & Sieminski, 
2011).  However, this research has mostly been conducted with prospective elementary teachers.  
Little work has been conducted to examine these skills in practicing teachers or in prospective 
secondary teachers, and no existing research compares these skills across different populations of 
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teachers.   This lack of knowledge limits our ability to successfully prepare teachers at all levels who 
will be lifelong learners. 

In an ongoing research project, our goals are to begin to address these research gaps by 
investigating teachers’ ability to analyze and evaluate evidence of student achievement of 
mathematical learning goals, and compare them across several populations.  In particular, in this 
paper we will present the results of a quantitative analysis of prospective elementary and secondary 
teachers’ evaluations of a sample lesson transcript in terms of student thinking and learning.  The 
research questions for this analysis are:  How do PTs evaluate evidence of student understanding in a 
lesson transcript?  What differences exist in the evaluations of evidence among elementary and 
secondary PTs?   

Methods 
This project employed a mixed-methods approach in which participants completed an online 

survey including both open-ended and multiple-choice type questions eliciting their analysis of a 
sample transcript of a 5th grade mathematics lesson.  This paper focuses on the quantitative portion of 
the study, while future analyses will investigate the open-ended responses. 

Participants 
Participants included PTs enrolled at either of two large comprehensive universities, one in the 

Mid-Atlantic region and the other in the Midwest.  Participants were recruited through email, word of 
mouth, and announcements in classrooms, and received a token gift card as a thank you for 
participating.  Fifty-four PTs responded to the invitation and completed the survey.  This sample 
includes 36 prospective early childhood or elementary teachers (including 4 prospective elementary 
teachers with a specialization in mathematics), 5 prospective middle grades teachers with a 
specialization in mathematics, and 13 prospective secondary teachers with a specialization in 
mathematics.  87% of participants were female; 22% had completed at most one year of college, 58% 
had completed 2 or 3 years, and 20% had completed 4 or more years.   

Measures and Analysis 
To assess participants’ evidence analysis abilities, we designed a task asking participants to read 

a transcript of a 5th grade lesson on comparing decimals using the conceptual ideas of decimal place 
value.  The content was chosen specifically to be accessible to all participants (elementary and 
secondary) and because place value underlies so many important ideas of school mathematics.  The 
learning goal of the lesson, which was prominently displayed at the beginning of the transcript, was 
“Compare two decimals to the thousandths place based on meanings of the digits in each place 
(National Governors Association, 2010, CCSSM 5.NBT.3.b).”   

The sample lesson transcript featured teacher direct instruction, students working on problems 
individually, and whole-class discussions and was divided into six sections, each featuring a different 
student response or teacher action, and a lesson conclusion.  Of the six transcript sections, two were 
designed to provide some evidence of student understanding (one of a misconception and one of 
some conceptual understanding) and the other four provided no evidence of student understanding of 
the learning goal.  These included a student who used a procedure to compare decimals (appending 
zeros) but without evidence of understanding that procedure (Section A), a conceptual explanation by 
the teacher accompanied by student thumbs-up (Section B), a student who provides only the correct 
answer with no explanation (Section C), and a student who used an alternative method (converting to 
fractions and using a calculator) to compare decimals without reference to place value ideas (Section 
D).   
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Participants were directed to read the entire transcript first and then were presented with the 
sections individually.  After participants read each section, they were asked “What can you tell from 
this section about how well the students understand the learning goal?” and chose from three options: 

0: I can’t tell from this section if the students understand the learning goal or not.  
1: I can tell a little from this section about the students’ understanding (or lack of 

understanding) of the learning goal. 
2: I can tell a lot from this section about the students’ understanding (or lack of 

understanding) of the learning goal. 
Participants were then asked open-ended follow-up questions asking what mathematical ideas 
students understood (or did not understand) and what evidence from the transcript convinced them.  
Last, participants chose which part of the transcript they thought told them the most about student 
understanding.  For this question, they could choose any of the six sections or the lesson conclusion, 
which featured mostly teacher talk with students nodding.   

For analysis here, we focus only on participants’ quantitative ratings of each of the four transcript 
sections that provided no evidence.  A rating of “can’t tell” was coded as a 0, “tells a little” as a 1, 
and “tells a lot” as a 2.  Because each section provided no evidence of student understanding, lower 
ratings indicate a higher-quality analysis of the evidence (i.e., “can’t tell” is the best response for 
each of these sections, and “tells a little” is better than “tells a lot”).    

Results  
The average rating across all four sections was 1.36 (SD = 0.41), indicating that most PTs felt 

that these four transcript sections consistently told them something about students’ understanding.  
Because these four sections were all specifically designed to provide no evidence of student 
understanding, this indicates that PTs are overly generous in their estimations of evidence.  We first 
consider the kinds of evidence that PTs found most compelling.  Table 1 shows participants’ ratings 
for each of the four different sections. 

Table 1: Participant’s Ratings of Transcript Sections 

Transcript Section 

Percent of respondents choosing each rating 
Mean Numerical 

Score (SD) “Can’t tell” “Can tell a lot” 
“Can tell a 

little” 
A: Procedural Explanation 2% 74% 24% 1.72 (.49) 
B: Teacher Instruction 35% 28% 37% 0.93 (.80) 
C: Correct Answer 23% 36% 41% 1.13 (.76) 
D: Alternative Method 6% 72% 22% 1.67 (.58) 

 
From this table, it is clear that participants most highly rated those sections which contained a 

student explanation of some kind (either of a procedure or alternative method), even though neither 
of those explanations related to the mathematics of the learning goal (place value).  In particular, 
only one participant recognized that a procedural explanation does not provide evidence of 
conceptual understanding.  Participants expressed the most skepticism about a section containing 
only teacher instruction, but even for this section, 65% of PTs believed that the transcript provided at 
least a little evidence of student understanding.   

Interestingly, when directed at the end of the task to choose the section which told them the most 
about student understanding, participants looked more favorably on teacher instruction and non-
verbal student responses as evidence of learning.  20% of participants chose Section B as telling the 
most, and another 17% chose the lesson conclusion, which also included mostly teacher talk and 
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students nodding.  Only 20% of PTs chose one of the two sections which did provide some evidence 
of student thinking.    

We were also interested in the differences that might exist in evaluations between different 
populations of PTs.  The data suggests that prospective secondary (middle and high school) teachers 
demonstrated significantly higher quality analyses of this transcript than prospective elementary (and 
early childhood) teachers (Primary M = 1.49 (SD = 0.32), Secondary M = 1.10 (SD = 0.45), p< .01).  
It is likely that this difference is related to higher levels of mathematics knowledge among 
prospective secondary teachers; future analyses of this data will investigate this relationship more 
closely.  We also hypothesized that PTs who had completed at least one methods course would 
conduct higher-quality analyses than PTs who had not.  However, this relationship did not prove to 
be the case, as there was no significant difference found (Methods M = 1.37 (SD = .34), No methods 
M = 1.35 (SD = 0.49), p = .88). 

Discussion 
The PTs in this sample generally overestimated the evidence of student learning, particularly in 

cases where the student gave some kind of explanation.  Those PTs who had completed a methods 
course performed no better than other PTs, suggesting that general knowledge of pedagogy does not 
automatically improve evidence analysis skills.  However, secondary PTs did better than elementary 
PTs, suggesting mathematics knowledge may matter in analyzing evidence.  Overall, these results 
indicate that more explicit instruction in evaluating evidence of student learning in mathematics may 
be needed.  Future research is also needed in order to better investigate the link between mathematics 
knowledge, pedagogical knowledge, and the ability to analyze evidence.  The results of this study 
provide a first look at one method for responding to the enduring challenge of effective teacher 
preparation.  This research, and future research, will improve our ability to give all teachers the skills 
needed to become lifelong learners of teaching.   
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Preparing to Teach Algebra (PTA) Project gathered data about opportunities to learn to teach 
algebra provided by secondary teacher education programs. In sharing our findings, we use 
structures from the Mathematical Knowledge for Teaching (MKT) framework (Ball & Bass, 2003). 
The MKT framework is one way of situating the ways in which teacher education programs support 
preservice mathematics teachers in developing necessary knowledge types for teaching algebra. 
Using the MKT framework as an analytical framework is not straightforward, however. The 
framework must be interpreted and individualized to the study of algebra and to the opportunities to 
learn to teach algebra that we found. We present our struggles, the evolved framework, and our 
results in this session. 

Keywords: Teacher Education-Preservice; Mathematical Knowledge for Teaching; Algebra and 
Algebraic Thinking; Instructional Activities and Practices 

Introduction 
Teacher preparation programs should provide opportunities which support the development of 

specific types of knowledge needed for teaching mathematics, especially at the secondary level (e.g., 
McCrory, Floden, Ferrini-Mundy, Reckase, & Senk, 2012). This study is part of the Preparing to 
Teach Algebra (PTA) project which explored opportunities provided by secondary mathematics 
teacher education programs to learn about algebra, teaching algebra, issues of equity in algebra 
context, and algebra, functions, and modeling standards described in the Common Core State 
Standards for Mathematics. For this presentation, we address the question: What types of knowledge 
do secondary mathematics teacher preparation programs support when they provide preservice 
teachers (PSTs) with opportunities to learn to teach algebra? 

Theoretical Framework 
Ball and Forzani (2009) suggested that teacher preparation programs, including those preparing 

mathematics teachers, should change their curricular focus from what teachers know and believe to 
“the actual tasks and activities involved in the work” (p. 503). In exploring opportunities provided to 
preservice algebra teachers, we face a challenge to situate opportunities within a particular theoretical 
framework. The MKT framework offers a categorical system of knowledge types needed for 
successful mathematics teaching and focuses on knowledge in practice (Ball & Bass, 2003). Several 
researchers have made efforts to measure MKT outside of practice, suggesting that knowledge 
development can be supported during teacher preparation (e.g., Herbst & Kosko, 2014). In this 
presentation, we share our use of the MKT framework (e.g., Ball, Thames & Phelps, 2008) to better 
understand how intended opportunities to learn to teach algebra might support knowledge for 
teaching algebra. 
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Method 
PTA project collected data from three secondary mathematics teacher education programs in the 

form of interviews with instructors of required mathematics and mathematics education courses at 
each institution, along with relevant course materials. We focused our current analysis on 
opportunities to learn to teach algebra, coding data in pairs of researchers. In this presentation, we 
analyze opportunities reported by instructors and found in their instructional materials to investigate 
aspects of MKT included in courses at each institution and across the three programs. 

Results 
In the following sections, we discuss our operating definitions of different aspects of the MKT 

framework. We present some preliminary results from our use of the MKT framework. Here, we 
focus on five aspects of MKT: specialized content knowledge, horizon content knowledge, knowledge 
of content and students, knowledge of content and teaching, and knowledge of content and 
curriculum (each defined below). 

Specialized Content Knowledge (SCK) 
Specialized content knowledge (SCK) can be described as knowledge that teachers need to 

unpack mathematical concepts and to interpret student work, especially in terms of unique 
approaches or solutions, that similarly qualified persons outside of mathematics teaching may not 
need (e.g., unpacking and relating the area and volume formulae for different shapes) (Ball et al., 
2008). SCK enables teachers to delve into content from multiple perspectives, allowing them to 
explain concepts in multiple ways or follow students' reasoning (Ball et al., 2008). 

For the purposes of this study, we refer to SCK learning opportunities as including: (a) unpacking 
particular aspects of mathematical concepts (including derivations, history, and proof), (b) evaluating 
and interpreting student arguments and solutions, (c) recognizing and valuing alternative solutions 
from instructors and colleagues, and (d) exploring teaching-related mathematical ideas. For example, 
a History of Mathematics course instructor at Kappa University expressed her desire for PSTs to 
appreciate the complexities present in many of the algebraic ideas they take for granted, and how 
historical struggles can be predictors of student struggles. She gave them opportunities to investigate 
these struggles by studying the process and timeline taken to develop and standardize concepts such 
as function notation. As the instructor noted, “Some of these early algebraic things are ideas that are 
really quite sophisticated and it makes sense for students to stumble.” We classified these 
opportunities as SCK because of the opportunities for PSTs to learn about the history and complexity 
of algebraic concepts and notations which could impact student understanding. 

Horizon Content Knowledge (HCK) 
According to Ball et al. (2008), horizon content knowledge (HCK) refers to teachers’ 

understanding of how particular mathematical content is connected throughout the K-12 curriculum 
and to college mathematics. For our analysis, we focused on opportunities PSTs had to learn about 
how middle school mathematical topics (e.g., variables) can be used in high school topics (e.g., 
exponential functions) or how college mathematics relates to secondary content. 

For example, a Discrete Mathematics instructor at Kappa University wanted to provide 
mathematical knowledge for PSTs to see where the secondary content fit into the larger mathematical 
landscape. For instance, the instructor mentioned that PSTs learned when it was appropriate to allow 
complex number solutions to quadratic equations. We coded this example as HCK because the 
instructor described how teaching algebraic content varies at different levels. 
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Knowledge of Content and Students (KCS) 
In Ball et al. (2008), Knowledge of Content and Students (KCS) is described as “knowledge that 

combines knowing about students and knowing about mathematics” and specifically supports 
teachers in tasks that require “an interaction between specific mathematical understanding and 
familiarity with students and their mathematical thinking” (p. 402). Ball et al. described elements of 
KCS as including knowledge about students’ thinking, interests or motivations, as well as common 
student conceptions and misconceptions. 

In looking for examples of KCS from our data, we considered activities that emphasized 
anticipating or predicting with respect to student thinking, mathematical understanding, and 
motivation. For example, the Secondary Mathematics Methods instructor at Beta University 
emphasized gathering and interpreting data on student thinking: “Okay, you can't just gather 
information about right and wrong answers. So … in this system of linear equations, they were able 
to find the intercept. What does that mean? Do they understand what that means?” At Gamma 
University, the Algebra in the Curriculum instructor mentioned asking PSTs to look at written 
student work and anticipate what support the students would need by answering, “[H]ow can you 
support, from the written work what can you see as far as what are the [algebraic] habits of mind that 
those students need help with?” 

Knowledge of Content and Teaching (KCT) 
Ball et al. (2008) described Knowledge of Content and Teaching (KCT) as an important 

component of PCK; they proposed that this type of knowledge “combines knowing about teaching 
and knowing about mathematics” (p. 401). PSTs need opportunities to learn KCT in their secondary 
mathematics programs; we found evidence of such opportunities in our case study programs. For 
example, the Modeling in the Curriculum instructor at Gamma University included a textbook 
analysis as a course assignment. He asked PSTs to choose a textbook and find where matrix 
multiplication was addressed in the book. PSTs then discussed, “How are the different books doing 
it? What are the advantages, disadvantages?” This activity required students to grapple with both 
mathematical and pedagogical ideas in order to make decisions about both how to introduce 
particular mathematical topics and how to sequence concepts or activities associated with the topic. 
The Probability and Statistics instructor at Beta University emphasized that she provided her students 
with multiple opportunities to visualize and interpret data. She modeled this as a pedagogical strategy 
for those students who will be teachers as their future students will likely benefit from seeing data in 
various ways as well. Again, this strategy engages PSTs in what Ball et al. (2008) refer to as “an 
interaction between specific mathematical understanding and an understanding of pedagogical issues 
that affect student learning” (p. 401).  

Knowledge of Content and Curriculum (KCC) 
From Ball et al. (2008), KCC is the category of PCK focused on issues related to mathematics 

curriculum, specifically knowledge of the available programs and instructional materials designed to 
teach a certain topic at a particular level. KCC also includes considerations related to the affordances 
and complexities of selecting curriculum within a determined context. According to Shulman (1986), 
there are two additional types of curricular knowledge: lateral curricular knowledge and vertical 
curricular knowledge. The former is about the knowledge of the curriculum taught in a different 
subject area. The latter is related to the knowledge about the curriculum in the same subject area that 
has been used during previous years, as well with that that will be used in subsequent years. 

For example, the Modeling in the Curriculum instructor at Gamma University reported that 
“[o]ne of the things that we do, actually when we do matrices. I have them each grab an Algebra II or 
secondary math textbook, I don't know if you have seen the math ed room, but there's tons of books 
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(...), so they kinda grab books and we discuss how are the different books doing it, what are the 
advantage, disadvantages.”  

Discussion 
We are investigating the use of the MKT framework to analyze our OTL data from courses at 

three secondary mathematics teacher preparation programs. Although the MKT framework is 
appropriate to analyze future teachers’ OTL about different types of knowledge for teaching, 
utilizing the MKT lens to make sense of our data has not been a straightforward process. These areas 
of knowledge are not discrete (as acknowledged by its developers) and many instructors design OTL 
to address multiple areas in connection with one another. For example, we were unclear about the 
categorization of an OTL in Abstract Algebra at Kappa University. The instructor reported that he 
had students in the course teach each other the abstract content by going to the board to explain 
homework questions to each other, presenting alternative solutions to problems, and working in 
groups in class. An argument for including this example in KCS is that by teaching each other the 
content, PSTs may be developing their abilities to anticipate what their classmates know or will 
struggle with and that may translate to their future students. On the other hand, the PSTs are not 
explicitly supported in anticipating their classmates’ (or future students’) thinking, motivation, or 
struggles. Therefore, we tentatively decided to categorize this OTL as SCK rather than KCS. 
Textbook analysis activities also proved challenging to categorize. They might seem to be obvious 
cases of KCC given their direct relationship to curriculum. However, we found instances in which 
this categorization was less clear. The example described in the KCT section above serves to 
illustrate this difficulty, as the students analyzed textbooks in order to investigate treatment of matrix 
multiplication and to consider advantages and disadvantages of different approaches; this analysis 
seemed more closely related to the descriptions provided for KCT than KCC. 

In this session, we will describe analytic challenges inherent in using the MKT framework, 
present our evolving conceptions of the MKT categories, and share preliminary analysis results. We 
will engage our audience in discussions about our definitions, analytic decisions, and next steps in 
our analysis. We will share preliminary findings from three teacher preparation programs, which will 
help other teacher educators strengthen their programs. This presentation will help researchers who 
plan to use the MKT framework as an analytical framework for types of knowledge of algebra 
teachers. 
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This paper presents two studies (qualitative and quantitative) with the shared goal of exploring 
preservice teachers’ (PSTs’) experiences of mathematics anxiety and self-efficacy for mathematics 
teaching.  Findings indicate that PSTs experience high levels of mathematics anxiety, impacting 
current learning and preference for teaching the content, as well as the development of self-efficacy 
for teaching mathematics and conceptions of ideal teaching.  Findings regarding anxiety (fear) of 
evaluation and concern about being able to inspire students in their future classrooms converged 
across studies.  

Keywords:  Mathematical Knowledge for Teaching; Teacher Education–Preservice 

Mathematics education researchers agree that a confident and competent mathematics teacher is a 
vital necessity in the classroom (Oswald, 2008).  Yet many elementary preservice teachers (PSTs) 
and in-service teachers experience relatively high levels of mathematics anxiety (e.g., Beilock 
Gunderson, Ramirez, & Levine, 2010; Swars, Smith, Smith, & Hart, 2007), and have histories of 
confronting anxiety and feelings of failure in mathematics during their own K-12 experiences 
(McGlynn-Stewart, 2010; Sloan, 2010).   Further, definitions of mathematics anxiety suggest a 
relationship between anxiety of failure and self-beliefs such as self-efficacy (Trujillo & Hadfield, 
1999). In efficacy theory, mathematics anxiety may be a source of physiological arousal that impedes 
the development of positive self-efficacy.  Importantly, Lee (2009) found in a study of PISA results 
that mathematics anxiety and self-efficacy for mathematics were independent predictors of 
mathematics performance, indicating the need to not only measure them separately, but to understand 
how they differentially impact mathematics learning and achievement.   

Thus, in this study, mathematics anxiety is investigated as a potential source of negative 
physiological arousal that impacts, but is not synonymous with, self-efficacy for teaching and 
learning mathematics. To the extent that PSTs feel anxiety when contemplating teaching 
mathematics (or learning mathematics content and pedagogy deeply enough to be effective in 
teaching mathematics), their experience of self-efficacy for teaching mathematics is negatively 
impacted (Bursal & Paznokas, 2006; Swars, Daane, & Giesen, 2006).  However, there are some 
indications that experiences gained in mathematics education methods courses can help decrease 
mathematics anxiety (Gresham, 2007; Vinson, 2001).  Yet little is known about what aspects of 
courses are efficacious in reducing mathematics anxiety and how these effects can be maintained. 
Thus, we undertook both a quantitative and qualitative exploration of mathematics anxiety and self-
efficacy experienced by PSTs with the goal of further understanding how these perceptions impact 
PST education.  

Methods and Data Sources 
This paper reports on both a qualitative and quantitative study to explore different aspects of 

PSTs’ experiences of mathematics anxiety and self-efficacy.  PSTs were recruited while enrolled in 
their teacher preparation programs at a southwestern university. The PSTs who participated in the 
qualitative study (n = 3) were recruited during the 2010-2012 academic yearswhile participating in a 
larger ongoing research project, [TEACH MATH] that follows PSTs from their preparation programs 
and into early career classrooms. PSTs in the quantitative study (n = 53) were recruited during the 
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2013-2014 academic year. Participants in both studies were primarily interested in teaching early 
elementary (39.6%) or upper elementary (45.3%) grade levels and thus planned to teach all core 
subjects, including mathematics. 

For the qualitative study, the participants (Estelle, Phoebe, and Roxanne) were selected because 
their mathematics autobiographies (an assignment written for their mathematics methods course) 
spoke clearly and powerfully about feelings of mathematics anxiety. Additional data such as 
individual and group interviews as well as semi-structured prompts were collected over the course of 
three semesters during their methods courses and student teaching. An iterative analysis (Bogdan & 
Biklen, 2006) was used to demarcate the narratives that pertained specifically to mathematics anxiety 
and self-efficacy. For each participant, narratives were identified within text passages that included 
key words specific to anxiety and self-efficacy. An emergent coding scheme (Marshall & Rossman, 
2006) was utilized to organize and sort each participant’s narratives. 

For the quantitative study, PSTs were recruited from teacher education courses to participate in 
an evaluation of online teacher professional development for elementary mathematics.  Quantitative 
anxiety measures [based on the Hopko (2003) and Hadley & Dorward (2011) revisions of the 
Mathematics Anxiety Rating Scale - Revised], self-efficacy measures [based on the Mathematics 
Teaching Efficacy Beliefs Instrument by Enochs, Smith, & Huinker (2000)], subject area preference 
measures, and amount of vicarious experience PSTs had in classrooms were collected at pre-post.  
This study reports on baseline measures (prior to exposure to the professional development content).   

Results 

Qualitative Findings 
All three of the women viewed mathematics as a content area to learn as students and to 

know as teachers, but one that held little appeal for them. Estelle saw mathematics as something 
that she could not escape (i.e., that mathematics was “everywhere”). Phoebe found mathematics 
to be a subject area that she strongly disliked and believed she was just not a “math person.” As a 
result, she often reached for the comfort of her non-math status to diminish others’ high 
expectations of her in this content area. Roxanne viewed mathematics as “a sore subject.” 
Having spent her lifetime trying to pass mathematics classes despite not understanding the 
content, Roxanne had few ideas about mathematics other than mathematics was a subject to be 
endured. In other words, all three women spoke of mathematics as a requirement in their 
academic and professional lives, but not as a rich discipline they looked forward to learning or 
teaching. Based on the patterns of findings over three semesters of data collection, PSTs who 
experience high levels of mathematics anxiety and low perceptions of self-efficacy can learn to 
gain an understanding of the content, but they often limit (self-handicap) their opportunities to 
expand their mathematics understanding.  

Further, the PSTs’ experiences with mathematics anxiety and self-efficacy shaped their views 
of the ideal mathematics teacher. For Estelle, the ideal mathematics teacher was one who would 
never embarrass students in front of the class, who would be truly interested in all students’ 
mathematical thinking (not just the smart students), and who would hold high expectations for all 
students. In other words, the best mathematics teacher would not let students hide behind a 
“wall” of feigned understanding; nor would she make them wish they could. For Phoebe, the 
ideal mathematics teacher was one who would explain mathematics concepts and problem-
solving methods in multiple ways and who would thus create a learning environment in which 
there were multiple ways to be a “math person.” For Roxanne, the ideal mathematics teacher was 
one who would provide opportunities for students to actively engage in mathematics, regardless 
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of their mathematics ability so their focus would not be on just “getting through” the content. 
Thus the findings indicate that experiences in learning mathematics and learning to teach 
mathematics influence how future teachers imagine the qualities of the ideal mathematics 
teacher.  

Quantitative Findings 
In general, PSTs rated their mathematics learning anxiety and mathematics teaching anxiety 

similarly (h = .04), with the average scores on both scales falling between “a little” and “a fair 
amount” of anxiety in response to items.  On both scales, anxiety was highest for items set in an 
evaluative context.  In contrast, efficacy beliefs were quite high for both learning and teaching, 
although PSTs felt higher efficacy for learning (h = .16). Item averages indicate that students tended 
to fall between “agree” and “strongly agree” with statements about their efficacy to learn (with the 
lowest efficacy for learning to inspire students in mathematics), while they fell somewhere between 
“uncertain” and “agree” on statements about their efficacy to teach.  

Based on efficacy theory, it was hypothesized that mathematics anxiety and vicarious experience 
in the program would predict PST self-efficacy, which would in turn predict preference for teaching 
mathematics. A mediation model(using PROCESS 2.11; Hayes, 2013) was found to be significant; R 
= .55,F(3, 48) = 7.33, p < .001, with R2 = .31, and CI 95% [.12, .50].  Results indicated that the 
mathematics anxiety (b = -.33, p = .001) and vicarious experience (b = .12, p = .017) significantly 
predict self-efficacy, self-efficacy significantly predicts subject area preference (b = .83, p = .013), 
but anxiety (b = -.44, p = 0.059) and vicarious experience (b = .05, p = 0.658) do not significantly 
predict the outcome with the mediator in the model.  Thus, self-efficacy appears to mediate the 
relationship between anxiety, vicarious experience, and subject area preference.  The indirect effect 
of mathematics anxiety on subject area preference is -.27 (Boot 95% CI [-.64, -.08]), and the indirect 
effect of vicarious experience on subject area preference through self-efficacy is .10 (Boot 95% CI 
[.02, .25]).   

Discussion 
Based on the literature, it was hypothesized that PSTs would respond with relatively high levels 

of anxiety and low levels of self-efficacy for teaching mathematics as has been demonstrated in other 
studies.  While anxiety was high across the studies (especially around contexts of evaluation and 
failure), efficacy was higher in the quantitative study than expected and inconsistent with the ways 
PSTs talked about their future teaching in the qualitative study.  However, the PSTs in the 
quantitative study felt most efficacious about their ability to learn, rather than teach, the content.  
Given the relatively low level of real classroom experience these PSTs had, uncertainty is probably a 
healthy response and is certainly consistent with self-efficacy theory, which asserts that the efficacy 
of novices remains fluid until such time as individuals have had successful (or unsuccessful) mastery 
experiences upon which to base their beliefs.  It is further consistent with the qualitative findings that 
suggested the PSTs were greatly concerned about their abilities to become good mathematics 
teachers. 

An interesting finding across both studies was that PSTs were concerned about their ability to 
inspire students in mathematics.  In the quantitative work, PSTs reported lower self-efficacy for 
helping their students become interested in mathematics, motivating them when they lost interest, 
and helping build connections with families to improve student achievement in mathematics.  In the 
qualitative work, the “ideal” teacher is clearly represented as one who can help even anxious students 
feel comfortable in learning mathematics.  Clearly, PSTs need more support to develop skills and 
confidence in motivating and inspiring students to be comfortable and engaged in mathematics.   



Teacher!Education!and!Knowledge:!Brief!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

951!

Acknowledgments 
This material is partially supported by the National Science Foundation under Grant 

Nos.1228034. Any opinions, findings, conclusions or recommendations expressed are those of the 
authors and do not necessarily reflect the views of NSF. 

References 
Beilock, S., Gunderson, E., Ramirez, G., & Levine, S. (2010). Female teachers’ math anxiety affects girls’ math 

achievement. Proceedings of the National Academy of Sciences of the United States of America, 107(5), 1860–
1863.  

Bogdan, R., & Biklen, S. K. (1992). Qualitative research for education: An introduction to theory and methods. 
Boston, MA: Allyn and Bacon. 

Bursal, M., & Paznokas, L. (2006).Mathematics anxiety and preservice elementary teachers’ confidence to teach 
mathematics and science. School Science and Mathematics, 106(4), 173–180.  

Gresham, G. (2007). A study of mathematics anxiety in pre-service teachers. Early Childhood Education Journal, 
35(2), 181–188.  

Hadley, K. M., & Dorward, J.  (2011). The relationship among elementary teachers’ mathematics anxiety, 
mathematics instructional practices, and student mathematics achievement. Journal of Curriculum and 
Instruction, 5(2), 27–44. 

Hayes, A. F.  (2013).  Introduction to mediation, moderation, and conditional process analysis: A regression-based 
approach.  New York: Guilford. 

Lee, J.  (2009). Universals and specifics of math self-concept, math self-efficacy, and math anxiety across 41 PISA 
2003 participating countries. Learning and Individual Differences, 19, 355–365. doi:10.1016/ 
j.lindif.2008.10.009 

Marshall, C. & Rossman, G. (2006). Designing qualitative research. Thousand Oaks, CA: Sage. 
McGlynn-Stewart, M. (2010). Listening to students, listening to myself: Addressing pre- service teachers’ fears of 

mathematics and teaching mathematics. Studying Teacher Education, 6(2), 175–186. 
Oswald, D. (2008). Gender stereotypes and women’s reports of liking and ability in traditionally masculine and 

feminine occupations. Psychology of Women Quarterly, 32, 196–203. 
Sloan, T. (2010). A quantitative and qualitative study of math anxiety among preservice teachers. The Educational 

Forum, 74(3), 242–256.  
Swars, S. L., Daane, C. J., & Giesen, J.  (2006). Mathematics anxiety and mathematics teacher efficacy: What is the 

relationship in elementary preservice teachers? School Science and Mathematics, 106(7), 306–315. doi: 
10.1111/j.1949-8594-2006.tb17921.x 

Swars, S. L., Smith, S. Z., Smith, M. E., & Hart, L. C.  (2009). A longitudinal study of the effects of a 
developmental teacher preparation program on elementary prospective teachers’ mathematics beliefs. Journal of 
Mathematics Teacher Education 12(1), 47–66. 

Trujillo, K. M., & Hadfield, O. D.  (1999). Tracing the roots of mathematics anxiety through in-depth interviews 
with preservice elementary teachers. College Student Journal 33(2), 219–233. 

Vinson, B. M. (2001). A comparison of preservice teachers’ mathematics anxiety before and after a methods class 
emphasizing manipulatives. Early Childhood Education Journal, 29, 89–94.  



Teacher!Education!and!Knowledge:!Brief!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

952!
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Meeting the goals of rigorous curriculum requires providing professional development (PD) that 
challenges existing notions of teaching mathematics. It requires nurturing shifts from teacher-
centered norms to classroom norms centered on student thinking. This paper reports a PD design 
that used after school programs, and supported student mathematical thinking and a shift towards 
student centered practices. Effects on student learning, as well as on teacher practices were based on 
analysis of classroom videos, written artifacts, curriculum materials, and field notes. 

Keywords: Teacher Education-Inservice; Elementary School Education; Design Experiments  

Objectives 
Good’s (2010) report of normative classroom practices from 1968 to 2008 revealed that despite 

changes in the curriculum standards to emphasize discourse, critical thinking, and problem solving, 
the normative teaching practices continue to be teacher centered. Lack of significant changes in 
teacher practice show that PD opportunities have not been very effective. Students continue to 
underperform in critical thinking and problem solving areas. For example, the National Assessment 
of Educational Progress (2013) showed that from 1978 to 2012, number of 17-year-old students in 
US that demonstrated understanding of algebra and multistep problem solving skills has never been 
above 8%. Meeting curriculum goals is constrained by teachers’ weak knowledge and the school 
environment (Ball, Thames, & Phelps, 2008), placing great demands for improvements of teacher 
education and support. As Guskey (2009) explained, “no improvement effort in the history of 
education has ever succeeded without thoughtfully planned and well-implemented PD activities 
designed to enhance educators’ knowledge and skills” (p. 226). Furthermore, Marrongelle, Sztajn, 
and Smith (2013) insisted that “we need studies that open the black box of PD and provide rich 
descriptions of the nature of the work in which teachers engage that does or does not lead to 
improved knowledge, beliefs, or habits of practice” (p.209). The objective of this paper therefore, is 
to contribute to this area of high need by reporting a mathematics PD design. 

Perspectives and Methods 
Sztajn (2011) discussed the need for standards for reporting mathematics PD research. These 

standards are necessary because of the uniqueness of mathematics PD research and for clarity when 
reporting features that affect the effectiveness of the PD. Sztajn recommended reporting theoretical 
perspectives, goals, context, and its structure. 

Theoretical Perspective 
This study draws from Greeno’s (2003) situative perspective of knowing. Development is a 

product of interaction of the individual, interpersonal, and the social systems. Acquired knowledge 
facilitates one’s participation in a community, and because “individual mental structures certainly 
change as part of this learning” (Sawyer & Greeno, 2009, p.364), such knowledge can be transferred 
from one community to another. Development and practices are influenced by the norms of the social 
systems; normative teacher practices are therefore a reflection of the affordances and constraints of 
school systems. Implications of this include a focus on content, tools (e.g., instructional materials), 
discourse communities, and viewing teaching as learning in practice. Based on this framework, the 
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situative research question for the current study is: What are the affordances and constraints of this 
PD design? 

Program Goals and Context 
The current mathematics PD had two interrelated primary goals. The first goal was to support 

elementary school students’ mathematical understanding through engagement in generalizations and 
justifications about mathematical patterns. The second goal was to develop pedagogical and content 
knowledge through theory and practice.  

Six schools and 12 teachers with 6-25 years of teaching participated. Three of the school were 
title 1 schools with 76.67% to 99.55% students classified as poor and about 30% students were below 
their grade level in mathematics. For the nontitle 1 schools, about 58% of the students were poor and 
14% were below grade level in mathematics. 

Program Structure 
This program was structured into different recursive phases. Teachers worked on pattern finding 

activities like in figure 1 during PD. They discussed different student strategies, watched videos of 
students working on the tasks, analyzed student work, and discussed best practices to support 
students. The teachers met with the professional developers three times for 90 minutes each meeting 
during this phase. In the second phase, the teachers taught classes of about 15 students who were in 
grades 3-5 who voluntarily enrolled in this program. They taught twice a week for 90 minutes each 
time for five weeks. These lessons started with an outdoor physical activity and were followed by 
pattern finding activities. The teachers were provided with curriculum materials including lesson 
plans. Phase 3 was similar to phase 1. However, during this phase, teachers reflected on their 
classroom experiences, and discussed the affordances and constraints in their classrooms. Teachers 
also made recommendations to the professional developers on the structure and content of the 
activities for their students. 

 
If one person sits on each side of a square in this pattern, how many people 

would sit around a train of 100 squares? How many people would sit around a 
train of any number of tables. Write your rule. How do you know your rule will 
always work? 

 
  
 
            1                         2                          3 
 
Figure 1: An example of pattern finding tasks for On Track program. 

This pattern of phases continued until the teachers had three teaching (five-week) sessions distributed 
over a year. Two interviews, at the end and during one of the teaching sessions, were conducted with 
each teacher. Recordings of the interviews, classroom activities and materials, were analyzed 
qualitatively and quantitatively to identify the constraints and affordances. 

Results and Substantiated Conclusions 

Student Learning 
74% of the generalizations that students wrote were explicit (i.e. students wrote correct rules for 

finding the nth term of the pattern-finding activities) which in this study was considered the highest 
possible reasoning level. The percentage of explicit generalizations, however, differed from task to 
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task. Multiple regression analysis showed a significant positive relationship between the student 
growth in the End of Grade state math exams and students’ explicit generalizations from this study at 
a p value of less than .0001 (Maher and Berenson, 2013). That is, this program supported students 
learning within it, and highly correlated with performance in mathematics end of year exams. 
Moreover, most teachers reported a positive change in students’ persistence and development of 
habits of using different strategies. 

Teacher Learning 
Teachers reported that doing the math activities in the PD and teaching with the same task 

contributed to their knowledge more. Teacher Jane said:  

I am (now) able to see and develop what kids might do, what problems kids might run into, and 
how they might think. It is also interesting to me because I am like maybe they will come up with 
something different from the way I approached it.  

Teachers reported a shift from teacher-centered practices and notions in which activities are very 
structured and questions funnel student responses. Teacher Mary reflected: “ I have learned doing 
this program that too often we tell the kids instead of asking them and giving them time to arrive at 
the answer.” Further, more, Liz felt that 

The program has been an interesting experience, just teaching math in a way that we do not teach 
in schools where you are not rushed to make them come up with an answer. It is like just do what 
you are capable of doing and just pushing kids but not like leading them, but just letting them do 
it for themselves. 

The shift towards student-centered teaching was also attributed to the affordances of the after 
school settings especially the flexibility of how much time teachers could allocate to activities. On 
reflecting on her practice, teacher Deb said: 

I think I have changed from the beginning of the program to this last session because at first I 
was so used to having a long list of objectives. You got to cover this, you have got to do this real 
quick, so I think I was pushing a little bit with the kids at first. But I have come around to a little 
bit of –here it is, see what you can do with it and just asking them questions and not trying to lead 
them.  

Observations aligned with reports of changes in teaching practice. Teachers became more at ease 
with practices such as encouraging students to question each other, requiring students to make their 
reasoning accessible to their peers, and encouraging finding relationships between different 
strategies. However, teachers did not develop some critical habits easily. One notable difficulty in the 
change of teaching practices which the teachers reported and the research team observed was the 
development of habits of creating or taking up opportunities to ask for powerful justifications. The 
teachers discussed the likely student justifications, appreciated the justifications with more 
explanatory power for all cases, and identified critical questions that will stimulate students to think 
of powerful justifications. For example, for the task in in Figure 1, the rule for n number of tables is 
2n + 2 = s where s is the number of seats. Asking how the variable 2n and constant +2 connect to the 
question was one of the critical questions. However, teachers tended not to ask the critical questions 
but instead asked, “how did you get your answer” as the main way of asking for justification. As a 
result, describing the steps for the strategies was the most socially accepted justification scheme in 
these classrooms. 
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Significance 
PD remains at the center of reform efforts, especially now as we transition to the Common Core 

State Standards. There is a critical need to learn what and how teachers learn in PD settings, and the 
impact on student learning. This study contributes to this need by reporting the PD design and it’s 
impact. Classrooms already have ways of teaching and doing mathematics that may not support PD 
goals or reform efforts. This PD design removes teachers from these settings and support them in 
afterschool settings in which teachers can flexibly focus on student thinking, and re-establish norms 
and notions to develop teaching habits that align with reform goals without some constraints of 
schools and regular classrooms. Of course, one important goal of this PD is for teachers to transfer 
their PD teaching practices to their regular classrooms.  
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This study considers professional development (PD) effectiveness by examining sustainability of 
teachers’ change. The instrumental collective case describes two teachers’ classroom instruction 
three years after the completion of a PD focused on mathematics discourse. A strong alignment 
between the PD’s goals with the teachers’ school culture was one factor in the teachers’ continued 
use of elements from the PD. Teachers also continued to emphasize core elements of the PD, 
including valuing student talk as a way of mediating student thinking.  

Keywords: Teacher Education-Inservice; Elementary School Education; Classroom Discourse" 

Although 99% of US school teachers reported attending professional development (PD) in 2011 
(NCES, 2013), it is unclear how teachers engage with professional learning experiences and change 
practice over time. Current work studying PD effectiveness suggests effective PD is sustained over 
time, focuses on content, and occurs within a community of practice (Garet et al., 2001; Boston & 
Smith, 2009; Desimone, 2009; Louis, Marks, & Kruse, 1994).  Yet many current measures of 
effectiveness only examine teachers while they are participating in the professional development. 
Those measures of effectiveness fail to examine the lasting effects of professional development over 
time.  

This study joins an emerging field of work that addresses an often neglected measure of PD 
effectiveness: sustainability of teacher change. For the purposes of this study, I adapt definitions 
from Fishman et al. (2011) and Franke (2001). Sustainability is defined as a teacher’s continued use 
of the intervention in ways congruent with developers’ intent after resources and support for such 
practices have been withdrawn.  

Others’ work in sustainability shows what features of PD result in sustained teacher change. 
Preliminary results suggest these features include teacher group cohesion, communities of practice, 
teachers’ perception of the usefulness of the intervention, alignment of the PD with current practice, 
and alignment with other stakeholders’ expectations of instruction  (Hodges & Cady 2013, Fishman 
et al., 2011; Franke et al., 2001; Coburn, 2003; Gutierrez & Penuel, 2014).  

This instrumental collective case study (cf. Stake, 1995) describes two teachers’ mathematics 
instruction three years after the completion of a professional development program. It seeks to 
answer the overarching questions: In which ways did teachers sustain PD ideas into their practices or 
not? From the teachers’ perspectives, what factors affected sustainability of the professional 
development ideas? Specifically, what classroom aspects of Project AIM have been sustained? What 
grade level team aspects of Project AIM have been sustained? What aspects of Project AIM beyond 
the second grade team have been sustained? 

Theoretical Framework 
Professional development intends to facilitate teacher change over time. Researchers have 

examined teacher change within the context of creating and adapting new knowledge (Franke 2001). 
I adapt a Vygotskian framework, like that described by Gallucci, Van Lare, Yoon, & Boatright 
(2007). It includes the following steps: 
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• Individual appropriation of particular ways of thinking through interaction with others 
• Individual transformation and ownership of that thinking in the context of one’s own work 
• Publication of new learning through talk or action 
• The process whereby those public acts become conventionalized in the practice of that 

individual and/or in the work of others (p. 296) 

Methodology 
As this is a sustainability study, I provide a brief description of Project AIM, the initial 

professional development program in which the participating teachers engaged. During the 2011-
2012 school year, 26 teachers participated in a year-long, forty-hour professional development. The 
professional development was offered in a large Southeastern U.S. school district. Conditions of 
participation in the PD included teaching second grade and attending in school teams. The 
professional development had a focus on “math talk” or mathematics discourse.  

Study participants were selected from the pool of 26 teachers who formerly participated in 
Project AIM in the 2011-2012 school year. By design, the PD required teachers to attend with 
colleagues from their grade-level school teams. In order to examine teacher group cohesion, this 
study follows two teachers who work together. These two teachers from Barnes Elementary were 
members of a group of three who attended PD together and continued to teach together in second 
grade after the completion of the Project AIM PD. These teachers represent two individual case 
studies. 

Data sources for the study consist of a set of baseline data from the 2011-2012 PD year and 
follow-up data collected during the 2014-2015 school year. The PD year data include written pre- 
and post- beliefs questions and a math lesson artifact package for each teacher. The follow-up data 
include a follow-up math lesson artifact package, a semi-structured interview, a team focus group, 
and two lesson cycle observations for each teacher. Data analysis involved an iterative approach 
outlined in Decuir-Gunby et al. (2011), where theory, data (the participants’ own words), and 
research goals (interest in sustainable elements of professional development) inform the code 
development.  

Results 

Barnes Elementary follow-up 
Nora and June teach together at Barnes Elementary, a school with strong emphasis on Paideia 

seminars. Teachers at the school regularly engage their students in group discussions across subjects.  
Nora. At the time of the professional development, Nora, a white female, was in her second year 

of teaching second grade. She earned her Bachelor of Science degree in Elementary Education. Nora 
valued students’ comfort level when describing important attributes of math talk. By the end of the 
PD, she had some specific strategies to establish that comfort: building up strategies throughout the 
year and using question stems.   

Since the completion of the PD, Nora has engaged in many additional professional learning 
activities. She has completed a Masters degree in Education. She is active in the National Paideia 
Center by attending conferences and presenting seminars. She has also taken on a number of 
leadership roles in her county and school; she writes and reviews math lessons for the county, while 
her school leadership includes serving on her school’s magnet committee and serving as grade chair.  

June. At the time of the professional development, June was in her eleventh year teaching at 
Barnes. Of her ten previous years teaching, three were in third grade and seven were in second grade. 
She earned her undergraduate degrees in Elementary and Special Education. At the beginning of the 
PD June valued student comfort as the most important aspect of math talk. By the completion of the 
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PD, she expressed other aspects of math talk as more important: questioning, high-level tasks, and 
active listening. 

Since the completion of the PD, June has continued to actively work in her school mentoring 
newer teachers. She is passionate as she discusses her continued love for second grade. She has 
attended multi-disciplinary conferences that align with her school’s Paideia scholarship. 

Cross-case Analysis 
Initial results suggest that there are multiple aspects of the professional development still being 

implemented and adapted three years after the completion of the PD. Some of these are found in the 
following table: 

What aspects of Project AIM PD have been sustained in participating teachers’ classrooms?  
Sustained Aspect of the PD  Example 
The PD introduced some specific strategies to 
begin to scaffold student talk in the classroom 

Teachers learned a strategy called “Bet Lines” 
during the PD and have continuously used that 
strategy in much the same way as it was 
presented in the PD. 

The PD emphasized careful planning for 
instruction, including selection of high-demand 
tasks. 

One teacher now critically examines 
“challenge” tasks in curriculum materials, 
selecting and modifying tasks so that they will 
be of high cognitive demand.  

The PD emphasized that small group work is a 
time when more students have the opportunity 
to participate. 
 

One teacher reflected that her students with 
limited language skills were more engaged in 
pair work than with whole group work. Rather 
than “checking out” during whole group 
discussion, the opportunity to speak with a 
partner promoted talk. 

 
This presentation focuses on how teachers continue to value student talk as a way to reveal 

thinking. June and Nora both discussed the importance of student talk. June reflected on the PD’s 
alignment with her school’s philosophy: “[W]e’re not necessarily a STEM school, but we do a lot of 
STEM thinking. So a lot of it is just constantly using the discourse and explaining your thinking and 
the kids questioning and so it’s constantly kind of tied together in some ways.” 

There was evidence of this in June’s classroom, as she encouraged discussion and critical 
thinking in all subjects, including math. During her classroom instruction, June pushed her students 
by using probing questions. She also scaffolded students’ interactions by encouraging them to 
disagree respectfully or ask one another clarifying questions. 

Nora also reflected on the importance of student discussion as a way to mediate understanding: 
“We are starting number sense now. You know, that’s so important in second grade, the major work 
that we do, and I wanna make sure that every kid understands it, but sometimes you have to kinda let 
that go and hope that maybe they will understand it better when they’re hearing conversation and 
hearing their peers share. You have to, kind of, take away some of the control from me and give it to 
the kids.” 

There was evidence of Nora putting these ideas into action in her classroom. During one 
classroom observation, students were assigned rotating roles for their small group work. (This was 
one strategy for talk presented in the PD.) One student’s role in each group was the questioner. Nora 
provided the questioner with some possible questions to ask relevant to the activity. As she and her 
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class discussed the lesson at the end of the class, Nora asked her class which of the three roles had 
helped the students best understand the math activity. Many expressed that being the questioner had 
helped them to understand the task better. 

Conclusion 
This study shows that a strong alignment of PD goals with teachers’ administrative goals allows 

teachers to engage with and sustain professional development ideas long after the professional 
development has completed. In fact, teachers expressed that Project AIM fit naturally in to the work 
they were already, not feeling like doing the work of the PD was “just one more thing.” Future 
professional development should consider alignment with current administrative goals in order to 
make their work relevant to teachers for years to come.  
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Professional development (PD) provides an opportunity for teachers to grow in their practice, but 
this growth is mitigated by teachers’ buy-in for the PD. We examine factors that affect teacher buy-in 
for PD, creating profiles for 4 different levels of buy-in. Thematic analysis based on field notes from 
the first year of a sustained PD focused on improving mathematics instruction showed that individual 
teacher buy-in was affected by (a) the teacher’s view of mathematics, (b) the teacher’s view of their 
students, and (c) the teacher’s perceived need for growth in their own practices. 

Keywords: Teacher Education-Inservice; Teacher Beliefs 

In this report, we explore different ways in which elementary school teachers interact with a 
high-quality, sustained, district-wide professional development (PD) for mathematics teaching, 
MathematicsStudio PD (Foreman, 2010). How teachers interact with a PD depends on various 
factors, including (a) their beliefs about mathematics, (b) their views of their students’ mathematical 
capabilities, and (c) their beliefs about their own need to grow in their teaching practices.  

Perspectives / Theoretical Framework 
Darling-Hammond et al. (2009) synthesized research on PD in education, noting that “effective 

professional development is intensive, ongoing, and connected to practice; focuses on the teaching 
and learning of specific academic content; is connected to other school initiatives; and builds strong 
working relationships among teachers” (2009, p. 5). Likewise, in her summary of successful PD, 
Klingner (2004) advocates for long-term support for teachers rather than one-shot PD. Klingner notes 
the importance of a community of practice, of administrative and mentor support, and opportunities 
to observe demonstrations of the target practices. She lists the following factors as contributing to 
teacher buy-in for PD: (1) grassroots support from teachers (as well as support at administrative 
levels), (2) teacher involvement in planning of the PD, and (3) transfer of ownership from the PD 
providers to the teachers. 

The PD in this study was designed to align with Darling-Hammond et al.’s (2009) characteristics 
of effective PD. However, the PD was district-wide and opt-in to participate in the PD happened at 
the school level rather than the individual teacher level, thus support from teachers was not 
grassroots in all cases as advocated by Klinger (2004). Given that school- and district-wide PD is a 
common feature of in-service teacher education, it is worthwhile to investigate teacher buy-in for PD 
that they did not select for themselves. Because buy-in for PD is linked to teacher implementation of 
research-based practices, understanding what affects buy-in may allow PD providers to have a 
stronger impact on the teachers they serve. For the purpose of this paper, we define buy-in for PDas 
active engagement with and support of the PD.  

Underlying Principles of the Studio PD 
The Studio PD advocates for student-centered classrooms where activity centers on mathematical 

sense making, reasoning, and understanding by all students. All students are to engage in discourse 
that focuses on sense making, justifying, and generalizing mathematical ideas. In this way, 
mathematics is not treated as a set of rules, but rather as an interconnected and logical structure 
(Hiebert, 1986). However, teachers have been shown to frequently view mathematics as a “fixed set 
of factors and procedures” (Smith III, 1996, p. 392). As noted by Smith, this view of mathematics 
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often occurs in conjunction with teaching that is primarily prescriptive in nature where teachers tell 
the mathematics rather than have students explore and engage in mathematics themselves.  

Beyond just seeing mathematics as more than a set of procedures, teachers must also see students 
as being capable of engaging in mathematical habits and practice. The professional development 
advocates for a growth rather than fixed mindset (Dweck, 2007). A teacher with a fixed mindset 
might feel that only their “strong” students were capable of engaging in mathematics. One has a fixed 
amount of intelligence and no amount of work will change that. A growth mindset approach changes 
focus from intelligence to effort where anyone is capable of learning and improving.  

Underlying the PD is the assumption that teachers are reflective practitioners. That is, the 
teachers are asked to reflect on their teaching and consider how they might grow in their practice. 
However, this presupposes that teachers have a disposition for changing their teaching. We posit that 
teachers must feel there is a need to grow to engage fully in the PD.  

Methods 
Data for this project comes from a large-scale study looking at the efficacy of a 3-year PD in an 

urban school district. For this study, we focus on the first year of the PD, which began with a 3-day 
summer workshop on best practices for teaching mathematics and then included 5 two-day PD 
sessions situated within each school spread across the school year. Each of these two-day sessions 
included a morning of leadership coaching with the principal, an afternoon of PD with the studio 
teacher (a resident teacher who opened her classroom for facilitated observations by the other 
resident teachers), and a full day of PD with the studio teacher and other resident 3-5th grade teachers. 
The first year of the PD focused on the Mathematical Habits of Mind and Interaction(Foreman, 
2010), a set of metacognitive skills for engaging with mathematical ideas and problems, in 
conjunction with the Mathematically Productive Teaching Routines(Foreman, 2010) which support 
student engagement in the Habits. Posters of the Habits were prominently displayed in each 
classroom. 

Researchers observed each PD session and took detailed field notes at two case study schools. 
The PD sessions were also video-recorded and relevant sections transcribed for analysis. The field 
note data was analyzed using thematic analysis (Braun & Clarke, 2006). To examine the varying 
levels of buy-in and engagement among the teachers, the data was analyzed to look for trends across 
teachers.  

Results & Discussion 
Variations in teacher buy-in for the PD were linked with two primary characteristics: alignment 

of the underlying principles of the PD and the teacher beliefs about students and mathematics, and 
teachers’ own perceived need to grow. Table 3 shows four different types of buy-in based on these 
primary characteristics. While the profiles for high and low buy-in had clear-cut relationships with 
belief alignment, mid-level buy-in took a number of forms. We present two teachers with mid-level 
buy-in: Kim and Nina. Kim’s beliefs about mathematics and children aligned with the principles of 
the PD, however, her buy-in was mitigated by an inconsistent perceived need to grow in her practice. 
Nina’s beliefs and perceived need to grow fluctuate leading to varying levels of engagement and 
support of the PD. In this report we focus on the teachers’ perceived need to grow due to space 
limitations. 

Table 3 Four profiles of teacher buy-in for PD, focusing on two attributes of teacher beliefs 
Teachers Cora John Kim Nina 

View of mathematics and their students Aligned Not aligned Aligned Conflicted 
Perceived need to grow in their own practice. Yes No Conflicted Conflicted 



Teacher!Education!and!Knowledge:!Brief!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

962!

Buy-In High Low Mid Mid 
Kim can be described as seeing mathematics as a sense-making subject and a context for rich 

student discourse, viewing her students as capable of engaging in the Mathematical Habits advocated 
by the PD, and generally being conflicted about her perceived need to grow.  

In terms of her perceived need to grow Kim often felt she was already engaging in the practices 
advocated by the PD (demonstrating low buy-in). By advocating for reflection and alterations in 
teaching, she felt the PD providers were challenging her status as a professional.  

I think most of things we are [already doing]. I feel like, … like we feel like [we are treated as if 
we] were incompetent or something, you know. [The PD should recognize] that we have to feel 
that some of these things we do! … it’s not like right now we are all the sudden changing our 
teaching skills or our teaching strategies, you know. 

However, Kim also recognized the PD as useful (demonstrating high buy-in) when she found that it 
provided her with tools that she saw as immediately applicable in her classroom to solve one of her 
problems of practice. For example, consider Kim’s reflection on a discussion protocol discussed in 
the PD:  

Well, I think with this particular strategy [having students interpret and compare their responses 
with each other], it’s great because ... you are made to look at someone else’s problem and 
explain to the other person what it is. So, it makes them [the children] become truly the listener 
and then maybe by doing that you are clarifying … your idea or seeing things, you know, so they 
are processing.  

In contrast to Kim, Nina waivers in her fundamental beliefs. She fluctuates between seeing 
mathematics as a set of rules or a sense-making subject and whether she sees her students as capable 
of engaging in the mathematical habits advocated by the PD or not. Her perceived need to grow is 
mitigated by her doubts around her mathematical ability and her doubts of her own efficacy when 
transitioning away from a teaching as telling model (Smith III, 1996) towards a student-centered 
classroom. 

In terms of her perceived need to grow, Nina recognized some positive effects of the PD and she 
wavered between seeing teaching as something to be refined/improved and reverting to her 
“traditional” approach. She explained:  

I’m still old-school, I am learning it with the students. I think I need as much practice as they do. 
… I’ve got to just make it work better next year. I’m practicing [to engage students in sense-
making] and I see how it is working for everyone, especially the slower student who thinks math 
a little less quickly as others.  

In this statement, Nina’s conflicted beliefs are evident by her self-label as “old school” but are in 
conflict with Nina seeing that the changes advocated by the PD are working for students 
(demonstrating a high level of buy-in). While Nina appears to be positively approaching change, she 
also explains she reverts back to her prior teaching style when students are not meeting her 
expectations (low buy-in). 

Once they can’t reach it [sense-making], I’m like, ‘Okay, this is how we did it in 5th grade’ 
because back in the day we didn’t get to talk. We had to do, do, do – … So I show them how I 
did old-fashioned math that got us to Einstein, to build a rocket and everything else. Now, we’re 
talking math and talking math and talking math and sometimes they don’t get it through the 
language. 
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Nina engaged in the PD and attempted to make changes to her classroom. She responded positively 
to the potential effects of the new teaching routines and student mathematical habits when she saw 
evidence that her struggling students found success. However, when facing doubts of efficacy, she 
often abandoned the practices advocated by the PD. 

Conclusions/Take-Away 
In order for high quality professional development to be useful, the teachers receiving the PD 

must buy-into the PD and take on the work in their own teaching practice. This is particularly true in 
the case of district-wide PD which is not self-selected by each teacher. The teacher profiles provided 
insight into what teacher buy-in may look like and how individual teacher differences may lead to 
differing levels of buy-in within the same PD. It may be difficult to generate teacher buy-in if their 
beliefs about mathematics and related pedagogy do not align with those advocated by the PD. When 
aligned, teachers can look to the PD to support their teaching practice. When unaligned, teachers may 
choose not to incorporate the principles of the PD into their practice. Additionally, we found that a 
perceived need to grow in teaching practice was a mitigating factor for buy-in. If a teacher is willing 
to acknowledge problems of practice in her own classroom and she is willing to try new teaching 
techniques, then a district-wide PD can provide welcome support for growth. If teachers believe they 
are already doing well enough, they may have little motivation to engage with “yet another” district-
wide PD. Therefore, we advocate that PD providers consider how to actively leverage teachers’ own 
perceived needs when designing and enacting PD. 
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60 PSTs engaged in the practice of professional noticing of children’s mathematical thinking of one 
student’s work in finding ¼ of a set of 8 baseball cards. While PSTs were mostly successful (> 65%) 
when examining the facets of professional noticing as individual skills, < 50% of PSTs were 
successful in mobilizing all three in a coordinated manner. 

Keywords: Teacher Education-Preservice; Elementary School Education; Instructional Activities and 
Practices 

Educational approaches have suggested effective instruction should build upon students’ ways of 
understandings mathematics (NGA & CCSSO, 2010; NCTM, 2014). Professional noticing of 
children’s mathematical thinking (Jacobs, Lamb, & Philipp, 2010) is a construct that has been 
introduced and used frequently as a framework to understand the ways in which teachers attend to, 
interpret, and respond to children’s mathematical thinking (e.g., Dietiker et al, 2014). Professional 
noticing has been described as a difficult practice to develop, but also as one that can be learned. In 
this paper, we present our analysis of PSTs’ responses to a pedagogical activity designed to engage 
them in professional noticing within a fraction context.  

Theoretical Frame 
Our “Baseball Card Problem” activity design drew on the work of Jacobs and her colleagues 

(2010). Professional noticing is comprised of three related skills: attending to children’s strategies, 
interpreting children’s understandings, and responding to children. Our activity provided a sample of 
student work along with specific questions designed to examine PSTs’ processes of professional 
noticing within the context of a fraction multiplication problem. Fraction operations have long been 
considered to be the most difficult topic for elementary teachers to both understand and teach 
effectively (e.g. Ball, 1990); similarly often demonstrate “limited understanding of the meaning of 
multiplication and division of fractions” (Armstrong & Bezuk, 1995, p. 87).  

Methods 
Data came from 72 PSTs from two different university sites during the 2011-2012 academic year. 

Each was enrolled in an elementary mathematics methods course jointly designed and delivered by a 
sub-set of the authors. Within the section of our course addressing making sense of and responding to 
student work, we have designed activities to support the development of PSTs’ professional noticing 
of children’s mathematical thinking (Jacobs, Lamb, & Philipp, 2010); specifically in the area of 
responding by posing a subsequent problem (Tyminski et al., 2014). The Baseball Card Problem was 
set within Tracey’s 4th and 5th grade, multi-age classroom, in which she posed the following problem:  

Dustin has ______ baseball cards. He gives ¼ to his friend. How many baseball cards did he give 
to his friend? 

8   24   44   60   100   144 
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Part I of the activity addressed Liev’s (pseudonym) work finding ¼ of 8 baseball cards (Fig. 1). 

 
Figure 1: Liev’s Written Response to the Baseball Card Problem 

We associated question 1 with the skill of attending, question 2 with interpreting, and question 3 with 
responding. We specifically asked PSTs to respond by using an extending question, as outlined in a 
course reading, Making the Most of Story Problems (Jacobs & Ambrose, 2008). 

Analysis 
From the 72 PST responses, we selected a random sample of 12 from across the three sections of 

classes and included responses from both university sites. The authors utilized these 12 responses 
using open and emergent coding techniques (Strauss & Corbin, 1998) in order to develop and refine a 
coding scheme for the remaining 60 responses. The authors began by individually and independently 
reading through the 12 sample responses and creating a coding system for the responses to questions 
1 and 2, which were negotiated and agreed upon. Question 3 was to be coded using a priori codes 
from Jacobs & Ambrose (2008). Once codes were established the second and third authors 
independently coded the responses for the remaining 60 PSTs. Reliability rates for each question 
were greater than 81%. 

Results 
We present results of PSTs’ responses to the questions, including representative samples as well 

as a holistic view of PSTs’ practice within this example of professional noticing. 

Question 1 
Question 1 asked PSTs to describe Liev’s strategy. We coded PSTs’ responses on a scale of 0-3. 

We next present descriptions of each code along with a representative example for each. All PST 
names are pseudonyms. Leah’s response was coded as 0 as it was an incomplete description of Liev’s 
work., “Liev has divided each of his baseball cards (which are round) into fourths and is giving one-
fourth of each card to his friend”. Erica’s response was coded as 1 as it contained both correct and 
incorrect information. 

Liev is dividing each card into four equal parts. He then combines¼ of a circle to ¼ of another 
circle to show 2/4 of 2 circles is the same as ½ of 2 circles. He shows that ¼ of 8 circles will give 
him ½ of 4. He then joins the 4/2 to get 2. 

Joan’s response was correct, but omitted a key piece of information; it was coded as 2, while 
Angela’s response was coded as 3 as it was correct, complete and precise: 

Liev draws eight circles to represent the eight baseball cards. He then divides each circle into 
fourths. Once he has divided the circles into fourths, he adds ¼ of the first circle to ¼ of the 
second circle and gets one half. Once he has done this for all of the circles, he adds ½ and ½ to 
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get a sum of one. He then adds 1 and 1 to get a final answer of two. However, he does not take 
into account that Dustin gives away two WHOLE cards. By the work provided here, Liev makes 
it seem that Dustin is giving ¼ of each one of the eight cards to his friend. 

Across the 60 PSTs, 25% of responses were coded as 0, 10% were coded as 1, 46.7% were coded as 
2, and 18.3% were coded as 3. In all, 65% of PSTs’ responses were scored 2 or above, indicating 
they had a complete or mostly complete and correct description of the student work.  

Question 2   
Question 2 was asked to support PSTs’ interpretation of Liev’s thinking beyond the fact he 

arrived at the correct answer. The context of the problem involves sharing baseball cards, but Liev’s 
solution strategy involved cutting each card up into four equal pieces and giving his friend ¼ of each 
of the 8 cards. Although his answer is correct, his solution path does not make sense within the 
context of the problem. We coded PSTs’ interpretation of this situation on a scale of 0 – 2, where 0 
represented an incorrect interpretation, 1 indicated a correct interpretation with no detail concerning 
area models versus set models, and 2 indicated a correct interpretation with details. Michelle’s is an 
example of one coded as 0: 

He is trying to find ¼ of 8 baseball cards, but when solving the problem it looks as if he took ½ 
of the baseball card to solve the problem but still looks as if he divided the 8 cards into four 
groups.  The context of the problem was figuring out ¼ of 8 baseball cards. Therefore, it would 
make more sense if he would have divided the 8 circles into 4 groups and just took two from that 
instead of adding the ½ and ½.  

Hazel’s response was a correct interpretation, but contained little detail as to the mathematics of the 
situation, “He cuts up the baseball cards into ¼, but in real life you would not do that because then 
the baseball cards would have no value or make sense”. We considered Norah’s response an 
exemplary representation of a 2:  

The context of the problem is that Dustin is giving ¼ of his baseball cards to his friend. He is 
giving his friend a part of the set, not a part of each piece of his set. Liev does not divide the set 
into equal whole parts. He divides each part in the set into fourths. In other words, when giving 
baseball cards to a friend one would not give a piece of each card away. They would give whole 
cards. Liev does not make that connection to the context of the problem. 

Of the 60 responses, 28.3% were coded 0; 40.0% were coded 1; and 31.7% were coded 2. Roughly ⅔ 
of PSTs correctly interpreted the situation 

Question 3 
 Question 3 asked PSTs to respond to Liev by posing an extending question, as he was able to 

arrive at a correct answer. We coded only the first question PSTs included in their response 
according to the four categories from Jacobs & Ambrose (2008, p. 263). Considering the disconnect 
between the task context and Liev’s approach, PSTs who asked a question to promote reflection on 
the child’s current strategy (n = 32) seemed appropriate. We also viewed extending questions 
encouraging Liev to consider solving the problem another way (n = 19) as an appropriate response 
for the situation. There were no responses coded as 3, since Liev wrote number sentences, and the 
concerns most PSTs had were with his approach, not his symbolic representations. Nine PSTs 
responded with follow up problems for Liev. Of these, 3 PSTs suggested trying the same number 
choice, but with an easier fraction (½), suggesting that asking for one-half of the cards would 
encourage Liev to think about splitting the set into two equal parts, a response that seems 
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appropriate. The remaining 6 PST did not suggest follow up problems that we considered appropriate 
based on Liev’s thinking. In all, 90% PSTs responded with an appropriate extending question. 

A Holistic View 
We believe that the three skills must also be viewed holistically if we wish to understand PSTs’ 

abilities to engage in this practice. We conducted a process of filtering PSTs’ responses to determine 
how many engaged in each of the three skills in an appropriate and connected manner. We 
considered responses to Question 1 coded as either 2 or 3 as being successful in attending to Liev’s 
work (n = 39). We considered responses for Question 2, coded 1 or 2 to be successful in interpreting 
Liev’s work (n = 30). For Question 3, responses coded 1 or 2 were deemed as appropriate, along with 
the 3 PSTs who posed new questions using ½. In all 45% of PSTs successfully engaged in the 
professional noticing of Liev’s work in a connected manner. 

Discussion and Implications 
The examination of PSTs’ responses to individual skills within the construct of professional 

noticing reveal this group of PSTs was largely successful as all percentages were greater that 65%. 
However, when we took a holistic perspective of PSTs’ responses, only 45% of PSTs were 
successful engaging in the three skills appropriately and in concert. The differences within the 
individual skills and the holistic view raise questions for future study.  
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The purpose of this study was to examine the development of preservice elementary teachers’ visions 
of high-quality mathematics instruction as they progress through their teacher preparation program.  
Four case study participants were purposefully selected based upon whether their experiences with 
school mathematics as a child were predominantly positive or negative.  Interviews were conducted 
at three time points, and the resulting data were analyzed for similarities and differences across 
participants.  Findings indicated similar vision trajectories for those with the same type (positive or 
negative) past experiences in mathematics. Implications for elementary teacher preparation 
programs are discussed.  

Keywords:  Elementary School Education; Teacher Education-Preservice; Affect and Beliefs; 
Teacher Beliefs 

Over the past five years, there has been a call for rigorous, well-designed, longitudinal studies of 
teacher preparation programs. (e.g., American Association of Colleges for Teacher Education, 2010; 
Cochran-Smith & Zeichner, 2010).  Teacher preparation programs have come under fire, as evident 
in the recent suggestion by the U.S. Secretary of Education, to tie the “effectiveness” of teacher 
preparation programs to the assessment outcomes of graduates’ K-12 students.  Potential policies 
such as this speak to the importance of a carefully studying how preservice teachers develop on 
various constructs.  Results of such studies can inform modifications to existing programs, and 
simultaneously, the findings can likely demonstrate impact of programs on other constructs beyond 
K-12 student assessment outcomes.   The current study aims to begin to fill the void in the literature 
by examining how elementary preservice teachers develop in their visions of high-quality 
mathematics instruction over the course of their undergraduate preparation program.  While there has 
been work on practicing teachers’ development of visions (e.g. Munter, 2014), the current study 
focuses on preservice teachers and is particularly fitting for this population since “visions” implies a 
view of their future work as elementary teachers.   

Teachers’ visions, as outlined by Hammerness (2001) are “a set of images of ideal classroom 
practice” (p. 143); the development of instructional visions cannot be separated from past 
experiences (Hammerness, 2001).  Typically, elementary teachers do not choose their occupation due 
to a love of mathematics, unlike secondary teachers of mathematics.  Elementary teachers may recall 
their childhood experiences with school mathematics as positive, or they may describe negative 
experiences.  Since past experiences matter for the development of instructional visions, the work of 
the current study is warranted.  The specific research questions guiding this study were:  (1) How do 
elementary preservice teachers with positive childhood experiences in school mathematics develop in 
their vision of high-quality mathematics instruction over the course of their teacher preparation 
program?; (2) How do elementary preservice teachers’ with negative childhood experiences develop 
in their vision of high-quality mathematics instruction?; and (3) What are the similarities and 
differences in the development of instructional visions across all teachers?  

Theoretical Framework and Related Literature 
The current study draws on the framework proposed by Hammerness (2001) on teachers’ visions 

and on more recent work by Munter (2014).  Hammerness (2001) noted that teachers’ visions tend to 
vary across focus (what are the areas of focus as they describe their vision), range (how narrow or 
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broad is the articulated vision), and distance (how far or close the vision is to their actual practice).  
The current study examines the first of these ideas – on what the preservice teachers focus as they 
describe their visions of high-quality mathematics instruction.  Drawing on standards-based practices 
in the mathematics education literature, Munter (2014) developed a framework for examining the 
role of the teacher on five progressively sophisticated levels: motivator, deliverer of knowledge, 
monitor, facilitator, and more knowledgeable other.  As one moves up the levels in the framework, 
the descriptors are more aligned with a vision of standards-based mathematics teaching practices.   

Methods  
Participants 

Participants were purposefully selected from a larger sample of 19 preservice elementary 
teachers who were participating in a larger grant-funded study (Project ATOMS) focused on program  

Table 1: Participants’ Childhood Experiences in School Mathematics  
Participant Experiences Quote 
Felicia* Positive “I’ve always loved math, it was, I think it was my always my strong 

point in elementary school. I was really good, but it was the way it 
was taught to me, it was purely memorization, but I was so good at 
that. So, I I didn’t understand why other people were getting 
frustrated and I just completely understood, you have a formula plug 
and chug. So, that was always my favorite homework to do.” 

Adrienne* Positive “Math has always been my favorite subject. It’s always been a thing 
that kind of comes easy to me. I like working with numbers and 
filling out equations and puzzles and stuff like that. It’s something 
that’s always interests me, so I’ve always enjoyed math.” 

Paul* Negative “Math is a, oh God, and Dr. Smith* would probably just cringe but 
it’s, that’s just, it’s no, I never had that one teacher that made me be 
like oh, math is the answer to everything, it was, like I said, I just 
kind of flew under the radar. I could do my multiplication table, I 
mean, I could, I mean, I wasn’t amazing at them, but AIG I had a 
teacher named Ms. Rutherford* and she was the scariest woman on 
earth and I think that made me also shy away from it cause she was so 
mean, she would push us and push us but there was no reciprocation, 
no caring…So, I’ve always been the one that was kind of on the 
lower end of math and I never took calc in high school cause I didn’t, 
I didn’t want to push myself so that was kind of me.” 

Terri*  Negative  “Math was a huge source of frustration for me, mostly because I, I 
think it was because I was really good at everything else, I was a 
really good student but I wasn’t really quick with math and math took 
a little bit more effort and I attributed to me not being good at it and 
me failing so the timed multiplication quizzes I would get really 
stressed out about those, those were always just really hard, I hated 
them and once we got into long division I had a teacher who was 
actually a teacher who influenced me a lot in other ways but she only 
explained it to me one way and she would not explain it to me any 
other ways and I just didn’t get it and that just made me hate math 
and from then on I just hated math, like I would go home and cry 
doing my homework.” 
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*Names are pseudonyms.  
evaluation.  The four participants were selected based upon their articulation of their own 
experiences with school mathematics as a child.  Two of the participants (Felicia and Adrienne) had 
positive experiences with school mathematics.  In contrast, the other two participants (Paul and Terri) 
described negative experiences with school mathematics from their childhood.  Table 1 presents each 
participant along with quotes describing their childhood experiences in mathematics.  

Data Sources 
The data for this study comes from three interviews among a larger set of interviews completed 

with each of the participants.  The three interviews included an introductory interview at the 
beginning of their full-time enrollment in professional studies courses (beginning of junior year), a 
midpoint interview completed halfway through their professional studies courses (end of junior year), 
and a final interview completed just before graduation from the program (end of senior year).  The 
analysis was not limited to, but primarily focused on participants’ responses to two questions: (1) 
Describe a math lesson in an elementary school classroom that you would consider to be effective 
and explain why you consider it to be effective; and (2) What the teacher does and what the students 
are doing during mathematics instruction are really important.  Describe what you think the teacher 
should be doing most of the time, and describe what you think the students should be doing most of 
the time.    

Analysis  
This study used a qualitative, case study research design.  The pair of preservice teachers with 

positive experiences in school mathematics constituted one case; the other pair made up the second 
case.  There were two levels of analysis: (a) an analysis of each case (or pair of teachers), and (b) a 
cross case analysis (Yin, 2009).  The framework presented by Munter (2014) served as the 
foundation for coding and for analyzing patterns within a case and across cases.     

Findings 
RQ #1: Case #1 !  Positive Childhood Experiences with School Mathematics 

Both Felicia and Adrienne ended their preparation programs with descriptions of their 
instructional visions as the teacher as “facilitator.”  In other words, in their descriptions, they tended 
to focus on the teacher as promoting student-student discourse and probing students as needed as 
they work in small groups.  For example, Felicia said the ideal lesson would be:  

Just the students having really good discourse and not just working through a ton of like 
procedural problems, but having two or three where they are really able to have all those 
conversations and make sure that they are really like working as mathematicians and explaining 
their thinking, talking it out, showing multiple representations and then the teacher is there as a 
facilitator walking around in between groups listening to what's being said and interjecting when 
necessary.   

At the midpoint of the program, both participants also viewed the teacher as “facilitator.”  For 
example, Adrienne said,  

I feel like the teacher needs to possibly pose a problem or a question and then the kids need to 
discuss it and they need to not only think about it themselves, so maybe kind of do like a think 
pair/share thing where they’re thinking about it and then they’re sharing with their partner to kind 
of and when they’re sharing that you could always kind of purposely pair them. 

The participants differed at the beginning of the program.  Felicia started the program describing the 
teacher as a monitor in which she described the teacher sharing some knowledge but giving students 
opportunities to apply the knowledge while the teacher monitors the small group work.  In contrast, 
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Adrienne started the program with the teacher having the role as motivator and deliverer of 
knowledge.  She said,  

I would say the teacher would need to first of all be excited about what they were teaching about. 
Second of all, actually explaining what they are doing not just presenting them with a set of 
procedures and going off of it but actually explaining why they have to do that and why they 
have to, why they get the answer.   

RQ #2: Case #2 !  Negative Childhood Experiences with School Mathematics 
Paul and Terri both ended the program describing the teacher as a monitor in which the teacher 

still disseminates knowledge to the students but gives the students the chance to practice or apply that 
knowledge in small groups while the teacher monitors.  For example, Terri said,  

There should be some direct instruction… I don’t… not… not a lot of up front full class 
instruction.  Um, the teacher should be explaining things uh, not from a procedural point of view 
from the beginning obviously, it should be um, teaching the foundational skills and teaching why 
things are in questioning and encouraging a lot of discourse throughout the classroom.  Asking 
kids to explain and justify their thinking.  The kids should be working in groups.  Um I think 
there should be a good mix of independent work and working groups where there should be a lot 
of collaboration.   

Terri remained at the “monitor” level throughout her teacher preparation program in the description 
of her vision, but Paul started as describing the teacher as a motivator and deliverer of knowledge 
when he says, “enthusiasm, enthusiasm, you got to, you got to show the kids this is fun” and moved 
to describing the teacher as monitor at the midpoint of the program. 
RQ #3: Cross-Case Analysis 

With the exception of Terri, all participants progressed in their visions of high-quality 
mathematics teaching.  Both participants who had negative experiences during childhood 
mathematics ended the program describing the teacher as a monitor, whereas the two participants 
with positive experiences ended the program describing the teacher as a facilitator, which is more 
aligned with standards-based instruction.   

Discussion 
It seems understanding our students’ backgrounds and experiences in school mathematics is 

important for our work as mathematics teacher educators.  We are not attempting to generalize to the 
larger population; however, the themes among these four participants in their articulation of their 
instructional visions suggest backgrounds do matter, particularly in how they progress along a 
standards-based vision of high-quality mathematics instruction.  
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This study addresses the continuation of a teacher noticing project as we ask: How does preservice 
teachers’ noticing develop in a mathematics content course for teachers that incorporated unique 
opportunities for the PSTs to analyze middle grade students’ work? In a previous study (Warshauer, 
Strickland, Hickman,& Namakshi, 2014), we learned that preservice teachers enrolled in a 
mathematics content course improved their knowledge of content and students as well as their 
content knowledge as measured by the Learning for Mathematics Teaching instruments (Hill, 
Schilling, & Ball, 2004). Our aim is to now investigate the relationship between that growth and a 
specific writing intervention targeting the preservice teachers’ noticing of middle school student 
thinking.  

Keywords:  Teacher Education-Preservice; Mathematical Knowledge for Teaching; Teacher 
Knowledge 

Purpose and Introduction 
Recognizing teacher quality as critical to student learning, the National Research Council (2010) 

underscores the importance of strengthening teacher preparation programs. University preparation of 
future teachers typically includes coursework in school subject areas (mathematics in our case), in 
education and methods, as well as classroom observation, student teaching, and other field 
experiences (NRC, 2010). Inspired by research that suggests teacher noticing can be developed 
(Miller, 2011), we designed our study to examine how such development might take place in a 
mathematics content courses for teachers at a university. 

In a previous study (Warshauer et al., 2014), we learned that PSTs enrolled in a mathematics 
content course improved their knowledge of content and students (KSC) as well as their content 
knowledge (CK) as measured by the Learning for Mathematics Teaching (LMT) instruments (Hill, 
Schilling, & Ball, 2004). We began the investigation of the relationship between that growth and a 
specific intervention in the form of writing assignments (WAs) targeting the PSTs’ noticing of 
middle school student thinking. We purposefully chose a WA-based noticing study rather than the 
more common video-based studies (Sherin & van Es, 2009) because we wanted to reduce the 
complexities that occur in most classrooms (e.g., teaching moves) and provide a static object that the 
PSTs would examine for their noticing assignment.  Furthermore, assessing homework and paper-
based work by students is a common aspect of instructional practice and therefore a natural context 
for focusing on student thinking. For each WA, the PSTs engaged in a mathematical task during class 
in groups, participated in whole class discussion of their strategies, and were then given a packet of 
middle school students’ work on that same task and asked to analyze the students’ thinking; this was 
enacted for three rounds with new tasks each round. This proposed talk addresses the continuation of 
the project as we ask: How does PSTs’ teacher noticing develop in a mathematics content course that 
incorporated unique opportunities for the PSTs to analyze middle grades student work? 
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Theoretical Framework 
Research shows that teacher noticing is a critical element for effective teaching (Sherin, Jacobs, 

& Philipp, 2011). We use the definition of teacher noticing proposed by Jacobs, Lamb, and Philipps 
(2010) as three interrelated skills consisting of attending to student’s strategies, interpreting student 
thinking, and deciding on how to respond based on student understanding. Principles to Action 
(NCTM, 2014) includes the mathematics teaching practice, “elicit and use evidence of student 
thinking” (p.11), and emphasizes the use of evidence of student thinking as an effective practice that 
informs teaching and supports learning. In particular, what teachers attend to and how they interpret 
students’ mathematical thinking is consequential to the decisions they make in their teaching of 
mathematics (Jacobs, Lamb, & Philipp, 2010). 

A role of mathematics teacher education is to develop teachers’ mathematical content knowledge 
(Hill, Sleep, Lewis, & Ball, 2007) by providing experiences for PSTs to deepen their conceptual 
understanding of mathematics (Ball, Hill, & Bass, 2005) and to assess students’ mathematical work 
(Hiebert, Morris, Berk, & Jensen, 2007). Philipp (2008) contends PSTs benefit from learning 
“…about children’s mathematical thinking concurrently while learning mathematics.” (p. 8). In 
doing so, Philipp and his colleagues (2007) found that the PSTs were more motivated to learn 
mathematical concepts beyond just the procedures in order to teach students mathematics for 
understanding. While studies suggest that teacher noticing can be developed (Miller, 2011), findings 
from Jacobs et. al. (2010) indicate that teacher noticing develops with deliberate practice involving 
particular experiences. Previous studies have explored PST noticing in methods courses and student 
teaching. An important question to investigate, therefore, is how a content course, taken earlier in 
their program, could be a fruitful environment for starting a trajectory of noticing that can develop as 
PSTs progress through their certification courses and experiences.  

Methods 
The study reported here was nested within a larger mixed methods project conducted in 2014 

over a 14-week semester at a state university in the southern United States. Participants included 128 
elementary and middle school PSTs enrolled in six sections of a mathematics content course focused 
on number and operations. The only selection criteria for the participants were their enrollment in the 
course and that they gave consent. We report on the qualitative analysis of data related to only eight 
PSTs who were selected because their first WA seemed to place them in a lower or higher category 
of noticing based on our rubric. 

We used three WAs spaced throughout the semester and interviews to investigate our research 
question: How does PSTs’ teacher noticing develop in a mathematics content course that 
incorporated unique opportunities for the PSTs to analyze middle grades student work? The writing 
intervention was unique in that it was implemented in a content rather than a methods course or later 
in the PSTs’ teacher preparation experience such as student teaching. Each WA cycle began with 
class time for the PSTs to collaboratively solve a problem-based task intended for the middle grades 
curriculum (Schoenfeld, 1999) and then discuss their solutions as a whole class. Afterwards, PSTs 
were provided packets of middle grade students’ work (ranging from four to six students per WA) on 
the same task. The PSTs were instructed to analyze the student work at home and write a paper 
addressing each student’s understanding (or lack of) while providing evidence from the student work 
to support their claims. Guided by the coding described by Sherin, Jacobs, and Philipp, (2011), we 
developed a scoring rubric for assessing the PSTs attention to the noticing components of attending 
to and interpreting student thinking. 

Task-based interviews with the eight focus PSTs were conducted at the end of the semester in 
which they were asked to analyze a single student’s work from WA1 that had not been previously 
assigned. The interviews concluded by prompting PSTs to reflect on what they had learned via the 
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WAs. To analyze the interviews we used open coding (Strauss & Corbin, 1990) to determine themes 
that arose from the transcripts of the eight PSTs’ interviews with a focus on how they interpreted the 
WAs in relation to their teacher preparation development. 

Results 
We report our findings from two main sources to shed light on our research question: How does 

PSTs’ teacher noticing develop in a mathematics content course for teachers that incorporated 
unique opportunities for the PSTs to analyze middle grades student work?  

Using data from all 128 PSTs in a multiple-regression model, we examined the effect of their 
WA1, WA2, Pre-CK and Pre-KSC scores on their Post-CK and Post-KSC scores, respectively.  In 
both models, PSTs’ scores on Pre-CK and WA2 were significant. This suggests that by the time the 
PSTs enacted WA2, they had improved their noticing and this was correlated with their CK and KSC 
post-scores. Also, in both models, pre-CK was the strongest predictor of their post-LMT scores.  

Our findings from the eight focus PSTs’ WA data suggest: (1) Among the PSTs with Low levels 
of attending and interpreting there was a lack of content-specific insights; (2) The growth among 
PSTs with High levels of noticing varied little across the three WAs possibly due to a ceiling effect; 
(3) PSTs frequently used subjective accounting for and not accounting of student work (e.g. 
attributing errors to “laziness”) (Mason, 2002); and  (4) Slight growth detected in noticing skills with 
enriched descriptions of student work from WA1 to WA2 or from WA2 to WA3 in five out of eight 
focus PSTs.  

Upon analyzing the PSTs’ interview data, we found four main themes. (1) PSTs found it helpful 
to hear a variety of their peers’ strategies during the in-class problem solving of WA tasks when later 
attending to and interpreting the student work; (2) WAs were a challenge, as the PSTs had never 
done anything like this before; (3) PSTs paid closer attention to students’ explanations and did not 
just evaluate students’ answers in order to determine what students understood; and (4) Instructor 
feedback guided PSTs on what to look for in subsequent WAs. 

Conclusion and Implications 
Analysis of the interview data suggests that PSTs have had little experience with examining 

student work prior to this course. The WAs therefore created opportunities for PSTs to engage in the 
important instructional practice of examining student work to understand what the students were 
thinking and understanding in addition to learning the mathematical content related to the students’ 
work. Through their own enactments of the WA task problems in class, the PSTs began to think of 
and appreciate the multiple approaches to problems. This seems to have informed the PSTs that 
students, too, might approach problems differently. The WAs appear to support the development of 
teacher noticing with a focus on student thinking. The challenges faced by the PSTs appear to stem 
from lack of experiences in writing about students’ mathematical thinking, particularly for students 
who showed little work. A WA format rather than a video, for example, gave PSTs an opportunity to 
review the student work at their own pace and refer to class notes and other resources to reflect upon 
and write about their noticing. However, PSTs initial interpretations relied more on their own 
experiences than possible mathematical reasoning based on students’ work. In other instances, they 
used non-mathematical bases such as students’ laziness, sloppiness, or being in a rush as reasons for 
the work or lack of work on the students’ papers. Instructor feedback of the WAs and PSTs’ 
reflections on their previous ones hold promise as supports for PSTs’ development of teacher 
noticing. In a continuing project, we plan to follow a cohort of PSTs from this study to examine the 
development, if any, of their teacher noticing as they progress beyond the content courses into 
subsequent teacher preparation courses as well as conduct a quasi-experimental study controlling for 
WAs. 
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In this paper we share preliminary outcomes from the first enactment of a set of “simulated student” 
experiences designed to improve preservice elementary teachers’ ability to recognize and pose “high 
leverage” questions in response to students’ mathematical thinking. Implications for future iterations 
are discussed. 

Keywords: Teacher Education-Preservice; Instructional Activities and Practices; Teacher Knowledge 

Purpose 
The purpose of the study is to develop and study an instructional intervention aimed at helping 

preservice elementary teachers (PSTs) develop their skill in specific teaching practices. In this paper 
we describe how a “simulated student” tool can support PSTs in developing the skill of asking 
questions that extend or build on students’ mathematical thinking.  This project responds to recent 
calls in mathematics education for better defining the specific practices involved in teaching 
mathematics and shifting emphasis in teacher education from simply developing knowledge about 
teaching to providing structured opportunities to practice carrying out this work (Ball & Forzani, 
2009).   

Theoretical Framework 
We see teaching as highly situated, which means that “how a person learns a particular set of 

knowledge and skills, and the situation in which a person learns, become a fundamental part of what 
is learned” (Borko et al., 2000, p. 195).  One implication of this view is that if preservice teachers are 
going to draw on the knowledge and skills that they gain in their education courses, their learning 
experiences need to simulate real teaching. This means creating “approximations of practice” 
(Grossman, Hammerness, & McDonald, 2009) that provide low-risk situations for novices to try, fail, 
and learn from their practice. A simulated student provides such opportunities as well as a 
standardized experience that can be studied and refined over multiple iterations. 

Jacobs, Lamb, and Philipp (2010) described the teaching practice of noticing student thinking, 
which includes making decisions about how to respond to students when they exhibit different kinds 
of mathematical thinking. One way that teachers respond to student thinking is by asking questions, 
although little is known about how teachers develop the ability to ask effective questions. One of the 
central goals of this project is to understand how the development of this skill can be supported 
through a simulation that approximates a teaching situation. 

Methods 

Design-based research 
Design-based research assumes that instructional contexts consist of complex, interwoven parts 

that are not isolatable; thus design approaches do not attempt to control confounding 
variables.  Instead, they seek to characterize with a high degree of specificity the situation in which 
an instructional design is implemented, as well as capture multiple measures of different outcomes 
and a detailed record of alterations to the design over multiple cycles (Collins, Joseph, & Bielaczyc, 
2004).  Thus far, we have completed one complete implementation cycle, which includes three 
distinct simulated student experiences, a reflection, and a pre-post assessment.  



Teacher!Education!and!Knowledge:!Brief!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

977!

Context 
The participants were recruited from five sections of an undergraduate mathematics course for 

elementary teachers offered at a large university in the Midwest region of the United States. Much of 
the mathematical attention of the course is focused on fractions, including operating on quantities and 
making sense of the unit (Chval, Lannin, & Jones, 2013).  The intervention was included in the 
required assignments for the course and consisted of a set of three “experiences,” a reflection 
assignment, and a pre- and post-test. Fifty-four PSTs participated in all parts of the intervention and 
gave consent for their work to be collected and used in the research project. 

Design 
The experiences were designed to provide opportunities for the PSTs to interact in a limited way 

with a virtual elementary student.  Using the online Lessonsketch platform, the PSTs viewed a 
storyboard representation of a portion of a mathematics lesson withthe roles of teacher and 
studentsplayed by nondescript cartoon characters.  The simulated students convey information to the 
PST through speech bubbles and facial expressions and follow pre-established paths determined by 
choices made by PSTs. 

An “experience” consisted of a series of tasks and choices. First, PSTs were asked to solve a 
mathematical task and describe what main mathematical ideas were embedded in the task.  Then they 
viewed the storyboard lesson, which ended with a representation of student thinking containing a 
critical conceptual “error” closely related to the content of the course (Chval, Lannin, & Jones, 2013) 
For example, in one experience the cartoon teacher highlighted a students’ response to the task in 
Figure 1, saying “Susan said there were three fourths of the two brownies shaded.  I’m curious about 
what you think.  Is Susan correct?”  After a time of partner discussion, Matthew was called to the 
front of the class to share his thinking.  He responded, “I don’t think Susan can be right, because they 
are cut in half, not in four squares.”  

 
Figure 1: The Brownies Task (from Chval, Lannin, & Jones, 2014) 

After viewing an episode, PSTs were asked to interpret the student's thinking and write a teacher 
question in response.  Next they were asked to select from a list of between two and six questions, 
explain why they believed the question they chose would be effective, and describe how they 
expected the student to respond. Then they viewed the student’s response. 

We designed teacher questions to fall into one of two categories, high leverage and low leverage, 
drawing on characteristics described in NCTM's Principle to Actions (2014). High leverage questions 
are those that “build on, but do not take over or funnel, student thinking,” “make mathematical 
thinking visible” (p. 41), and target specific ideas rather than general. See Table 1 for examples from 
the Matthew experience. 
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Table 1: Examples of question types and student response 

 Teacher Question Matthew’s Response 

High 
Leverage 

What do you mean about 
the four squares?  Can you 
show me how that would 
look? 

[draws picture of the two brownies, each split into four 
squares].  “These are fourths.  Susan is wrong because she 
said THIS [pointing to a half-brownie in the original 
diagram] is a fourth, when it is really a half.” 

Low 
Leverage 

If you put the two 
brownies together, how 
many pieces would it be 
cut into? 

“Each one is cut into two pieces.” 

  
In each experience, the PST was given an opportunity to see a response from the student to their 
question, and then they would evaluate the question with one of three choices:   

1. It was a good question; it accomplished what I wanted it to accomplish 
2. It was a good question, but [the student] didn't respond in the way I expected 
3. It was maybe not the best question; I should have asked something different 

Finally, the PST was given an opportunity to “go back in time” and ask a different question.  In the 
Matthew experience, PSTs wererequired to contrast responses to a high leverage question with 
responses to a low leverage question, and then say which question they believed was better. 

Outcomes 
The chart in Figure 2 shows how low leverage questions were evaluated after PSTs viewed the 

students’ response.  In general, PSTs tended to claim that the low leverage question they chose was 
good, even though they were often unsatisfied with the student’s response.  Often, they expected that 
their question would lead to a resolution of the student confusion, or at least a correct solution to the 
task.  For example, PSTs made statements such as, “I think the question got across the point I was 
trying to make but Matthew seemed to not process what I was asking.”  These results seem to suggest 
that, by themselves, our designed student responses did not generally help PSTs move away from 
low leverage questions. 

 
Figure 2: PSTs’ evaluations of low leverage questions after viewing the student response 

Recall, however, that in the Matthew experience PSTs were given the additional opportunity to 
see Matthew’s response to a high leverage question. Of the 37 PSTs who initially chose the low 
leverage question, 16 preferred the high leverage question after viewing both responses, while only 3 
preferred their initial question (18 indicated no preference).  Of the 16 PSTs who preferred the high 
leverage question, 10 had reported that they still liked their low leverage question until they saw the 
second response.   
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We conjecture that the opportunity to directly contrast the effect of the two questions was an 
important design component of the Matthew experience.  This is supported by some of the PSTs' 
evaluations of their questions.  After seeing Matthew’s response to the initial question, one PST said, 
“It was a good question and that's where his thinking is wrong but he still isn't thinking of the two 
brownies as a whole. He is still just looking at a single brownie and seeing one half.”  But after 
viewing Matthew’s response to the second question, this PST decided that the high leverage question 
was better: “I didn't realize that if you split up each brownie into 4ths and color in three fourths of 
each that it would still be three fourths. So technically Matthew is correct too I guess which I never 
thought about it but still Susan is correct also and he needs to understand that concept too.”  This 
example shows a PST not only learning from Matthew’s response to the high leverage question, but 
also recognizing and appreciating that the response helped the PST better understand the relationship 
between Matthew’s and Susan’s ideas.  This change seemed to be facilitated by the opportunity to 
see Matthew’s response to both questions. 

Discussion 
Our analysis of our initial outcomes has suggested that an important design feature of our 

simulated student intervention was the opportunity to directly contrast student responses to high and 
low leverage questions. That is, simply showing a students’ response was not enough to help PSTs 
recognize the limitations of their initial selected question.  This seemed to be because PSTs' default 
criterionfor an effective question was that it should resolve student confusion.  It was only when they 
saw two questions thatdid not result in resolved confusion that they could look past this criterion and 
search for other value in the student’s response. 

This observation suggests that more direct contrasts would continue to help PSTs move towards 
high leverage questions.  That is, in order to help them attend to characteristics of high and low 
leverage questions, we need to design student responses that are invariant in terms of characteristics 
PSTs tend to value (e.g., resolving student confusion), but variant in terms of the leverage 
characteristics (e.g., funneling student thinking versus building on student thinking).  This is 
consistent with the idea that variation needs to be systematically coordinated to help learners 
differentiate between the ideas they are intended to learn (Marton & Pang, 2006).  In the future, we 
plan to continue to refine our experiences to provide such patterns of variation and invariance to 
continuedeveloping the skill of asking high leverage questions.   
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In this study we used Epistemic Network Analysis (ENA) to highlight connections among knowledge 
resources that middle school mathematics teachers evoked while relating fractions and ratios. The 
findings discuss how these groups were formed using ENA and discuss the differences in the 
connections of the participant’s knowledge resources in each group. Implications for using ENA to 
understand teacher knowledge are included.  

Keywords: Teacher Knowledge; Middle School Education; Rational Numbers 

Introduction 
Over the past decade, interest in teachers’ mathematical knowledge has been a focus for many 

researchers (e.g. Hill, Ball, & Schilling, 2008; Thompson, Carlson, & Silverman, 2007). Despite the 
complexity of researching this domain, researchers have made headway in understanding critical 
elements of teacher knowledge. For example, researchers have found that there is an important link 
between the amount of knowledge a teacher has and its organization (Ma, 1999; Orrill & Shaffer, 
2012). This aligns with research on expertise that suggests expertise in a domain requires both a 
certain amount of knowledge and particular organizations of that knowledge (Bédard & Chi, 1992).   

Despite the compelling argument that knowledge organization matters, very little research has 
focused on such organization. In this study, we use Epistemic Network Analysis (ENA; Shaffer et al., 
2009), to explore connections between knowledge resources that teachers evoke. For this study, we 
were interested in investigating how ENA can be used to investigate the connections of teachers’ 
knowledge resources for differentiating between fractions and ratios.  

Theoretical Framework 
We rely on Knowledge in Pieces (KiP; diSessa, 2006) to explore teachers’ knowledge. KiP 

asserts that the learner holds understandings of various grain sizes that are used as knowledge 
resources in a given situation (Orrill & Burke, 2013). We posit that as teachers develop their 
expertise, more connections among resources allow more knowledge resources to be invoked in 
appropriate situations. Thus, coherence refers to multiple knowledge resources that are connected in 
robust ways allowing for in situ access to the resources. Coherence, combined with a robust set of 
knowledge resources, allows teachers to deal with complex situations efficiently. This is consistent 
with previous research on expertise (e.g., Bédard & Chi, 1992). 

We chose to focus our study on the relationship between fractions and ratios, which are key 
concepts in the domain of proportional reasoning (Lamon, 2007). Despite the importance of the 
relationship between fractions and ratios in proportional reasoning, there has been little research on 
how teachers differentiate between the two (Clark, Berenson, & Cavey, 2003). 
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Methods & Data Sources 
This study is part of a larger study of middle school teachers’ knowledge of proportional 

reasoning. The participants included 8 licensed middle school teachers (5 female) ranging from 1 to 
18 years of experience (med=11.5) from multiple schools. Data were collected from two interviews. 
The interviews were recorded and transcribed verbatim for each participant. 

The four tasks analyzed for this study asked participants about the relationship between fractions 
and ratios. The first task addressed the multiplicative relationship between the two sides of similar 
triangles. The second task asked participants to interpret and respond to four teachers’ explanations 
about a 2:5 ratio of vinegar to oil in a salad dressing. The third task had participants consider the 
concept of equality in proportional situations. The fourth had participants consider the difference 
between ratios and fractions by presenting a non-standard ratio-combining situation.  

Data Analysis 
Analysis for this study relied on ENA (Orrill & Shaffer, 2012; Shaffer et al., 2009). For each 

utterance (typically a response to a single question posed by the interviewer), binary coding was 
used: a 1 indicates that a particular knowledge resource (see Table 1) was used in the utterance and 0 
indicates that it was not. In terms of our theoretical frame these codes represent the pieces of 
knowledge resources observed. 

Table 1: Selected Qualitative Codes of Knowledge Resources That Emerged From Data 
Fraction Ratio Concepts (FRC) 

Fraction is 
part/whole 

FR
C 1 

Refers to fractions as representing a part-whole relationship. 

Ratio is part/part FR
C 2 

Talks about ratios as being a part-part relationship.  

Ratio is part/whole FR
C 3 

Talks about ratios as being a part-whole relationship. 

Fraction Ratio Differentiation (FRD) 
Context / Units FR

D 1 
Uses context or units as a distinguishing feature of fraction or ratio.  

Symbolic Representation Use (SRU) 
Mathematical 

Reasoning with Symbols 
SR

U 2 
Uses a symbolic representation to reason about the relationships within 

the problem as part of the problem-solving process.  
Uncategorized (UC) 

Task Interpretation UC 
1 

Talks about what the task description means. Makes sense of what he or 
she is being asked to do not just answering the question. This includes 
making sense of symbols like in the case of the free throw problem.  

Attending to Context UC
2 

Uses numbers and quantities that are accompanied by labels, directly 
related to context. In contrast to the use of decontextualized numbers. 

 
ENA took the coded data and placed it into a matrix, broken into vectors by item. This allowed 

every co-occurrence of the code within a task to be captured. These co-occurrences were then 
translated into three-dimensional graphs in which the codes are placed relative to their frequency 
across the dataset, thus allowing variance to be seen. Equiload graphs (Figures 1 & 2) were generated 
for each participant that showed the co-occurrence of the codes for that participant. The thickness of 
the lines connecting the vertices indicated the relative frequency of the co-occurrences of those 
codes.  

From a KiP perspective, ENA offers a tool for looking at coherence when it is defined as 
connections between knowledge resources within the same task. We would expect teachers with 
more coherent understandings to have one or more very strong pairings of codes in their equiloads, 
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whereas teachers with less coherence would have weaker connections between resources drawing on 
a wide array of knowledge resources. 

 

  
Figure 1: Allison’s Equiload Graph Figure 2:Autumn’s Equiload Graph. 

 

Results 
Our analysis of the ENA equiloads suggested possible differences in the participants’ use of 

resources. Because our dataset is small and this is exploratory work, we initially separated our 
participants into groups (Table 2), based on their response to a hypothetical teacher’s statement that 
“fractions and ratios are the same”. 

Table 2: Participant Groupings 
 Participants Grouping Characteristic 
Grou

p 1 
Ella, Bridgette, Allison, 

Mike  
Participants rely on fractions as part whole relationships and on 

ratios as part to part relationships 
Grou

p 2 
Alan, Larissa Participants rely on ratios as part to part relationships 

Grou
p 3 

Autumn, David Participants do not use either of the knowledge resources above 
in connection with other knowledge resources  

Differences between Group 1 and Groups 2 and 3 
Group 1 attended to thinking about part-part and part-whole relationships in discussions of ratios 

and fractions. For instance, Allison’s graph (Figure 1) shows ratios are part-part(FRC2), ratios are 
part-whole (FRC3), and fractions are part-whole (FRC1)relationships have many connections to one 
another as well as other resources such as task interpretation(UC1), context(UC2), and 
context/units(FRD1). In contrast, Alan, Larissa, Autumn (Figure 2)and David’s graphs showed no 
connections to any part-part or part-whole knowledge resources. 

We also found differences in the way teachers in group 1 used knowledge resources compared to 
those in groups 2 and 3. For example, Allison (Figure 2) relied on fewer connections than Autumn 
(Figure 3). However, Allison’s connections drew more on resources related to fraction and ratio 
concepts (FRC) and fraction and ratio differentiation (FRD). Autumn drew from many different 
resources useful for problem solving, rather than relying on content knowledge resources. We 
interpreted Allison’s repeated reliance on the same knowledge resources to be a sign of coherence. 
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Thus, Autumn could be considered less coherent than Allison in terms of the knowledge resources 
she used.  

Resources that differentiate group 2 from group 3  
The difference between groups 2 and 3 was not as clear. However, we noted some important 

differences. The main difference between participants in groups 2 and 3 was their use of the idea that 
fractions are part-whole (FRC1)and ratios are part-part (FRC2)relationships. Both Alan and Larissa 
in group 2 relied on these resources in their responses. In group 3, Autumn never used either idea to 
respond to any of the tasks and David used these ideas in a single utterance. 

Scholarly Significance 
Teacher knowledge is critical for supporting student learning, however it is important to consider 

not just the amount of knowledge, but coherence (Orrill & Shaffer, 2012). ENA has proven to be a 
useful approach in analyzing the connections of teachers’ knowledge resources in conjunction with 
the KiP framework. This research is a first step in using an analysis method new to the field of 
mathematics education to contribute to our understanding teachers’ knowledge for differentiating 
between fractions and ratios and to the domain of proportional reasoning.  
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This paper expands upon previous work on task development by Tobias et al. (2014), which identifies 
an eight-step task design process for selecting, modifying, and reflecting upon the implementation of 
children’s mathematical tasks with preservice elementary teachers. Here we explicate the 
modification step, which includes altering children’s tasks to be appropriately challenging and offer 
opportunities for teachers to move beyond their incoming conceptions. We provide examples of 
modifications we made to a children’s fraction comparison task and discuss the goals we targeted to 
increase the task’s level of cognitive demand. We share results from our analysis of 61 preservice 
elementary teachers’ written work on this task and reflect upon the effectiveness of our 
modifications. 

Keywords: Teacher Education-Preservice; Elementary School Education; Rational Numbers 

“What students learn is largely defined by the tasks they are given,” (Hiebert& Wearne, 1993, p. 
395). Thus, mathematics teacher educators (MTEs) are faced with the challenge of designing and 
implementing high-quality tasks that can help preservice elementary teachers (PSTs) develop deep 
and flexible knowledge for teaching mathematics. Our task design research team is comprised of six 
MTEs from six different universities in the U.S., a collaboration that resulted from a PME-NA 
working group on PSTs’ knowledge for teaching. 

Background 
Our work is based on the task design cycle developed by Liljedahl, Chernoff, and Zazkis (2007). 

We have modified their framework to integrate the suggestions made by Yackel, Underwood, and 
Elias (2007) for drawing tasks from K-12 curricula and modifying them for use with PSTs. This 
process for task design is meant to provide PSTs with opportunities to view the development of 
mathematical concepts in the same way their future students will. Not only can this practice support 
PSTs in developing their knowledge of curriculum, but also by connecting the work PSTs do in 
teacher education courses to their future work in elementary classrooms we can increase task 
authenticity. Students who experience more authentic tasks (i.e., those they consider to be valuable, 
worthy of their effort, and relevant to their future profession) demonstrate higher levels of 
achievement (Newmann, King, & Carmichael, 2007). 

As MTEs select particular children’s tasks to use with PSTs, it is important that they consider the 
intellectual demands of the tasks and whether (and how) PSTs will have opportunities to engage in 
high-level thinking and reasoning. Tasks that would pose a high-level of cognitive demand (Stein, 
Smith, Henningsen, & Silver, 2009) for children will not necessarily be high-level for PSTs. 
Therefore, children’s tasks may need to be modified to provide PSTs with an appropriate level of 
challenge. 
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Task Development 
Our team has collectively developed a fraction comparison task for PSTs by selecting and 

modifying a children’s task from a common U.S. elementary curriculum (Russell et al., 2008; for 
further discussion see Tobias et al., 2014). The original fifth-grade task provides children with four 
pairs of fractions and asks, “Which is greater? Solve the problems below and explain or show how 
you determined the answer” (see Table 2 for original problems). Based on prior experience and 
research regarding PSTs’ use of fraction comparison strategies (e.g., Yang, Reys, & Reys, 2009), 
PSTs tend to be most familiar with algorithmic procedures (such as converting to decimals or 
percents or finding common denominators); hence, we anticipated that the PSTs in our classes would 
tend to use such procedures, as opposed to more reasoning-based methods for comparing fractions. 
Thus, to increase the cognitive demand of this task we developed learning goals to help PSTs 
develop conceptual knowledge of fractions as numbers and compare fractions using multiple 
reasoning and sense-making strategies (see Table 1).Our modifications were led by the following 
three goals: (a) discourage familiar (algorithmic) procedures, (b) develop multiple fraction 
comparison strategies based on reasoning, and (c) create opportunities for PSTs to reason about 
fractions greater than one and with benchmark values other than one. At least two goals were 
targeted in the modification of each problem (see Table 2).  

Table 1:Targeted Fraction-Comparison Reasoning Strategies 
Strategy Name Abbreviation Example Application 

Same Number of Pieces SNP 4/7 > 4/9, since the fractions have the same number of pieces 
(four) and sevenths are larger than ninths 

Benchmark Value Between BVB [#] 7/5 > 5/7, because 7/5 > 1 > 5/7 

Distance from a Benchmark Value  BVD [#] 4/5 > 3/4, because 4/5 is 1/5 less than one and 3/4 is 1/4 less 
than one; since 1/5 < 1/4, 4/5 is closer to one than 3/4 

Greater Number of Larger Pieces GLP 8/11 > 7/13, because 8/11 has more pieces (8 > 7) and its 
pieces are larger (elevenths are larger than thirteenths) 

Table 2: Modifications to Problems from Original Children’s Task 
# Original Problem Modified Problem Intended Strategy 
1 7/10 or 3/5 7/10 vs. 8/9 GLP 
2 7/8 or 9/10 8/9 vs. 12/13 BVD [1] 
3 4/3 or 3/4 24/7 vs. 34/15 BVB [3] 
4 3/8 or 1/3 3/7 vs. 6/11 SNP or BVB [½]  

 
For problem #1, we replaced 3/5 with 8/9 to discourage the use of common denominators (by 

renaming 3/5 as 6/10) and elicit the GLP reasoning strategy. When paired with 7/10, the fraction 8/9 
creates an opportunity for PSTs to reason about the fractions’ numerators and denominators 
simultaneously to see that 8/9 is greater than 7/10 because it has more pieces (8 > 7) and its pieces 
are larger (ninths are larger than tenths). In problem #2, we kept the format of the original problem, 
which compares fractions that are each one piece less than one whole. This problem type can help 
PSTs reason about fractions by comparing their distances to a common benchmark value. However, 
to discourage the use of common denominators and percents, we replaced both fractions with a pair 
that has odd and relatively prime denominators. Since these fractions are 1/9 and 1/13 less than one, 
and 1/9 is larger than 1/13, the distance from 12/13 to one must be shorter than that from 8/9 to one, 
making 12/13 the greater fraction. Although BVD [1] could have been used to solve the original 
problem, we anticipated that our PSTs’ familiarity with these fractions would lead to their use of 
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percents or decimals or a reliance on drawing pictures. For problem #3, we maintained the original 
goal of comparing fractions to a benchmark value lying in between them, but by selecting larger 
fractions with relatively prime denominators (and ones that are not reciprocals of one another) we 
intended to discourage familiar procedures and create opportunities for PSTs to reason about 
fractions greater than one and with benchmark values other than one. As for problem #4, our 
modified version serves to develop multiple fraction comparison strategies: SNP (3/7 = 6/14, which 
is less than 6/11) and BVB [1/2] (3/7 < 1/2 < 6/11). In all, our task included ten problems, these four 
modified from the original task and six others we created. In this paper we will only discuss the four 
problems above (for further discussion of all ten problems see Tobias et al., 2014). 

Methodology 
Our task was enacted by three of the research team’s MTEs in their respective mathematics 

content courses for elementary PSTs across four classrooms (n=61). PSTs were explicitly instructed 
not to use common denominators or calculators on the task. PSTs worked on the task in groups with 
their peers during class time while the MTEs facilitated individual conversations with students and 
groups as they monitored the class. The PSTs’ written work on the task was collected after group 
work, but prior to whole class discussions during which the four reasoning strategies (SNP, BVB, 
BVD, and GLP) were explicated and named. PSTs’ responses to each problem were coded by at least 
two MTEs with respect to: (a) the strategy used (or attempted to use) to compare the given 
fractions,(b) whether the strategy used (or attempted to use) was one we intended to elicit, and (c) 
whether the problem was answered correctly (for further discussion see Thanheiser et al., accepted). 

Results 
Results indicate that PSTs used a variety of strategies in solving the four modified problems and 

were mostly successful (for each problem at least 85% of responses received were correct). At the 
same time, not all PSTs solved the problems using the strategies we intended(see Table 3). Some 
used more familiar algorithmic strategies, such as finding common denominators and converting to 
percents, while a small amount applied additional valid strategies. 

Table 3: PSTs’ Responses to our Modified Problems 

# 
Modified 
problem 

Intended 
strategy 

Number of responses 
received (% out of 
possible n=61) 

Responses 
with correct 
answer (%) 

Responses using or 
attempting to use 
target strategy (%) 

Responses using 
common 
denominators (%) 

Responses using 
conversions to 
decimals/percents (%) 

1 7/10 vs. 8/9 GLP 52 (85%) 98% 6% 10% 10% 
2 8/9 vs. 12/13 BVD [1] 53 (87%) 85% 68% 0% 8% 
3 24/7 vs. 34/15 BVB [3] 43 (70%) 95% 77% 2% 5% 

4 3/7 vs. 6/11 SNP; 
BVB [½] 59 (97%) 98% 8%; 

58% 3% 2% 

Discussion and Conclusion 
Our modifications to problems #2 and #3 proved to be successful at addressing our first goal, to 

discourage familiar (algorithmic) procedures, as only 8% and 7% of PSTs who answered these 
problems, respectively, did so by finding common denominators or converting to percents or 
decimals. However, 10% of all PSTs who solved problem #1 used common denominators, while an 
additional 10% converted to percents or decimals. We note that our selection of denominators in 
problem #1 (10 and 9) did not impede the finding of a common denominator and 7/10 lent itself to 
easy conversion to percent and decimal form; thus, this problem will require readjustment. We also 
note that cross multiplication may be another familiar algorithmic procedure, yet we only received 
one application of this strategy in a response to problem #4. 
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Our second goal was to help PSTs develop multiple fraction comparison strategies based on 
reasoning (i.e., SNP, BVB, BVD, and GLP). Problems #2, #3, and #4 were successful in eliciting 
BVB and BVD strategies from a majority of PSTs. Problem #4 was much more successful at eliciting 
BVB [1/2] than SNP (58% and 8% of responses, respectively), while two PSTs solved this problem 
using BVD [1]. The strategy that was least successfully elicited was GLP, with only 6% of PSTs who 
responded to problem #1 having identified 8/9 as having a greater number of larger pieces than 7/10. 
Although 98% of responses were correct, we found frequent use of procedural strategies (20%), one 
PST who used BVB [3/4], and several who claimed that 8/9 was “obviously” larger than 7/10, 
without providing much detail about their thinking. 

Our third goal, to create opportunities for PSTs to reason about fractions greater than one and 
with benchmark values other than one, was met by our careful selection of fractions in problems #3 
and #4. As mentioned above, the majority of responses to problem #4 utilized a benchmark value of 
1/2.For problem #3, 95% of the responses received correctly stated that 24/7 > 34/15. We note that 
this problem was only answered by 70% of the PSTs, but due to its position as last of the ten 
problems, we believe the low completion rate was an issue of time and not content.  

In conclusion, mathematics tasks designed for children can provide an authentic foundation for 
MTEs when developing tasks for PSTs. This paper does not exhaust all modifications required when 
using children’s tasks with PSTs, but offers insight into ways to increase cognitive demand to 
provide PSTs with an appropriate level of challenge. By reflecting on PSTs’ work on our task, we 
found that many of our modifications were successful at increasing cognitive demand by developing 
PSTs’ conceptual understanding of fractions, while encouraging them to justify their reasoning and 
use multiple comparison strategies. Other modifications will require readjustment and further 
evaluation as we continue to develop this and future tasks for PSTs. 
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It is widely accepted by the field of mathematics education that proof and reasoning should be 
integrated into students’ mathematical experiences across all grades and across a breadth of content 
areas (National Council of Teachers of Mathematics, 2000; Schoenfeld, 1994; Yackel& Hanna, 
2003). In spite of the important role of proof in mathematics curriculum, a substantial number of 
secondary learners encounter difficulties with proof in school mathematics (Chazan, 1993; Senk, 
1985). Mathematics educators have pointed out that students’ low achievement and misconceptions 
in proofs may actually be caused by teachers’ ineffective instructions (Schoenfeld, 1994; Senk, 
1985).In order to ensure secondary students’ learning and understanding of proof, secondary 
teachers’ knowledge of proof needs to reach to a certain level. Teachers should be able to “Develop 
and evaluate mathematical arguments and proofs” and “Select and use various types of reasoning and 
methods of proof” (National Council of Teachers of Mathematics, 2003, p. 1). 

The goal of the study is to look in-depth at the nature of preservice secondary mathematics 
teachers’ (PSMTs) learning of geometry proofs in order to help them develop their proof writing 
ability more effectively. To reach this goal, the following research question will be addressed by 
using a collective case study design: How do tasks designed specifically to target the application of 
theorems in geometry build PSMTs’ ability to use these applications in proof writing? 

A pre and posttest design will be used to collect evidence of the impact of the theorem 
application tasks on six PSMTs’ proof writing ability. The task-based learning sessions (TLSs) are 
developed for helping the teachers gain familiarity with the application of geometry theorems. The 
entire data collection for each participant consists of three phases: a pre proof writing test, three 
TLSs, and a post proof writing test. The theoretical tool, Principles of the Application of Theorems, 
is comprised of three aspects of applications: using diagrams, words and symbols, analyzing given 
proofs, and analyzing given conditions. The principles are used for developing and analyzing the 
tasks for TLSs. A small-scale pilot study will be conducted to test all the data collecting instruments 
before the official data collection. Results of the study might be able to provide suggestions for the 
design of undergraduate level geometry courses and other in-service proof training programs. 
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As the population in the United States becomes more diverse, we see a pressing need to build 
teacher education programs to better prepare elementary mathematics and science teachers to teach 
students from diverse backgrounds in equitable and culturally responsive ways. According to the 
InTASC standards, “Teachers must have a deeper understanding of their own frames of reference 
(e.g., culture, gender, language, abilities, ways of knowing), the potential biases in these frames, and 
their impact on expectations for and relationships with learners and their families” (p. 3). At the same 
time, recent research has shown practice-based strategies, such as rehearsals, can support change in 
teachers’ pedagogies (Lampert, Beasley, Ghousseini, Kazemi & Franke, 2010). To address this need 
and the research on learning, we combined virtual and traditional environments in an innovative, 
new, rehearsal-based course for elementary education majors that will “authentically” engage 
prospective teachers in practice-based rehearsals with diverse learners in ways that are typically not 
possible in traditional courses.  

The purpose of this poster is to describe the steps underlying the development of a course that 
seeks to provide opportunities for prospective teachers to 1) develop an awareness of their hidden 
biases and stereotypes of who can and cannot do mathematics and science and 2) rehearse alternative 
responses and practices that serve students of diverse social identities more equitably. 

The course centers on a virtual school where teacher candidates experience teaching students 
from diverse backgrounds and rehearse culturally responsive, practice-based instruction within the 
safe space of the university classroom. The virtual school environment was constructed using 
OpenSim, a free, open source, multi-platform 3D virtual world. For the virtual school, the 
prospective teacher designs her/his own personal “teacher” avatar (a visual representation of a 
person). In addition, each prospective teacher assumes the “identity” of a student avatar. We 
developed the elementary student avatars to represent a diverse set of students’ identities and created 
detailed background profiles of each student avatar. By participating in this course and the virtual 
school, teachers will develop deeper understandings of and be better prepared to meet the needs of all 
students in their classrooms.  

Prospective teachers will have the opportunity to rehearse interactions with students of color, 
identify personal biases, and enact equitable teaching practices. The use of a virtual platform in this 
way has the potential to significantly reshape approaches to culturally responsive teacher preparation 
at our University and more widely. 
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Research has established that tracking in secondary schools is a pernicious barrier to equity 
(Lucas, 1999; Oakes, 2005; Oakes, Wells, Jones, & Datnow, 1997; Wells and Serna, 1996). This 
poster tells the story of a district-wide, ambitious detracking effort in mathematics, which is taking 
place in a large, urban school district on the West Coast of the United States. It is a story of carefully 
crafted, teacher-led change meeting with national reforms to set the stage for district leadership to 
roll out a plan for equity and excellence that eliminates tracking in mathematics from Kindergarten 
through the 10th grade. 

In this poster, we share the design of the ambitious, multi-component, six-year professional 
development (PD) effort, as well as evidence that it has supported a shift in discourse in mathematics 
departments around the district and in the district-wide mathematics community to focus on the 
varied, often hidden ways in which the district’s diverse students are all mathematically “smart.” We 
describe the ways in which this cultural shift met with ideas from the Common Core State Standards 
in Mathematics to provide the context within which detracking mathematics was both sensible and 
possible, from the perspective of district leadership and the school board.  

As we write this paper, the district is engaged in a heated and public argument about what 
mathematics instruction should be available to different groups of students. As the district leadership 
works to defend its detracking efforts against stakeholders who stand to lose positions of privilege 
(e.g. through elimination of the “honors” track), it continues to lean on the community of 
mathematics educators committed to excellence and equity that has been fostered by this professional 
development effort.  

The poster describes the evolution of the PD from its inception in the 2009-2010 school year 
until now, including ways in which it has attended to the development of (a) classroom practice, (b) 
departmental communities organized to collaborate around a shared vision, (c) district-wide 
community of mathematics educators committed to equity, (d) district capacity to sustain the effort 
without participation from outside supporters. The effort began modestly–a week-long workshop for 
24 teachers in Complex Instruction–and has evolved into a multi-level PD effort involving 17 
schools and more than 120 teachers.  

Our hope is that this poster will foster discussion across our community about how systemic, 
research-based change toward equity can be strategically supported to overcome immense 
institutional, cultural, and political barriers. 
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There is a need for high quality, effective mathematics teachers recognize and use a variety of 
problem solving strategies. Professional noticing has been identified as a critical component of 
teacher preparation, and this skill can be developed through practice (Miller, 2011). To examine this 
development, I ask “What do Pre-service teachers (PSTs) notice about specific problem solving 
strategies as they examine student work on a rich problem-solving task?”  

Jacobs, et. al have found that professional teacher noticing, although nonroutine, can be learned 
and supported by professional development (Jacobs, Lamb, & Phillip, 2010). Allowing pre-service 
teachers to work with multiple representations of word problems can diversify the approaches taken 
to the problem (Ozdemir & Reis, 2013). This study examines a small piece of this in looking at what 
PSTs notice about student problem solving strategies.  

The participants are PSTs in a mathematics content course as part of a teacher preparatory 
program at a large university. The participants completed a task involving finding the number of 
matches involved in a round-robin tennis tournament, and were given student work on this task to 
analyze in writing, focusing on student thinking and instructional strategies. What problem solving 
strategies PSTs are noticing, and how they are interpreting these strategies is the focus of the 
analysis. The writing assignment was given as part of a larger study on teacher noticing.  

Initial results reveal that the PSTs focused on, described, and interpreted student problem solving 
strategies. Other PSTs incorrectly interpreted strategies or made unfounded suggestions, such as 
rereading the problem. The implications are that PSTs need practice and tools to understand student 
problem solving strategies, and are willing to do so. Further research is needed to determine the 
effect of these types of exercises on PSTs growth in terms of their own problem solving toolkit, and 
their interpretations of students’ strategies.  
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Recently, there has been a press for the use of data and evidence in schools. There is, however 
little research that provides insight into the specific practices used by teachers or into the influences 
of school and policy contexts on teachers’ daily uses of data (Little, 2012). Current accountability 
policies require teachers to use particular data to answer questions posed by administrators and 
school boards outside the classroom. In contrast, when conducting action research, teachers pose 
their own questions and use data to seek their own answers to problems in their classroom. 
Examining teachers’ work within the contexts of: (a) their school and its accountability policies, and 
(b) their work as teacher researchers, offers insights into potential conflicts for teachers using data 
and evidence in practice. This poster presents preliminary findings from a dissertation study about 
the ways mathematics teachers use and make sense of data and evidence, addressing the questions: 
(a) What data do teachers select or identify as valid evidence? and (b) How are teachers making 
sense of data in relation to school accountability policies and action research efforts? 

This presentation builds from relevant literature related to teacher data use, teacher action 
research, and teacher agency. I use the theoretical framework developed by Coburn and Turner 
(2011) to support the understanding of how teachers use data in practice. The four interrelated 
categories of this framework, include: (1) interventions to promote data use, (2) organizational and 
political context, (3) processes of data use, and (4) potential outcomes. Coburn and Turner build 
primarily from Sensemaking Theory and interpretivist traditions, to which I add critical 
considerations of teachers’ agency and power.  

The participants of this study include four mathematics teachers at a diverse suburban middle 
school in the Midwest, US, along with their mathematics coach and administrators. These teachers 
engaged in a yearlong action research study group focused on improving their practices related to 
mathematics classroom discourse. The group met 1-2 times monthly to discuss progress and analyze 
findings related to their collected data. My data sources include: (1) semi-structured interviews with 
participants across the year; (2) video and audio recordings of all action research study group 
sessions; and (3) copies of student work identified by participants. I use techniques of grounded 
theory (Strauss & Corbin, 1990) to generate themes across what data teachers identify as valid 
evidence. I also adopt a dialogic perspective of language use (i.e., Wortham, 2001) and I use 
narrative discourse analysis techniques to determine how teachers discuss and make sense data and 
evidence. Early analyses suggest that teachers’ uses of data vary between action research and 
accountability contexts and that administrators’ and teachers’ implicit understandings of quality data 
use often conflict and may impact teachers’ agency. 
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Over 20 years ago, the Professional Standards for Teaching Mathematics (PSTM) (NCTM 1991) 
identified critical elements that support meaningful learning. In particular they detailed the centrality 
of ‘classroom discourse,’ the use of full class discussions to make mathematical meanings, reasoning, 
and justifications public and shared.  Hiebert et al. (1997) continued to clarify the PSTM elements as 
well as giving more detail to the social culture of the classroom and its relation to equity and 
accessibility.  Yackel and Cobb (1996) provided nuanced analyses of classroom discussions that 
distinguished social norms for general participation from expectations of mathematical thinking 
which they called socio-mathematical (SM) norms.  SM norms focus on mathematical reasoning as 
the clear intention of classroom sharing, questioning, explaining, and justifying.  The Standards for 
Mathematical Practice of the Common Core State Standards (CCSSI, 2010) continued to emphasize 
these same norms by expecting students to produce mathematical arguments and to understand and 
critique those of others.  Recommendations for teachers concur that teachers themselves need an 
orientation to these norms (CBMS, 2012). 

Despite the research and recommendations on SM norms, we have found it challenging to 
provide future teachers opportunities to experience these norms first-hand. Further, mathematics 
educator colleagues have asked for more details on how to make these norms routine in their content 
courses for pre-service teachers (PSTs). To address these concerns, our team investigated the specific 
classroom steps an experienced instructor took to initiate elementary PSTs into SM norms. Fall, 2014 
we used a mathematics course for PSTs as a case study to examine how SM norms were introduced.  
We adapted and enhanced a framework from Elliott et al. (2009) to analyze video recordings, field 
notes, instructor interviews, student surveys, and student mathematical work from the course. We 
found that orienting PSTs to one another’s reasoning was central in beginning to establish SM norms. 
In this poster we share some of the specific initial practices.  For example, an instructor may invite 
PSTs to analyze and build on a peer’s incomplete strategy or representation and reach a solution as a 
whole group. Preliminary results indicate that, as SM norms become more routine, PSTs begin to 
challenge each others’ mathematical ideas, openly share their confusions, and ultimately use 
meanings rather than rules to justify their solutions. 
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Teachers must develop dispositions of advocacy if they are to teach mathematics for equity and 
social justice (Gutiérrez, 2013). We discuss how to use the research on mathematics teaching for 
equity and social justice to facilitate pre-service teachers’ development of advocacy dispositions. We 
hope to facilitate discussion on how to develop equity and social-justice dispositions among PSTs 
within single-semester college methods, content, or connections courses.  

Our framework starts with three pillars outlined in NCTM’s recent research brief on equity: 
Reflecting, Noticing, and Engaging in Community (Chao, Murray, & Gutiérrez, 2104). For reflecting, 
PSTs engaged with the Multicultural Mathematics Dispositions Framework by White, Murray, and 
Brunaud-Vega (2012) to self-reflect on their own dispositions. For noticing, PSTs analyzed video 
case studies of students using Jacobs, Lamb, and Phillipp’s (2010) noticing framework to attend to, 
interpret, and respond to students’ mathematical thinking. Finally, for engaging in community, 
students used Agruirre, Mayfield-Ingram, and Martin’s (2013) work to learn about students’ 
community knowledge and then build mathematical lessons that invited and honored their students’ 
knowledge. Finally, PSTs read Gutíerrez’s (2013) work to explore counter narratives and practices of 
creative insubordination to connect to the oppression of marginalized peoples.  

We piloted this work at two sites. The first author worked with over 60 elementary PSTs in a 
methods for mathematics teaching course. The second author worked with over 60 secondary PSTs 
in a mathematics content class connecting traditional content and methods courses for PSTs (2013). 

Our preliminary analysis of how PSTs developed dispositions for equity and social justice 
through these courses showed that, while teachers still had difficulty connecting mathematical 
thinking with their students’ community knowledge, they did end up creating mathematical tasks that 
showcased societal inequity. For instance, one lesson had children analyze traffic stops data in 
Ferguson by race, which allowed children to unpack the goals of the #BlackLivesMatter movement. 
We hope our poster invites discussion in how other educators and researchers explore ideas of equity 
and social justice within math teacher education. 
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Video-based professional development (PD) is an ever more popular way to support teachers’ 
adoption of reform-oriented practices, particularly in engaging with student mathematical thinking 
(Borko, Koellner, Jacobs, & Seago, 2011; Tripp & Rich, 2012). Much of the video-based PD studied 
uses researcher-captured video, but relatively little work has examined teacher-captured video (Dyer, 
2013; van Es, Stockero, Sherin, van Zoest, & Dyer, in press). This poster examines two types of self-
captured video tasks designed to engage teachers in identifying student mathematical reasoning: 
noticing tasks and experimental tasks.  

The noticing tasks were used to prompt teachers to notice and reflect on particular events in the 
classroom in the midst of teaching. The video equipment used by teachers allowed them save video 
of an event after it happened. Some of the prompts given to teachers included capturing moments 
when students shared thinking that the teacher could not make sense of in the moment, and moments 
when students made productive connections that the teacher did not anticipate. 

While the noticing tasks focused on spontaneous moments during teaching, the experimental 
tasks are based teachers experimenting with an aspect of their practice. Each experimental task asked 
teachers to plan and try something new in their teaching and capture it on video. Some examples of 
experimental tasks asked teachers to develop questions to uncover the details of student thinking and 
modifying a task to incorporate students’ real-world experiences.  

Data from 11 secondary mathematics teachers participating in PD designed around these two 
types of tasks were examined using an open coding focusing on teachers’ reactions to the two types 
of tasks. The findings suggest that the teachers preferred the experimental tasks over the noticing 
tasks. However, across the debriefing discussions in the group sessions it was clear that the noticing 
tasks provided teachers with a new frame to guide their noticing in the classroom related to the 
specific prompts of the task. Additionally, teachers commented that these tasks were particularly 
useful to examining moments that were too complex to unpack while teaching. Finally, from a 
teacher educator’s standpoint, both tasks often provided a unique window into teachers’ thinking 
about the specific prompts (e.g. what moments teachers believed showcased student reasoning), as 
well as what those moments looked like in different teachers’ classrooms. These findings suggest that 
while noticing tasks may be productive tasks for teacher learning, they may require more effort and 
be more stressful for teachers than the experimental tasks.  
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This study investigated the connections between students’ misconceptions and teachers’ 
instructional practice.  We examined four elementary teachers’ experiences in implementing a 
fractions unit they designed collaboratively as part of a 40-hour summer professional development 
(PD) program. These teachers were participants in a three-year project focused on improving 
teachers’ mathematical knowledge for teaching (MKT) through a series of monthly workshops, 
coaching and co-teaching experiences. In particular our goal was to examine the ways in which 
teachers’ instructional practices serve to strengthen or resolve students’ misconceptions. 

The teachers created a fraction unit to address students’ misconceptions in summer professional 
development sessions and implemented it in their classroom. The main data sources such as videos 
from the unit development PD, teachers’ implementation of the unit, the debriefing sessions 
following the implementation, and students’ task-based interview videos were analyzed using 
grounded theory (Corbin & Strauss, 2008).  

Our findings suggest that teachers were able to identify students’ misconceptions about fraction 
concepts from interview videos and also to design a unit to address them. However, in the process of 
implementing the designed unit, the teachers demonstrated some difficulties in engaging students’ 
appropriately in reasoning about fractions and addressing students’ misconceptions about the whole 
concept and the benchmark strategy. We attributed the possible reasons to teachers’ weaknesses in 
using precise mathematical language to indicate fraction quantities, in probing students’ thinking 
behind responses, and in making appropriate instructional decisions to address students’ 
misconceptions in the moment of teaching, which all related to core components of MKT, 
specifically knowledge of content and teaching (KCT) (Ball, Thames, & Phelps, 2008). This study 
also highlights possible connections between students’ misconceptions, the use of inappropriate 
mathematical language in teaching and teachers’ struggles to focus classroom discussions to 
emphasize key mathematical ideas (Sleep, 2012). 
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The development of an identity as a teacher-of-mathematics requires more than internal reflective 
work. The “rational other” (Gee, 2001) is necessary to provide feedback as to whether the actions, 
activities, or discourse of the individual are being interpreted as desired. Snow and Anderson (1987) 
call identity work the acts or activities one partakes in to define oneself in a context. Identity work 
can take many different forms whether it is through appearance and manner (Goffman, 1959), or 
embracing and distancing oneself from roles (Snow & Anderson, 1987). Acts of identity work are 
discursive moves used in an attempt to convince the rational other of the ownership of certain traits, 
beliefs, or knowledge that make up one’s identity. 

Specifically for prospective teachers of mathematics, identity work refers to the actions taken to 
convince the other that they are teachers-of-mathematics. 

For this poster, I focus on the participant’s discursive identity or D-Identity (Gee, 2001). D- 
Identities include the ways that one may characterize her or himself and how others portray the 
person. Recognition then becomes crucial in the development of an identity. “If an attribute is  not 
recognized as defining someone as a particular ‘kind of person,’ then, of course, it cannot serve as an 
identity of any sort” (Gee, 2001, p. 109). Identity work will be different depending on the community 
he or she is looking to be recognized as belonging to. Prospective teachers must conduct identity work 
to argue the ownership of a teacher-of-mathematics D-identity. In general, arguments are the way one 
attempts to convince another that something is true. Argument in its basic form is made of three 
components: (a) claims, (b) warrants, and (c) data. In this poster, I explore the identity work of a 
prospective elementary teacher as she discursively enacts her D- Identity in an interview setting. I 
explore how she argues the ownership of particular traits. 

Additionally, I describe the use of an argumentation lens on social identity of a prospective 
elementary teacher. 

The framework breaks down the participant’s claims, evidence provided, and her anticipatory 
statements used to argue her social identity as a teacher-of-mathematics. Eyre’s (pseudonym) claims 
were categorized by the level of ownership or the discursive strength behind the claim. 

The criteria for ownership were determined by the use of I-statements, hedges, and intensifiers. 
Evidence was separated into either anecdotal or belief-based, and anticipatory statements were 
categorized as being used to provide more details, recognize limitations of teaching, or 
defensive/protective moves (Goffman, 1959). In this poster, I share the social identity of Eyre I was 
able to construct using this framework. Her social identity included the centralization of an equity 
position and the strong desire for student engagement. Implications for teacher education programs 
are also discussed. 
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An enduring challenge facing teacher educators is how to prepare teacher candidates for more 
ambitious teaching practices. One response has been to help teachers focus on student thinking, 
which requires teachers to elicit and respond to student thinking (Franke, Webb, Chan, Ing, Freund, 
& Battey, 2009). However, this can be especially challenging when student thinking does not align 
with teacher’smathematical thinking. 

This poster presents 15 teacher candidates’ responses to a non-standard student solution to a 
pattern task in a secondary mathematics methods course.  Teacher candidates were asked to explore 
the Tiling A Patio problem by extending the pattern shown below (Smith & Stein, 2011, p. 19).  They 
were then provided with a non-standard student solution (see Patio 4) and asked to create a fictional 
dialogue between themselves and the student who created that pattern. 

Initial results show teacher candidates were responding to student thinking by posing various 
types of questions, which were coded using Driscoll’s (1996) question type framework. Fourteen of 
the 15 teacher candidates began their fictional dialogue by prompting mathematical reflection and 
asking students how they arrived at their pattern.However, none of the teacher candidates followed 
their initial prompt with a question that would elicit algebraic thinking. A closer examination of 
these questions shows that 11 of the teacher candidates were in fact orienting and more specifically 
funneling (Herbel-Eisenmann & Breyfogle, 2005) students toward a pattern that matched the 
candidate’s own thinking. A whole-class discussion following the creation of the fictional dialogues 
showed that many candidates believed there was a single correct answer to the pattern task and did 
not try to unpack the student solution to see potential value in the response (e.g., cheaper patio). 
These results suggest that providing teacher candidates with pattern tasks that allow for multiple 
solutions may help teacher candidates focus on student thinking, while also challenging their 
conceptions about mathematics.  
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Teachers’ questioning practices have been shown to support students’ explanations, clarify 
teachers’ understanding of students’ mathematical thinking, and increase student learning (Webb et 
al., 2009). Research suggests that all students in the classroom benefit when teachers pose sequences 
of probing questions after students’ initial explanations; however, this practice is often difficult for 
teachers (Franke et al., 2009). Following recommendations of Grossman et al. (2009) that urge 
teacher educators to work with teachers on problematic aspects of practice, researchers are exploring 
rehearsal as a pedagogical strategy to work with prospective teachers in university-based methods 
courses (Lampert et al., 2013). Rehearsal as an approximation of practice supports novice teachers by 
providing opportunities to learning about, practice, and reflect upon important aspects of practice 
while receiving in-the-moment feedback from teacher educators. While still emerging, this research 
on the use of rehearsal to support prospective teachers in enacting the complex work of teaching is 
promising.  

Our research explores rehearsal as a teacher educator pedagogy for working with practicing 
teachers and shares findings from a pilot design experiment seeking to create and refine rehearsals 
that support teachers’ learning to pose probing questions. We explore the research: What factors 
influence teachers’ learning to focus on responding to students’ mathematical thinking with probing 
questions in rehearsal tasks? Working with three middle/secondary teachers in three 1.5-hour 
professional development (PD) sessions highlighting recent research on teacher questioning, teachers 
engaged in rehearsals focused on questioning related to students’ understanding of functions. Our 
initial conjecture was that teachers’ familiarity with the instructional task affects teachers probing 
questions. Data consisted of video recordings of sessions, written teacher reflections, post-rehearsal 
interviews, and our conjecture log. We used constant comparative methods (Strauss & Corbin, 1998) 
to analyze our data and concluded with a revised conjecture: Familiarity with the instructional task 
and its learning goal, mathematics knowledge for teaching, knowledge of students, the degree to 
which teachers had time to anticipate students’ conceptions and errors, and the supporting activities 
of the PD affects teachers probing questions. Our findings suggest that mathematics teacher 
educators should attend to these factors as they explore rehearsals in PD. 
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Over the past several decades, the growing research base on children’s mathematical thinking has 
provided a way for teachers to structure what they see and hear so that they can better respond to 
children’s ideas in the midst of instruction. Research has also shown that learning is enhanced when 
teaching is focused on children’s thinking (Wilson & Berne, 1999). In this study, we worked with 
teachers who were learning about children’s fraction thinking, and our goal was to investigate how 
teachers thought about children’s thinking. In much the same way that understanding children’s 
thinking has helped teachers honor and build on children’s thinking, understanding teachers’ 
perspectives can help those trying to support teachers’ development. 
We explored teachers’ initial perspectives on children’s strategies for equal sharing problems in 
which the answer is a fractional amount. Prior to professional development on fractions, teachers in 
grades 3–5 analyzed written work for 12 student strategies for the following problem: Six children 
are sharing 16 brownies so that everyone gets the same amount. How much brownie can each child 
have? Coding involved an iterative process of analyzing video- or audio-recorded discussions of 
groups of teachers who were asked to order strategies in terms of sophistication.  

We identified five perspectives teachers used in deciding levels of sophistication of children’s 
strategies: (a) whether leftover items were partitioned; (b) whether whole items were distributed prior 
to any partitioning; (c) whether the largest possible partitions were used; (d) whether fraction 
notation was predominantly used (vs. drawing); and (e) whether the answer was in the form of a 
mixed number (vs. an improper fraction or informal notation). Some of these perspectives were 
consistent with research on children’s fraction thinking (Empson & Levi, 2011) such as when 
teachers viewed strategies involving partitioning of leftovers as more sophisticated than those which 
ignored leftovers. Other perspectives, while reflective of traditional curriculum sequencing, were 
inconsistent with research on children’s fraction thinking such as when teachers viewed distributing 
whole brownies prior to any partitioning as more sophisticated regardless of the nature of the 
partitions. For example, partitioning all items strategically (e.g., linked to the number of sharers) was 
viewed as less sophisticated than distributing wholes and then using a more basic partitioning (e.g., 
repeated halving). Implications for researchers and professional developers include understanding 
teachers’ starting points and potential confusions as well as appreciating the need to honor and build 
on these perspectives. 
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This study investigates how mathematics teachers’ instructional moves create opportunities for 
them to learn about student thinking and mathematics content. In particular, it addresses the role of 
assessment in teaching and learning, by focusing on how specially-designed formative assessment 
lessons (FALs) can be used as a mechanism for teacher professional development.  

Learning and development in the workplace is a central ongoing experience for any professional, 
including teachers (Cohen & Ball, 1990; c.f., Schön, 1983). However, there is little research on 
teacher learning and development through practice; most research on teacher learning and 
development focuses on teachers’ cognitive processes as viewing learning from formally organized 
contexts (e.g., teacher education programs or PD workshops) or focuses only on the social 
relationships and/or environment within a community (e.g., shift in participation within communities 
of practices). This study aims to fill this gap, and investigates how teachers learn and develop 
through practice by adapting a socio-cultural developmental framework (c.f., Saxe, 2012) to analyze 
the process of how mathematics teachers develop new teaching practices to accomplish their own 
pedagogical goals.  

To explore teacher learning and development through practice, this study focuses on two 7th 
grade mathematics teachers (Ms. Lee and Ms. Janet) and their classrooms as the teachers attempted 
to implement formative assessment practices by using innovative curricular support materials (e.g., 
FALs) and participating in professional development sessions over the course of one school year. The 
analysis compares the two teachers’ classroom practices, focusing on how Ms. Lee’s instructional 
moves afford the means of teachers’ making sense of the content—proportional reasoning—and 
student thinking of the content, while Ms. Janet’s instructional moves do not afford the same kinds of 
learning opportunities. Preliminary findings illustrate that particular forms of instructional practices 
that are supported in professional development sessions serve different functions in two teachers’ 
classrooms (see the “form-function” relationship in Saxe, 2012) and it has different impacts on 
longitudinal shifts in practices. In the poster, I will provide more information and examples of what 
forms of instructional practices were supported and how their implementations served different types 
of functions, and how it shifts or not.  

This study has critical implications for mathematics teaching and learning. First, the analytical 
categories identify and suggest particular practices that support teachers in incorporating formative 
assessment in their instruction, such as making effective use of student mathematical thinking during 
instruction. Second, unpacking the process of teachers’ developing new instructional practices 
provides insights on how to better support teachers’ professional development and teacher learning.  
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An important role of mathematics content courses [MCC] during elementary teacher preparation 
is to help prospective elementary teachers [PSTs] relearn elementary mathematics more deeply while 
experiencing the type of teaching mathematics educators hope they will practice in their future 
classrooms. However, research suggests PSTs bring their own sets of beliefs and attitudes that affect 
what they learn from such programs. There are times when such entering beliefs “are not quite 
contextualizing, illuminating, and helpful, so much as they are powerful, potentially misleading, and 
unproductive as resources for learning the principles we hope to teach” (Holt-Reynolds,1992, p. 
327). For example, when attending a thoughtfully planned course designed to engage them in rich 
mathematical thinking, some PSTs are resistant to explore, create, or prove mathematical ideas 
(Boaler, 2002). Experiencing dissonance, tension, and frustration, many PSTs “react to the course in 
a perfunctory manner” (Phillip, et al., 2007, p. 439). If PSTs’ prior beliefs about learning are at odds 
with the goals and demands of such coursework, they can create barriers to their personal growth 
during teacher preparation. 

The purpose of this study was to better understand how PSTs perceive opportunities intended to 
develop their mathematical knowledge for teaching. One hundred fifteen participants who had 
completed one, two, or three MCC for PSTs completed an electronic survey that measured their 
perceptions of the relevance of the coursework as well as the appropriateness of specific types of 
tasks or pedagogical strategies they encountered throughout the coursework.  

Findings revealed PSTs’ perceptions of the relevance of the MCC and the course learning goals 
appeared to be associated with their views about the pedagogical strategies typically employed in the 
MCC. PSTs who viewed one or more pedagogical strategies, and in particular, productive struggle, 
as onlysometimes appropriate [SA] consistently reported more unproductive MCC views in terms of 
course relevance and perceptions of course learning goals than their peers who viewed such 
strategies as always appropriate[AA]. Furthermore, PSTs who indicated productive struggle is only 
SA for MCC were twice as likely to view additional pedagogical strategies in the same way 
compared to those PSTs who found a pedagogical strategy, but not productive struggle, as only SA 
for the MCC. Analysis of open-ended responses from PSTs who perceived one or more pedagogical 
strategies as only SA suggested PSTs desire greater guidance during sense making activities, as well 
as instructor verification before moving on from a task. Rather than viewing cognitively demanding 
activities that provide opportunities to make sense of mathematics as potential learning experiences, 
responses revealed PSTs’ overall concern for the unnerving feelings of confusion and frustration 
prompted by such episodes of struggle.  

References 
Boaler, J. (2002). Experiencing school mathematics: Traditional and reform approaches to teaching and their 

impact on student learning. Mahweh, NJ: Lawrence Erlbaum Associates. 
Holt-Reynolds, D. (1992). Personal history-based beliefs as relevant prior knowledge in coursework. American 

Educational Research Journal, 29, 325–347. 
Philipp, R. A., Ambrose, R., Lamb, L. L. C., Sowder, J. T., Schappelle, P., Sowder, L., Thanheiser, E., et al. (2007). 

Effects of Early Field Experiences on the Mathematical Content Knowledge and Beliefs of Prospective Elemen- 
tary School Teachers: An Experimental Study. Journal for Research in Mathematics Education, 38, 438 – 476. 



Teacher!Education!and!Knowledge:!Poster!Presentations! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

1003!

UNDERSTANDING THE PRACTICE OF TEACHING FOR EQUITY 

Laura McLeman 
University of Michigan-Flint 

lauramcl@umflint.edu 

Eugenia Vomvoridi-Ivanović 
University of Southern Florida 

eugeniav@usf.edu 

Keywords: Equity and Diversity; Teacher Education-Preservice 

While mathematics teacher educators (MTEs) have described their approaches to preparing 
teachers to incorporate equitable instructional strategies in mathematics (e.g. Aguirre, 2009), there 
has not been a systematic examination of how MTEs prepare teachers to effectively teach 
mathematics to diverse student populations (McLeman & Vomvoridi-Ivanović, 2012). This type of 
examination will help support MTEs to develop practices that integrate issues of race, class, gender, 
language, culture, or power in their mathematics teacher preparation courses.  

Our goal is to obtain an initial understanding of how MTEs who make issues of equity a priority 
in their practice facilitate this kind of work. Our research questions are: 

• How do MTEs who make equity a priority in their instructional practice conceptualize equity 
in their teacher preparation courses and how is this reflected in their course syllabi?  

• What challenges do MTEs who make equity a priority in their instructional practice face 
when teaching mathematics methods courses and how do they work towards resolving 
these challenges?  

We analyzed 23 MTEs’ responses to a brief survey and their course syllabi. Utilizing components 
of grounded theory (Glaser & Strauss, 1967), our findings suggested a mismatch exists in the way 
MTEs conceptualize equity and the way it is addressed in their course syllabi. Further, our findings 
also suggested there is a mismatch between the nature of the challenges MTEs face and the nature of 
the resolutions they employ to work towards resolving these challenges.  
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An enduring challenge in mathematics education is the need to understand the types of 
knowledge and reasoning that teachers need (Ball, Thames, & Phelps, 2008; Breyfogle, Roth 
McDuffie, & Wohlhuter, 2010; Shulman, 1986). Novice teachers are being evaluated in ways that 
affect their own career and will soon be evaluated in ways that affect their teacher preparation 
program (Teacher Preparation Issues, 2014). To serve our secondary mathematics pre-service 
teachers (SMPSTs) we must continue to improve our understanding of SMPST knowledge and 
reasoning and respond critically by examining the way that we teach SMPSTs. 

Research Problem and Question 
This study seeks to explore the sources that influence the choices that SMPSTs make when 

planning lessons. Based on conversations with SMPSTs during the course of the author’s 
responsibilities as a field placement supervisor, it has become obvious that SMPSTs at times struggle 
to exhibit strong curricular reasoning as defined by Breyfogle, Roth McDuffie, and Wohlhuter 
(2010). In an effort to understand the choices that demonstrate curricular reasoning, this research 
systematically examines what sources influence the curriculum choices of SMPSTs. 

Description of Method and Timing 
Data will be collected during the spring of 2015 using five SMPSTs who are currently student 

teaching using lesson plans, interviews with participants prior to implementing lessons, classroom 
observations, and interviews with participants after they implement the lesson. Sources of influence 
will be identified and grouped in ways that allow us as teacher educators to understand how we can 
help improve the curricular reasoning of SMPSTs. 

Critical Use of Findings 
By understanding the sources that influence the curriculum choices of SMPSTs we can respond 

in a way that improves the curricular reasoning of SMPSTs. Breyfogle, Roth McDuffie, and 
Wohlhuter (2010) explain that teachers need to be able to “adapt, supplement or omit portions of the 
[provided] curriculum materials” (p. 307). This study will shed light on the way that SMPSTs reason 
about curriculum in their field placement, and will allow those involved with teacher preparation, 
such as faculty members and field placement supervisors, to change the way they help SMPSTs learn 
to make decisions about curriculum. 

References 
Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching. Journal of Teacher Education, 

59(5), 389-407. 
Breyfogle, M. L., Roth McDuffie, A., & Wohlhuter, K. A. (2010). Developing curricular reasoning for grades pre-

K-12 mathematics instruction. In B. J. Reys, R. E. Reys & R. Rubenstein (Eds.), Mathematics Curriculum 
Issues, Trends and Future Directions: NCTM Yearbook, 72, 307-320, Reston, VA: NCTM 

Teacher Preparation Issues; Proposed Rule, 79 Fed. Reg. 71820 (Dec. 3, 2014) (to be codified at 34 CFR pts. 612 & 
686). 

Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14. 



Teacher!Education!and!Knowledge:!Poster!Presentations! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

1005!

DEVELOPING A FRAMEWORK FOR OPPORTUNITIES TO LEARN ABOUT EQUITY IN 
SECONDARY MATHEMATICS TEACHER EDUCATION PROGRAMS 

Alexia Mintos 
Purdue University 

amintos@purdue.edu 

Andrew Hoffman 
Purdue University 

hoffma45@purdue.edu 

Jill Newton 
Purdue University 

janewton@purdue.edu 

Keywords: Equity and Diversity; Teacher Education-Preservice 

In this poster presentation we will describe a framework developed to investigate the topics, 
themes, and types of emphases related to equity that preservice teachers (PSTs) experienced in five 
secondary mathematics teacher education programs. Our aim is to describe the motivation and 
development of this framework and its affordances and constraints.  

The National Council of Teachers of Mathematics (2000) included “equity” as one of its six core 
principles in Principles and Standards for School Mathematics, but in teacher education programs 
PSTs often learn about equity issues independent of mathematics. Future mathematics teachers need 
an understanding of equity as it relates to mathematics in particular (Gutiérrez, 2009; Gutiérrez, 
2012b). Thus, it is important to examine the required courses within secondary mathematics teacher 
education programs to investigate the topics, issues, and learning opportunities related to equity. We 
are also interested in the nuances of equity in teaching and learning algebra. This is motivated by 
descriptions of algebra as a civil right and a gatekeeper (Moses & Cobb, 2001).The framework we 
developed uses Gutiérrez’s (2012a) conception of equity and levels of specificity to algebra to 
answer the following: What is the nature of opportunities that secondary mathematics PSTs have to 
learn about issues of equity in their teacher education programs? 

The data used in this is study is from a larger National Science Foundation–funded research 
project, Preparing to Teach Algebra. This project investigated how emphases on algebra were 
reflected in teacher preparation programs. Here we focus on the case studies of five teacher education 
programs. We examined all instructor interview transcripts and tagged any excerpts in which the 
participants mentioned issues related to equity; then we categorized tagged sections using Gutierrez’s 
equity constructs (access, achievement, identity, and power) and specificity to algebra (e.g., algebra, 
mathematics, general education). To promote reliability, we had two researchers code each transcript 
and discuss discrepancies to come to consensus; in the process, a coding book of examples was also 
developed. Preliminary coding experiences revealed successes and challenges when using the 
framework. In our presentation we will discuss results of analyses and the application of our two-
dimensional framework. 
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Arithmetic involving whole numbers, fractions, and decimals is a significant component of the 
content of elementary mathematics. Prior research has found that preservice elementary teachers 
(PSTs) tend to rely on memorized rules and procedures for solving arithmetic problems and struggle 
to explain why the procedures work (Thanheiser, Browning, Edson, Kastberg, & Lo, 2013). Ensuring 
that prospective elementary teachers have the opportunity to develop a deep understanding of these 
areas is thus an important part of teacher education. 

Participants in this study were 32 undergraduate, prospective elementary teachers enrolled in the 
first of two required mathematics content courses at a large, Midwestern university. This study aimed 
to examine the PSTs’ understanding of the relationships between fractions, decimals, and whole 
numbers before, during, and after their participation in an eight-week instructional unit related to 
these topics. The goals of this study were to (a) document the ways in which individual PSTs 
understood the connections between fractions, decimals, and whole numbers, and (b) the ways that 
models such as stories, pictures, and number lines helped and/or hindered the PSTs in making these 
connections. Two theoretical frameworks guided this study. First is Gravemeijer’s (1994) work on 
the ways models (i.e. situations, drawings, empty number lines, ways of notating) may be 
intentionally used to support student understanding of formal mathematical concepts. Second is the 
notion that the development of mathematical knowledge for teaching should entail helping PSTs 
develop “coherent and generative understandings of the big mathematical ideas that make up the 
curriculum” (Silverman & Thompson, 2008, p. 5).  

Data sources included pre- and post-tests, classwork, and homework from participants as well as 
field notes taken by the researcher (who was also a co-instructor during the instructional unit). Using 
qualitative techniques, data were analyzed for patterns in student responses to tasks designed to 
support students in making connections between the number types, and for the types of models used 
by students in their work. Preliminary results suggest that the majority of the students developed a 
more connected understanding of the three number types during the unit, and that stories and pictures 
were particularly supportive models for many students. Number lines were found to be both 
supportive and problematic as a model, particularly for the connections between decimals and 
fractions.  
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Introduction 
The purpose of this paper is to describe the results of an empirical comparison of singular-plural 

usage during lessons by specially chosen mathematics teachers (whose classrooms demonstrated 
healthy student dialogue) with the usage seen in “typical” American mathematics lessons. Recent 
reform recommendations emphasize the importance of mathematics classrooms as learning 
communities where students have a chance to actively discuss their nascent understandings (e.g., 
NCTM, 2000). I hypothesized that in classrooms with such healthy student dialogue, teacher 
dialogue would manifest low singular (me, I, and my) as opposed to plural (us, we, and our) usage. 
Language often reflects the dominant paradigm guiding classroom activity: If teachers view 
themselves as the primary content deliverer, using singular terms more frequently than plural is 
expected; if, however, teachers view themselves as members of a developing mathematical 
community, shifts in descriptions of self should be manifested. 

Methods and Results 
The teachers demonstrating classrooms with healthy student dialogue participated in The 

Mathematics Class as a Complex System (MCCS) study, described in greater detail elsewhere (Ricks, 
2007). For comparison, I chose the four American lessons highlighted in the 1999 Trends in 
International Mathematics and Science Study (TIMSS) video study as “typical” classes (National 
Center for Educational Statistics, 2003). Analysis of classroom dialogue (one lesson per MCCS 
teacher) demonstrated that the MCCS teachers had similar singular-plural usage with each other 
(average: .42), which varied substantially from the TIMSS mathematics teachers (average: 1.26). As 
a benchmark, a singular-plural ratio of 1.0 would indicate equal singular and plural use. Thus, all the 
MCCS teachers had low singular-plural usage (using singulars less than half as much)—as 
hypothesized, while the “typical” American teachers generally had a high singular-plural usage 
(using singulars more than plurals, some higher than twice as much). 

Discussion and Conclusions 
I interpret these findings as evidence that—compared with typical U.S. teachers—the MCCS 

teachers (with their classrooms manifesting healthy student dialogue) were more likely to use 
language that signaled their identification as part of a robust classroom community. This study 
contributes to the growing body of research on teacher dialogue by demonstrating a correlative 
relationship between classrooms manifesting healthy student dialogue and low teacher singular-
plural usage. More research is needed to understand the observed statistical relationship; examining 
student singular-plural usage may also indicate their perceived participation, as well. 
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One way that mentors support prospective teachers’ development within field placements is 
through conversations about classroom teaching. However, little is known about these conversations 
and the extent to which they are - or can be - educative. This study bridges the literature on educative 
mentoring (Feiman-Nemser, 2001) and teacher noticing (van Es and Sherin, 2002) by considering 
educative conversations as a product of both professional practices. For this study, I theorized a 
definition of what an educative conversation would include and used the definition’s criteria as 
indicators to identify potentially educative mentoring episodes in a set of pre/post mentor-intern 
conversations about video teaching episodes.  I report on the nature and quality of these 
conversations, and I consider the affordances of using noticing and wondering language in making 
mentoring conversations more educative. 

This qualitative study examines three mentor-intern pairs’ pre- and post-conversations about two 
publicly available video teaching episodes (BTSA, 2012). They did this before and after a short 
orientation session which introduced them to Smith’s (2008) noticing and wondering model. The 
mentor-intern conversations were coded using the educative conversation criteria, defined as mentor-
intern talk in which the purpose is to provide opportunities for novice teachers to: (a) learn in and 
from practice, (b) generalize from particular instances of their teaching practice; and/or, (c) focus 
their attention on student learning.  The frequency of the terms “notice” and “wonder” was 
considered to evaluate the usefulness of this language. Out of the 86 educative mentoring episodes, 
41% were identified as potentially more educative mentoring episodes, because they met all of the 
criteria, and 59% were identified as potentially less educative mentoring episodes, because they met 
only two of the three criteria. Further comparison of individual pairs’ pre- and post-conversations 
demonstrated increases in the number of potentially educative mentoring episodes, improved quality 
of educative conversations, and increased usage of the words “notice” and “wonder.” 

Overall, understanding more about educative conversations is crucial both for prospective 
teachers to maximize field placement learning and for teacher educators and mentors to develop 
more intentional mentoring practices that support the development of mathematics teaching 
practices. This study acts as a starting point for this work by providing language, criteria, and 
examples for discussing conversation quality with teacher educators, mentors, and interns. 
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The Common Core State Standards for Mathematics (CCSSM) has provided the field of 
mathematics education with clear and consistent mathematics content foci, as well as practices for 
students to engage in (National Governors Association Center for Best Practices & Council of Chief 
State School Officers, 2010). As mathematics teachers have begun to teach to these standards, they 
have been challenged to consider curricula that address the content foci and mathematical practices 
outlined in the CCSSM as well as, investigate research-informed teaching practices that allow their 
students to engage in mathematical reasoning and sense making. One particularly useful framework 
for addressing the standards and teaching practices is to embed technology into a progression of key 
learning activities through a curricular activity system (Vahey, Knudsen, Rafanan, Lara-Meloy, 
2013).  

The preliminary results of this study provide evidence that a curricular activity system in which 
teacher professional development is aligned with a technology-embedded curriculum impacts 
teaching of rate and proportionality. By having the participating teachers explore the mathematics in 
the learning module as learners prior to teaching it there was “an explicit focus on subject matter” by 
providing experiences that “engage teachers as learners” (Borko, 2004 p. 5). This allowed the 
teachers to leverage their mathematical knowledge as a way to explore their teaching practices, to 
provide insight into students’ mathematical thinking, and as way to transform their teaching. 
Moreover, middle school students developed a deep understanding of crucial mathematics when their 
teachers engage in teacher professional development that is coherently aligned to a technology-
embedded learning module. 
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Research has shown that there is much to be gained by teachers studying video episodes of 
children learning mathematics (e.g., Maher, 2008). Video provides learning opportunities for pre-
service teachers to view certain teaching practices in action which may not be visible to them based 
on their field placement (Philipp et al., 2007) as long as the selected video clips align with the 
instructional goals of the teacher education context (Zhang et al., 2011).  

This poster will describe a video-based intervention given to 137 pre-service teachers (89 
experimental and 48 control). During the intervention, participants in the experimental group worked 
on open-ended problem solving tasks involving Cuisenaire rods and watched videos from a major 
video repository, the Video Mosaic Collaborative (http://www.videomosaic.org), of fourth grade 
children working on the same tasks as them. As a part of the tasks, the participants in the study and in 
the video were asked to construct arguments for their solutions and justify them to their classmates. 
Participants in the control group learned fractions in ways consistent with the NCTM standards, but 
did not engage with the tasks or videos.  

Both groups were administered a pre- and post-test to measure growth in their fractional content 
knowledge after learning about fractions. Participants in the experimental and control both showed 
significant growth in their fractional content knowledge. Several questions on the assessment 
required the participants to explain how they would help students who held common misconceptions 
that arise during the teaching of fractions (e.g., adding 1/5 + 4/17 and getting 5/22). Pre-service 
teachers who underwent the video-based intervention showed significant growth in their ability to 
help the students who held the misconceptions by building conceptual understanding in the student 
(e.g., using benchmark numbers), whereas the control group members provided algorithmic 
explanations (e.g., teach about common denominators by multiplying) on both the pre- and post-
assessment. This study underscores the value of using classroom video in teacher preparation and 
professional development interventions. Videos that focus on student reasoning, along with providing 
teachers time to work on the same problems as the students in the video, can be useful in preparing 
teachers to help their students understand mathematical concepts rather than teach them algorithmic 
approaches. 
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The study aims to identify ways teachers related a set of animated vignettes to their classroom 
practice to develop a joint knowledge base amongst the participants (Hiebert, Gallimore, & Stigler, 
2002). In order to investigate this question, video (and subsequent transcripts) from two teacher study 
group sessions were analyzed using the modified version of Toulmin’s (1969) model of 
argumentation developed by Chazan, Sela and Herbst (2012).  

The data comes from a professional development program for geometry teachers from high-
needs schools to promote teacher noticing of students’ prior knowledge. The research team created 
animated vignettes to provoke discussion of classroom practices (Herbst, Nachlieli, & Chazan, 
2011). The study analyzes the discussion of vignettes illustrating possible launches for a problem-
based lesson on dilations. The main question is, what claims and justifications do the teachers 
provide in reaction to the vignettes, and how do the claims and justifications relate to their 
classroom practice and knowledge of students’ prior knowledge, if at all?  This question addresses 
whether and how the teachers notice students’ prior knowledge when viewing and discussing 
representations of teaching. 

During the discussion of three launches, there were 33 claims, with 27 explicit justifications. In 
the discussion of the first launch, the teachers claimed that several aspects of the launch would 
resonate with their own students’ prior knowledge, such as drawing 3D figures and playing video 
games. The teachers also provided rebuttals of others’ claims when they were not representative of 
their own classroom experience. In the discussion of the second launch, one teacher shared her 
experience of using a similar problem to the one shown in the vignette, and how her own students 
used their prior knowledge of the buildings in their town to make sense of the problem. In the 
discussion of the third launch, the teachers provided several claims about their students’ prior 
knowledge of vocabulary and experiences with video games and how that might affect their ability to 
relate to the launch. Findings show that the study group discussions provided the opportunity for the 
teachers to share their practitioner knowledge as they connected the vignettes to their classroom 
experiences, and their understanding of their own students’ prior knowledge. This study is relevant in 
identifying resources for eliciting teachers’ practical knowledge and promoting its transition towards 
professional knowledge. Understanding how professional development activities, such as discussions 
of representations of teaching, can provide opportunities for developing a joint knowledge base is 
fundamental in teacher education. 
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Recent attempts to improve mathematics teaching include two prominent lines, teachers’ 
knowledge and teaching practices. Much of the research on mathematical knowledge for teaching has 
focused on understanding the knowledge entailed by the work of teaching (e.g., Ball, Thames, & 
Phelps, 2008; Baumert et al., 2010). This line of research has been fruitful, yet there is much left to 
understand about how teachers deploy their knowledge in doing the work of teaching. Likewise, 
research on teaching practices does not directly examine how teachers use content knowledge in the 
context of enacting these practices (Grossman, Hammerness, & McDonald, 2009). Despite this 
research disconnect, in the classroom, teachers’ knowledge and teaching practices are intertwined. 
This poster describes a study asking: What knowledge and reasoning are entailed in the teaching 
practices of selecting examples and giving explanations? It draws on the theoretical framework of 
mathematical knowledge for teaching (Ball et al., 2008) and is part of a larger study, which also 
includes classroom observations. 

Ten experienced Algebra II teachers participated in cognitive interviews, focused on the content 
of rational expressions and equations. They were presented with tasks where they were either asked 
to pick examples to teach a particular topic or to give an explanation they would use with students of 
a particular concept. For example, one task asked teachers to select example problems to teach 
simplifying rational expressions. Data were analyzed across two dimensions, components of each 
teaching practice and teachers’ knowledge and reasoning, looking for patterns within each dimension 
and across the two practices.  

The findings reveal that the knowledge and reasoning entailed by each task are unique to the task. 
In particular, they suggest that knowledge and reasoning cannot be separated from the particular 
tasks of teaching in which they are deployed. Although tied to particular tasks, teachers’ knowledge 
and reasoning varied widely in selecting examples and in preparing and giving explanations. For 
example, on the item focused on selecting problems for teaching simplifying rational expressions, 
one teacher selected problems based on particular features of individual problems, such as a negative 
leading coefficient, or values that were less common for students or might evoke a common 
misconception. In contrast, another teacher described more broadly the types of problems he would 
want to use and then selected a problem that met each set of criteria. Full results will be displayed on 
the poster. 
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This study investigated the questions: (1) How do journals support students’ learning to prove in 
an undergraduate elementary number theory course? (2) How do journals demonstrate the 
development of students’ thinking about proof in an undergraduate elementary number theory 
course? Students‘ performance in proof writing has been investigated in recent years (Weber, 2001; 
Raman, 2003); however, research is still needed to investigate innovative pedagogical approaches to 
teaching proof and how students’ thinking about proof develops. Journaling has been shown to be a 
valuable tool for supporting students’ learning and providing insight into students’ thinking in 
various mathematical domains (Borasi and Rose, 1989). This study seeks to gain a better 
understanding of the power of journals in developing student thinking, and suggests possible ways to 
connect journal writing more closely to proof writing as an integral part of learning mathematics. 

Methods 
The 17 undergraduate students in the course wrote weekly journal entries related to the 

elementary number theory course and submitted them online. The instructor of the course then read 
and responded to each student’s submission. The journal assignments consisted of both structured 
and unstructured prompts.  Our data collection included pre-post surveys asking the students’ views 
about mathematical proof and their perceptions about journals; students’ open-ended and structured 
journal responses and task-based interview transcripts with five of the students. The data were coded 
according to the framework provided in Borasi and Rose (1989) for the journaling component, and 
the students’ proof attempts from the task-based interviews were coded using Raman’s (2003) 
framework for students’ proof ideas.  

Results 
Our findings suggest the students used the unstructured journal assignments primarily as a means 

to reflect on their feelings about the course material and their learning. However, in the structured 
journals, the students wrote specifically about the process of proving and their views about 
mathematics and proving. Implications of this study suggest that journaling creates an added 
dimension of communication for students and the instructor to support students learning the course 
material in a more responsive manner. Future studies will investigate the role of directed and more 
structured questions to focus student journals on specific mathematical ideas. 
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This study takes a socio-psychological approach (Wertsch, 1991) to examine how mathematics 
professional development facilitators and teachers enact a professional development program (PD) in 
the absence of strict fidelity expectations. In this view, how individuals make sense of their world is 
always mediated by their own socio-historical past knowledge as well as their own current and 
envisioned goals for the knowledge. Juxtaposed against this view of how adults make sense of new 
information is the construct in professional development of fidelity. Though often a major concern of 
educators and policy makers, ensuring fidelity of implementation can be an elusive goal if we are to 
understand knowledge construction as being culturally mediated and situated within local contexts. 
This mediation takes place on multiple levels: (a) as facilitators are trained by PD 
designers/developers, (b) as these facilitators then train teachers, and (c) as teachers instruct students. 

If we are to understand the impact of PD, it is important to know more about these inevitable 
adaptations. We seek to shed light on this process by examining the way that a single PD is iterated 
across various regions in Texas and then how that PD is enacted across various schools and districts 
in each region as it is implemented in the classroom. Two research questions guided us: 1) What 
changes/adaptations are made each time the PD is implemented? 2) What reasons do participants 
give for making those changes? To investigate these questions, facilitators and teachers were 
administered parallel surveys after being trained and after implementing the PD in their own 
trainings (facilitators) or classrooms (teachers). Questions on these surveys mirrored one another so 
that comparisons could be made across the four surveys. 

Open-ended responses were coded according to particular aspects of the original PD. Descriptive 
analyses of the data yielded a portrayal of the variations between sites at each level of 
implementation. Conditional probability analysis supplemented the description of what is 
implemented of the PD. Emergent themes from open-ended responses indicate distinct categories of 
interpreting and enacting PD that seems to be at least partially determined by contextual factors. 
These results have implications for the design and implementation of PD and how to support 
facilitators as decision-makers who are responsive to the contexts in which they teach. 
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Mathematics education researchers have long called for the use of rich tasks (Stein, Grover, & 
Henningsen, 1996). More recent work has identified challenges involved in launching such tasks 
(Jackson, Garrison, Wilson, Gibbons, & Shahan, 2013). 

Cognitive science researchers have shown that experts and novices alike rely on schema to make 
sense of situations and inform decision-making (Carter, 1990). The long prevalence of initiation, 
response, evaluation (IRE) in American classrooms (Franke, Kazemi, & Battey, 2007) implies that 
teachers’ schema for student thinking (right or wrong) and teacher responses (praise or correction) 
are relatively simplistic. 

We sought to answer the following research questions: 

• Would engaging in a multiple-choice activity involving diagnosing and responding to 
students’ thinking enlarge participants’ schema for student thinking and teacher response? 

• Would this activity lead to participants adopting common language around student thinking 
and teacher responses in the context of a lesson launch? 

The researchers created an experience on LessonSketch, an online computer environment that 
allows participants to view cartoon storyboards of teaching situations. In the experience participants 
encountered typical student responses to a proportional reasoning task. Then they chose among 
several diagnosis and response categories that we had chosen, based on research of teaching and 
student thinking.  We hypothesized that having to think about the categories several times in the 
context of analyzing a lesson launch would support participants in developing more complex schema 
for diagnosis and teacher response.  

Participant data indicate that the LessonSketch experience did help teachers and PST’s develop 
richer, and more uniform schema of student reactions and teacher moves. This approach challenges 
teacher educators to continue to identify helpful schema for launching rich tasks.   
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Studies of mathematics methods courses show substantial variation in activities intended to 
prepare teachers to teach mathematics (e.g., Kastberg, Sanchez, Edenfield, Tyminski, & Stump, 
2012; Taylor & Ronau, 2006). However, the wide-spread adoption of the Common Core State 
Standards for Mathematics (CCSSM) (NGA & CCSSO, 2010) offers the possibility of more 
consistency across courses (e.g., Heck, Weiss, & Pasley, 2011) as mathematics teacher educators 
(MTEs) take up a common focus on teaching about the content standards and standards for 
mathematical practice in CCSSM. Our study sought to consider the variations in activities MTEs use 
in mathematics methods and content courses. This study is part of a larger project examining 
CCSSM in mathematics teacher preparation. We surveyed 370 MTEs who taught elementary, middle 
school, or secondary methods or content courses. This poster presents findings from analysis of 269 
descriptions of activities used to teach PSTs about CCSSM.  

Consistent with other studies, our findings show a wide variation in activities, including 
examining the standards documents (6.5%); watching videos or observing teaching to identify 
standards (6.5%), analyzing curriculum for alignment with CCSSM (2.3%), and engaging in a task 
consistent with the standards (8.8%). The activity with the most responses was preparing for or 
creating lessons or units using CCSSM (14.1%). In addition, many MTEs provided responses that 
described a mathematical or pedagogical activity, but did not elaborate how the activity was 
connected to CCSSM (8.6%). MTEs may have felt that the connection to CCSSM was implied or 
obvious and so needed no elaboration. Also interesting were the small but still not negligible number 
of MTEs (1.4%) who do not incorporate any CCSSM-related activities in their courses. Our findings 
suggest that MTEs see many ways in which PSTs should interact with CCSSM. As such, while 
CCSSM may provide a common area of focus of MTEs, it does not seem to narrow or restrict 
instructional activities nor result in more consistency across courses or institutions. 

Acknowledgment 
This material is based upon work supported by the National Science Foundation under Grant No. 

ESI-0333879. 

References 
Heck, D. J., Weiss, I. R., & Pasley, J. D. (2011). A priority research agenda for understanding the influence of the 

Common Core State Standards for Mathematics. Chapel Hill, NC: Horizon Research, Inc. 
Kastberg, S., Sanchez, W. B., Edenfield, K., Tyminski, A., & Stump, S. (2012).What is the Content of Methods? 

Building an Understanding of Frameworks for Mathematics Methods Courses. 
NGA & CCSSO. (2010). Common core state standards for mathematics.Washington, DC: Authors. 
Taylor, P. M., & Ronau, R. (2006). Syllabus study: A structured look at mathematics methods courses. AMTE 

Connections, 16(1), 12-15. 

+



!

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

Chapter+10+
 

+Teaching+and+Classroom+Practice+

Research(Reports(

Mathematics, Language, and Degrees of Certainty: Bilingual Students’ Mathematical 
Communication and Probability ............................................................................................. 1022 

Karla Culligan, David Wagner 

The Discourse of Attending to Precision in Secondary Classrooms ...................................... 1030 
Christopher Engledowl, Samuel Otten, Vickie Spain 

Fostering Classroom Communication on Representations of Functions ................................ 1038 
Beste Güçler 

Teacher Noticing Students’ Mathematical Strengths ............................................................. 1046 
Lisa M. Jilk, Sandra Crespo 

Novice Elementary Teachers’ Instructional Practices: Opportunities for Problem- 
Solving and Discourse ............................................................................................................ 1054 

Carrie W. Lee, Temple A. Walkowiak 

On Framing Teacher Moves for Supporting Student Reasoning ........................................... 1062 
Zekiye Ozgur, Lindsay Reiten, Amy B. Ellis 

The Telling Dilemma: Types of Mathematical Telling in Inquiry ......................................... 1070 
Brandon K. Singleton 

A Mixed Methods Study of Elementary Teachers’ Experiences With and Perspectives  
on the CCSS-Mathematics ...................................................................................................... 1078 

Susan Lee Swars, Cliff Chestnutt 

Attributes of Student Mathematical Thinking That is Worth Building on in  
Whole-Class Discussion ......................................................................................................... 1086 

Laura R. Van Zoest, Shari L. Stockero, Napthalin A. Atanga, Blake  
E. Peterson, Keith R. Leatham, Mary A. Ochieng 

Do You Notice What I Notice? Productive Mediums for Teacher Noticing ......................... 1094 
Megan H. Wickstrom 



Teaching!and!Classroom!Practice! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

1018!

Brief(Research(Reports(

You Don't Ask Paul Simon To Do a Duet With Nickelback": Examining  
Mathematics Teacher Collaboration ....................................................................................... 1102 

Stephanie Behm Cross, Susan O. Cannon 

Exploring Teachers’ Experimentation Around Responsive Teaching in  
Secondary Mathematics .......................................................................................................... 1106 

Elizabeth B. Dyer 

What Influences a Teacher’s Willingness to Create Opportunities for Discussion  
in a Geometry Classroom? ..................................................................................................... 1110 

Ander Erickson, Patricio Herbst 

What Is Happening in Calculus 1 Classes? The Story of Two Mathematicians .................... 1114 
Dae S. Hong, Kyong Mi Choi 

Supporting Fraction Operation Algorithm Development: Number Sense and the  
Enactment of Addition ............................................................................................................ 1118 

Debra I. Johanning, Lindsey R. Haubert 

Preservice Teachers’ Critique of Teacher Talk ...................................................................... 1122 
Ji-Eun Lee, Kyoung-Tae Kim 

Building Learning Opportunities: Appealing to Convention and Collective Memory .......... 1126 
Azita Manouchehri, Sarah Gilchrist, Xiangquan Yao 

When Mathematics Teachers Consider Acting on Behalf of the Discipline, What  
Assumptions Do They Make? ................................................................................................ 1130 

Amanda Milewski, Ander Erickson, Patricio Herbst, Justin Dimmel 

Tracing Students’ Accountability and Empowerment in an Online Synchronous  
Environment ........................................................................................................................... 1134 

Kate O’Hara 

Supporting Peer Conferences in Introductory Calculus ......................................................... 1138 
Daniel Reinholz 

Quality Instruction, Teachers’ Self-Efficay, and Student Math Achievement in Korea  
and the United States .............................................................................................................. 1142 

Ji-Won Son 

Uncovering Teachers’ Goals, Orientations, and Resources Related to the Practice of  
Using Student Thinking .......................................................................................................... 1146 

Shari L. Stockero, Laura R. Van Zoest, Annick Rougee, Elizabeth H. Fraser,  
Keith R. Leatham, Blake E. Peterson 



Teaching!and!Classroom!Practice! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

1019!

One Teacher’s Understandings and Practices for Making Real-World Connections  
in Mathematics ....................................................................................................................... 1150 

Kathleen Jablon Stoehr, Erin Turner, Amanda T. Sugimoto 

Implementing the Core Teaching Practices to Make Mathematical Thinking Visible  
Using Students' Generated Models ......................................................................................... 1154 

Jennifer M. Suh, Padmanabhan Seshaiyer, Monique Apollon, Daria Gerisomo,  
Lesley King, Kathy Matson, Alice Petillo 

Nature and Utility of Teacher Questioning: A Case of Constructivist- 
Oriented Intervention .............................................................................................................. 1158 

Ron Tzur, Jessica Hunt, ArlaWestenskow 

Mathematical Classroom Discourse in Three Middle Level Science Classrooms ................. 1162 
Jennifer Wilhelm, Merryn Cole, Rachel Pardee, Shelby Cameron 

Poster(Presentations(

Listening to Students’ Thinking: Teachers Setting Aside Their Own Preferences for  
Approaching a Mathematics Problem .................................................................................... 1166 

Amanda Allen, Lyndon Martin, Tina Rapke, Robyn Ruttenberg 

Investigating Relationships Among Teachers’ Mathematics Beliefs, Efficacy Beliefs,  
and Quality of Instructional Practices .................................................................................... 1167 

Fetiye Aydeniz 

Rethinking Mathematics Teaching with Papert, Brown and Others ...................................... 1168 
Geneviève Barabé, Jérôme Proulx 

Mathematics Teachers’ Perceptions of Factors Affecting the use of High Cognitive  
Demand Tasks ........................................................................................................................ 1169 

Amber Candela 

Teachers’ Perceptions and Uses of the Common Core Standards for  
Mathematical Practice ............................................................................................................ 1170 

Cynthia D. Carson 

Secondary Teachers’ Beliefs of Teaching Mathematics in Diverse School Settings ............. 1171 
Mark Franzak 

Considering Students’ Responses in Determining the Quality of Teacher’s Questions  
During Mathematical Discussions .......................................................................................... 1172 

Elif N. Gokbel, Melissa D. Boston 



Teaching!and!Classroom!Practice! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

1020!

Two Secondary Mathematics Teacher Candidates’ Enactment of Discourse Moves  
and Questioning Practices ...................................................................................................... 1173 

Dana L. Grosser-Clarkson 

Objectification-Subjectification Dialectic in Math Discourse ................................................ 1174 
José Francisco Gutiérrez 

Differentiating Mathematics Instruction with Middle School Students ................................. 1175 
Amy J. Hackenberg, Ayfer Eker, Mark A. Creager 

A Framework for Teacher Responsiveness ............................................................................ 1176 
Hamilton Hardison, Julia Przybyla-Kuchek, Jessica Pierson Bishop 

The Influence of Teachers’ Beliefs, Goals, and Resources on Instructional Decisions ......... 1177 
Lindsey R. Haubert, Debra I. Johanning 

Promoting Effective Small Group Learning in the Middle Grades ........................................ 1178 
Daniel J. Heck, Jill V. Hamm 

Exploring Base 10 Complements Through Mathematical Games ......................................... 1179 
Sabrina Héroux 

Responding to Student Thinking: Making In-The-Moment Teaching Decisions .................. 1180 
Marc Husband, Parinaz Nikfarjam, Tina Rapke 

Use of Examples in Teaching Calculus: Focus on Continuity ............................................... 1181 
Jihyun Hwang, Dae S. Hong 

Analyzing Development of Norms Conducive to Productive Discourse: Phase One ............ 1182 
Peter Klosterman 

Teaching Geometric Similarity From Dilating Perspective: Embedded  
Figures Approach ................................................................................................................... 1183 

Oguz Koklu, Ibrahim B. Olmez, Muhammet Arican 

I-Think: Framework That Improves Problem Solving for All Students ................................ 1184 
Sararose Lynch, Jeremy Lynch 

Calculus I Teaching: What Can We Learn From Snapshots of Lessons From 18  
Successful Institutions? .......................................................................................................... 1185 

Vilma Mesa, Nina White, Nina White 

Supporting Graduate Student Instructors in Calculus ............................................................ 1186 
Daniel Reinholz, Murray Cox, Ryan Croke 



Teaching!and!Classroom!Practice! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

1021!

Investigating Teachers’ Beliefs and Technology Integration ................................................. 1187 
Lindsay Reiten 

Maintaining Cognitive Demands of Algebraic Reasoning Tasks .......................................... 1188 
Jessie C. Store 

Assessment of Equity in Beliefs and Practices of Teaching Mathematics to  
African-American Students .................................................................................................... 1189 

Carmen Thomas-Browne, Melissa Boston, Joseph Frollo 

The Impact of Teaching Experience on Mathematics Graduate Teaching  
Assistants’ Efficacy ................................................................................................................ 1190 

Patrice Parker Waller 

Teaching Mathematics Through Social Justice: Understanding Teachers’  
First Experiences .................................................................................................................... 1191 

 Ashley P. Walther, Lynn Liao Hodge 



Teaching!and!Classroom!Practice:!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

1022!

MATHEMATICS, LANGUAGE, AND DEGREES OF CERTAINTY: BILINGUAL 
STUDENTS’ MATHEMATICAL COMMUNICATION AND PROBABILITY 

Karla Culligan 
University of New Brunswick 

kculliga@unb.ca 

David Wagner 
University of New Brunswick 

dwagner@unb.ca 

While all mathematics is mediated by language, the role of language is especially complex in bi- and 
multilingual mathematics classrooms, and more so in bilingual education programs in which the 
explicit goals of both language and mathematics learning intersect. We explore bilingual French 
immersion students’ linguistic and mathematical repertoires as they work through a series of 
probability problems. Focusing on the collaborative dialogue that occurred between students and 
researchers, our discourse analysis was informed by sociocultural theory and systemic functional 
linguistics. Findings indicate that students’ linguistic and mathematical repertoires are intertwined, 
and that collaboration can offer opportunities for supporting bilingual learners’ language and 
mathematics development. We conclude with implications and challenges for bilingual mathematics 
education. 

Keywords: Classroom Discourse; Instructional Activities and Practices; Probability  

One of the most novel characteristics of French immersion programs is that students whose first 
language is not French learn this target language not only through French language classes but also 
through content courses such as mathematics. Both mathematics learning and language learning are 
explicitly stated goals of the immersion program (Swain & Johnson, 1997). Around the world, 
students learn mathematics through languages other than their first or home language(s) in a variety 
of bi- and multilingual mathematics classroom contexts. Consequently, it is important for researchers 
and educators to examine how mathematics and language learning simultaneously take place in the 
classroom. 

Theoretical framework  
Work by Halliday (1978) and others has brought to the forefront issues related to language in 

mathematics and, more specifically, the mathematics classroom. Halliday described three aspects to 
consider with regard to any linguistic situation, including mathematical discussion: “first, what is 
actually taking place; secondly, who is taking part; and thirdly, what part the language is playing” (p. 
31). Drawing on these ideas, we focus on mathematics as a meaning-making activity rooted in the 
social interactions of the learners. The notion of the mathematics register describes this in more 
detail: The mathematics register involves “the meanings that belong to the language of mathematics 
(the mathematical use of natural language, that is: not mathematics itself), and that a language must 
express if it is being used for mathematical purposes” (p. 195). 

From a second language education standpoint, we adopt a theoretical framework that supports 
our view of mathematics and language. We draw on the work of Vygotsky (1962, 1978) and neo-
Vygotskians (Cole, 1985; Donato, 1994; Lantolf, 2000; Lantolf & Appel, 1994; Swain, 2000; Swain, 
Kinnear, & Steinman, 2011; Wertsch, 1985, 1993), which has underscored the social element driving 
all individual cognitive functions. Moreover, this work has emphasized the key role language plays 
in all human interactions and learning. Language is viewed as a mediational means, in other words, 
language mediates thought and is not strictly a conveyor of thought. This approach, rooted in the 
exploration of language and learning through social interactions, guides our analysis of mathematical 
discourse. 
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Selected literature  
Our review of selected literature has two main parts: first, a discussion of studies of mathematics 

and language from the mathematics education field, with particular focus on those based in bi- or 
multilingual contexts; and second, an exploration of some key sociocultural concepts related to 
second language education.  

Mathematics and multilingual classrooms 
Research based in a variety of multilingual mathematics classrooms has highlighted a number of 

important issues with regard to mathematics and language. In particular, scholars have pointed to a 
need to recognize that the mathematics register is enacted in unique ways within the mathematics 
classroom. The specialized language of the mathematics classroom is distinct from the specialized 
language of mathematicians (Barwell, 2005, 2007, 2009b; Barwell, Leung, Morgan, & Street, 2005; 
Morgan, Craig, Schüte, & Wagner, 2014; Moschkovich, 2003, 2007, 2010; Pimm, 2007; Setati & 
Adler, 2000). This work has underscored the importance of classroom context, and has viewed 
mathematics as a social, discursive activity. From this standpoint, “mathematical discourse includes 
not only ways of talking, acting, interacting, thinking, believing, reading, writing but also 
mathematical values, beliefs, and points of view” (Moschkovich, 2003, p. 326). Far from a 
homogeneous set of practices and norms, some general characteristics of mathematics classroom 
discourse can include “being precise and explicit, searching for certainty, abstracting, and 
generalizing,[… and] imagining” (Moschkovich, 2003, p. 327). 

With regard to bilingual learners in particular, research has called for a refocusing on the 
resources these learners bring to the mathematics classroom rather than on their so-called problems 
or deficiencies (Barwell et al., 2005; Moschkovich, 2003, 2007). In this vein, studies have suggested 
that allowing for ambiguity, or the acceptance of multiple meanings, during mathematical 
collaboration can be a resource for mathematical understanding, particularly for bilingual students 
(Barwell, 2005). Moreover, hearing the mathematical in students’ so-called everyday talk is also key 
to supporting bilingual learners, who may use this everyday talk to contextualize and understand the 
linguistic and mathematical aspects of problems (Barwell, 2009a; Moschkovich, 1999, 2003, 2005, 
2009a, 2009b). This approach does not view mathematical and language learning as separate, but 
rather as intertwined and co-developing in a reflexive relationship (Barwell, 2005).  

A further concept for consideration in bilingual mathematics classrooms is if, when, and how 
multiple languages are used and valued (or not). Often referred to as codeswitching, that is, the 
switching of languages “within the course of a single conversation, whether at word or sentence level 
or at the level of blocks of speech” (Baker, 2011, p. 107), this phenomenon has been explored in both 
mathematics and second language education contexts. As scholars in both fields have explained, 
historically codeswitching has been perceived as indicative of a deficiency with regard to bilingual 
students’ mathematics and language proficiency. Recent work, however, has challenged this view. 
Researchers have argued for a positive, resource-oriented view of bilingual learners that recognizes 
the resources they bring to the mathematics classroom and, in line with sociocultural theory, this may 
include learners’ first or home language(s). This approach challenges the monolingual norm and 
views codeswitching as socially and cognitively complex. However, codeswitching remains a 
contentious and controversial issue and the use of multiple languages in the mathematics classroom 
often conflicts with political agendas and language policy goals (Adler, 1999; Barwell, 2009b, 2014; 
Cummins, 2007; Moschkovich, 2005; Planas & Setati-Phakeng, 2014; Swain & Lapkin, 2000; 
Turnbull & Dailey-O’Cain, 2009; Setati & Adler, 2000). 

Second language learning through content 
With regard to second language learning in mathematics, two key sociocultural concepts emerge 

that are pertinent to our analysis. The first is the notion that as learners interact with a more capable 
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other, who could be their teacher or their peers, they can achieve more than would have been possible 
on their own. In this scenario, the learner eventually gains control over the task, internalizes the skill, 
and is able to perform it independently. This movement from other- to self-regulation is described as 
what happens in the zone of proximal development (Vygotsky, 1978). It relates to a pedagogical 
notion called scaffolding, in which a temporary scaffold provided by an expert other is used to help 
learners with a particular learning task (Cole, 1985). The scaffolding is eventually dismantled as the 
learner becomes more capable and the responsibility for the task is gradually transferred from expert 
to learner. 

The second pertinent concept is the notion that language learning occurs during collaborative 
dialogue. According to Swain (2000), collaborative dialogue “is where language use and language 
learning can co-occur. It is language use mediating language learning. It is cognitive activity and it is 
social activity” (p. 97). In this view, when language learners engage in problem-solving tasks they 
are able to notice and pay attention to linguistic elements and co-construct knowledge through 
producing output through collaborative dialogue. These language-related episodes mediate the 
learners’ understanding of the problems and solutions (Donato, 1994; Swain, 2000; Swain & Lapkin, 
1998).  

The study 
The current study is framed within a larger, 3-year longitudinal study entitled “Students’ 

language repertoires for investigating mathematics” (supported by the Social Sciences and 
Humanities Research Council of Canada, Principal Investigator: David Wagner). In this paper, we 
focus on bilingual French immersion students’ linguistic and mathematical repertoires during 
collaboration with an interviewer-researcher on probability-related problems and activities. (We have 
discussed different aspects of the larger study elsewhere. See, e.g., Culligan, Dicks, Kristmanson, & 
Wagner, 2014; Wagner, Dicks, & Kristmanson, 2015.) 

Context and participants 
The participants in the current study were Grade 3 French immersion mathematics students in 

their first year of the program. Students first engaged in a whole-class probability-based activity 
(Skunk die game, described in the next section) and then worked on related problem-solving tasks in 
small groups of two to three. As a follow-up, students interacted with an interviewer-researcher as an 
extension of the whole-class activity. During these interviews, students were introduced to a second 
probability-related activity (Skunk card game, described in the next section) and responded to 
questions related to the two games. The students were asked about their strategies for playing both 
games, about the differences between the two games, and about different words of interest (related to 
probability and degrees of certainty) they had used while responding to these questions and/or 
engaging in the problem solving.  

The probability activities 
In both the Skunk die game and the Skunk card game, students were introduced to the problem 

with a narrative: You are picking berries in the forest and trying to collect as many berries as possible 
before the skunk comes. Numbers 1 to 5 represent the berries you collect on each roll of the die. The 
number 6 represents the skunk and the end of the turn. If the skunk comes, you lose all of the berries 
you collected on that turn, unless you have “gone home” to avoid the skunk when you had enough 
berries. You do this for seven days (Monday to Sunday). The player with the most berries at the end 
wins the game. 

In the Skunk card game, the interviewer-researcher laid playing cards (numbered 1 to 6, with 6 
being the skunk) out on the table one by one, rather than rolling a die. The cards were not picked up 
once laid down. Rather, the interviewer-researcher continued laying down cards one by one as long 
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as the student wished to continue. We moved on to the next day of the week once the students had 
decided to stop collecting berries for the current day, or once the skunk card was played. Cards were 
not picked up and reshuffled until all six cards had been laid down; this could happen in the middle 
of the current “day.” Thus, the probability of getting the skunk on any given turn differs in the card 
game compared to the die game. In the card game, the events are mutually exclusive, and in the die 
game, the events are independent. 

Data collection and analysis 
Students were audio and video recorded during the whole-class activity and the follow-up 

interviews. Data were transcribed and written transcripts were the primary source for analysis. We 
analyzed the data using Swain and Lapkin’s (1998) approach to discourse analysis, which entails 
describing and interpreting language-related episodes. Furthermore, we drew on the field of systemic 
functional linguistics (e.g., Halliday, 1994), which enabled us to describe and interpret specific 
instances of language use within our particular context. 

Results 
To discuss our results, we present selected excerpts of transcripts from the students’ interviews 

with an interviewer-researcher and offer our interpretations. 

Excerpt 1: Linguistic and mathematical uptake of “absolument” 
The following is an excerpt from a Grade 3 interview. This is the first year of French medium 

learning for these children. English translations are provided on the right. The interviewer-
researchers (R1 and R2) are asking the students (S1, S2, and S3) their predictions regarding the 
upcoming cards and their degree of certainty regarding these predictions. One researcher (R1) leads 
the interview and the other (R2) is behind the camera, taking note of students’ language use and then 
participating in the interview later. 

115 R1: Est-ce que c’est absolument le 
quatre? 

Is it absolutely the four? 

116 S3: Oui. Yes. 

117 R1: Est-ce que tu es certain que c’est le 
quatre? 

Are you certain it’s the 
four? 

118 S3: Oui, non. Yes, no. 

119 S3: Ça peut être une trois aussi. It could be a three too. 

120 R2: Quelles sont les chances que ça soit 
un trois? 

What are the chances that 
it’s a three? 

121 S2: Beaucoup…. A lot… 

…    

166 R2: Alors ça doit être quoi ici? So it has to be what here? 

167 S2: Il doit être, un, deux trois, quatre, 
cinq. 

It has to be one, two, 
three, four, five. 
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168 R2: Ça doit être des fraises (et non pas 
la moufette)? 

It has to be berries (and 
not the skunk)? 

169 S1, S2, 
S3: 

Oui. Yes. 

170 R2: Absolument des fraises? Absolutely berries? 

171 S2, S3: Oui. Yes. 

172 S1: Absolument. Absolutely. 

In this exchange, we see linguistic uptake of absolument (used by R1 line 115, R2 line 170;taken 
up by S1 line 172). Moreover, there is mathematical uptake of absolument, a concept related to 
probability. The students go from being very certain (line 116), to questioning/hedging (line 118), to 
using a modal expressing a greater degree of uncertainty (line 119). Throughout the exchange, the 
researcher-interviewer acts as a more knowledgeable other, providing scaffolding and pushing 
students to go farther than they may have done on their own. Notably, however, the questioning of 
the student’s response did not lead the student to change her answer ultimately—she worked through 
the task and decided she was absolument certaine. Here, mathematics and language work together to 
solidify the students’ understanding of the probability concept. 

Excerpt 2: Explaining the meaning of “çadoit” 
In this Grade 3 excerpt, the interviewer-researcher (R1) is asking the students (S1, S2, and S3) 

the difference between “it has to be a 6” (card game) and “you have to brush your teeth” which 
present different senses of the modal verb “have to”—one indicating logic and the other obligation. 
The students relate this distinction to the English expressions “it is going to be a 6” and “you are 
going to brush your teeth.” (In the translation at right, the underlined text is not translated because it 
is English in the original.) 

388 S1: En anglais « doit » dans la première 
phrase, ça doit être une moufette. 

In English “has to” in the first 
sentence, it has to be a skunk. 

389 S1: Et, dans l’anglais, ça veut dire « it’s 
going » and, dans l’autre phrase, ça 
dire « you have to. » 

And, in English, it means “it’s 
going” and, in the other 
sentence, it means “you have 
to”. 

390 R1: « You have to », comme tu doit te 
brosser les dents et « it’s going. » 

“You have to”, like you have 
to brush your teeth and “it’s 
going.” 

391 S2: Tu n’as pas une choix. You don’t have a choice. 

Here, the students use their first language, English, to clarify their ideas. The first language seems 
to provide them with resources to strengthen and confirm their explanation that there is a difference 
between the two uses of “have (has) to”. Students use English to clarify or confirm their 
interpretation of the French expression “çadoit”. Comparing “it has to be a six” in the card game, in 
which students knew the next card “had to” be the skunk (it was the only card left to be played), to 
the sentence “you have to brush your teeth” was a cognitively challenging activity both 
mathematically and linguistically. In the last line, S2 raises the question of choice, which is inherent 
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in the “you have to brush your teeth” example, but not in the “it has to be the skunk” example. 
Students use their first language as a tool for discussing the multiple meanings of “çadoit” and, in so 
doing, construct both mathematical and linguistic understanding.  

Discussion  
Our results highlight the mathematical and linguistic understanding that can occur during 

collaborative dialogue in the bilingual mathematics classroom. When viewed through a sociocultural 
theory lens, in the first excerpt, the learners, through the scaffolded guidance provided by the 
interviewer-researcher, are able to go farther, mathematically and linguistically, than they may have 
been able to individually. Through the interviewer-researcher’s introduction of the term 
“absolument”, students are able to pick up that language and use it to explore the mathematical 
concept of certainty. Similar to the reflexive relationship described by Barwell (2005), in this study 
students’ mathematical understanding of the probability-related concept of certainty develops in an 
interwoven fashion with their linguistic understanding. 

In the second interaction, students engage in a phenomenon that is of particular interest to many 
working in bilingual mathematics classrooms—codeswitching. Despite some traditional, deficit-
oriented views of codeswitching, recent research in the field of second language education has 
argued that in the classroom, judicious use of students’ first language can serve as a resource for 
second language learning (e.g., Cummins, 2007; Swain & Lapkin, 2000; Turnbull & Dailey-O’Cain, 
2009). Moreover, research in mathematics education has argued that bi- and multilingual learners use 
their first language, home language(s), or shared language(s) as a resource for mathematical learning 
and that it plays an important social and political role (e.g., Adler, 1999; Barwell, 2014; 
Moschkovich, 2005; Planas & Setati-Phakeng, 2014). Barwell and Setati (2005), for example, have 
urged mathematics educators to find “ways of dealing with linguistic diversity that avoid reducing 
mathematics classroom interaction to a monolingual (English language) norm” (p. 23). Although the 
research contexts referred to here are varied and each is unique, codeswitching is a phenomenon that 
seems to occur throughout. A sociocultural theoretical framework that views language as a mediator 
of thought and as a cognitive tool, allows us to view students’ codeswitching in this study as a 
resource for mathematical and language learning, rather than a problem or deficit to be overcome. 

Implications and challenges 
The two excerpts featured here point toward implications, and corresponding challenges, for 

mathematics educators working in bi- and multilingual contexts. First, we suggest that providing 
opportunities for students to engage in collaborative dialogue with each other and with their teacher 
is important mathematically, linguistically, and socially. Taking the time to allow these interactions 
to unfold is challenging when faced with the demands associated with covering curriculum outcomes 
and assessment, but can result in learning that is mathematically and linguistically valuable. It will be 
imperative for mathematics educators to recognize, value, and build upon the mathematics present in 
students’ multiple meanings, and in their everyday talk. This is particularly true for bilingual 
learners. Viewing both mathematics and language as social, discursive activities may help foster 
collaborative exchanges. 

Second, the ways in which multiple languages are used in any context, including the mathematics 
classroom, are complex. Interpretations of codeswitching practices must take into account contextual, 
political, and language policy factors. Nonetheless, researchers across contexts are increasingly 
viewing student codeswitching as a potentially resourceful way of understanding complex 
mathematical and linguistic content. In spite of this, local policy often dictates that one language 
only, the target language, be used as the language of teaching and learning in the classroom (and this 
is certainly the case in our study’s context, French immersion). The challenge will be for researchers 
and educators to continue to explore in more detail if and how students’ multiple languages can be 
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used in the mathematics classroom, and how to do this in a way that results in effective and efficient 
language and content learning.  

Conclusion 
In sum, our results suggest that collaborative dialogue can be a meaningful activity in the 

bilingual mathematics classroom. In particular, interaction may provide opportunities for bi- and 
multilingual learners to learn not only mathematical content but also language. Learners can build on 
the scaffolding provided by teachers and even their peers to extend their understanding of linguistic 
and mathematical concepts.  

We argue for a need to move beyond viewing strictly academic mathematics vocabulary as the 
only acceptable or valuable mathematical communication. While gaining control over mathematics 
terminology is without a doubt important, students also need to acquire the language necessary to 
talk about mathematics. Moreover, language use, language learning, and mathematics learning are 
largely, if not entirely, inseparable.  
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Attending to precision (ATP) is essential in mathematics. This study examined ATP instances through 
the lens of univocal (functioning to convey information) and dialogic (functioning to generate new 
meaning) discourse. Analysis of data from five secondary mathematics classrooms focused on whole-
class instances of ATP with coding based on the univocal or dialogic nature of the discourse. 
Although instances were predominantly univocal, there was variation in whether the teacher’s or 
student’s idea was being transmitted. We share examples of the rare dialogic instances where the co-
construction of meaning through discourse involved ATP in qualitatively different ways than the 
univocal instances. 

Keywords: Classroom Discourse; Problem Solving; Metacognition; High School Education 

Within mathematics, precision is highly valued because imprecision can lead to holes in 
arguments or faulty conclusions and miscommunication can prevent the development of shared 
meaning. As a steward of the discipline, then, school mathematics must help students learn to attend 
to precision and recognize that standards of precision are different within mathematical communities 
than they are in other communities. In the United States, the importance of attending to precision 
(ATP) was affirmed by its inclusion within the Common Core State Standards for Mathematics 
(2010). Not only is ATP a worthwhile end in its own right but also has the potential to support 
student learning. For example, by paying careful attention to the precise meaning of algebraic 
symbols, students can successfully transition from arithmetic reasoning to algebraic reasoning and be 
prepared for higher levels of mathematics (Kieran, 2007). In general, students, by interacting with 
teachers and classmates, can express and refine mathematical ideas together, constructing shared 
meanings and becoming legitimate participants in mathematical discourse (Lave & Wenger, 1991) 
rather than passive recipients of knowledge. 

This study focused on ATP in secondary mathematics classrooms. Our goal was to see a broad 
range of instances of ATP and analyze the nature of the discourse in those instances within the 
whole-class public discourse. This work adds to the literature on ATP, which is relatively thin 
compared to well-developed topics such as problem solving or reasoning-and-proving. 

Theoretical Framework 
For this study we took a sociocultural perspective wherein student learning is viewed as 

intertwined with social interactions (Vygotsky, 1978) and used tools from discourse analysis to 
examine the interactions. In particular, we drew on Herbel-Eisenmann and Otten (2011) who framed 
the learning of a subject as the process of coming to participate meaningfully in the discourse of that 
subject’s community. We consider ATP to be one of the characteristic practices of the mathematics 
classroom community as well as the broader mathematics community. 

Discourse serves two important functions—to transmit an existing meaning from one person to 
another and to generate new meanings through the process of interacting (Bakhtin, 1986). The term 
univocal refers to discourse that is primarily intended to fulfill the transmission function, whereas 
dialogic refers to discourse that is primarily intended to generate new meaning. Mathematics 
classrooms in the United States predominantly feature univocal discourse (National Council of 
Teachers of Mathematics, 2014), yet various scholars have provided evidence for the value of 
dialogic discourse (e.g., Lobato, Clarke, & Ellis, 2005; Otten & Soria, 2014) and called for more 
research on benefits of different forms of classroom discourse (Howe & Abedin, 2013). 
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Research Question 
This study addresses the following question: What is the univocal or dialogic nature of the 

discourse within instances of ATP in secondary mathematics classrooms? Although the question 
draws a binary distinction between univocal and dialogic discourse, we recognize that the underlying 
characteristics form a continuum (Truxaw & DeFranco, 2008) and that all discourse involves both 
deciphering meaning (univocal) and generating meaning (dialogic). Nonetheless, like others 
(Peressini & Knuth, 1998), we see practical value in distinguishing between discourse that is more 
prevalent in one than the other. This distinction is especially appropriate with regard to a 
mathematical practice such as ATP because scholars (e.g., Barwell & Kaiser, 2005) have pointed out 
that dialogic discourse is a practice-oriented process within a community. 

Method 

Setting and Participants 
This study is part of a larger project focused on the mathematical practices of reasoning-and-

proving, generalizing, and ATP. The project has two interrelated goals: (1) to support mathematics 
teachers in understanding and implementing these practices, and (2) to better understand how 
practicing teachers and students at various grade levels engage in the practices (or not) during 
classroom instruction. We worked with a group of teachers during their summer break to achieve 
goal 1, and we conducted classroom observations throughout the following academic year to achieve 
goal 2. This particular study reports on an analysis of ATP within the classroom observation data of 
the secondary teachers. 

The project took place in a rural school district in the central United States. The district is 
predominantly white in ethnicity but comprises substantial economic diversity and diversity in 
parental education levels. The district performed slightly above the state average on the secondary 
mathematics standardized assessment. 

Eight mathematics teachers volunteered to participate in the larger project, spanning grades 5–12. 
The teachers’ backgrounds, teaching experiences, and philosophies toward mathematics education 
varied. For this study, we focused on five teachers (grades 8–12) and one focal class per teacher. We 
observed the focal classes on typical instructional days in the fall and winter. We intended to conduct 
three observations per class to capture a range of mathematical topics and gain a sense of the 
variability of discourse per classroom. When the discourse was limited, two observations were 
sufficient. When the discourse involved a range of interactions, we made three or four observations. 
This does not threaten our analysis since we do not seek to compare classes. Instead, we focus on the 
ATP instances when they arise and the nature of the discourse therein. 

Data and Analysis 
Classroom observations involved a single video camera and four digital audio recorders. Analysis 

began by flagging instances of ATP in the whole-class public discourse using a coding scheme based 
on the Common Core State Standards (2010), Koestler and colleagues (2013), and Fennell, Kobett, 
and Wray (2013, January). In particular, we looked for the following indicators: 

• Emphasis, clarification, questions, or discussion in regard to 
o Defining terms or using them appropriately 
o Defining symbols or using them appropriately 
o Labeling units, graphs, or diagrams 
o Precision of calculations 
o Precision of measurements 
o Rounding or estimating 
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o Making or refining claims 
o Giving explanations or justifications 
o Appropriate mathematical precision within a non-mathematical problem context  

Note that a teacher or student merely being precise did not necessarily result in a flag for ATP. More 
important was whether explicit attention was given to the precision. Having flagged the instances of 
ATP, we marked their beginning and end based on when the focus of the discourse shifted to and 
from the issue of precision and then transcribed each instance. We compiled durations and 
descriptive statistics for each class and for the set of ATP instances overall. 

Next, we coded each instance of ATP based on the distinction between univocal and dialogic 
discourse. Building on the definitions above, we operationalized these constructs using the following 
characteristics, adapted from Wegerif (2006) and Truxaw and DeFranco (2008): 

• Univocal 
o transmission of meaning (giver and receiver(s)) 
o closed discourse (answer or information concludes the exchange) 

• Dialogic 
o shared development of meaning (give-and-take) 
o open discourse (information or ideas spur further discourse) 

Note that having multiple speakers does not imply dialogic interaction. Multiple speakers can be 
involved in transmitting meaning rather than in opening up a discourse space for making new 
meaning. Also, a single turn, such as a teacher’s question, cannot be coded on its own because the 
potential to spur dialogic discourse does not necessarily do so. Thus, we considered interactions 
overall when making coding decisions. In rare cases, there was difficulty coding but these were 
discussed until consensus was reached. 

Our final phase of analysis was to look across the coding for patterns and themes both within and 
across the univocal and dialogic instances. These themes were used to structure the Findings, 
presented below with several examples used to illustrate the themes. 

Findings 
We found 140 instances of ATP in the classroom data, with an average duration of around 40 

seconds per instance. Some were very brief and others lasted a few minutes. Overall, univocal 
instances (131) were more common than dialogic instances (9). Only two classes exhibited dialogic 
instances and univocal ATP was still predominant. Below we illustrate some themes that emerged 
from the univocal instances of ATP and give examples of the rare dialogic instances. 

Univocal Instances of Attending to Precision 
The 131 instances of univocal ATP comprised 93.6% of the total instances and ranged in 

duration from 3 seconds to 2 minutes, 48 seconds. The nature of the ATP in these instances varied. In 
some cases, teachers briefly pointed out a lack of precision, a need to be precise, or prompted 
students to use precise terminology. In other cases, teachers and students attended to precision of 
their communication to assure that the transmission of meaning was successful. 

Many instances of univocal ATP were relatively brief, involving a teacher making an explicit 
remark about precision. For example, when working with graphs, Mr. Forrest said, “[The graph] 
doesn’t have to be perfect, but I’m going to make sure I put the x-intercepts about where they are on 
this graph and the y-intercept about where it is on that graph.” These instances were univocal because 
they simply involved a teacher transmitting an idea or warning with regard to ATP. 
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Other brief instances of univocal ATP involved teachers pressing for precise terminology. For 
example, Ms. Finley was working with students to prove that two triangles were congruent. One of 
the steps in the proof involved side NG being shared by both triangles. 

Finley: OK, GN is equal to NG, which is true. My question to you is, why? 
Students: Same line? 
Finley: It is the same line, but we have a name for that… It’s a property that we did back in 

Chapter 2, that seemed really silly at the time, but… 
Students: Reflexive! 
Finley: Reflexive. OK? 
Male Student: I said it. I knew it. 

Ms. Finley prompted the class to use the precise term in the written proof rather than simply 
saying that GN and NG are the “same line” segment. This interaction was univocal because the 
teacher knew the property and terminology she wanted and the interaction ended as soon as the term 
was supplied. It was not opened up into a discussion of the reflexive property itself or to other 
imprecisions such as the conflation of line and line segment. The student’s final turn confirms that 
this interaction was univocal, directed toward supplying known information. 

Longer instances of univocal ATP most often involved the teacher and students engaging in 
discourse to clarify or correct the communication of a mathematical idea. These instances were 
univocal because they were, in essence, a transmission of someone’s idea and ATP played a role in 
assuring that the meaning was transmitted and received as intended. For instance, Ms. Finley drew a 
pair of triangles on the board (see Figure 1) and claimed they were congruent, but she purposefully 
wrote the congruence statement with the vertices listed in an incorrect order. 

 
Figure 1: An incorrect statement about congruent triangles 

Finley: OK, so, I’m telling you I’m wrong. Emily thinks I’m wrong because I can’t draw. I get 
that. The question is, why am I really wrong? 

Female Student: Does it have something to do with the right angle? 
Male Student 1: You don’t have congruent angles. 
Students: Yeah. 
Ms. Finley guided the students through a quick verification that, in fact, all the corresponding 

sides and angles were congruent to one another, so the triangles were truly congruent. 
Finley: So there’s something else that must be wrong with my thinking. Melissa? 
Melissa: The numbers are wrong, or the letters. 
Finley: The letters are in the wrong order. What did I not match up right? 
Male Student 2: Ohhh, I see. 
Finley: C should match with… 
Students: C. 
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Finley: C [instead of A]. So, this [congruence statement] is not true, and don’t make this mistake 
on your homework because if you do, we’ll have a problem. 

Note that there was not only ATP in this interaction but also a suggestion from Ms. Finley to be 
precise in the future. This interaction was univocal because Ms. Finley had a particular error she 
wanted to discuss and the exchange concluded when it was identified. Students made bids to open up 
a dialogic exchange when they questioned the angles instead of the labeling, but this did not lead to 
dialogic discourse as Ms. Finley led students through verifying the corresponding parts of the 
triangles were indeed congruent and then proceeded with the ATP of the labeling. 

Less often, the long instances of univocal ATP focused on students’ ideas. The following 
instance is from Mr. Forrest’s lesson on graphs of polynomials. Mr. Forrest asked the class about 
“tangent to” and the interaction then focused on clarifying a student’s idea about the phrase. 

Forrest: Is the graph tangent to the x-axis, or does the graph continue through the x-axis at each 
x-intercept? … Does anybody know what “tangent to” is? 

Dustin: Stops at it. 
Forrest: How do you mean, “Stops at it”? 
Dustin: Like, whenever it goes down (drawing in the air) and touches it [the x-axis], it 

immediately goes right back up and that’s either the furthest point up or the furthest point 
down in that part. 

Forrest: Alright, I like your explanation Dustin. Could you draw a picture on the board? [Dustin 
draws a curve on the board; see Figure 2] 

 
Figure 2: Dustin’s example of a curve tangent to the x-axis. 

ATP occurred as Mr. Forrest asked Dustin to clarify his words, “Stops at it”, and to represent his idea 
graphically. Although Mr. Forrest prompted the ATP, Dustin’s idea was the focus. The interaction 
was univocal because it involved clarifying Dustin’s transmission to the class. 

Dialogic Instances of Attending to Precision 
Although dialogic instances of ATP were rare, they are important to consider because they 

illustrate a different form of interaction and engagement with ATP. All 9 dialogic instances involved 
precision of language or communication, whether it be constructing definitions, refining student 
conjectures, or building upon (rather than merely transmitting) a student’s idea.  

The following excerpt is from Mr. Forrest’s class as they discussed the graph of ! = −!. Mr. 
Forrest asked a small group how the calculator was able to display a graph even though the square 
root of a negative number is imaginary. He then engaged the whole class in this idea. 

Forrest: Can anybody explain why you still got a graph there? What do you think, Matt? 
Matt: Because all the x-values are negative, it’s gonna make it positive. 
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Forrest: So, “Because all the x-values are negative, it’s gonna make them…” 
Matt: Like, the x-values in the graph, whenever you plug them in it’s gonna invert them into a 

positive number. 
Forrest: Alright, so can you give me an example? Because we got [writes on board] y equals the 

square-root of negative x, right? 
Matt: So x is negative three. 
Forrest: So if we made an xy-table, plugged in negative three? 
Matt: Yeah. 
Forrest: We get the square root of… 
Matt: Three. 
Forrest: Three, right? Because, if you think of it another way, wouldn’t that be the square root of 

negative negative three? 
Female Student: Uh huh. 
Forrest: Which is the square root of negative negative 3. This is why it’s possible. Because even 

though it’s the square root of negative x, what kind of values can we plug in for x? We can 
plug in negative values for x to give the square root of x. Does that make sense? 

Matt offered an idea and the subsequent discourse involved attending to the precision of his 
language to facilitate communication while also building new meaning. For example, Mr. Forrest 
repeated Matt’s original statement, which contained two vague referents (“it’s” and “it”), then Matt 
added to his explanation. Mr. Forrest also requested an example and said, “So if we made an xy-table, 
plugged in negative three?” to push Matt to express his idea more clearly. Matt was able to give a 
specific example and Mr. Forrest then built on that idea to move toward a more general idea based on 
that shared meaning. It is important to note that Mr. Forrest was not the one doing all the reasoning. 
He did contribute, but he also pushed Matt to illustrate the reasoning behind his idea, which allowed 
Mr. Forrest to build upon and extend Matt’s original reasoning. 

This second example is also from Mr. Forrest’s class because his class exhibited nearly all the 
dialogic instances of ATP. Here, Mr. Forrest was reviewing the definition of a polynomial in a 
univocal manner when dialogic discourse took place around the definition of whole number. 

Forrest: Polynomial functions have only whole number exponents on the variables. What are 
whole numbers? 

MS: Like, number one would be a whole number. 
Forrest: That’s true. Specifically, what is the set of whole numbers? … [pause] Because when we 

say whole numbers, it’s actually a very specific mathematical set, right? 
Zack: One, two, three, four. 
Forrest: Say it again. 
Zack: I just counted them. 
Forrest: OK. 
Ben: Like zero to infinity, positive. 
Forrest: Zero to positive infinity? 
Ben: Mm hmm. 
Male Student: Wait, is there other kinds of infinity? 
Henry: It could be fractions and decimals, and those aren’t. 
Forrest: Alright, so if we say zero to positive infinity, we’re including too much? Is that what 

you’re saying, Henry? [Henry nods] OK. So be specific. 
Dustin: Starting at one and counting up by ones. 
Forrest: Starting at one and counting up by ones. Is that the whole numbers? 
Female Student: Sure. 
Forrest: Sure. 
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Amy: It doesn’t have zero. 
Male Student: No, zero isn’t. 
Forrest: I don’t really like pestering anyone, but I see lots of college algebra books right in front 

of people. You could find out, right? 

The precision of language is apparent as Mr. Forrest repeatedly called on students to clarify how 
they describe whole numbers. In trying to precisely describe the set of whole numbers, several 
students contributed ideas in a dialogic manner. One student gave an example of a whole number 
(“one”), Zack then gave a pattern of whole numbers (“one, two, three, four”), and Ben attempted a 
definition (“zero to infinity, positive”). Then, Henry pointed out that Ben’s definition included too 
many numbers. Mr. Forrest clarified this idea but then did not refine the definition. Instead, he left 
the discourse open and Dustin then provided a new definition (“starting with one and counting by 
ones”). Mr. Forrest and other students weighed in, unsure of whether this was an acceptable 
definition. At that point, Mr. Forrest directed attention toward the textbook definition, which ended 
the dialogic ATP. Although this interaction was dialogic, all shared ideas were not taken up in the 
discourse. In particular, one male student raised a question about “kinds of infinity” that was not 
addressed, and Amy’s comment about zero possibly being a whole number was not discussed but 
was circumvented by appealing to the textbook definition. An exploration and determination with 
regard to zero would have been a further opportunity for ATP. 

Discussion 
We examined instances of ATP in the whole-class discourse in five secondary mathematics 

classrooms and focused on the univocal or dialogic nature of those instances. Some ATP instances 
were brief—for example, a teacher pointing out the need for labels in a graph or calling for the use of 
a specific term. Other instances were longer interactions focused on clarifying the transmission of 
someone’s idea, many times the teacher’s but sometimes a student’s. Overall, the vast majority 
(93.6%) of ATP instances were univocal. Although past research (e.g., Stigler & Hiebert, 1999) led 
us to expect univocal discourse, its dominance was surprising for two reasons. First, due to grade 
level, topic, and teacher background variability, we expected at least some of the classrooms to 
exhibit more substantial dialogic discourse. As it turned out, even the class with the most dialogic 
instances (Mr. Forrest’s) still had nearly 90% univocal. Second, many of the illustrations of the role 
that ATP can play in mathematics education (Koestler et al., 2013) involve dynamic, dialogic 
interactions wherein meaning is constructed through a collaborative process of critique, refinement, 
and extension. Such instances of ATP were rare in our data. 

When dialogic ATP did occur, the meaning-making, by definition, was qualitatively different 
than in univocal interactions. A key question, then, is what spurred the dialogic discourse? The 
answer is certainly a multitude of factors and would require further analysis to parse out, but we can 
speculate that it was a confluence of the mathematical content or task available as a focus for the 
discourse, the teacher’s discourse moves, and the students’ contributions to the discourse. It is also 
important to consider ATP in particular, because it is possible that certain aspects of ATP—attention 
to labels, technical terms, etc.—lend themselves to univocal discourse because they are somewhat 
normative. Other aspects of ATP—the process of defining, clarifying reasoning—may naturally be 
better suited for dialogic discourse. This study provides preliminary evidence that such may be the 
case, but further research is needed. 

Another important contribution from this study has to do with the role of students within ATP 
discourse. Many scholars have brought attention to the value of engaging students in dialogic 
discourse (e.g., Lobato et al., 2005; Otten & Soria, 2014). The present study highlights that involving 
students actively in the classroom discourse is not necessarily the same as engaging students in 
dialogic discourse. As we saw, even when students’ ideas were the focus of ATP interactions, it often 
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remained univocal because the purpose was to transmit or clarify those ideas to the rest of the class, 
which is distinct from engaging students in the collaborative meaning-making of dialogic discourse. 
Heeding Clarke’s (2006) warning, we do not intend to set this as an unproductive dichotomy between 
univocal and dialogic discourse or of teacher-focused and student-focused discourse. Rather, this is 
meant to be a call to attend with precision to the different experiences provided to students in 
mathematics classrooms with regard to ATP. 
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Teaching students how to use and interpret various representations of functions remains an enduring 
challenge for educators. Providing students access to such representations is a key feature of 
providing them access to mathematical participation and communication. This study is based on a 
teaching experiment, which aims to provide students access to the discourse on representations of 
functions by eliciting students’ discourses and making them explicit topics of reflection in a post-
secondary classroom. The results indicate that the pedagogical approach used in this study has the 
potential to foster mathematical communication in the classroom as evidenced by students’ 
awareness of the tacit aspects of their discourses that shape their thinking about representations of 
functions. 

Keywords: Advanced Mathematical Thinking; Classroom Discourse; Instructional Activities and 
Practices; Post-Secondary Education 

Representations mediate thinking about mathematical concepts and play critical roles in 
mathematical communication. Kaput and Rochelle (1999) argue that the emergence of new 
representational forms can help learners engage in powerful mathematical ideas that can otherwise 
remain inaccessible to them—an affordance they refer to as democratization of access. Arcavi (2003) 
also notes that visual representations can help students think about concepts and meanings which can 
be bypassed by symbolic representations. The representational system of a concept carries the 
underlying structure of that concept and the possible irrelevancies within a representational system 
“are dismissed or unnoticed by experts” (Arcavi, 2003, p. 232). For students who cannot see the 
underlying structure of a concept within a representational system, those irrelevancies can be 
significant since experts of mathematical discourse can “lose the ability to see as different what 
children cannot see as the same” (Sfard, 2008, p. 59). These arguments indicate that mathematical 
representations have the potential to provide learners access to mathematical communication. 
However, if their roles and use remain invisible to the students, they can also lead to 
miscommunication in the classrooms. Teachers play critical roles in making mathematical ideas 
transparent for students to enhance mathematical communication. This work is based on a teaching 
experiment that aims to provide students access to the discourse on representations of functions and 
explores whether this pedagogical approach has the potential to foster classroom communication. 

Function is a central concept in K-12 and undergraduate mathematics and it is a challenging topic 
to learn due to the various notions associated with the concept (Eisenberg, 1991). In particular, many 
researchers argue that students have difficulties moving flexibly across graphical, algebraic, tabular, 
and verbal representations of functions (Monk, 1994; Schoenfeld, Smith & Arcavi, 1993; Sierpinska, 
1992; Tall, 1996).  Teaching students how to use and interpret various representations of functions 
remains an enduring challenge for educators and mathematics education researchers. Given the role 
functional relationships and representations play in mathematics and science as well as everyday 
interpretations of data, students’ lack of access to the discourse on representations of functions can 
hinder their access to mathematical participation and communication.  

This study is based on a teaching experiment that used a discursive approach to elicit students’ 
discourses about representations of functions and made them explicit topics of discussion and 
reflection in the classroom.  The goal was to teach students how various representations of the 
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function concept are similar to and different from each other to address particular aspects of 
functional representations that can remain implicit for the students. The study addresses the 
following questions: What are the features of a discursive teaching approach that aims to provide 
learners access to the discourse on representations of functions and how can this approach foster 
communication in the classroom about representations of functions? 

Theoretical Framework 
This work aligns with the theoretical approaches that view learning as becoming a more fluent 

participant in mathematical communities of practice. Each community of practice leaves a historical 
trace of physical, linguistic, and symbolic artifacts as well as social structures that define the 
characteristics of participation (Lave & Wenger, 1991). From this perspective, learning to become a 
fluent participant in mathematical communities of practice involves learning to speak mathematically 
and learning to use the artifacts of the practice in the manner of full participants by engaging in 
mathematical activities. Lave and Wenger (1991) refer to the artifacts employed in any practice as 
technology of practice and argue that transparency of the technologies of practice with respect to 
their meaning and use is a critical condition for access.  The visual representations that mediate 
mathematical communication (e.g., graphs, symbols, words) are among the technologies of 
mathematical practice. When the meaning and use of these representations are commonly agreed 
upon, they enhance mathematical communication. If their use and purposes remain invisible for the 
learners, then they may also hinder communication in the classrooms. For example, Güçler’s (2014) 
earlier work demonstrates that merely presenting a mathematical representation to students is not 
sufficient for transparent communication in the classroom. 

This study views mathematics as a discourse, where discourse refers to “different types of 
communication set apart by their objects, the kinds of mediators used, and the rules followed by 
participants and thus defining different communities of communicating actors” (Sfard, 2008, p.93). 
From this lens, providing access to the technologies of mathematical practice is tantamount to 
providing access to the discourse on those technologies. Sfard (2008) uses the term meta-level rules 
to refer to the elements of mathematical discourse that can remain implicit for learners and separates 
them from object-level rules. Object-level rules are about the behavior of the objects of mathematical 
discourse, whereas meta-level rules characterize the patterns in the activity of participants. Meta-
level rules are “about the actions of the discursants, not about the behavior of mathematical objects” 
(Sfard, 2008, p. 201). For example, “the graph of the function 2xy =  is a parabola” is an object-level 
rule of mathematical discourse whereas the patterns in learners’ actions when drawing that graph 
(e.g., using the assumption of continuity consistently when thinking about functions and their 
representations) constitute the meta-level rules in the learners’ discourses. The meta-level rules of 
mathematical discourse are often tacit and, if not made explicit, learners can talk about the same 
mathematical object (e.g., a graph) in different ways, leading to possible miscommunication (Güçler, 
2013). 

Providing learners access to the technologies of mathematical practice requires the teacher to 
attend to the tacit aspects of their meaning and use in the context of the classroom. For this study, the 
tacit aspects of the technologies of practice refer to the meta-level rules in participants’ discourses 
that shape their thinking about representations of functions. 

Methodology 
This work is part of a larger study that explored student thinking on functions, limits, derivatives, 

and integrals over the course of 13 weeks. The focus here is on the classroom discussions about 
representations of functions that took place during the first 3 weeks. The study followed a teaching 
experiment methodology as outlined by Steffe and Thompson (2000), which involves 
experimentation with the methods that can influence student thinking. This paper is on the features of 
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the teaching experiment and the nature of discourse it elicited in the classroom regarding 
representations of functions. The participants were one pre-service and seven in-service high school 
teachers, hereon referred to as the students, taking a mathematics content course on calculus for their 
teaching licensure programs. The researcher was the instructor of the course and all of the students 
taking the course volunteered to participate in the study. The classroom sessions about functions 
were video-taped. The sections during which the instructor and students talked about representations 
of functions were transcribed. The transcripts included the utterances and actions of the participants.  

Consistent with the theoretical assumptions of the study, a specific goal of the teaching 
experiment was to make the tacit meta-level rules in learners’ discourses about representations of 
functions explicit topics of discussion and reflection in the classroom. In order to do that, it was 
important to bring forward the various ways in which learners used and talked about representations 
of functions. The activities on representations of functions were designed so that the students had the 
potential to act according to different meta-level rules, leading to different realizations of those 
representations and the function concept. Those instances were considered critical interms of eliciting 
students’ existing discourses on representations of functions and examining which aspects of them 
were visible or invisible for the learners.There were also specific discussions about the similarities 
and differences among various representations of functions with respect to the different meta-level 
rules on which they are based.  At the end of each activity, after eliciting the students’ discourses, the 
instructor explicated the meta-level rules in their discourses. This was an intentional part of the 
teaching experiment with the goal of making transparent the different meanings and uses of 
representations of functions andproviding students access to these technologies of mathematical 
practice. Throughout the three lessons on functions, students worked on various activities on 
representations of functions, two of which will be presented in the next section. 

While the visuals students used constituted the representations in their discourses on functions, 
how they used those representations (their discursive acts when visualizing functions) revealed the 
meta-level rules in their discourses. For the analysis of the meta-level rules in students’ discourses, 
particular attention was given to the types of assumptions students used when thinking about 
representations of functions (e.g., assumption of continuity, regularity, discreteness). In the next 
section, the discussions on some of the classroom activities about representations of functions are 
presented with a particular focus on the meta-level rules in students’ discourses. Students’ awareness 
of the tacit meta-level rules shaping their discourses about the function concept and its 
representations were considered as indicators of enhanced classroom communication. All the student 
names used in the study are pseudonyms.  

Results 
The first classroom discussion about representations of functions took place during the first 

lesson on functions when students were asked to provide a definition of the concept in their own 
words. When multiple students mentioned graph as a definition of function, the instructor 
hypothesized that they may be using the assumption that a function is the same thing as its 
representation. She posed the following question to initiate a discussion: “If a function is a graph, 
then is a graph a function?” The students mentioned that “a graph is not always a function” but did 
not realize that they were using function and graph as equivalent words in their initial definitions. 
The instructor then asked “If a function is a graph, then can we also define a function as a table or 
algebraic expression?” The responses indicated that the students were comfortable with defining a 
function “as a graph or equation” but “not as a table”. When asked to elaborate, they said that “a 
table is only a representation”.  The teacher asked whether, and how, a graph or algebraic expression 
was different than a table. The students quickly realized that all of those visuals were representations 
of functions. They were confused with their acceptance of some of those representations as a 
definition of function and rejection of others as signifying a definition. To help students resolve this 
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conflict, the instructor asked if a function is the same thing as its representation. The students said 
they “always assumed continuity”, which made it “natural [for them] to think about graphs and 
equations as functions”. They also mentioned using tables to draw graphs of functions but they did 
not consider a table as a function because it was “just a set of values”.   

Although this discussion was about definitions of functions, it revealed some meta-level rules 
that shaped students’ discourses about representations of functions as well. The students were using 
the assumption of continuity as a meta-level rule when thinking about a function as a graph or 
equation. The discussion revealed that they were also thinking about that equation as a single rule 
through the assumption of regularity. The students used the assumption of discreteness when talking 
about a table as a set of values and they considered a table as a tool to generate a graph. However, 
they did not realize that the meta-level rule in their discourses when talking about the tabular 
representations of functions (using the assumption of discreteness) was not compatible with the meta-
level rule in their discourses when talking about graphs and algebraic equations (using the 
assumption of continuity). At that point, using the ideas students generated during the discussion, the 
instructor explicated the tacit meta-level rules shaping their thinking about functions and their 
representations (e.g., students’ referral to a function as the same thing as one of its representations; 
their incompatible assumptions when transitioning from one representation to another). 

The students worked on another activity on representations of functions during the second lesson 
on functions. They were given a tabular representation as shown in Table 1 and were asked “what 
can you say about F(x) based on this representation?” 

Table 1: Tabular representation of F(x) 
x F(x) 
-3 3 
-2 2 
-1 1 
0 0 
1 1 
2 2 

3 3 
 
Carrie initially mentioned that it should be the absolute value function, which she represented 

algebraically as xy = . Realizing that Carrie was thinking about F(x) through the assumption of 
regularity, the teacher asked students how they would translate this tabular representation to a 
graphical one. Fred said the prior class discussions made him think that he needed to know the 
domain on which the function was restricted. He argued that the algebraic representation of the 
function should also include }3,2,1,0,1,2,3{ −−−∈x  and said the graph should consist of “a set of 
points” as shown in Figure 1(a). All of the students agreed that “the function” should be represented 
discretely as a set of points on the Cartesian plane. Since the students automatically assumed that 
F(x)is a function, the teacher then asked what would happen if the domain of F(x) in Table 1was

]3,3[− .  Figure 1(b) shows the graph students generated for the question.  
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Figure 1(a): The first graph students 
generated during the activity 

Figure 1(b): The second graph students 
generated during the activity 

Note that, despite their realizations of the importance of the domain of a function based on 
previous classroom discussions, the students were still using the assumptionsof continuity and 
regularity as meta-level rules in their discourses when they generated the graph in Figure 1(b). They 
were thinking about F(x) as the continuous absolute value function over the interval ]3,3[− , possibly 
due to the pattern they saw in the tabular representation in Table 1. Although the students recognized 
the tabular representation as consisting of static set of points using the assumption of discreteness 
when they generated Figure 1(a), they were using the assumption of continuity when they generated 
the graph in Figure 1(b). This clash in the utilization of different meta-level rules students used 
prompted the teacher to ask “how do you know that F(x) is a function?” In response to the students’ 
puzzled looks, she drew two graphs as shown in Figure 2(a,b), which satisfied the conditions in Table 
1 and asked students to elaborate on those graphs.  

  
Figure 2(a): The first graph the teacher 

generated during the activity 
Figure 2(b): The second graph the teacher 

generated during the activity 

The students quickly realized that the graph in Figure 2(a) did not represent a function on ]3,3[−
and the one in Figure 2(b) was not continuous although both graphical representations were 
consistent with the set of values in Table 1. In addition, the students realized that Figure 2 (b) “does 
not represent a regular function that has a single rule”. Sally mentioned that these challenges were 
occurring because they “only worked with continuous functions” in their education. Steve then 
mentioned that he used tabular representations every time he modeled continuous real-life 
phenomena. This led to discussions about how using different assumptions shape thinking about 
functions and their representations. During those discussions, the students explicitly mentioned that 
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they were using two different assumptions—continuity and discreteness—which indicated that they 
became aware of those meta-level rules. At the end of the classroom discussion, the teacher 
explicated the connections and differences between a definition of function and the visual mediators 
that represent the concept. While doing so, she used students’ considerations of function as a graph 
and rejection of any graph as a function to encourage them to think about how definitions of 
functions are formulated to avoid ambiguity.  

The features of the teaching approach used during all the activities about representations of 
functions were consistent with those demonstrated in the aforementioned activities. Those features 
included (a) eliciting how students talk about functions and their representations, (b) listening to their 
responses carefully to capitalize on the instances in which students reveal the meta-level rules in their 
discourses by asking probing questions, (c) creating opportunities so that students act according to 
different meta-level rules, leading to communicational conflicts, (d) giving students opportunities to 
reflect on their discourses to resolve those conflicts, and (e) explicating the emerging meta-level rules 
in their discourses at the end of the discussions for further reflection.  

The results of the study provide some evidence how a discursive approach to teaching has the 
potential to foster classroom communication, particularly with respect to students’ awareness of the 
meta-level and tacit aspects of their discourses on functions and their representations. Although the 
focus of this paper is mainly on the classroom discussions due to space constraints, additional 
evidence regarding the affordances of the teaching experiment in fostering classroom communication 
is given in Table 2. Such evidence is based on students’ weekly journal entries about functions in 
which they further reflected on any aspect of the classroom discussions that they found interesting. 

Table 2: Examples from students’ reflections on representations of functions 

Sally: I didn’t imagine that functions would be so complicated, there is much more to it than we 
are used to seeing…I’m on the mindset that the representation of the function doesn’t define the 
function. 

Martin: One theme that keeps coming up…is the notion of continuity.  I feel I will need to 
develop strategies to address this issue.  Students, just like us, have a tendency to assume 
continuity despite not being told or shown that a function is continuous. 

Lea: The class activity highlighted the idea that both graphs and tables are merely representations 
of a function, and cannot always depict all the possible values in a function… However, even 
though the graph and table are limited, they are both still important in understanding functions as 
they offer students a unique visual representation of a function… This example, along with 
others, also demonstrated that functions are very often discontinuous, or piecewise and may also 
contain more than one rule to it. 

Ron: In the some ways, it makes sense to gradually introduce different representation of a 
function over time as well as redefine a function as new concepts are presented.  Through our 
class discussions, we talked about 8 different ways to represent a function... I think the big 
question is when we should introduce set notation and synthetic representations of a function. 

 
Table 2 includes some representative examples of students’ reflections on representations of 

functions. By the end of the lessons on functions, these students were aware of some of the 
assumptions they used (e.g., continuity and regularity) as meta-level rules in their discourses on 
function (Table 2, [2], [3]). They also talked about the difference between the abstract concept of 
function and its representations (Table 2, [1], [3]). Further, since these students were also teachers, 
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the classroom discussions helped them think about how to teach these ideas to their students (Table 
2, [2], [4]). These results suggest that the teaching approach used in the study helped students be 
aware of some of the meta-level rules shaping their discourses on representations of functions and the 
function concept. The study also confirms the tacit nature of meta-level rules and their role in 
mathematical communication since the students in the study mentioned that they never learned about 
those meta-level rules before this course.  

Discussion  
Representations of functions are among the technologies of mathematical practice and play 

important roles in classroom communication. However, if their meaning and roles are not shared by 
participants, they may also lead to miscommunication. This study demonstrated that some aspects of 
the discourse on such technologies of practice can remain invisible to learners—even to those who 
have been exposed to the technologies in their prior education. This finding is in accordance with 
Güçler’s (2014) previous work and indicates that teachers should not take the communicative power 
of mathematical representations for granted; they need to make the discourse on those technologies 
of practice transparent for their students. The notion of transparency, which refers the visibility of the 
use and meaning of technologies of practice (Lave and Wenger, 1991), is a critical condition for 
providing learners access.  

In this study, access to the technologies of practice was conceptualized as access to the discourse 
on those technologies through the use of Sfard’s (2008) framework. This framework was useful in 
identifying and examining the features of classroom discourse that can remain tacit for the learners 
(e.g., meta-level rules) and served as a lens that helped shape the design of the teaching experiment 
used in this study. The results of the study indicate that a teaching approach that is responsive to the 
discourses of the students, which also elicits the meta-level aspects of participants’ mathematical 
discourses, has the potential to foster classroom communication and transparency needed to make 
mathematical ideas clearer for the learners. Such a teaching approach elicits the various ways in 
which students think about technologies of mathematical practice to highlight which aspects of them 
remain invisible for the students in the context of the classroom.   

This work may have some implications for teacher education. The participants of this study were 
pre-service and in-service high school teachers. Although they were considered as students in the 
content course they were taking, they were also the teachers of that content in high school 
classrooms. The results of the study indicate that these teachers’ reflections on their discourses on 
functions and their representations also triggered their reflections on how to teach those ideas to their 
own students. Some of those teachers mentioned using the activities they worked on in the classroom 
with their own students. In this respect, this study offers educators some activities and ideas that may 
be useful in teacher education courses and professional development.  
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Research about teacher noticing of students’ mathematical thinking has been an important and 
ongoing strand of research and practice in mathematics education. Our work extends this agenda by 
working collaboratively with teachers to learn together how to notice students’ mathematical 
strengths. The lens on strengths runs counter to the prevalent culture in U.S. schools to 
overemphasize gaps in students’ understandings. In this paper we describe a video club focused on 
identifying and naming students’ mathematical strengths and the protocols that support this focus. 
We illustrate and discuss the important shifts in teachers’ ways of noticing and talking about 
students’ mathematical activity. We also discuss implications for further research and professional 
development focused on teacher noticing of students’ math strengths.  

Keywords: Secondary Mathematics; Equity and Diversity; Teacher Knowledge 

Researchers and professional developers focus on teacher noticing because noticing informs 
practice, and teachers’ practices are consequential for students’ learning. Current video technology 
has made it possible to study and facilitate teacher learning to notice students’ mathematical thinking 
and understanding (Goldsmith & Seago, 2011; Jacobs et al., 2011; van Es, 2011; van Es & Sherin, 
2008) and instructional features of classrooms (Star & Strickland, 2008). Video also supports 
teachers to practice attending to important features and critical events happening within the complex 
setting of classrooms before they are faced with them in real time.  

As the knowledge base for equitable mathematics teaching continues to grow there is arguably 
more in classrooms now than ever before to which math teachers must attend, including knowledge 
of mathematics for teaching (Ball, Thames & Phelps, 2008), knowledge about communities (Civil, 
2007), knowledge about math identities (Aguirre, Mayfield-Ingram & Martin, 2013), knowledge 
about social and academic status (Featherstone et al., 2011), and an understanding of the critical 
relationships between math learning, math learners and broader sociopolitical structures (Gutiérrez, 
2013).  

In addition, teaching for equity requires a focus on resources (what students have) and students’ 
potential rather than deficits (what students are lacking). When teachers focus on strengths, they 
position young people as competent learners (Cohen, 1997), support students to create positive math 
identities (de Abreu & Cline, 2007; Jilk, 2014; Martin, 2000), help them recognize and value peers as 
intellectual resources (Cohen, 1997) and expand school mathematics to include a rich set of skills, 
practices and understandings in which students can find themselves (Boaler & Greeno, 2000; 
Featherstone, et al., 2011).  Maybe even more important, a strength-based classroom culture disrupts 
the dominant educational discourse focused on gaps and deficits (Gutiérrez, 2008) and provides a 
new and more realistic narrative about learning for young people who have traditionally been 
marginalized by school math.  

Believing that students have strengths from which to connect and build is challenging work. 
Recognizing (and naming) these strengths in real time is even more difficult. Research has shown 
that even very well intentioned teachers who profess a stance towards teaching for equity are 
challenged to enact these beliefs in their day-to-day teaching practice (Ladson-Billings, 1994; 
Walker, 2012). Our experiences working with math teachers confirm these results. Even teachers 
who desperately want their students to positively identify as “math people” often struggle to know 
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what “counts” as a mathematical strength or how to talk with young people about the strengths they 
have. We believe that there are valid reasons for such challenges.  

Teaching is a cultural activity filled with taken-for-granted assumptions and shared convictions 
and values (Stigler & Hiebert, 1999). As U.S. educators, we are immersed in a culture that focuses on 
students’ deficits and perpetuates unexamined habits of teaching as fixing students’ problems and 
misconceptions. These daily practices tend to get in the way of re-imagining and inventing 
instructional moves that instead focus on accessing and building on students’ strengths and multiple 
ways of understanding (Ladson-Billings, 1994).  

In addition, professional noticing is also a cultural practice. Hand (2012) argues that “dispositions 
relate to what teachers do or do not notice” (p. 234) in their classrooms and therefore drive 
instructional decisions. We attend to the classroom events that we have been taught to value. The 
cultures in which we have been immersed essentially train us to see and hear what is important to us. 
It therefore makes sense that if teachers are now expected to reshape their ways of noticing and their 
repertoire of teaching practices, then they need repeated opportunities to practice seeing and hearing 
students’ strengths in action and practice articulating these strengths to students in ways that are 
convincing. 

The video club we report on here sought to challenge and disrupt our collective tendency to look 
for students’ mathematical shortcomings. The video club was designed to provide a shared, local 
experience from which a heterogeneous group of teachers could learn to notice (Sherin, Jacobs & 
Phillip, 2011; van Es & Sherin, 2002) students’ math strengths in ways that could be useful and 
usable in their classrooms. A focus on drawing attention to students’ intellectual strengths is a 
noteworthy feature of equity teaching practices in general and of Complex Instruction in particular, 
which is the instructional approach that the teachers in this video club had committed to learn and use 
in their classrooms. Next we share key features of the context and design of this video club in order 
to then share our analysis of shifts in teachers’ noticing and their ways of talking about students’ 
mathematical activity. 

Context and Background of Video Club 
The teachers who we describe in this paper are part of a professional development network that 

has six mutually informed learning spaces. The learning spaces include a weeklong course about 
Complex Instruction, In-Classroom Support, Common Planning Time with course teams, a monthly 
video club and Teacher-leader meetings. The learning spaces are connected in several ways for the 
goals of developing coherence with common themes and making connections across spaces. An 
important goal for this network is to re-culture math departments with empowering professional 
development experiences in ways that build and strengthen teachers’ capacity to take up and sustain 
Complex Instruction as their equity pedagogy across the entire department. 

Complex Instruction, at its core, requires a belief that all students come with intellectual, social, 
and cultural resources and are able to learn rigorous content (Cohen & Lotan, 2014; Cohen & Lotan, 
1997). Complex Instruction (CI) creates a classroom “social system” that directly attends to and 
addresses problems of social inequality inside the classroom. Based on status generalization theory 
(Berger, Rosenholtz & Zelditch, 1980), CI methods are deliberately designed to “disrupt typical 
hierarchies of who is ‘smart’ and who is not” (Cohen, 1994; Sapon-Shevin, 2004, p. 3).  

Multiple ability treatments and assigning competence are two specific CI strategies used to 
address status issues in classrooms (Cohen & Lotan, 1997, 2014; Tammivaara, 1982). A multiple 
ability treatment makes visible the array of intellectual abilities, skills and competencies that are 
required to be successful with a given task. Assigning competence is a teaching move that also 
disrupts students’ perceptions of competence of self and peers by creating a mixed set of expectations 
for participation and success by publicly names the strengths students use when they are learning 
together. Hence, both of these practices rely heavily on teachers’ abilities to notice and name 
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students’ mathematical strengths in real time. In short, successful implementation of Complex 
Instruction pedagogy requires an ability to look at students’ mathematical activity and interactions 
with peers, listen to their sense making in real time in order to monitor their participation and 
understanding and find ways to further their learning.  

It is important to clarify that we are not advocating for “feel good” teaching practices that 
emphasize compliments and empty praise to help students feel better about themselves. Nor are we 
suggesting that teachers lower their standards for academic rigor or cognitive demand by searching 
for anything a student does or says that is remotely mathematical. Not everything we see or hear in 
classrooms is worth attending to. In a strength-base video club we consider a rich and expanded view 
of mathematical understanding that is conceptually demanding and includes both content knowledge 
and learning practices. 

The video club component of the professional development network was developed because 
program facilitators and math teachers needed an opportunity to observe the same classroom event 
simultaneously. The video club provided this experience along with a collective capacity to create a 
shared language about math strengths that could be used not only by individual teachers, but by all 
teachers, across grades and schools, thereby providing continuity and coherence to students’ school 
math experiences. 

The video club met monthly for two hours. Participants included all of the mathematics teachers 
who were members of the larger network, any student teachers who worked alongside these teachers, 
and the administrators and instructional coaches for math from participating schools and districts. A 
typical monthly video club meeting drew approximately twenty-five teachers from grades 6-12 from 
three different schools in two urban school districts. In the 2013-14 school year, there were 17 female 
and 9 male teachers who attended video club. Of these, 23 were White, 2 were Black and 2 were 
Asian. Table 1 reports the demographics for the public schools in which the teachers worked.  

Table 1: School Demographic Data (U.S Department of Education). 

 
We share this data for several reasons. First, this particular information contributes to readers’ 

understanding of the context in which we work and how it informs the examples we share about 
teachers’ accomplishments in shifting any aspect of their teaching practice.  Second, the meaning of 
“urban school” varies across the country depending on the local context in which schools and readers 
are situated. We want to be clear about the meaning of “urban” in this particular locale as it relates to 
teacher and student demographics. Finally, we provide this data, because culture matters. Skin color, 
gender, language, and SES, among other factors, shape our lived experiences, and these experiences 
act as lenses through which we notice and interpret classroom events. Since most of the teachers in 
this program are members of the dominant culture, and the young people with whom they work are 
poor students and students of color, it is reasonable to imagine these teachers might be additionally 
challenged to perceive and interpret moments of classroom activity as strengths and potential 
resources for learning (Chazan, 2000; Hand, 2012; Ladson-Billings, 1994).  

The video clips we use come directly from the classrooms of teachers who participate in the 
network. For the purpose of supporting teachers to notice students’ mathematical strengths, video 
clips show one group of 3-4 students working cooperatively for 8-10 minutes without interruption. 

 Male Female Multi-
racial 

White  Black Latino Asian 
Pacific 
Islander 

American 
Indian 

Free & 
Reduce 
Lunch 

ELL  

HS A  50.5% 49.5% 3.2% 4.4% 41.2% 11.8% 37.2% 2.2% 75.0% 12.2% 
HS B  52.8% 47.2% .9% 15.7% 34.8% 16.8% 30.8% 1.0% 56.9% 15.0% 
Middle 
School  
 

50.7% 49.3% 3.9% 12.1% 35.0% 20.0% 27.7% 1.3% 75.0% 15.0% 
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This kind of video clip makes several important things available for noticing students’ strengths, 
including looking at students when working unassisted by the teacher, their resourcefulness and 
inventiveness, how they wrestle with ideas that they have not yet studied, and opportunities to watch 
and hear students get stuck and unstuck as they make progress on a group-worthy task (Lotan, 2003). 

Supporting Teachers’ Noticing of Students’ Strengths 
In addition to carefully selecting videos for video club, careful coordination of video club 

structures and attention to potential status issues from skilled facilitators is important. The norms, 
protocol and focus questions developed to guide the video club meetings include: learning requires 
participation, we all have something intellectually valuable to contribute, we all have something to 
learn, and we are smarter together. Unsurprisingly these norms were shaped by the pedagogical 
principles of Complex Instruction providing facilitators with opportunities to model, practice and 
reinforce strategies for promoting equal-status participation and learning. 

Articulating strengths rather than deficits was initially challenging for teachers. The strengths 
teachers most often noticed at first were articulated in relation to state standards or learning 
objectives. For example, a 7th grade math teacher might state that her students could “use 
proportional relationships to solve multistep ratio and percent problems” (NGA, 2010). This grade-
specific objective does not easily translate into language that makes visible the actions of students as 
they make sense of ratio and percent problems or what they did and said to figure out such problems. 
In other words, the shift towards noticing strengths in students’ meeting particular learning objectives 
was a good start but not enough to make visible the important math thinking and actions the students 
had engaged with when working on those tasks. 

In response to this challenge, program facilitators developed a structured evidence-based protocol 
to disrupt patterns of deficit talk about students’ mathematical activity and to support teachers to 
generate descriptions and talk about students’ strengths. In addition to a focus on strengths, the video 
club protocol aims to promote safety and intellectual risk taking and support teachers to make 
connections between the video footage and events in their own classrooms. 

Unlike other projects that use small group discussions to support teachers’ learning with video 
cases, this video club used a general Go-Round structure (McDonald et al, 2003), sometimes referred 
to as a Round Robin Protocol, to organize how the teachers shared ideas for each focus question. 
There are a few things to note about this protocol that are important for facilitating this kind of video 
club. First, this protocol is inclusive. It affords each person an opportunity to share ideas and it 
supports the expectation that each of us participates. The Go-Round structure also gives us access to 
an expansive set of ideas about student strengths that no one person would notice alone. Finally, the 
sentence frame we ask teachers to use in conjunction with the Go-Round Protocol offers explicit 
guidance for how to talk about students with a strength-based lens. Our assumption is that teachers 
are learning to speak and gain fluency with a new language (language of strengths) and this takes 
time and practice.  

What Teachers Noticed about Students’ Strengths 
In order to appreciate students’ mathematical activity and support the noticing of students’ 

strengths, each video club starts with teachers doing math together. In this first phase of the meeting, 
teachers work cooperatively in groups of 3-4, most often with colleagues from different sites and 
grade levels to complete parts of the task that will be shown in the video. Doing math together 
affords a later conversation about learning objectives and provides teachers with the entire group-
worthy task (Lotan, 2003), from which they might consider students’ prior knowledge, potential 
common mistakes and misconceptions, the flow of mathematical ideas throughout a task, task 
development and the inclusion of Complex Instruction structures that support participation, 
autonomy and accountability (Cohen & Lotan, 2014).  
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The group then moves to phase two to consider students’ math strengths in relation to the 
learning objectives for the lesson. They watch the video clip for the first time and attend to students’ 
understanding of math content by pointing to and naming what students said and did that had 
mathematical potential and then provide a strength-based interpretation (Prompt #4 in the Protocol is 
reproduced in Figure 1 here).  

Figure 1: Sentence Frame for Noticing Students’ Strengths 

The following are some examples of strengths teachers noticed using the sentence frame to name 
a student’s strength and justify its connection to learning. These examples come from different video 
club sessions throughout a school year with teachers who work in grades 6-12. 

• Damarius translated .40 into “4 tenths,” and then he was able to write it as fractions, 4/10 
and ⅖, because three representations of the same number helped him figure out how to move 
between the different forms.  

• Rashida created a system for organizing and making zeros and then keeping track of them in 
an algebraic expression, because it allowed Rashida and her group to keep track of their 
terms and combine them correctly.  

• Lydia noticed a pattern for how to use parenthesis to group terms in an expression, because 
this pattern allowed her to see the like terms before she combined them. 

• Tian hypothesized that the similar figure would be bigger and not smaller, because then her 
group decided to try multiplying the lengths of sides with the scale factor instead of dividing. 

Many would consider it enough for teachers to notice that Damarius understood how to convert 
decimals to fractions or that Rashida correctly combined like terms. However, referencing topics, 
objectives or standards is not sufficient if teachers are to create classroom systems in which students 
choose to actively engage in learning, support each other in the learning process and create positive 
math identities. As we have noted earlier, equity-oriented teaching pedagogies such as Complex 
Instruction require an understanding of what students should come to know along with the processes, 
skills, and actions (verbs) they use as they come to know these things, so connections can be made to 
prior knowledge and leveraged for new learning. Damiarius and his team will soon believe in his 
strengths as a math learner and likely come to rely on these strengths much more often if Damarius’s 
teacher notices and names his strategy for translating multiple representations of number and 
explains how this strength contributes to Damarius’ learning. An orientation towards strengths and 
the specific strength-based language will support students’ expectations for competence and produce 
more equal-status interactions between students when they are engaged in learning math.  

In the third phase of video club the focus turns to the norms for participation that students enact 
that move their math understanding and groupwork forward. Norms for participation are “learning 
practices” (Cohen & Ball, 2001), ways in which we expect students “to go about the work of 
learning” (p. 75).  Specific to Complex Instruction, norms are intended to promote autonomy and 
interdependence in groups and to foster mathematical learning (Cohen, 1994). Teachers must be 
transparent about participation norms, provide students with opportunities to practice them, and 
notice and assign competence to these practices to make them a more normal way of going about the 
business of learning math. To this end, we provide teachers with an opportunity to notice these 

What did students do or say that was mathematically smart? 
 
I think it was smart when  (name of student)   did/said  (evidence from the video),    and I 

think this because       (how does this strength support students’ learning?)  . 
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behaviors in action (replayed back in the video clip) and practice talking about them as strengths. 
Below are some examples of the norms for participation that teachers noticed. Again, each teacher 
statement below used the sentence structure: I think it was smart when_________________, 
because___________________. 

• Tamika pressed for clarification from her group about “what to go up by” when scaling the 
x-axis, so all of the group data could fit on the graph. I think it was smart, because then 
Dariana had to explain how she scaled the y-axis, and Jason talked about the range of their 
data set. It helped the whole group learn more about how to create an accurate graph. 

• TJ expressed confusion about the different meanings of minus in both the geometric and 
algebraic representations, because knowing these different meanings will help her in other 
contexts that use minus.  

• Asad made sure that everyone in his group understood the directions before they started 
the task, because then the whole group could get started together and consider more than one 
way to do the problem.  

• Sierra took a huge risk by sharing her ideas about combining like terms with the entire class, 
because learning requires intellectual risk taking and people usually learn more when they are 
willing to try something new.  

Implications for Research and Professional Development of Teacher Noticing 

“I just start talking this way. These sentences [from the video club protocol] help me focus my 
thinking on students and their strengths when I’m back in my classroom” (math teacher). 

The small shifts we document here about the ways teachers are learning to notice and talk about 
students’ strengths in the context of video clubs are hugely important because they carry into 
classrooms. Teachers who are participating in these video clubs are thinking and speaking differently 
about their students when they go back into their classrooms. We have evidence from working with 
teachers in the other learning spaces of this professional development network that they are seeing 
and hearing strengths more often in real time, and they are more willing to speak a language of 
strengths with their students. Perhaps more importantly teachers themselves are noticing their own 
transformation as the quote above suggests.  

Collectively, the math teachers are often reminded of the power they have to help students notice 
their own mathematical strengths, change their participation and learn mathematics. The Feature 
Teachers, the teachers whose classroom videos are used, often reflect positively on video club after 
they have the rare experience of listening to their colleague’s talk about the many ways in which their 
students are smart. Feature teachers usually return to their classrooms feeling rejuvenated by this 
feedback and convinced that teaching practices grounded in strengths are well worth investing in.  

Changing how we frame students and their participation in math classes is not easy. It takes a 
concerted effort to shift perceptions about students and learning in which we have been immersed for 
many years. Even after one or two years of participating in this program, teachers still find it 
challenging to articulate math strengths in real time. The heterogeneity of the video club community 
addresses this challenge. Participants come with a range of experiences teaching different courses 
and grades. This means that they notice different things and contribute to a more expansive set of 
ideas about what counts as a strength, how different student behaviors might be interpreted as 
strengths, and how to name strengths in real time. Additionally, the diversity of teaching experiences 
affords articulation that is rare and powerful and often contributes to improved course design and 
program development in teachers’ home-sites. High school teachers hear middle school students 
make sense of math in ways they rarely consider. Middle school teachers get glimpses of former 
students on film demonstrating math practices they never thought possible. Teachers often report 
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feeling more hopeful about their ability to impact students’ learning when they have opportunities to 
talk across grade levels.  

Finally, and perhaps most importantly, we have also noticed shifts in the ways the teachers talk 
about themselves and their colleagues. They often assign competence to each other, sometimes 
playfully, but always with intent to bring attention to particular strengths. They might highlight 
something new they have learned from a peer and describe how it impacted their teaching. 
Sometimes they mention a particular way a colleague might draw out different strengths from others. 
These new ways of being professionals are not surprising. In addition to video club, these teachers 
are immersed in a culture of professional development in which the norm is to work from strengths 
rather than focus on deficits. We notice what we can do before addressing what we have yet to 
improve. We practice naming our resources so we know what we have to offer. We ask our 
colleagues to show up and speak up and share their many ways of being smart so we can be more 
successful together. This is the kind of transformative learning that all teachers deserve so as to 
support and sustain their equity work with students. 
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The purpose of this study was to examine the mathematics instructional practices of 75 second-year 
elementary teachers (K-5) in terms of the learning opportunities provided to their students. On 
average, each teacher completed instructional logs for 43 days across the school year. Select items 
were analyzed in order to better understand the elementary students’ opportunities to engage in 
problem solving and discourse. Results indicated frequent opportunities for discussion but limited 
opportunities for engagement with more open-ended tasks and explanation. Implications for future 
research and mathematics teacher education are discussed. 

Keywords: Classroom Discourse; Problem Solving; Instructional Activities and Practices; 
Elementary School Education 

Purpose 
Elementary teacher preparation programs strive to prepare high-quality teachers in the field of 

mathematics by increasing content and pedagogical knowledge through methods courses (Burton, 
Daane, & Giesen, 2008) and providing beneficial field experiences (Darling-Hammond, Chung & 
Frelow, 2002; O’Brian, 2007). However, all elementary teachers, including early-career teachers, 
continue to struggle to enact standards-based mathematics instruction due to variety of reasons 
including knowledge deficits (Mewborn, 2001), anxiety with mathematics (Bekdemir, 2010; Bush, 
1989), and deep-rooted beliefs about the nature of the discipline (Raymond, 1997; Wilson & Cooney, 
2002). Early-career teachers, whom we will call “novices” in this paper, also face challenges 
associated with induction into the profession such as learning to manage a classroom of students with 
varying needs and developing lessons on new topics (Feiman-Nemser, 2003).  

All of these aforementioned factors affect instructional choices of novice elementary teachers; 
therefore, it is important to understand their enacted mathematics instructional practices in order to 
inform the work of elementary teacher preparation in mathematics. Little is known about the 
mathematics instructional practices of novices; existing research has looked at instruction generally 
rather than focusing on mathematics (e.g., Ingersoll & Strong, 2011).  The current study aims to 
begin to fill this void in the literature by examining the mathematics instructional practices of 
elementary teachers during their second year of teaching. Specifically, the research questions guiding 
this study were: 

1. What instructional practices, relative to problem solving and discourse, do novice elementary 
teachers utilize during mathematics lessons? 

a) What instructional practices are utilized in the primary grades (K-2)? 
b) What instructional practices are utilized in the upper elementary grades (3-5)? 

2. How do instructional practices of novice teachers, specifically in problem solving and 
discourse, vary across their own mathematics lessons and in comparison to other novice 
teachers? 

Theoretical Framework and Related Research 
This study examines mathematical instructional practices using the Opportunity to Learn 

framework (OTL). That is, we are interested in the learning opportunities of elementary students 
during mathematics lessons.  Initial research utilizing OTL emerged from evaluation work analyzing 
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curriculum coverage as a measure of the opportunities students have to engage with certain topics 
(McDonnell, 1995; Wang, 1998). In more recent work, OTL has been applied to international 
comparison research (Floden, 2002), analysis of instructional strategies (Bell & Pape, 2012), and 
influences of diversity on opportunities for students (Tate, 2005).  This study explores the 
opportunities given to students in novice teachers’ classrooms to engage in particular mathematical 
practices or processes.  

These mathematical processes were outlined in standards released by the National Council of 
Teachers of Mathematics (NCTM) in 2000.  Then, the 2010 release of the Common Core State 
Standards for Mathematics (CCSSM) included a continued emphasis on students’ mathematical 
practices as a critical component of K-12 mathematics instruction (National Governors Association 
Center for Best Practices & Council of Chief State School Officers, 2010). Two processes that are 
evident in these standards documents include students’ opportunities to engage in problem solving 
and discourse, the foci of this study.   

Problem solving refers to students’ opportunities to grapple with mathematical problems to 
which they do not already have a solution method to use (NCTM, 2000).  Furthermore, when 
students are given opportunities to demonstrate more than one method for solving a problem, they 
have the chance to demonstrate their ability to think flexibly.  The nature of the tasks given to 
students translates to their opportunities to engage (or not engage) in problem solving (Stein, Smith, 
Henningsen, & Silver, 2009).   

Past research in student discourse has shown that student interactions are a means of engaging as 
mathematicians (Nystrand, 2003; Herbel-Esienmann, 2009). Subsequent work by Bell & Pape (2012) 
analyzed the opportunities to learn that were created through social interactions, and this current 
study extends that line of research by exploring the opportunities students have to engage in 
discourse about their mathematical work.    

Giving students opportunities for problem solving and discourse during mathematics has been 
proven to be challenging for elementary teachers (Walkowiak, 2010), but it can be particularly 
difficult for novice teachers.  Research has shown that novice teachers are more likely to be 
concerned with management (Melnick & Meister, 2008), creating a different context for instructional 
decision making. However, research concerning enacted practice is limited when considering the 
novice teacher population. Much of the literature documenting novice teachers’ practices are couched 
in induction and mentoring research and only looks at small samples of teachers. Also, this literature 
base examines teaching practices with broad strokes and not with a specific lens on mathematics 
education (Ingersoll & Strong, 2011). 

Methods 

Participants 
The participants were 75 second-year elementary teachers, from a southeastern state in the 

United States. All teachers graduated from a public teacher preparation program within the state and 
were employed by a public elementary school. Propensity score matching was used to match teachers 
on aptitude scores (SAT, ACT) and other college-entry characteristics. Of the 75 participating 
teachers, 47 taught primary grades (K-2), and 28 taught upper elementary grades (3-5). 

Measure 
As part of a larger grant-funded project (Project ATOMS), the Instructional Practices Log in 

Mathematics (IPL-M) was created to measure the extent (as a proportion of time) to which certain 
instructional practices were present in a mathematics lesson. Within the log, teachers used a 4-point 
Likert scale (not today, little, moderate, and considerable) to respond to items beginning with the 
question stem, “During today’s instruction, how much time did the students in the target class…” 
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Teachers used the scale response of “not today” to indicate when students did not engage in an 
instructional practice, and they used “little” to indicate when the practice was used for a brief amount 
of time. On the other hand, teachers chose “moderate” when the practice was used for a substantial 
amount of time but not the majority of the lesson, and teachers used the response “considerable”  

Table 1: Percentage of Elementary Lessons Utilizing Instructional Practices 
   Not 

Today 
Little Moderate Considerable 

Nature of the Task     
Work on exercises specifically for practice or review K-5 22.9 27.8 25.6 23.6 
  K-2 27.1 26.7 22.8 23.5 
  3-5 14.6 30.1 31.3 24.0 
Listen to me explain the steps to a procedure K-5 42.1 42.0 14.0 1.9 
  K-2 44.4 40.8 13.2 1.6 
  3-5 37.6 44.4 15.5 2.5 

Perform tasks requiring ideas or methods already introduced to the students K-5 11.0 23.7 28.4 36.9 
  K-2 10.1 24.0 29.6 36.4 
  3-5 13.1 23.1 25.9 37.9 

Perform tasks focused on math procedures K-5 51.9 20.8 16.3 11.0 
  K-2 59.2 20.0 13.8 7.0 
  3-5 37.1 22.6 21.1 19.0 

Perform tasks requiring ideas or methods NOT already  
introduced to the students K-5 

55.1 23.2 14.3 7.4 

  K-2 57.4 23.2 13.3 6.0 
  3-5 50.4 23.2 16.4 10.2 

Work on problem(s) that have multiple answers or multiple solution methods K-5 58.3 17.7 15.3 8.7 
  K-2 59.9 17.1 14.8 8.2 
  3-5 54.9 18.9 16.4 9.8 
Demonstrate different ways to solve a problem K-5 53.9 23.8 15.2 7.1 
  K-2 56.3 23.8 13.3 6.5 
  3-5 49.1 23.6 19.0 8.3 
Discourse     
Discuss ideas, problems, solutions, or methods with other students in small 
groups or pairs K-5 

26.6 30.9 26.4 16.2 

  K-2 32.1 30.0 22.9 15.0 
  3-5 15.3 32.7 33.5 18.5 
Discuss ideas, problems, solutions, or methods in large group K-5 20.6 35.3 28.4 15.6 
  K-2 21.3 34.7 27.9 16.1 
  3-5 19.2 36.6 29.4 14.7 
Explain orally his/her thinking about mathematics problems K-5 31.9 36.7 26.1 5.4 
  K-2 33.8 37.1 24.8 4.3 
  3-5 28.1 35.7 28.7 7.5 

Talk about similarities and differences among mathematical representations K-5 50.9 28.6 15.8 4.7 
  K-2 54.2 28.1 14.2 3.6 
  3-5 44.2 29.4 19.2 7.1 
Talk about similarities and differences among various solution methods K-5 66.6 29.9 10.9 2.6 
  K-2 70.3 18.9 8.8 2.0 
  3-5 59.2 22.0 15.0 3.8 
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when a practice was used for more than half of the lesson. In addition to student activities, teachers 
also responded on items about the time and content focus of the lesson. As part of validation work on 
the log, a Kappa coefficient of .69 (Z=6.30, p<.001) was calculated between live observer and 
teachers’ log responses to indicate there is evidence that teachers are reliably reporting the practices 
as stated in the items. 

Instructional logs, like any measure of instruction, provide affordances for studying classroom 
instruction along with limitations (Rowan & Correnti, 2009). When compared to observational 
measures, which are often seen as the gold standard in the measurement of teaching practices, logs 
allow for sizable increases in number of lessons that can be examined. Additionally, in light of 
educational surveys that require teachers to reflect on instruction from previous weeks or months, 
daily logs reduce the error that comes with retrospection. Lastly, while logs are criticized due to self-
report, past work has shown that with training and proximity of logging to time of instruction, 
teachers can reliably report on their instruction (Rowan, Jacob, & Correnti, 2009). 

To support the reliability of log responses, each teacher attended a regional, two-hour training on 
the IPL-M. During this training teachers were provided with detailed explanations of items that were 
vulnerable to misinterpretation. In addition to item explanations, teachers practiced with scales and 
the online interface. Also, teachers were required to log as soon after instruction as possible and 
utilized a user’s manual to support their understanding of the items. 

Data Collection and Analysis 
The teachers logged at three different time points throughout the 2013-2014 school year, with 

approximately 15 days per time point. Teachers logged for a range of 11 to 58 total days (M=42.83, 
SD=8.99) with each day corresponding to one mathematics lesson. A total of 2,741 mathematics 
lessons were logged with 1,837 being K-2 lessons and 904 being 3-5 lessons.  

Descriptive statistics were analyzed using SPSS for items on the log. Lessons were analyzed to 
determine what percentage of lessons included opportunities for problem solving and discourse as 
demonstrated by the extent to which certain practices were or were not utilized in the lessons. Next, 
lessons were aggregated and analyzed based on primary (K-2) and upper elementary (3-5) grade 
bands.  

Lastly, Intraclass correlations (ICCs) were calculated using a multi-level model approach within 
SAS to determine the amount of within- and between-teacher (Raudenbush & Bryk, 2002). That is, 
due to the nested nature of the data, a multi-level approach is necessary to account for how an 
individual teacher’s instructional practices vary from lesson to lesson and how his/her practices vary 
from other teachers. 

Results 
Description of Instructional Practices for Full Sample of K-5 Teachers: RQ #1.  Table 1 

presents the percentage of all lessons in which students engaged in the instructional activity detailed 
in the item. The items are organized based on the nature of task and discourse. The items within 
these two constructs provide insight about students’ opportunities (or the lack thereof) to engage in 
problem solving and talk about the mathematics. As we present the results, we focus on students’ 
opportunities to engage in the instructional practices for a substantial amount of time by reporting the 
percentage of lessons in which the practice occurred for a moderate or considerable amount of time 

Some of the log items within the nature of the task category describe instructional activities that 
more prescribed in nature such as “perform tasks focused on math procedures” and “work on 
exercises specifically for practice or review,” while other items such as “Work on problem(s) that 
have multiple answers or multiple solution methods” are more indicative of tasks of higher cognitive 
demand with opportunities for problem solving. Two of the log items within the discourse category 
describe general opportunities for students to talk about the mathematics such as “discuss ideas, 
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problems, solutions, or methods with other students in small groups or pairs.” Other log items in this 
category such as “talk about similarities and differences among representations,” provide more detail 
about the aspect of the mathematics in which the discussion is focused.  

In 65.3% of K-5 lessons, students were engaging with tasks that they had already learned an idea 
or method to use to solve for a substantial amount of the lesson (moderate or considerable amount of 
time). In contrast, only 21.7% of lessons involved a longer span of time allocated for students to 
perform tasks without having a predetermined way to solve it (perform tasks requiring ideas or 
methods NOT already introduced to the students). Furthermore, 24% of lessons involved students 
working on problems with more than one answer or way to solve, and 23.2% of lessons included 
students demonstrating these different ways. These two items describe problems that were more 
open-ended in their solutions or solution methods. These types of problems are more amenable to 
elevating the cognitive demand based on the different ways students can approach the problem and 
possible comparison of solution methods (Stein, Lane & Silver, 1996); therefore, when utilized, the 
opportunity is present for higher levels of cognitive demand.  

As shown under the discourse section of the Table 1, teachers reported 42.6% of lessons involved 
a substantial amount (moderate or considerable) of small group or pair discussion, and 44.0% of the 
lessons involved a moderate or considerable amount of whole group discussion. However, lower 
percentages of lessons are reported that utilized moderate to considerable amounts of time for student 
explanations (31.5%), talk about similarities and differences among representations (20.5%), and talk 
about similarities and differences in solution methods (13.5%). 

Description of Instructional Practices of K-2 versus 3-5 Teachers: RQ #1a&b.Table 1 also 
presents the percentage of lessons by grade bands in regard to the use of instructional practices. For 
several of the practices, such as “perform tasks requiring ideas or methods already introduced to the 
students,” primary and upper elementary lessons look similar in terms of the extent of the lesson 
utilizing this instructional practice. Other items show differences in the grade bands, such as 
“perform tasks focused on math procedures” and “discuss ideas, problems, solutions, or methods 
with other students in small groups or pairs.” Upper elementary lessons have a higher percentage of 
lessons involving these practices, which can be expected due to content goals focused on mastery of 
algorithmic processes for addition, subtraction, and multiplication, and the increase in maturity and 
attention span to engage in small-group conversations with peers.   

Also, as aforementioned, few lessons included the opportunity for students to discuss similarities 
and differences in representations and solution methods. When further aggregating the lesson 
percentages, K-2 lessons are limited (17.8% and 10.8% respectively) in the opportunities for these 
types of discussions.  

Examining variance within and between teachers: RQ #2.Table 2 presents the Intraclass 
correlations (ICC) for the instructional practice items on the mathematics log. The ICCs represent the 
proportion of variability in how that item was reported between teachers. The higher the ICC, the 
more variability can be attributed to differences in teachers. The lower ICC indicates that more of the 
variability can be attributed to the differences an individual teacher’s lessons across time. For 
example, the item, “Perform tasks requiring ideas or methods already introduced to the students,” has 
an ICC of 0.12, which represents that 12% of the variance in that items response rate is attributed to 
differences between teachers (i.e., between-teacher variance) while 88% of the variance is attributed 
to the variation across lessons for individual teachers (i.e., within-teacher variance). 

The items related to the opportunity for problem solving have a wider range of ICC values, .12-
.48. Items “Perform tasks requiring ideas or methods already introduced to the students” and 
“Perform tasks requiring ideas or methods NOT already introduced to the students” have lower ICCs 
(.12 and .17 respectively), and therefore seem to vary between lessons rather than between teachers. 
The discourse items presented in Table 2 range in ICC values from .23-.33, with 33% of the variance  
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Table 2: Intraclass Correlations for Log Items 

Log Item  
Intraclass 

Correlation 
Perform tasks requiring ideas or methods already introduced to the students 0.12 
Perform tasks requiring ideas or methods NOT already introduced to the students 0.17 
Work on exercises specifically for practice or review 0.20 
Discuss ideas, problems, solutions, or methods in large groups 0.23 
Work on problem(s) that have multiple answers or multiple solution methods 0.23 
Discuss ideas, problems, solutions, or methods with other students in small groups or pairs 0.24 
Demonstrate different ways to solve a problem 0.25 
Listen to me explain the steps to a procedure 0.26 
Talk about similarities and differences among mathematical representations 0.30 
Talk about similarities and differences among various solution methods 0.31 
Explain orally his/her thinking about mathematics problems 0.33 
Perform tasks focused on math procedures 0.48 

 
in the responses to the item “explain orally his/her thinking about mathematics problems” being 
between teachers.  

Discussion 
These analyses provide a glimpse into novice teachers’ mathematics classrooms and the 

opportunities students have to engage in various practices. The instructional log used in the study 
shows promise in its ability to document the practices teachers are using, as seen by the distribution 
of responses and evidence of variability even with a relatively homogenous sample of teachers 
(novice, formally prepared teachers). Logs have been used in past research (Rowan, Harrison & 
Hayes, 2004; Stecher, 2006), but the IPL-M was carefully designed to align with mathematical 
practices and processes (CCSSM, 2010; NCTM, 2000). The ability to collect data on a large amount 
of lessons in a relatively efficient manner makes the log an advantageous tool for teacher educators 
and researchers to understand teachers’ instructional practices during mathematics. 

In looking at the descriptive log data, three themes emerged. First, it seems that majority of 
lessons are focused on tasks that more prescribed in nature. These lessons utilized methods that have 
already been taught or focused on review and practice. This aligns with findings from Rowan, 
Harrison, & Hayes (2004) that approximately 70% of elementary lessons from a more experienced 
teacher sample involved direct teaching with known ideas. Although international comparisons imply 
that U.S. teachers need to engage students in more opportunities to grapple with mathematics, it 
seems there is still a tendency to over structure our students’ learning opportunities by presenting the 
mathematical procedures that they then need to practice. While it is important not to detract from the 
value of practice and the need to review, we need to be simultaneously critical of the proportion of 
lessons devoted to these goals. For a novice teacher, this might be especially difficult due to the 
newness of navigating pressures of curriculum pacing and student assessment. 

The second theme that emerged from analysis of descriptive information is the presence of 
student talk in novice teachers’ lessons. Teachers reported that majority of lessons included small 
group or whole group discussion for a substantial amount time in the lesson. This paints the picture 
of interactive classrooms, in contrast to the lecture-style environment with which traditional 
mathematics is often associated. Also, ICCs of the items indicating whole group and small group 
discussion were .23 and .24, respectively, meaning that over 20% of the variance in utilizing these 
modes of discourse is between teachers. Future steps will be employed to try to account for the 
contextual factors or teacher characteristics that explain this variance.  Understanding why some 
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novice teachers implement more discussion than others would provide important implications for 
elementary mathematics teacher educators. 

The third theme emerges from a closer look at the opportunities for student discourse. Although a 
majority of the lessons involved some level of whole or small group discussion, other items provide 
supplemental information about the nature of the discourse in these discussions. Approximately 30% 
of lessons involved student explanation for a substantial amount of time, and an even smaller 
proportion of lessons had students discussing similarities and differences among representations 
and/or solution methods. It seems that students have the opportunity for classroom discussions, but 
they may be limited in their opportunities to engage in discourse specific to mathematical 
representations and ways of solving problems. This seems supported by the lower percentage of 
lessons involving open-ended tasks or multiple solution methods. Furthermore, the ICCs of items 
detailing the nature of the discussion (explain, discuss similarities in representations and/or solution 
methods) were each approximately .30 indicating that about 30% of the variation in these items can 
be attributed to the teacher. So while lessons vary in the opportunities for students to engage in 
specific discourse practices, overall some teachers are engaging in these practices more than others.   

As preservice and inservice teacher educators strive to equip teachers to implement high-quality 
mathematic instruction, this work provides valuable insight into the instructional practices that 
novice teachers are utilizing. While it is encouraging that teachers are engaging students in 
opportunities for discussion, methods courses might further strengthen teachers’ instruction by 
making more explicit how teachers can specifically prompt students to discuss aspects of 
mathematical ideas such as explaining or comparing solution strategies. Our next steps with this data 
and ongoing data collection are to begin to analyze the contextual factors that might account for 
teacher variance on the use of certain practices. This will provide teacher educators with important 
information to help support novice teachers and help break the detrimental cycle of reverting back to 
practices based on past experiences and anxiety. 
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Supporting students’ mathematical reasoning is an important goal of mathematics instruction, but 
can be challenging for many teachers .We report the results of a study aimed at better understanding 
and identifying the ways in which teachers support student reasoning when provided with 
conceptually rich tasks. This study resulted in the Teacher Moves for Supporting Student Reasoning 
(TMSSR) framework, which organizes moves vis-à-vis their function and their potential for fostering 
student thinking. We describe the TMSSR framework, illustrate its affordances for studying teacher 
practices, and highlight its utility for teachers, teacher educators, and researchers. 

Keywords: Instructional Activities and Practices; Algebra and Algebraic Thinking 

Introduction 
An important goal of mathematics instruction is to support meaningful and productive student 

reasoning; however, this is a goal that many teachers can find challenging (e.g., Rasmussen & 
Marrongelle, 2006). Two essential means for achieving this goal are the implementation of 
conceptually rich tasks and teachers’ abilities to support and foster student engagement in such tasks. 
We report the results of a study aimed at better understanding and identifying the ways in which 
teachers can support student reasoning. This study is part of a larger project 
(http://tinyurl.com/badgerellis) that aims to a) help students develop deductive reasoning 
competencies in algebra through quantitative reasoning opportunities, and b) support teachers in 
achieving this goal. To scale up the findings from small-scale teaching experiments to whole-class 
settings, we partnered with practicing mathematics teachers to implement research-based curricular 
units in their classrooms. Analysis of a middle school classroom yielded the Teacher Moves for 
Supporting Student Reasoning (TMSSR) framework. Below we present the TMSSR framework, 
illustrate its affordances for studying teacher practices aimed at supporting student reasoning, and 
highlight its utility for teachers, teacher educators, and researchers. 

Theoretical Background 

Frameworks Investigating Teacher Moves 
Various frameworks exist for investigating teacher moves during classroom instruction. While 

some frameworks focus on the questions teachers ask (e.g., Driscoll, 1999; Frey & Fisher, 2011), 
others focus on discursive moves (e.g., Herbel-Eisenmann, Steele, & Cirillo, 2013; Hufferd-Ackles, 
Fuson, & Sherin, 2004; Krussel, Edwards, & Springer, 2004). Yet others take a broader approach to 
include teacher questioning as well as other moves that teachers make in the course of instruction 
(e.g., Lampert et al., 2013; Staples, 2007). Taken together, these frameworks outline the general 
teacher moves and questions that occur in classrooms while teachers are eliciting, encouraging, and 
responding to students during instruction. 

Additionally, there are frameworks that focus on student thinking. For example, Stockero et al.’s 
(2014) MOST framework for analyzing productive mathematical student thinking seeks to identify 
the most productive student thinking instances that warrant further teacher response. We build on 
these frameworks by investigating the moves teachers employ in quantitatively-rich contexts and the 
potential these moves have for supporting student reasoning. Like others have noted (e.g., Franke et 
al., 2009), teacher questioning is often used to help students make their thinking more explicit. 
However, in contrast to a focus exclusively on the questions teachers ask, a framework that includes 
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additional practices that appear to support student thinking can provide a more complete picture of 
how teachers can foster student reasoning when engaged in conceptually rich tasks.  

Quantitative Reasoning 
Quantities are individuals’ conceptions of measurable attributes of objects or events, such as 

length, area, volume, or speed. Relying on situations that involve quantities that students can make 
sense of, manipulate, and investigate can foster their abilities to reason flexibly about dynamically 
changing events (Carlson & Oehrtman, 2005). Reasoning with relationships between quantities has 
been found to support students’ understanding of algebraic relationships and to encourage deductive 
argumentation (Ellis, 2007; Smith & Thompson, 2007). We therefore designed quantitatively rich 
tasks in a series of small teaching experiments, which we then provided to the teachers for 
implementation in their classrooms. 

Methods 
The study we report here occurred in an 8th grade mathematics classroom at a public middle 

school and consisted of ten days of instruction on linear relationships grounded in a context of gear 
ratios. We provided the teacher with a set of research-based tasks for exploring and identifying 
relationships between gears rotations; the teacher also had the liberty to make modifications to the 
tasks as she saw fit. All sessions were videotaped and transcribed. Additionally, field notes, student 
work, and an interview with the teacher provided supplementary data.  

We began analyzing the transcripts (which also included the images of student work and written 
work on board) of the observed lessons via open coding, without any particular framework in mind. 
As we progressed into the data analysis using the constant comparison method (Glaser & Strauss, 
1967), our attention focused on the teacher moves that supported student reasoning, and we 
eventually developed an emergent coding scheme through multiple passes of open coding. After the 
initial development of the coding scheme, we also analyzed the literature base to identify the ways in 
which our codes for teacher moves intersected with existing descriptions reported in the literature. 
After reaching a fairly stable coding scheme, we proceeded with focused coding (Saldaña, 2009) and 
two researchers independently re-coded the entire data set. Through constant comparison and 
discussion of each researcher’s coding, the coding scheme was further refined by way of revising 
some definitions as well as delineating the functions the teacher moves served to support student 
reasoning.  

Findings and Discussion 
The TMSSR framework identifies and organizes teacher moves into four categories based on the 

function they serve in supporting student reasoning (i.e., eliciting, responding to, facilitating, and 
extending). In addition, teacher moves within the same category differ in their potential to support 
student reasoning. For instance, although correcting a student error and prompting a student error 
correction are both moves teachers make in response to student reasoning, prompting a student to 
correct her error has the potential to lead to a greater learning opportunity for the student than if the 
teacher had merely corrected the error (Speer, 2008). Drawing both from Speer’s discussion about 
teacher moves offering different potential for supporting student learning and an analysis of how the 
teacher’s moves affected student reasoning (as inferred from students’ responses), we place teacher 
moves along a continuum for the potential each move has for supporting reasoning. More 
specifically, moves that offer greater potential are located towards the right hand side of each 
category. These moves occur during whole class discussions as well as when the teacher is working 
with students in small groups or individually. We begin by describing each category of the 
framework and then present an analysis of one teacher’s classroom with the TMSSR framework, who 
we call Ms. L. 
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Focusing in on the TMSSR Framework 
Tables 1-4 present the categories of the TMSSR framework. Although related teacher moves are 

organized along a continuum (signified by rows in the table), it is important to note that the 
continuum represents the potential each teacher move has for supporting student thinking. How the 
teacher enacts a move and the students’ responses determine the actual affordance for supporting 
student reasoning. In some cases (e.g., re-voicing, encouraging student re-voicing, and re-
representing) more than two teacher moves are organized within the same row to signify their related 
nature. Due to page constraints we are not able to demonstrate how all of the moves are placed along 
a continuum in the framework. We focus on a row from tables 1 and 4 since the moves in Tables 1 
and 4 encourage students to take a more active role in the discussion (as opposed to Tables 2 and 3 
where the teacher has a more prominent role). 

Table 1: Teacher Moves for Eliciting Student Reasoning 

Eliciting Answer: Teacher asks a question geared at 
eliciting the answer to a given task or problem. 

Eliciting Ideas: Teacher asks a question 
geared at eliciting students’ ideas for a solution 
strategy. 

Eliciting Facts or Procedures: Teacher asks questions 
geared at eliciting students’ recitation of facts or procedures. 

Eliciting Understanding: Teacher asks 
questions geared toward assessing what students 
understand and how they are reasoning. 

Asking for Clarification: Teacher asks a question to 
clarify the student’s meaning because teacher genuinely does 
not know what the student meant. 

Pressing for Explanation: Teacher asks 
student(s) to elaborate on their thinking, explain 
their reasoning, or reflect on and share their 
reasoning. 

Figuring Out Student Reasoning: Teacher is trying to 
figure out a student’s solution, or understand a student’s 
explanation or reasoning. 

Checking for Understanding: Teacher asks a question 
to assess students’ understanding of the mathematical ideas 
that are currently under discussion. 

 

 
The moves presented in Table 1 enabled Ms. L to elicit students’ reasoning while implementing 

the quantities based tasks. These moves served to engage students in sharing their thinking and often 
occurred at the beginning of a discussion about a particular problem. These teacher moves commonly 
occurred when Ms. L worked with students in small groups as well as when she facilitated whole 
class discussions. The excerpts below demonstrate the potential difference that two related teacher 
moves, Asking for Clarification and Pressing for Explanation, have for supporting student reasoning. 
As seen in the following excerpt, when Ms. L asks for clarification, the student’s response (i.e., 
Leigh) is often minimal, with little or no elaboration:  

Leigh: You could just plug in numbers so the middle gears teeth equals, the middle gears teeth is 
12 and the big gears teeth are 16. So you need 3/4 times 12 and if it equals 16, if it equals 16, 
then… 

Ms. L: So you are wondering this[writes ( )
?3 12 16

4
=  on board]?  

Leigh: Yes. 

Asking Leigh what she was wondering about may have clarified for Ms. L Leigh’s current 
thinking about the task. However, if Ms. L had instead pressed Leigh for an explanation, as she did 
with Hope in the following episode, Leigh would have had more potential to think through and 
articulate her own strategy. For example, when Ms. L pressed Hope for an explanation (i.e., asking 
where the ratio 2/3 exists in Hope’s work), this move encouraged Hope to think more about why her 
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strategy made sense. Thus, Hope was able to start moving from a procedural explanation towards a 
more conceptual explanation: 

Hope: I made the table again. So like, so this is the first one, so Lewis' formula yesterday was to 
divide the smaller number which is the bigger gear by two. So I wrote, so it's 2.5 (points to 5 
on table)(writes 5: 2= 2.5) and then instead of writing a whole new one I worked by like 
continuing, so I added 5 even though it isn't proper and it said 7.5 and then it equaled this one 
(points to 7.5 on table) so you know it works because of the 2/3.  

Ms. L: Okay, so can you maybe elaborate a little bit more? Which thing is the 2/3?  
Hope: Okay, so like this is like you're reducing it down a different way.What I did is I would say, 

like this, you're just making 'cause, I don't know how to say this, okay so like 7 and a half like 
you're trying to find 2/3 of 7.5.(points to 5) 

Table 2: Teacher Moves for Responding to Student Reasoning 

Validating a Correct Answer: Teacher actively confirms 
the student’s idea by re-voicing, or re-wording in her own 
words, or adding a bit to the student’s idea or response. 

 

Re-voicing: Teacher repeats student ideas (verbally or 
written) in order to make those ideas public. 

Re-representing: A form of re-voicing in 
which a teacher provides her own representation 
as a way to publicly share a student’s idea, work, 
or strategy. The teacher may organize, re-frame, or 
formalize the student’s statement or work. 

Encouraging Student Re-voicing: Teacher asks students 
to re-voice other student ideas or solutions. 

Correcting Student Error: Teacher corrects a student 
error or supplies the correct answer more generally. 

Prompting Error Correction: Rather than 
correcting the student, the teacher prompts the 
student to address an error herself. 

 
Due to space constraints, we primarily focus on the organizational structure of Tables 2 and 3, 

which present the teacher moves for responding to and facilitating student reasoning, respectively. 
The moves in Table 2 often occur after a teacher has already elicited student reasoning and s/he is 
trying to make students’ reasoning more public or amend a student’s statement. Teacher moves in 
Table 3 also generally occur after the teacher has elicited student reasoning and is now trying to 
assist students in developing their reasoning through various forms of guidance and explanations. 
These moves may help students engage with a task or summarize students’ contributions before 
moving on to a new task. Although the teacher moves described in Table 3 are common, the Topaze 
Effect is worth noting. Stein, Grover, and Henningsen (1996) describe this move as reducing, 
however, we build from Brousseau’s (1997) description of how a teacher breaks a task into smaller 
parts and thus significantly alters how a student conceptually engages in the task. In the following 
excerpt Ms. L asks Laura a question about the relationship between the two gears. However, before 
Laura has a chance to respond, she immediately asks an easier question. The second question reduces 
the original question (in which Laura would have to determine a fractional amount of a rotation) 
down to a yes/no response (whereby Laura merely has to identify whether the gear made an entire 
rotation). 

Ms. L:  (To Laura) So if you turned the small gear once, how far around would the big gear go? 
(Brief pause) Would it make it all the way? 

Laura: No. 
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Table 3: Teacher Moves for Facilitating Student Reasoning 

Cueing: Teacher cues students’ attention by 
indicating that they should focus on a particular aspect of 
a problem, task, idea, solution, etc. 

Providing Guidance: Teacher provides hints, 
ideas, a potential strategy, or another type of conceptual 
scaffolding of the problem without outlining the solution 
structure or otherwise shutting down students’ 
opportunities to reason on their own. 

Topaze Effect: Teacher breaks a task into smaller 
parts, reducing the complexity of the task by asking 
easier and easier questions, thereby reducing students’ 
opportunity to engage in authentic problem solving. 

Building: Teacher builds on students’ earlier 
contributions to support new understanding, or 
encourages students to build on one another’s 
contributions. Funneling: Teacher asks questions that move 

students down a specific path (e.g., through leading 
questions). 

Providing Procedural 
Explanation: Teacher provides 
a procedural explanation for 
how to solve a problem. This 
move includes telling students a 
priori how to solve the problem 
by outlining the solution 
structure (or some other way). 

Providing Summary Explanation: 
Teacher summarizes for the class final thoughts 
about a task or problem, or a summary of 
information or discussion about the task. 

Providing Conceptual 
Explanation: Teacher 
provides an explanation that 
has a conceptual basis, often 
focused on explaining why 
something works. This move 
can also be thought of as 
demonstrating logic. 

Providing Information: The teacher 
provides new information relevant to doing 
mathematics generally rather than information 
about a specific problem or task. 

 

Encouraging Multiple Solution 
Strategies: Teacher encourages a proliferation 
of solution strategies, including pressing 
students to come up with a different way to 
solve a problem. 

 

 
Providing Alternative Strategy: Teacher 

initiates a new or different way of solving a 
problem after students have shared their 
solution strategies or solutions.  

 

 
Table 4 presents the teacher moves that were used to extend student reasoning. These moves 

usually occur after students have worked through a task for some time and have made some progress 
into the solution. To further extend students’ initial reasoning, the teacher pushed students to provide 
complete answers rather than vague responses, to make connections to the context, to think about the 
underlying concepts involved in the task, and to justify their ideas. The excerpts below demonstrate 
the potential difference that two related teacher moves, Topaze for Justification and Pressing for 
Justification, have for supporting student reasoning. In both situations, Ms. L asked students to 
explain why an idea, solution, or strategy works; however, in the case of Topaze for Justification, 
Ms. L did not allow students enough time to grapple with the initial prompt to justify their ideas. 
Instead, she reduced the complexity of the question by following up with an easier question or by 
narrowing the question’s focus. As an example, in the following excerpt Ms. L asked Gert to show 
why there was not a relationship between the gears, but she then immediately suggested testing with 
numbers. By doing so, Ms. L unwittingly prevented Gert from devising her own way to justify her 
claim:   

Ms. L: What'd you come up with for a reason for part a? 
Gert: I said because there's no relationship. 
Ms. L: Good. Can you show why not? Can you show like with numbers?  

Without the space to think of her own justification, Gert agreed to use Ms. L’s suggestion, but the 
emphasis on numbers shifted the conversation to a calculational explanation. In contrast, Ms. L was 
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able to better advance students’ reasoning when she persistently pushed students to justify their ideas, 
allowing students enough time to think and solidify their reasoning. The following excerpt 
exemplifies the Pressing for Justification move: 

Ms. L: Okay. So nine goes here is what we are saying (writes 9 to “B” column). So does that 
seem correct that if the medium gear spun twelve, the big gear would spin nine?  

Students: Yes. 
Ms. L: Okay. Yes, you are saying yes. (spinning gears) Anyone see a proof of why that works? 

Something you can use for evidence. Laura? 
Laura: Okay. Well the ratio was three fourths  
Ms. L: Uh-hum. 
Laura: So then if you, um if you... Yeah, so the ratio is three fourths and now it’s like, you could 

say it is nine twelfths. And then if you divide nine by three its three and if you divide twelve 
by three it is four. 

Table 4: Teacher Moves for Extending Student Reasoning 

Pressing for Precision: Teacher encourages 
student(s) to provide an exact rather than vague answer, 
to check his or her work for accuracy, or to quantify a 
qualitative statement. 

Encouraging Reasoning :Teacher encourages 
students to think about the task conceptually, for instance 
by thinking about why a strategy makes sense, by 
thinking about where the numbers connect to the 
quantitative situation, etc. 

 
Encouraging Reflection: Teacher asks students to 

reflect on provided answers or explanations (either from 
the teacher or from another student). 

Topaze for Justification: Teacher initially pushes 
for justification, but then immediately downgrades her 
question to a less-sophisticated why question by heavily 
leading students into justification via easier questions. 

Pressing for Justification: Teacher asks students 
to explain why something works or to justify (logically, 
conceptually) their idea, strategy, or solution. 

 

Pushing for Generalization: Teacher encourages 
students to generalize their reasoning, either through 
formulating a rule, describing a process in general terms, 
or making connections across problems, numbers, cases, 
or events. 

Analysis of Ms. L’s Classroom Using the TMSSR Framework 
Table 5 illustrates Ms. L’s moves for supporting student reasoning while implementing the 

quantities-based unit. Frequency counts for each move are listed in parentheses. It is important to 
note that more than one teacher move may occur at the same time (e.g., a teacher often elicits facts or 
procedures while she is funneling). Shading corresponds to the proportion of a specific move 
compared to all moves in the table, with the darker cells representing the moves that occurred more 
frequently. When comparing the four functional categories in the TMSSR framework, the table 
suggests that Ms. L spent more instructional time eliciting student reasoning compared to any one 
other category. Eliciting moves occurred most frequently because the other three categories represent 
moves that generally occur after student reasoning had been elicited. Given that the data come from 
Ms. L’s first implementation of the research-based unit, it is not surprising that her moves for 
supporting student reasoning were on the left hand side,with less potential for supporting student 
reasoning. As a teacher becomes more familiar with the tasks and the moves that have greater 
potential for supporting student reasoning, we would expect to see more moves located on the right 
hand side of the continuum. Although the TMSSR framework focuses on teacher moves, it is 
important to note that such moves are also related to the classroom environment (for instance, it had 
already been established that students were routinely encouraged to share their reasoning and were 
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viewed as responsible learners by themselves and the teacher) and students’ ability to engage with 
the tasks. Because the TMSSR framework focuses on the potential support teacher moves have for 
fostering student reasoning, two teachers could have similar illustrations (e.g., both could look 
similar to Table 1) but their students’ development of reasoning could be different. 

 
Table 5: Illustrating Ms. L’s Moves with the TMSSR Framework 

 

Conclusion  
We propose a framework for teacher moves that support student reasoning by organizing moves 

vis-à-vis their function and their potential for fostering student thinking. Although the teacher moves 
were made while implementing quantities-based algebra units, many of the moves(e.g., building, 
eliciting, re-voicing) are similar to those that have been presented in other frameworks(e.g., Herbel-
Eisenmann, Steele, & Cirillo, 2013; Lampert et al., 2013; and Staples, 2007). Therefore, we posit that 
these moves are not unique to these classrooms and can serve others working with teachers and 
investigating the moves that they make to support student reasoning. 

By examining teacher moves holistically, we can better understand the various ways teachers 
support student reasoning. The TMSSR framework classifies teacher moves into functional 
categories and locates these moves along a continuum based on the potential support that a move has 
for supporting students’ reasoning. Ideally, we would like to see teachers more frequently employ 
moves for extending student reasoning. However, we also caution that only attending to the 
frequency of teacher moves across categories may lead to incorrect conclusions about a teacher’s 
practices. Our analysis revealed that some teacher moves have more potential for supporting student 
reasoning than others within the same category (e.g. Topaze for Justification and Pressing for 
Justification);thus, placing moves along a continuum is helpful for better assessing teacher practices 
for their potential for supporting student reasoning. Teachers who are interested in informally 
assessing their teaching may benefit from thinking about both the four categories of moves and the 
ways in which teaching actions are organized within each category. Similarly, researchers and 
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teacher educators studying teachers’ practices could use the TMSSR framework to identify specific 
areas in which teachers may benefit from additional support.  
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Teacher telling continues to be poorly understood within inquiry. In this paper I extend prior efforts 
to reimagine telling within contemporary pedagogical thought. Using a case study, I investigated a 
well-regarded teacher’s use of mathematical telling while supporting groups and individuals 
working on tasks. The teacher used seven unique types of mathematical telling: assess, interpret, 
qualify, clarify task, guide, disclose, and validate. This mathematical telling framework aids in the 
identification of subtle telling, the recognition of implicit telling, and the acknowledgment of explicit 
telling. Telling practices should be conceptualized and evaluated contextually. 

Keywords: Classroom Discourse; Instructional Activities and Practices 

Introduction 
At the heart of mathematics teaching lies an enduring dilemma of how and when to tell. This 

dilemma surfaces within a broader struggle to privilege the spontaneous thought and activity of the 
child while simultaneously cultivating and enculturating the child into a scientific and socialized 
society. Contemporary pedagogical practice is driven by progressive reforms advocating student-
driven inquiry, on the one hand, and increased standardization and accountability to prescribed 
conventional knowledge of mathematics, on the other. These demands require a give-and-take 
approach since students cannot just independently discover everything they are expected to know, 
nor do they simply absorb foreign ideas that are explained to them. To teach, then, is to skillfully 
manage the intersection of the child and the curriculum. The telling dilemma repeatedly surfaces in 
that work. Teachers grapple with how to manage learning through tasks (Henningsen & Stein, 1997; 
Simon, 1995), how and when to steer class discussions (Ball, 1993; Chazan & Ball, 1999), how to 
reorient student inquiry that is misguided or trivial (Ball, 1993), and how to help diverse students 
access and benefit from implicit forms of knowing and learning in classroom discourse practices 
(Lubienski, 2002). 

The issue is not whether always to tell or never to tell, but rather when and how to tell (Baxter & 
Williams, 2010; Chazan & Ball, 1999; Lobato, Clarke, & Ellis, 2005). Nevertheless, explicit teacher 
telling of mathematical content remains taboo as teacher practice is framed through less 
mathematically obtrusive constructs. Teaching has been framed in terms of orchestrating discourse 
(Lampert, 1990; Rittenhouse, 1998; Staples, 2007; Stein, Engle, Smith, & Hughes, 2008; Wood, 
1998), facilitating collaboration and interaction (Clarke, 1997; Cohen, 1994; Dekker & Elshout-
Mohr, 2004; Webb, 2009; Webb et al., 2009), and posing high-quality tasks (Henningsen & Stein, 
1997; Simon & Tzur, 2004). When research does acknowledge and discuss teacher moves related to 
telling, either these telling moves are believed to compromise the quality of learning (Chiu, 2004; 
Dekker & Elshout-Mohr, 2004; Tyminski, 2010), or the mathematical substance originating from the 
teacher is absent or downplayed (e.g., Chazan & Ball, 1999; Smith, 1996; Staples, 2007).  

Arguably, such treatment of teacher telling is overly conservative given that the teacher’s 
mathematical discourse can be a tool for promoting student sense making (Baxter & Williams, 2010; 
Ding, Li, Piccolo, & Kulm, 2007; Lobato et al., 2005). Further understanding is needed of how 
teachers tell or speak assertively with students about mathematics, especially while they grapple with 
the major challenges of teaching within inquiry.  

Although teacher telling might occur in various instructional formats, this study focused on 
telling during teacher interventions with collaborative groups. In the whole class setting, teachers can 



Teaching!and!Classroom!Practice:!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

1071!

rely on student contributions of content to advance class discussions (e.g., Stein et al., 2008) whereas 
beforehand in the collaborative group setting, teachers must prepare students so they are able to make 
those contributions and access the contributions of others. During students’ struggles with tasks, 
teachers may encounter opportunities to engage mathematically with particular students in response 
to specific needs. The research question of this study was, “What types of mathematical telling does 
a well-regarded inquiry-based teacher use to support students while intervening with small groups 
and individuals working on mathematical tasks?” 

Framework 
To address my research question I briefly discuss inquiry before framing telling more rigorously. 

The term “inquiry” in this study is meant as a broad descriptor of instruction that aspires to privilege 
student thinking and activity during the cultivation of curricular standards. Without claiming that 
inquiry is a well-defined and homogenous mode of instruction, I argue that the teacher in this case 
study upheld the basic aspiration of inquiry as she enacted various practices. The teacher varied her 
instructional format between whole-class discussion, small-group work, and individual work. She 
introduced non-routine mathematical tasks and monitored student progress. She facilitated students 
in sharing and critiquing one another’s reasoning. The teacher helped students form complete and 
correct justifications of their ideas. She gave detailed feedback on their work in and out of class. 
These practices are believed to support student inquiry into mathematics (see Clarke, 1997; Staples, 
2007; Stein et al., 2008; Webb et al., 2009).  

To study mathematical telling, I followed Lobato et al. (2005) in framing telling as a 
phenomenon of verbal discourse with three main attributes: form, content, and function. These three 
attributes are discussed below. 

The form of discourse refers to its organization and grammatical structure. Discourse is produced 
into questions, statements, requests, commands, and so on, by selecting from a complex variety of 
verb tenses and grammatical syntax. Although an utterance derives meaning in part from its 
grammatical form, the form does not uniquely determine whether that utterance is telling. Questions 
can tell and statements can question (Lobato et al., 2005, p. 9). 

The content of discourse refers to the objects and ideas denoted by particular words and phrases. 
Although language does not literally transmit fixed meanings from speaker to listener (von 
Glasersfeld, 1995), the references of an utterance are important indexical markers for objects and 
their negotiated meanings. A mathematical reference is an indicator of telling even if the internal 
mental referent of the speaker’s utterance is inaccessible to the listener. 

The function of discourse refers to its purpose in a situated activity. Function is simultaneously 
determined by a speaker’s intentions, a listener’s interpretations, and the nature of the activity itself 
that is enacted through the discourse (Lobato et al., 2005). Although these three elements may or may 
not align with one another and are often difficult to infer, I managed this complexity by limiting my 
research focus to the verbalized discourse of the lesson. My inferences were therefore centered on the 
observable function of the discourse during an unraveling event rather than on the layers of meanings 
for the participants. 

In coordinating these three attributes of discourse, I did not use form directly, but I was sensitive 
to form while making sense of content and function to overcome unwarranted prejudices about 
telling based on form (e.g., “questions don’t tell”). I defined mathematical telling, then, as discourse 
that contained mathematical content (indexical references) and served the function of inserting 
something new mathematically into the conversation. During later analysis the “something new” 
came to mean the insertion of mathematical ideas, structure, constraints, or acts that were not in play 
before the utterance. 
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Method 
I conducted a case study of a well-regarded teacher educator teaching one class at a large four-

year private university. The course was a mathematics content course (the second of a two-course 
series) designed for pre-service elementary teachers and included topics such as fractional reasoning, 
probability, and statistics. The class met twice weekly for 110 minutes per class. I observed and 
analyzed two full curricular units of instruction, each with seven lessons. I typed field notes to index 
the events of each class and recorded conversations in abbreviated form. All classroom activities 
were filmed, and subsequently all interactions between the teacher and students during task-work 
were transcribed. These transcriptions formed the core data for analysis, supplemented by my field 
notes and the task-sheets and handouts from the course. 

I first coded for mathematical telling using the definition articulated earlier. The unit size for a 
mathematical telling act was generally a teacher turn. I then started differentiating mathematical 
telling acts from one another by attending to their mathematical content and the relationship of that 
content to the students’ inquiry. I analyzed small subsets of data and generated provisional categories 
of telling. I then analyzed my set of categories, working to find general overlaps, inconsistencies, 
ambiguities, and so on. Changes to the categories were then taken back into the data. I continued this 
process until a provisional set of codes had surfaced. I briefly explained the codes to an informed 
peer who coded a small portion of data. The questions and discrepancies from this exercise helped 
me to modify, invent, dissolve, and reorganize codes and improve their written theoretical 
definitions. I also picked two fresh lesson transcripts to code twice, with a one-week interval between 
coding. After comparing my first and second reading of each transcript, I identified potential 
technical overlaps at the boundaries of codes and updated code definitions to set precedents for how 
to handle similar cases. I had used about half of my data to solidify this coding scheme, and I coded 
the remaining half comfortably. 

Results 
There were seven telling types in the eventual framework. As I interpreted the results, two telling 

types (guide and disclose) contained significant internal variation that I sorted into four purposes 
each in order to understand them better. For presentation, I ordered the seven types roughly from the 
least obtrusive to the most obtrusive. 

Assess 
The first type of mathematical telling is to assess. Not every assessment is telling (such as “How 

did you solve the problem?”), so a telling assessment is a mathematically structured or constrained 
request beyond just an open elicitation of student thinking. Even though a telling assessment does not 
reveal the answer or solution, it imposes a new idea or constraint and is therefore a form of telling. A 
responding student shares not only his or her own thinking but shapes it in order to either conform or 
object to the constraint embedded in the assessment.  

A typical example occurred frequently during a particular lesson. The teacher would assess 
students’ understanding of two fraction images (i.e. conceptual representations) by asking of their 
reasoning, “Is that partitioning or iterating?” Despite seeming innocuous, there is considerable 
mathematical structure embedded in such discourse. The assessment restricted students to those two 
images despite there being reasonable alternatives that at least one student was observed to use. 
Furthermore, it created a forced choice between the images even though many students at times 
believed they were appealing to both images within a single justification. Other assessments were 
even more complex when they implied potential connections (e.g., between fractions and the 
operation of division) that students had not yet considered.  
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Interpret 
The second type of mathematical telling is to interpret students’ mathematical formulations. The 

teacher clarified or characterized a student utterance by rephrasing, summarizing, generalizing, 
condensing, or inferring unspoken pieces of a student thought. Even though the teacher attributed 
such interpretations to students, they were nevertheless filtered through the teacher’s own conceptual 
grid of meanings and brought something new into play. 

Qualify 
The third type of mathematical telling is to qualify the mathematics. The teacher qualified a 

mathematical part of the conversation according to human experience such as student feelings, 
motivation, or common sense. Because some students saw mathematics as threatening, irrelevant, 
contrived, difficult, or tedious, the teacher attended to these issues. For example, the teacher 
downplayed student errors to minimize embarrassment, attached value to the activity or task, 
acknowledged interesting contributions, and characterized (valid) justifications as awkward or 
natural. The discourse in these telling acts mediated the students’ relationships with the mathematics 
and consequentially communicated something new about mathematics. This telling type was a 
surprising result and suggests that how individuals think and feel about mathematics is inextricably 
related to what mathematics is to them. 

As a brief example, a student worked on a probability question about drawing colored balls 
repeatedly from a bag. The students had not yet developed a formula or procedure and were 
calculating the probabilities by making lists of possible outcomes and determining the fractional part 
of the outcomes that answered the question. One student began to find the activity tedious: 

Student: So like, what’s the point of listing all the combinations? What’s it teaching us? 
Teacher: What’s this teaching you? Well for a lot of— (not coded mathematical telling) 
Student: Like to be patient. 
Teacher: No, no, no [laughs]. It’s not teaching you to be patient. It’s first of all helping us think 

about the situation, like what’s really involved here in the situation. We have these shortcuts. 
We can’t make meaning of the shortcuts if we don’t know what’s actually going on. And so I 
know you have these nice shortcuts like multiplication, but if the shortcuts don’t make sense 
in terms of the situation then they are meaningless. But writing out the combinations can help 
us see where the shortcuts are going to come in. (qualify) 

Here the teacher qualified the value of the task by affirming that doing mathematics is about 
making meaning of situations rather than executing shortcuts. 

Clarify Task 
The fourth type of mathematical telling is to clarify the task. The teacher clarified the 

mathematics of the task, question, or activity without addressing the actual solution. Two main 
purposes for clarifying the task were to provide basic instructions for student engagement and to 
clarify the mathematical meanings prerequisite to engaging in the task.  

Guide 
The fifth type of mathematical telling is to guide. The teacher guided students while they 

developed solutions, constructed justifications, discussed concepts and addressed errors. The key 
characteristic of teacher guidance was that the mathematical substance it contributed remained 
partially incomplete or unresolved, requiring the student to act on, complete, or incorporate it into his 
or her work. The teacher guided students for four main purposes (see Table 1): focus toward or away 
from an idea, lead students into productive ways of thinking, address reasoning errors, and give 
helpful hints and suggestions. 
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Table 1: Purposes of Guidance 
 

Focus Direct student attention, encourage or discourage student approaches, point to 
parallel examples or previous experiences 

Lead Pose questions or next steps, structure student justifications or explanations, ask 
rhetorical questions, help students draw a conclusion or inference 

Address reasoning 
errors 

Identify a student contradiction, invalid assumption, or deficiency; give counter-
arguments; workshop a student justification; locate or correct an error 

Give hints, 
suggestions 

Suggest a method, bound or estimate the solution, interpret the problem, state 
principles or guidelines, explicate the criteria for an acceptable solution 

 
In the example that follows, a student was solving the following question with Cuisenaire rods: 

“If purple is 2, what is the value of black?” She had placed a purple rod adjacent to a black rod, and 
then lined up seven small white rods alongside them as shown in Figure 1. The student first 
expressed confusion with the problem, using language such as, “The purple is four out of seven, the 
black is seven out of seven.” The teacher guided the student by first focusing her attention toward the 
given information in the problem (that the purple rod has length 2), but the student could not 
reconcile this given information with her propensity to think of the little white blocks as units or ones 
(she continually referred to purple as “four”). The teacher addressed the reasoning error by 
explicitly inviting the student to reconcile her naming of purple as four and the problem’s given 
assumption that purple is two. When the student was unable to do so, the teacher followed up with a 
series of crucial leading moves (presented below) that marked the climax of the interaction and 
enabled the student to subsequently reason her way to the solution: 

 
Purple  

Black 

W W W W W W W 

Figure 1. Student’s arrangement of purple, black and white Cuisenaire rods. 

Teacher: So if this [purple] is, if this is two, what’s this? [picks up one white block] (Guide-
Lead) 

Student: A half. 
Teacher: Okay what, how did you get that? Why do you know it’s a half? (Not mathematical 

telling) 
Student: Because one half multiplied by four is two.  
Teacher: Okay, so what would one be? (Guide-Lead) 
Student: One would be, [shows the amount of two whites with fingers] 
Teacher: Yeah. Okay, so now use this to figure out what black is. So you know that these 

[whites] are not one. (Guide-Lead) 

Soon after this, the student correctly identified black as three and a half. The teacher’s leading 
questions were not just non-mathematical process help (see Dekker & Elshout-Mohr, 2004), nor were 
they “funneling” questions that trivialized the mathematical concept for the student (Wood, 1998). 
The first leading question firmly established the given assumption that purple is two as the premise 
from which to make a new deduction about the quantity that one white represents. This information 
helped the student to stop thinking of purple as four and white as one, and was the pivotal turning 
point after which the student began to reason appropriately about the situation. Guidance such as this 
was a frequent tool for this teacher and is a powerful form of telling whose mathematical substance 
should not be downplayed. 
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Disclose 
The sixth type of mathematical telling is to disclose. A disclosure, unlike guidance, was more 

mathematically complete and resolved and usually revealed a solution component, an alternative 
solution, an explanation, a justification, a norm, or a convention. The teacher disclosed this 
information while discussing complex concepts, answering student questions, helping students 
construct solutions and justifications, and refining student work. Four main purposes of disclosure 
emerged (see Table 2): amplify student input, explain mathematical concepts, model appropriate 
reasoning, and provide norms and expectations.  

 
Table 2: Purposes of Disclosure 

Amplify student input Elaborate on a student answer, finish a student’s thought, rephrase and 
modify mathematical language, validate a response, synthesize input from 
multiple students 

Explain Explain idea or concept, distinguish concepts, clarify method, illustrate with 
an example, contrast problem structures 

Model reasoning Justify a solution or algorithm, correct flawed student work, provide solution 
component, provide alternate solution 

Norms & expectations Explicate norms such as mathematical conventions, notation, terminology, 
expectations for justifications, or the intended form of an answer 

 
An example illustrates two of these purposes. During one group discussion students were trying 

to understand the range of a set of shoe sizes (that varied from size 6 to 12) in a shoe store by 
counting the available sizes. They had some trouble deciding whether the range was six or seven (by 
whether they counted the smallest size), as well as whether one would need to count half sizes. To 
avoid this quandary one student joked that her store just wouldn’t offer half sizes! The teacher 
decided to disclose the following explanation to help clarify range: 

Teacher: You don’t offer half sizes!? So, okay, so it’s like—So, it sounds like, okay, it sounds 
like these are two different numbers. When you’re talking about the range, um, that’s saying I 
go—I, like, I encompass this amount. Whereas, if I say I offer fourteen sizes, that’s a count of 
the number of sizes you offer. And I think those are two different numbers. (Disclose-
Explain) 

In something of a tentative follow-up, one student ventured her own definition of range, included 
below. The teacher amplified this student’s input:  

Student: Is the range the one number that’s how many numbers are in between the smallest and 
the greatest?  

Teacher: Yeah, it’s the distance between the smallest and the greatest. So, that’s a six. (Disclose-
Amplify) 

The teacher amplified the student’s input by strategically modifying the mathematical imagery 
and accompanying language. Instead of the problematic phrase “how many numbers” (there are 
actually infinitely many numbers between any two real numbers), she used the more precise term 
“distance.” In addition, she modeled appropriate usage of her definition to provide the answer to this 
particular example—the range of shoe sizes varying between 6 and 12 is six. 

Validate 
The seventh and final type of mathematical telling is to validate a student expression of 

mathematics as correct or incorrect. Validation was unique in that it could occur as the only function 
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of a telling utterance or in combination with one of the other six telling functions (for example, many 
disclose–amplify utterances also validated student input). Validation was the least reliable code to 
discern in the data. At times it was ambiguous due to words such as “yeah, okay, uh-huh” and 
“alright” that were also social conversational markers. Other times validation occurred in the 
discourse simply by repeating student language with positive emphasis or negative skepticism. Other 
implicit interactional norms or gestures may have served as validation and gone unnoticed. I 
conservatively marked discourse as validate only when the speech before and after the incident in 
question showed evidence that the teacher and students treated it as validation. Even so, validation 
was a frequent type of telling, occurring in well over half of the mathematical conversations the 
teacher held with groups and individuals. 

Discussion 
Three important findings across the seven telling types distinguish this study from prior work in 

inquiry. First was to recognize the frequently overlooked mathematical contributions in subtle acts 
such as assessing and interpreting student thought. Second was to make mathematical contributions 
of indirect mathematical aid, such as guidance, more transparent. Third was to acknowledge that 
overt forms of telling, such as disclosing items and validating student work, were pervasive and 
integrated components of the teacher’s inquiry-based instruction.  

Conclusion 
The primary contribution of this study is to empirically expand the construct of telling as it 

occurs in contemporary pedagogical spaces such as inquiry. Telling is more than “simply telling 
students whether their answers are right or wrong or giving students correct answers” (Chazan & 
Ball, 1999, p. 2). Mathematical telling comprises a rich vocabulary for talking about some of the 
mathematical content and pedagogical functions of teacher discourse. Telling as a conceptual space 
was enriched to include less conspicuous forms of telling whose embedded mathematical structures 
have frequently been eclipsed by the glaring omission of more conspicuous mathematical 
information. 

Inquiry has informally been set apart from more direct modes of teaching by its pervasive lack of 
“telling.” The descriptive case study presented here suggests that this need not be the case. The 
examples of mathematical telling presented in the framework were a consistent and integrated 
component of the teacher’s inquiry-based practice. Naturally, not every instance of mathematical 
telling was ideal, and the study should not be taken to justify the indiscriminate use of telling. 
However, mathematical telling as a practice is not automatically harmful, unwarranted, or inferior to 
less mathematically saturated discourse simply by virtue of initiating mathematical ideas (see Lobato 
et al., 2005).  

The main implication of these considerations is the need to take a more nuanced and contextual 
orientation to telling. Mathematical telling practices should be viewed as one set of many available 
instructional tools for creating structure and managing student activity, along with mathematical 
tasks, tools, physical environments, and collaborative interactional norms. 

Further research should investigate teacher awareness of and intentional use of telling practices, 
the influence of mathematical telling on student thinking, the use of telling practices in whole-class 
discussions and other instructional settings, and the situated relationship of mathematical telling to 
the other parts of the teaching environment as a whole. 
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This mixed methods study explored elementary teachers’ (n=73) experiences with and perspectives 
on the newly implemented CCSS-Mathematics at a high-needs, urban Professional Development 
School in a state where roll-out of the standards has been fraught with opposition.  Analysis of the 
survey, questionnaire, and interview data reveals the findings cluster around: familiarity with and 
preparation to use the standards; implementation of the standards, including incorporation and 
teacher change; and tensions associated with enactment of the standards. Notably, the teachers 
believed in the merit of the standards but were constrained by their inadequate content knowledge, 
limited aligned curricular resources, lack of student readiness, and a perceived mismatch with ELLs.  
The results illuminate the professional needs of teachers during this critical time of transition and 
also add to the scant research in this area. 

Keywords: Elementary School Education; Instructional Activities and Practices; Policy Matters; 
Teacher Knowledge 

Purpose 
As a means of improving the mathematics education of students in the U.S., teachers in 43 states 

are now expected to utilize the academic standards of the Common Core State Standards for 
Mathematics (CCSS-Mathematics) in their daily classroom instruction (CCSS, 2015).  The CCSS-
Mathematics is intended to provide more rigor and depth of the mathematics for students, while 
potentially requiring increased specialized content knowledge and fundamental changes in 
instructional practices of teachers (Schmidt, 2012).  Ultimately, the difficulty of transitioning to the 
CCSS-Mathematics lies in putting the standards into classroom practice, with teachers having control 
over how this will play out (Dacey & Polly, 2012).   

For the state in which this study was conducted, the roll out of the CCSS-Mathematics was and 
continues to be fraught with uncertainty and opposition, contributing to a general climate of anxiety 
and unrest for teachers.  Given this challenging context, coupled with the widespread acceptance of 
the CCSS-Mathematics across the U.S., careful scrutiny of these new standards is warranted.  As 
teachers are the ultimate force on how these standards are implemented in classrooms, a close study 
of their perspectives is needed, particularly in light of the scant research in this area.  Accordingly, 
this mixed methods study explored teachers’ experiences with and views on the newly implemented 
CCSS-Mathematics, including awareness of and preparation to use the standards, integration of the 
standards into classroom teaching practice, and tensions associated with the standards, including 
affordances and constraints linked with enactment.  This study adds to the much needed research 
base and also provides insights into the professional needs of teachers during this critical time of 
transition to the CCSS-Mathematics. 

Related Perspectives 
The CCSS-Mathematics represents a major overhaul of the standards previously used in most 

states adopting these new standards.  The standards include 11 critical areas of mathematics for 
grades K-8 in order to provide a coherent and focused curriculum built around big ideas (CCSS-
Mathematics, 2010).  The standards go beyond specifying mathematical content and also include 
eight Standards for Mathematical Practice, with an emphasis on applying mathematical concepts and 
skills in the context of authentic problems and understanding concepts rather than merely follow a 
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sequence of procedures.  The standards were created with strong consideration for the research base 
about the development of students’ understandings of mathematics over time (Cobb & Jackson, 
2011).  As such, the topics at particular grade levels are different, with this re-sequencing reflecting 
current research on learning trajectories (Sztajn, Confrey, Wilson, & Edgington, 2012).  In addition, 
summative assessments have been created that align with the more rigorous and in-depth 
expectations.  Given these significant shifts proposed by the CCSS-Mathematics, its introduction will 
require a significant revamping of mathematics education in many schools (Schmidt & Houang, 
2012).   

Whether or not K-12 students learn the CCSS-Mathematics depends upon teachers’ instructional 
expertise (Schmidt & Houang, 2012).  The introduction of the CCSS-Mathematics requires many 
teachers to change what and how they teach and therefore calls into question their readiness for 
implementing these standards.  Phillips and Wong (2012) suggest “. . . that moving from the 
standards on paper to the deep changes required in practice will be a significant challenge” (p. 31).  
For example, many standards designated for a particular grade may be reintroduced unnecessarily 
over the course of several years and spanning different grade levels (e.g., 4th grade standards may be 
taught in classrooms from 2nd through 6th grades) if teachers continue to rely on past standards’ 
implementation schedules (Gewertz, 2012).  In addition, Schmidt and Houang (2012) suggest that 
many teachers view the CCSS as predominantly the same content as their state’s previous standards 
and this lack of awareness poses significant difficulties.  Further, the CCSS-Mathematics proposes 
that teachers focus on fewer “big” mathematical ideas so students will: build conceptual 
understanding, achieve procedural skill and fluency, and learn how to transfer what they know to 
solve problems in and out of the mathematics classroom (Phillips & Wong, 2012).   In order to 
develop these student understandings, Ewing (2010) contends, “Teachers must have deep and 
appropriate content knowledge to reach that understanding; they must be adaptable, with enough 
mastery to teach students with a range of abilities; and they must have the ability to inspire at least 
some of their students to the highest levels of mathematical achievement” (para. 6), highlighting 
some of the necessary teacher competencies for teaching the CCSS-Mathematics.  

Method 
This descriptive study used a mixed methods research design, with data collection occurring via a 

survey, open-ended questionnaire, and individual interviews.  Specifically, a “concurrent 
triangulation” (Creswell, Clark, Gutmann, & Hanson, 2003, p. 223) approach to mixed methods was 
used, which implies: (a) concurrent collection of quantitative and qualitative data, (b) equal 
prioritization of quantitative and qualitative data, and (c) integration during the analysis and 
interpretation phases.  Both types of data were collected in an attempt to cross-validate findings 
within a single study.   

Participants and Context 
This study involved 73 teachers at a large, urban elementary school in the southeastern U.S.  The 

school had partnered as a Professional Development School (PDS) with the researchers’ University 
since 2005.  During data collection, teachers reported demographic information, which reveals years 
of teaching experience ranged from 40% with 5 years or less, 25% with 6 to 10 years, and 35% with 
more than 10 years. The educational background of the teachers includes 68% with at least a 
Master’s degree.  The PDS perpetually faces challenges associated with a high rate of teacher 
turnover and also student mobility.  With regard to student demographic information, the PDS is a 
Title I school with 95% of the students eligible for free or reduced lunch at the time of the study.  
The student population was highly diverse, including 69% Hispanic, 22% African American, 5% 
Asian, and 4% Caucasian.  Seventy-two percent of the students were non-native English speakers, 
and the English as a Second Language (ESL) program served 55% of the student population.  In 



Teaching!and!Classroom!Practice:!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

1080!

2002, this school was removed from the state’s failing schools list and has achieved adequate yearly 
progress (AYP) goals for the subsequent years. 

The PDS relationship included a close partnership between the University and elementary school 
focused on: improving the preparation of new teachers, enhancing faculty development, inquiry 
directed at improved practice, and increasing student achievement; one of the researchers had done 
significant work at the PDS across the past 8 years supporting these goals.  Given this sustained, 
collaborative partnership, there was ready entry for this research project, as well as established 
rapport and trust between the researchers and PDS teachers.       

At the time of data collection, the teachers were mid-way into their second year of 
implementation of the CCSS-Mathematics. The department of education for the state in which the 
PDS is located adopted the standards in 2010, and the roll-out included communication and 
administrator training during 2010-2011 and teacher training during 2011-2012.  Initial classroom 
implementation of the standards was expected in fall 2012, with full implementation in fall 2014 
(doe.k12.ga.us, 2014).  

Data Collection 
Quantitative data were collected via a survey, and qualitative data were collected via an open-

ended questionnaire and individual interviews.  Participants completed the survey and open-ended 
questionnaire on the same day during their grade level Common Planning Time.  All interviews were 
conducted within two weeks of this initial data collection at the convenience of the interviewees and 
at the PDS site.  

All teachers completed a survey focused on their experiences with and perspectives on the 
CCSS-Mathematics, as well as an open-ended questionnaire designed to provide insights into the 
survey items.  At the time of this study, there were no published surveys or questionnaires addressing 
teachers’ perspectives on the CCSS that emphasized mathematics.  The survey includes 22 items, 
some of which are multi-part. Some of the items were written by the researchers, and some were 
modified items from EPE Research Center’s (2013) national survey of teacher perspectives on the 
Common Core.  The domains of the survey items cluster around: teachers’ reported experiences with 
the standards, including familiarity with, preparation for, and implementation of them.  Additional 
items focus on teachers’ perspectives on the standards, including the potential of the standards to 
influence or change their instructional practices and students’ learning, as well as mathematics 
education in general.   

After completing the survey, all participants completed the open-ended questionnaire intended to 
illuminate the survey items; the questionnaire contains eight multi-part questions.  Six randomly 
selected teachers participated in individual, semi-structured interviews, and the interview protocol 
was identical to the open-ended questionnaire.  The interviews ranged from 30 minutes to 1 hour in 
duration.  

Data Analysis 
Data from the surveys were analyzed using individual response analysis by examining the scores 

for each item; data from the interviews and open-ended questionnaires were analyzed using constant 
comparative methodology (Lincoln & Guba, 1985). Specifically, the researchers individually 
analyzed the qualitative data through line-by-line open coding which generated numerous categories. 
Categories represented observed phenomenon found in the data (Strauss & Corbin, 1998). 
Researchers met and discussed the categories to reach consensus on meanings related to the 
categories. This discussion and analysis of all interview and questionnaire data resulted in a coding 
manual representing the relationships within codes. The researchers then engaged in data reduction 
by recoding interviews and questionnaires using the coding manual for guidance in comparing and 
refining codes. Coded categories were collapsed and renamed until themes were identified. The 
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analysis of the survey data was triangulated with the themes from the qualitative data sources, 
resulting in final themes on teachers’ experiences with and perspectives on the CCSS-Mathematics.  

Results   

Familiarity with and Preparation to Use the Standards 
Teachers reported relative familiarity with the CCSS-Mathematics.  On the item, “Please rate 

your overall level of familiarity with the CCSS-Mathematics,” only 22% reported they were very 
familiar, while 67% indicated they were somewhat familiar.  And, though mid-way thru the second 
year of implementation of the CCSS-Mathematics, 25% reported no professional development on the 
standards.  Of the 75% indicating professional development experiences, 56% reported three days or 
less, while 29% indicated over five days.  When asked to describe the format, teachers indicated the 
most frequent as “collaborative planning time with colleagues”, with the next two frequent as 
“structured, formal setting (seminars, workshops, conferences)” and “Professional Learning 
Communities”.  Given these accounts, on the item, “To what extent do you agree with the following 
statement? Overall, my professional development and training on the CCSS-Mathematics have 
prepared me to teach the CCSS-Mathematics,” only 7%  strongly agreed, with 65% agreeing and 
20% disagreeing.  The qualitative data illuminated these data, and notably there was an emphatic call 
for more professional development: 

It’s particularly challenging because there’s been no support or staff development.  . . I know 
myself and many teachers who are doing everything we can to reach our students.  But, we don’t 
necessarily feel that we really know what we are preparing them for and how to be prepare them. 
. . The most important thing I would say that I need or would like to have is some preparation and 
some support, which I don’t and am not getting from my school and school system.  And, I don’t 
know if that’s because it’s not available or they’re in the same boat that we are because they 
don’t know either.  But, this is an area that’s going to have to be addressed if the implementation 
of this program is going to be successful. 

Teachers proffered professional development should involve: “modeling of lessons”, “unpacking 
the standards”, and understanding differences between “same lesson taught using CCSS-Mathematics 
and not CCSS-Mathematics”. 

In addition, when considering preparation, teachers had varied responses based on different 
groups of students.  Mean scores reveal teachers felt least prepared to teach students with disabilities 
and most prepared to teach low-income students.  The qualitative data show preparation for teaching 
varying groups of students as a concern: “I don’t necessarily feel that I am prepared to successfully 
reach all of my students and prepare them for math understandings.”   

Implementation of the Standards: Incorporation and Teacher Change  
When considering implementation of the standards, the data reveal two subthemes: incorporation 

into teaching practices and changes in teaching practices.  On the item, “To what extent have you 
incorporated the CCSS-Mathematics into your classroom teaching practice,” 39% indicated 
incorporation into some areas of teaching but not other areas, while 57% reported full incorporation 
into teaching.  Teachers were also asked about their incorporation of the eight Standards for 
Mathematical Practice into their classroom instruction.  The data show the two most included as: 
“Make sense of problems and persevere in solving them” and “Use appropriate tools strategically”.  
The least incorporated were: “Construct viable arguments and critique the reasoning of others” and 
“Look for and make sure of structure”.  

In regard to implementation, teachers reported the new standards necessitate a change in their 
instruction.  For example, 73% strongly agreed or agreed the standards require them “to do things 
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differently as a teacher of mathematics”.  On a similar item, 68% strongly agreed or agreed the 
standards necessitate them “to change their classroom teaching practices”.  Threaded across 
statements about changing teaching practice is the placement of students at the center—valuing and 
emphasizing students’ thinking, reasoning, representation, and explanation, with less teacher 
direction.  Reported changes include: “moving away from teaching a standard algorithm to having 
the students explain their work, and they’re working more with manipulatives and coming up with 
models”; “It’s so much more in-depth.  And, it’s definitely trying to get them to do, not just like 
know, for instance, the formula for area, but all the different ways to get area”.  A teacher described 
her changes in instruction as:  “We didn’t have discussions.  It was more so, it’s wrong. . . Where 
now, I’m like, how they did get that, and they can explain it.”  Similarly, another teacher described 
her shift in teacher practice as:  

More student-centered than teacher-related. . . I’ve had to back up a little bit because the students 
are kind of exploring and finding different strategies to use. So, that’s a different  practice for 
me. I kinda want to give them something but have to back off and say well, if  that strategy 
worked for them or they’re finding strategies that maybe I didn’t know, then I give them the 
freedom to explain or teach it to the class.  

This shift away from teacher as central during instruction is also described as, “Now they’re the 
owner of what is being said. . . I enjoy it more because I have given more responsibility to the child.”  
Interestingly, teachers reported more inclusion of student explanation, but of the eight Standards for 
Mathematical Practice, the one focusing on students constructing arguments was reported on the 
survey as the least incorporated.   

Tensions Associated with the New Standards 
The teachers identified tensions with their perceptions of the new standards and enactment.  The 

teachers overwhelmingly believed the standards would improve their instruction and benefit student 
learning.  But, they identified several challenges for implementation, and these competing 
affordances and constraints generated tensions for teachers. 

Tension #1: Affordances for Teachers and Constraints. The teachers believed the new 
standards would make them better teachers of mathematics.  On the item, “To what extent do you 
agree or disagree with the following statement? The CCSS-Mathematics will help me improve my 
classroom teaching practice”, 83% strongly agreed or agreed.  A teacher stated, “I feels like to me 
that the new standards are just good teaching.” However, the teachers identified several constraints 
with incorporating them into classroom teaching practices.  These tensions can be linked to: lack of 
mathematics knowledge for teaching (MKT) and inadequate curriculum materials.    

Mathematical knowledge for teaching (MKT) is multi-faceted and includes in part common 
content knowledge and SCK for teaching mathematics (Hill & Ball, 2009).  The teachers identified a 
struggle with the mathematical content in the new standards.  Sample interview comments include: 
“One area I struggled with was math. . . now with the CCSS-Mathematics standards I have to go 
deeper, and I do not feel comfortable;” and “I am having to relearn math to be able help my 
students.”  The teachers also reported a struggled with what has been defined as SCK for teaching 
mathematics, which includes in part, teachers’ abilities to analyze and interpret students’ 
mathematical thinking and ideas.  Teachers’ struggling to understand children’s invented solutions 
strategies was commonplace, as a teacher stated, “And half the time, I’ve seen something, I’m like 
how did you do that?  And, then I have to look at it, and I’m like, oh, okay,” and with another 
reporting, “I had a hard time conceptualizing how different thinkers think different ways.  In the 
hardest part of my lesson I was trying to connect all those different ways of learning and the way that 
different thinkers think.  As I think about math in a very different way than Johnny or Billy Bob 
might.”  
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Another constraint identified by the teachers was a lack of curricular resources aligned with the 
new standards.  The teachers recognized the need for changes in their curriculum, as 88% strongly 
agreed or agreed that the CCSS-Mathematics requires “new or substantially revised curriculum 
materials and lesson plans”.  In addition, of the options that would help teachers to be better prepared 
to teach the new standards, one of the top choices (44%) was “access to curricular materials aligned 
to the standards”.  The qualitative data supported this: “Teachers have not been given any curriculum 
materials, anything that aligns with the standards, and there really isn’t much out there that is 
aligned… So, the challenge here is that teachers like myself are doing the best we can to learn these 
new standards.  Not only are we having to learn new standards, but we are having to create 
everything we are doing and hoping that we are understanding.”   

Tension #2: Affordances for Students and Constraints. The teachers largely held a positive 
view of the new standards, with notable beliefs about the benefits for students and their learning.  
They believed the CCSS-Mathematics provides a positive direction for mathematics education, as on 
the item “The CCSS-Mathematics will improve mathematics education in the U.S.”, 73% strongly 
agreed or agreed, with 19% reporting “I Don’t Know”.  On a similar item, “The CCSS-Mathematics 
is more of a positive step than a negative step in mathematics education in the U.S.”, 80% strongly 
agreed or agreed, with 19% indicating “I Don’t Know”.  Further, the teachers perceived the new 
standards to be of benefit to their own students, as on the item, “The CCSS-Mathematics will 
improve my students’ learning”, 34% strongly agreed and 44% of agreed, though 16% reported “I 
Don’t Know”. 

The interview and survey data offer insights into benefits for students.  The teachers appreciated 
the emphasis in the new standards on mathematics as a sense-making activity, including a focus on 
conceptual understanding, explanation and justification, and connections.  For example, a teacher 
asserted, “I think that it’s preparing them to be better thinkers when it comes to math,” with another 
stating, “I call them [students] microwaves because they want the answer now, but Common Core 
forces them to work it out and really just dig into it. . .  It will have a great impact on deepening their 
knowledge and really getting them to understand why math is math.”  Another teacher stated: 

It will help students’ learning because instead of just telling them to do it, they know why they’re 
doing it.  Why it’s important.  When things become more meaningful, it seems more real to them 
and their brains can connect the concepts better than when they are just memorizing. . . This is 
why the area formula is what it is.  And, wondering things like perimeter or area and how they 
can connect and see how it all works together.  It’s not all isolated incidents that have no meaning 
in relation to each other. . . Students have to be able to explain why math is the way that it is.  
Students have to explain why formulas are the way they are. Students can explain why we do 
math the way that we do and not just use rote memorization to solve problems.  I really like how 
it’s supposed to make  students think more critically.  

Though teachers believed in the value and emphasis of the new standards for students, there were 
associated constraints related to enactment that generated tensions for teachers, including lack of 
student readiness and a perceived mismatch of the standards with ELLs.  The teachers believed 
students were not ready for the new standards, with gaps in content and skills linked with past ways 
of learning mathematics.  Interestingly, when considering student preparation to learn the standards, 
on a scale of 5 as “very prepared” and 1 as “not prepared”, the findings reveal a mean score of 3.2, 
thus the perception that students had mediocre preparation.  One teacher aptly stated, “It’s almost like 
we’re going back, undoing and unteaching what they have been taught.”  Another declared, “A lot of 
my students have been working with algorithms for the most part since they have been in school.  It’s 
difficult to try to go back and teach them really why the algorithm works, just understanding why 
they’re doing it.”   Another teacher stated, “Students have a hard time explaining how they got the 
answer.  They just say things like I know that 3+3 =6. . . It’s hard for them to grasp the words to 
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communicate what they understand.  They have been so used to just memorizing facts it’s very 
confusing for them. . . Students have to able to do it and explain their thinking as opposed to just 
answering or recalling facts.”   One teacher identified particular challenges with students in the upper 
grades, as she noted that with younger children, “. . . it’s easier because you’re teaching them what 
we would consider the proper way and they can go from there. . . The higher the grade level the 
harder it will be because they’ve learned a certain way and now they have to learn a new way. . . 
Because they have to go backwards, it tends to frustrate them.”  This teacher went on to propose a 
phasing in of the CCSS-Mathematics, starting with the primary grades: “A line should have been 
drawn to like, okay, phase one, implement K-2 and then phase two, 3-5, instead of everybody getting 
it at the same time. Instead of boom, you’re in 5th grade but you need to learn how to do this.”      

In addition, the teachers had salient concerns about the misfit of the CCSS-Mathematics with 
ELLs.  When asked about their preparation to teach the new standards to different groups of students, 
ELLs had the second to lowest mean score.  In particular, this school has a large ELL population, and 
teachers voiced concerns with the emphasis on communication and explanation as posing difficulties: 
“Out of my 29 students, I have 26 ELLs and it’s very challenging for them. . .  Definitely with the 
Common Core, across the board it is always explaining why.”  Teachers also lamented multi-step 
tasks or word problems involving several parts that require higher levels of reading comprehension 
from ELLs, with one teacher asserting she has “learned to break the tasks or the activities down for 
them, and I find that works.”   

Conclusion and Discussion 
Though the state adoption and implementation of the CCSS-Mathematics has been highly 

contentious, becoming a political issue and encountering parental opposition, notably, the teachers 
held decidedly positive views on the standards.  They believed the standards improve their teaching 
of mathematics and benefit their students’ learning, with this perspective linked in part with the 
emphasis on mathematics as a sense-making activity.  This optimism is remarkable, considering this 
is the third set of academic standards for K-12 education in this state across the past 10 years, as one 
teacher lamented, “We have had three or four sets of standards and each time we are told these will 
be around for a long time only to see them changed every few years.  This can be very frustrating for 
teachers… teachers are just so tired of change”.  Despite this revolving door of standards, such a 
hopeful view can go a long way with adequate teacher preparation and aligned curricular resources—
of which, in general, teachers in this study seemed to need more.  Allowing time for teacher change 
is crucial, particularly with the uncertainty about forthcoming assessments, and the rapidly 
approaching third year for when assessment scores are consequential seems premature.    

Several constraints were identified.  As indicated by others (Schmidt, 2012), content knowledge, 
particularly SCK, was a barrier for enactment.  Teachers struggled to understand, interpret, and 
respond to children’s thinking and invented solution strategies. The importance of well-developed 
mathematical knowledge for teaching is undisputable. Professional development for teachers should 
provide ways of concurrently building SCK while studying children’s thinking, with one such option 
being the professional development materials from the Cognitively Guided Instruction (CGI) Project 
(Carpenter, Fennema, Franke, Levi, & Empson, 1999; 2014).  CGI is an approach to teaching and 
learning mathematics that focuses on teachers using knowledge of children’s mathematical thinking 
to make instructional decisions, which can simultaneously develop SCK.  In addition, concerns about 
using the new standards with specific groups of students should be noted and in this particular study, 
teachers did not feel prepared to do so with students with disabilities and also ELLs, which are 
prevalent at this PDS site. The implications for the new standards differentiated for the learning 
needs of different groups of students must be considered and addressed.  In addition, lack of student 
readiness was of concern, linked with their past experiences as learners of mathematics.  Student 
explanation was one such challenge, with teachers needing ways to develop classroom norms for 
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engaging in discourse and social mathematical norms that help students understand what constitutes a 
good mathematical solution and explanation. Guidelines such as these could help students to 
persevere when solving problems and forming mathematical arguments.  In sum, the findings of this 
study illuminate both the tremendous potential for positive change provided by the CCSS-
Mathematics and accompanying barriers.  As teachers are ultimately the deciding factors on how the 
standards play-out in classrooms, this close study of their perspectives can hopefully provide insights 
into ways of better quipping them for teaching the standards and in turn benefiting students’ learning.  
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This study investigated the attributes of 297 instances of student mathematical thinking during 
whole-class interactions that were identified as having the potential to foster learners’ understanding 
of important mathematical ideas (MOSTs). Attributes included the form of the thinking (e.g., question 
vs. declarative statement), whether the thinking was based on earlier work or generated 
in-the-moment, the accuracy of the thinking, and the type of the thinking (e.g., sense making). 
Findings both illuminate the complexity of identifying student thinking worth building on during 
whole-class discussion and provide insight into important attributes of MOSTs that teachers can use 
to better recognize them. For example, 96% of MOSTs were of three types, making these three 
particularly salient types of student mathematical thinking for teachers to develop skills in 
recognizing. 

Keywords: Classroom Discourse; Cognition; Instructional Activities and Practices 

An enduring challenge in mathematics education is figuring out how to best support teachers’ 
effective use of student mathematical thinking in their classrooms. For several decades reform 
documents (e.g., National Council of Teachers of Mathematics [NCTM], 1989, 2000, 2014) have 
consistently called for teaching that focuses on developing students’ abilities to reason 
mathematically. For mathematical reasoning to happen, the NCTM recommends that students engage 
in exploration of complex tasks, state and test conjectures, and build arguments to justify their 
conjectures. In response to this recommendation, many researchers have investigated issues around 
student thinking, such as students’ abilities to think mathematically using tasks with high cognitive 
demand (Stein, Grover, & Henningsen, 1996), obstacles to students’ learning (Bishop, Lamb, Phillip, 
Whitacre, Schappelle, & Lewis, 2014), challenges beginning teachers face when trying to use student 
thinking (Peterson & Leatham, 2009), important teachable moments created by student thinking 
made public during classroom instruction (Stockero & Van Zoest, 2013), and classroom instances 
that have potential for building students’ mathematical understanding (Leatham, Peterson, Stockero, 
& Van Zoest, 2015). However, little is known about the nature of student thinking that becomes 
publicly available for teachers to use during instruction. 

Our ongoing work investigates student mathematical thinking made public during whole-class 
interactions that, if made the object of discussion, has the potential to foster learners’ understanding 
of important mathematical ideas—instances of student thinking that we call Mathematically 
Significant Pedagogical Opportunities to Build on Student Thinking [MOSTs] (Leatham et al., 2015). 
The work reported here analyzes instances of student thinking that have been identified as MOSTs in 
order to investigate attributes of this high-leverage subset of student thinking. A better understanding 
of the attributes of MOSTs has the potential to support research on mathematics teaching in at least 
four ways. 

First, using student mathematical thinking productively requires that the thinking be noticed (van 
Es & Sherin, 2002). Stein, Engle, Smith, and Hughes (2008) suggested that teachers might be able to 
orchestrate classroom discussion effectively when student work with potential to enhance learning is 
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identified, attended to, and sequenced in a developmentally appropriate way. Understanding 
attributes of MOSTs may help teachers develop their skills for noticing student thinking worth 
building on and thus improve their ability to orchestrate classroom discussion that fosters student 
learning. Second, Ball, Lewis, and Thames (2008) described students’ mathematical thinking as 
“both underdeveloped and under development” (p. 15) and identified students’ mathematical 
thinking as “the raw materials for building justified mathematical knowledge” (p. 25), but did not 
characterize the nature of the raw materials in student responses. Using students’ mathematical 
thinking as a cornerstone for subsequent construction of student mathematical understanding requires 
an understanding of the nature of that thinking. Understanding attributes of MOSTs, a critical subset 
of student thinking, has the potential to provide insight into Ball et al.’s (2008) “raw materials” and 
contribute to the development of “justified mathematical knowledge” (p. 25). Third, Carpenter, 
Fennema, Peterson, Chiang, and Loef (1989) found that giving teachers access to different strategies 
students employ to solve problems positively affected teachers’ beliefs about learning and instruction, 
their practices, their knowledge about students, and students’ achievement. Giving teachers access to 
attributes of MOSTs may have similar positive effects on teachers because it would give them 
information about the nature of student mathematical thinking available to them in their classrooms 
and better equip them to use that thinking productively. Finally, Hiebert, Morris, Berk and Jansen 
(2007) argued that teaching should be assessed based on how teachers make use of student responses 
in classrooms to foster understanding of mathematical ideas rather than on the presence of 
recommended instructional features. Identifying attributes of student responses that are MOSTs 
might enhance the development of ways to assess teaching in this manner. 

Theoretical Framework 
Leatham et al. (2015) defined MOSTs as occurring in the intersection of three critical 

characteristics of classroom instances: student mathematical thinking, significant mathematics, and 
pedagogical opportunities. For each characteristic, these authors provided two criteria that can be 
used to determine whether an instance of student thinking embodies that characteristic. For student 
mathematical thinking the criteria are: “(a) one can observe student action that provides sufficient 
evidence to make reasonable inferences about student mathematics and (b) one can articulate a 
mathematical idea that is closely related to the student mathematics of the instance—what we call a 
mathematical point” (pp. 93-94). The criteria for significant mathematics are: “(a) the mathematical 
point is appropriate for the mathematical development level of the students and (b) the mathematical 
point is central to mathematical goals for their learning” (p. 97). Finally, “an instance embodies the 
pedagogical opportunity characteristic when (a) the expression of a students’ mathematics creates an 
opening to build on student thinking to help develop an understanding of the mathematically 
significant point of the instance and (b) the timing is right to take advantage of the opening” (p. 103). 
When an instance satisfies all six criteria, it embodies the three requisite characteristics and is a 
MOST. We see analysis of MOSTs as a means toward identifying important attributes of high 
leverage student mathematical thinking that might be used to help support teachers in developing 
their skill at productively using such thinking. 

Stockero and Van Zoest (2013) investigated and categorized “instances in a classroom lesson in 
which an interruption in the flow of the lesson provides the teacher an opportunity to modify 
instruction in order to extend or change the nature of students’ mathematical understanding” 
(p. 127)—what they called pivotal teaching moments (PTMs). We see PTMs as a subset of MOSTs, 
and thus we used the PTM categories to inform our thinking about attributes of MOSTs. In particular, 
these researchers identified five categories of PTMs: (1) extending—students make connections to 
create a much deeper lesson from what was planned; (2) incorrect mathematics—student incorrect 
mathematical thinking becomes public; (3) sense making—students are trying to make sense of the 
mathematics under consideration; (4) contradiction—student responses have competing 
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interpretations; and (5) mathematical confusion—students clearly state mathematically what they are 
confused about. These categories and the work related to the development of them provided a 
starting point for our exploration into attributes of MOSTs. 

Methodology 
This study is part of a larger project focused on understanding what it means for teachers to build 

on students’ mathematical thinking (see LeveragingMOSTs.org). We selected 11 videotaped 
mathematics lessons from the MOST project that reflected teacher diversity (race/ethnicity, gender, 
experience, teaching style), mathematics diversity (6-12th grade, topic, textbook), and classroom 
diversity (region of the US, community type, race/ethnicity). The unit of analysis for identifying 
MOSTs was an instance of student thinking—an “observable student action or small collection of 
connected actions” (Leatham et al., 2015, p. 92) that had the potential to be mathematical. 
StudioCode (Sportstec, 1997-2015) was used for three passes of coding. In the first pass, classroom 
context and other relevant information were noted on the Studiocode timeline and instances of 
student thinking were identified and transcribed. During the second pass, the MOST Analytic 
Framework (see Leatham et al., 2015) was used to determine which instances were MOSTs. We 
identified 297 MOSTs in the 11 lessons; these MOSTs served as the data for the current study. The 
third pass of coding, completed for the current study, focused on identifying attributes of these 
MOSTs. 

We coded the 297 MOSTs for seven attributes that fall into two groups: Locus and Cognition 
(Figure 1). The Locus group encompasses attributes that locate a MOST within the mathematical and 
lesson terrain and includes what immediately preceded the MOST (Prompt), whether the MOST was 
based on earlier work (Basis), and the distance of the mathematical idea of the MOST from the day’s 
lesson (Math Goal). The Cognition group focuses on the expression of the student’s thinking and 
includes whether the MOST was a question or statement (Form), whether the student thinking was 
correct (Accuracy), the extent to which the intellectual need is obvious (Intellectual Need), and the 
nature of the MOST (Type). To illustrate our coding and the nature of our results, we discuss four of 
the attributes (Basis, Form, Accuracy, and Type—bolded in Figure 1), as well as interactions 
between them.  

Basis refers to whether the student mathematics (SM) in the MOST is based on earlier work 
(Pre-thought) or on in-the-moment thinking (In-the-moment). A MOST is coded Pre-thought when 
the student appears to be sharing thinking from previous work. Although this previous work could be 
from homework or another class, typically it is from small group or individual work completed 
during the lesson. A MOST is coded In-the-moment when the SM stems from students’ in-the-
moment thinking. This thinking might be in response to a follow-up request from the teacher or to 
another students’ thinking or question, or it might be seemingly spontaneous. 

 
Locus Cognition 

Prompt (Spontaneous, Open Invitation 
Spontaneous, Open Invitation Selected, 
Targeted Invitation) 

Basis (In-the-Moment, Pre-Thought) 
Math Goal (Lesson, Unit, Course, Math) 

Form (Question, Declarative, Tentative) 
Accuracy (Correct, Incorrect, Incomplete, 

Combination, N/A) 
Intellectual Need (Obvious, Translucent, 

Hidden) 
Type (Incorrect or Incomplete, Sense 

Making, Multiple Ideas or Solutions, 
Other) 

Figure 1: MOST Attribute Codes and their Categories by Groups 
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Form refers to the way in which the student thinking is expressed (Question, Tentative Statement 
or Declarative Statement), regardless of its correctness or completeness. A MOST is coded Question 
if the student thinking is shared as a question or with the intent to question. Declarative Statement is 
used when students appear to be confident in what they are saying and Tentative Statement is used 
when the student appears to be making a conjecture or is wondering about something. Tentativeness 
is typically indicated by the student’s voice inflection when making the statement, but it can also be 
indicated by their use of hedge words such as “maybe” or “I’m not sure.”  

Accuracy is used to categorize a MOST based on the validity of its SM. A MOST is Correct if its 
SM is a correct mathematical statement; Incorrect if its SM is an inaccurate statement; Incomplete if 
the SM is not incorrect, but it has gaps or ambiguities that keep it from being completely correct; 
Combination if it involves a complete statement(s) that falls in multiple Accuracy categories; or N/A 
if it is not possible to determine its correctness (e.g., if it is a question).  

Type is used to categorize what about the SM made the instance a MOST. There are four Type 
categories: Incorrect or Incomplete, Sense Making, Multiple Ideas or Solutions, and Other. A MOST 
is coded Incorrect or Incomplete if it was compelling because its SM is inaccurate or missing critical 
components of the mathematical idea being expressed. A MOST is coded Sense Making if it was 
compelling because the SM implies that the student was trying to make sense of the mathematics, or 
they had comprehended an idea with which the class had been struggling. A MOST is coded Multiple 
Ideas or Solutions if it was compelling because the SM created an opportunity for comparison of 
multiple ideas or solutions.  

To illustrate the attribute codes, consider the SMs from four MOSTs (see Figure 2). All four 
MOSTs came from class discussions based on tasks students had solved beforehand in small groups. 
SM1, SM2, and SM4 were in response to what was currently being shared rather than something they 
had done earlier, thus were coded In-the-Moment (Basis). In contrast, SM3 was a reporting out of a 
student’s earlier work, thus received the code Pre-Thought (Basis). The first two MOSTs involved 
statements, rather than questions, thus received the code Declarative Statement (Form). The third 
was also a statement, but the student preceded it by expressing a lack of confidence in her answer, 
thus it was coded Tentative Statement. The fourth was a question and was coded Question. In the 
Accuracy category, the first MOST received the code Combination because although it includes the 
correct idea that the rate of change is a constant $2.50, the language suggests that the slope is 
increasing at that rate rather than that the slope is that constant rate. The second MOST was coded 
Incorrect because it is possible to divide by a fraction. In SM3, also coded as Incorrect, the class had 
already agreed to the convention of putting the independent variable on the x-axis and the dependent 
variable on the y-axis and the problem the students were exploring implied that “money” was the 
dependent variable and “weeks” the independent variable. The fourth MOST was coded N/A for 
Accuracy because questions, by their very nature, do not have a truth-value. The compelling aspect 
of the first and fourth MOSTs was a student grappling with a mathematical idea—the difference  

 
Student Mathematics of four MOSTs Coding (Basis, Form, Accuracy, Type) 

SM1: The slope is increasing at a constant rate. The slope is not 
going any faster. The slope is always going up $2.50. 

In-the-Moment, Declarative Statement,  
Combination, Sense Making 

SM2: You can't divide by a fraction. 
In-the-Moment, Declarative Statement,  
Incorrect, Incorrect or Incomplete 

SM3: I put the money on the x-axis and weeks on the y-axis. 
Pre-Thought, Tentative Statement,  
Incorrect, Incorrect or Incomplete  

SM4: Doesn’t solving sometimes include simplifying? 
In-the-Moment, Question, 
N/A, Sense Making 

Figure 2: Coding Examples 
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between an increasing graph and a graph with an increasing slope in SM1 and the difference between 
solving and simplifying in SM4—thus they were both coded Sense Making (Type). The compelling 
aspect of the second and third MOSTs was that the students had introduced incorrect ideas, thus these 
MOSTs were coded Incorrect or Incomplete. 

Three research assistants individually coded the 297 MOSTs and then reconciled them as a 
group. If they were not able to reach agreement, the issue was brought to the attention of the 
principal investigators and either the codes or the code definitions were modified to resolve the issue. 
We then determined the frequencies of the codes and interactions between them for each of the 11 
lessons and compiled all the results into a spreadsheet that allowed for within and across lesson 
comparisons. We used that information to search for patterns among the results that would lead to a 
better understanding of the attributes of MOSTs. 

Results and Discussion 
Figure 3 provides the percentages of MOSTs in each category of the four attributes Basis, Form, 

Accuracy, and Type. Roughly 20% of the 297 MOSTs in our data were based on work that students 
had completed earlier in the class, thus were available for the teachers to identify by monitoring 
students as they worked. This percentage speaks to the benefit of teachers developing skills such as 
the five practices for orchestrating classroom discussion identified by Smith and colleagues (e.g., 
Smith & Stein, 2011). The finding that 80% of the MOSTs were based on student thinking that 
occurred during whole-class interaction speaks to the importance of teachers also developing skills 
for carefully listening and responding to evolving thinking.  

 
BASIS FORM ACCURACY TYPE 

In-the-
Moment  

8
0 

Questi
on  

1
6 

Correct  4
0 

Incorrect or 
Incomplete 

3
1 

Pre-
Thought  

2
0 

Tentati
ve  

 
7 

Incomplete  8 Sense making 5
0 

 Declar
ative 

7
7 

Incorrect 2
4 

Multiple Ideas or 
Solutions 

1
5 

 Combinati
on 

9 Others 4 

Not 
Applicable 

1
9 

 

Figure 3: Percentages of MOSTs in Attribute Categories 

The vast majority of the MOSTs were declarative statements (77%) as opposed to questions 
(16%) or tentative statements (7%). This means that it is insufficient to focus only on expressions of 
student mathematical thinking that are intuitively suggestive of thinking worth building on (such as 
questioning or wondering).Instead, teachers must develop more sophisticated ways of recognizing 
which student thinking has this potential.  

Knowing the accuracy of an instance of student mathematical thinking is also insufficient to 
determine whether it is a MOST, as there was no predominate Accuracy category. There were, 
however, more correct (40%) than incorrect (24%)MOSTs. This is particularly interesting given that 
the project team had initially hypothesized that it would be difficult for correct student mathematical 
thinking to meet the MOST criteria.  

Half of the MOSTs (50%) occurred when students were grappling to make sense of a 
mathematical idea. The next highest Type category involved instances of student thinking that were 
incorrect or incomplete (31%). Student thinking that led to multiple ideas or solutions being available 
for students to consider occurred in 15% of the MOSTs and 4% did not fit in the three main 
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categories of Type. Although Incorrect or Incomplete and Multiple Ideas or Solutions had lower 
frequencies than Sense Making, they may be easier for teachers to recognize. Thus, it seems 
important for teachers to attend to all three main categories of Type. The fact that 96% of the MOSTs 
were captured by these three categories is encouraging as it suggests some parameters for developing 
teachers’ abilities to recognize MOSTs. 

Figure 4 considers interactions between the attributes. All but one of the MOSTs in the form of 
questions (see the Q column in Figure 4) were compelling because the student was grappling to make 
sense of a mathematical idea (see, for example, SM4 in Figure2). The fact that all questions in this 
data that qualified as MOSTs involved sense making suggests the need for teachers to consider the 
potential of a question to determine the nature of their response. If the question is a MOST, the most 
effective teacher response might be to provide an opportunity for the class to join the student who 
asked the question in making sense of the idea.  

 
 FORM BASIS ACCURACY* 

Q T D I
TM 

P
T 

C
R 

I
CR 

I
NC 

C
OM 

N
/A 

TYPE           
Incorrect or 

Incomplete 1 1
2 

8
7 

8
0 

2
0 0 6

6 
2

2 11 1 

Sense making 3
2 5 6

3 
8

3 
1

7 
5

8 1 3 3 3
5 

Multiple Ideas or 
Solutions 0 2 9

8 
7

1 
2

9 
5

8 
1

6 0 24 2 

Others 0 1
8 

8
2 

9
1 

 
9 

5
5 9 0 9 2

7 
FORM           

Question (Q)    9
8 

 
2 0 0 0 0 1

00 
Tentative (T)    9

1 
 

9 
2

7 
4

5 5 23 0 

Declarative (D)    7
6 

2
4 

4
9 

2
7 

1
0 10 4 

BASIS           
In-the-Moment (ITM) 2

0 
8 7

2   3
6 

2
5 9 7 2

3 
Pre-Thought (PRE) 2 4 9

4   5
5 

1
9 5 17 4 

*Accuracy Abbreviations: Correct (CR); Incorrect (ICR); Incomplete (INC); Combination (COM); Not Applicable (N/A) 
Figure 4: Percentages of MOSTs in Interactions between Attribute Categories 

The MOSTs that were compelling because they provided an opportunity for students to consider 
multiple ideas or solutions were predominantly declarative statements (98%). As might be expected, 
MOSTs in which students shared thinking from previous work were also typically declarative 
statements (94%). Still, 76% of the declarative statements resulted from in-the-moment thinking, as 
did 98% of the questions and 91% of the tentative statements. There were also no extreme 
differences among which Types result from in-the-moment thinking, with Sense Making having the 
highest frequency (83%) of in-the-moment thinking of the three main Type categories and Multiple 
Ideas or Solutions having the lowest (71%). Thus the earlier stated need for teachers to skillfully 
respond to evolving thinking stands, regardless of the form in which that thinking is expressed or 
what made it compelling. 
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Figure 4 also shows a much higher percentage of the tentatively stated MOSTs were incorrect as 
were correct (45% vs. 27%); nearly the reverse was true of the MOSTs that were declarative 
statements (27% vs. 49%). This finding suggests that although there was some correlation between 
students’ confidence in their thinking and the accuracy of it, the relationship was not strong enough 
to be counted on. That is, in the context of MOSTs, relying on tentative thinking to be incorrect and 
confident thinking to be correct would cause one to be wrong much of the time. Likewise, although 
pre-thought SM was more likely to be correct than SM that was generated in the moment (55% to 
36%), both types of SM were also often incorrect (19% and 25%, respectively).  

Finally, with the exception of MOSTs that were compelling because they involved incorrect or 
incomplete thinking (e.g., SM2 and SM3 of Figure 2), there did not seem to be a strong relationship 
between Accuracy and Type. For example, although 58% of MOSTs that provided the opportunity 
for students to consider multiple ideas or solutions were based on correct SM, 24% were based on 
SM that had both correct and incorrect elements, and 16% were based on SM that was incorrect. 
Again, it seems that accuracy of student mathematical thinking is not a useful predictor of MOSTs. 

Conclusion 
This study set out to contribute to our developing understanding of how to best support teachers’ 

effective use of student mathematical thinking in their classrooms by investigating attributes of 
MOSTs—a high leverage subset of student thinking. The results provide insight into claims about the 
complexity of responding to students’ mathematical thinking on the spot (e.g., Choppin, 2007; 
Jacobs, Lamb, & Philipp, 2010). We now know that surface features of thinking, such as how it 
occurs, the form in which it is expressed, and how accurate it is, are not sufficient to determine 
whether the thinking should be pursued. Rather, responding effectively to student mathematical 
thinking requires careful attention to the content of the thinking to discern the underlying 
mathematical idea and what it might offer as the object of a class discussion. For example, some 
student questions may be best answered directly, but those that reflect a student’s grappling with 
important mathematical ideas provide rich opportunities to engage the class in the type of 
mathematical activity advocated by current reforms (e.g. NCTM, 2014). Calculation and other 
surface mistakes may be dispensed with quickly, but errors in students’ thinking are often worth 
building on. Similarly, correct answers may be an indication to continue, or they may provide an 
opportunity to stop and engage the class in consolidating important mathematical understandings.   

Despite the lack of easy answers about which thinking is worth building on in whole-class 
discussion, this work does provide some parameters that may make the process more manageable. 
For example, correct student thinking that does not involve sense making or multiple ideas or 
solutions is not likely to be worth pursing in a whole-class discussion. Being aware of this pattern 
can help teachers avoid initiating unproductive discussions.  

In general, this work supports the need for teachers to have criteria they can use for evaluating 
which student thinking is worth building on. The MOST Analytical Framework (Leatham, et al., 
2015) is one such set of criteria. Such criteria, in conjunction with the parameters contributed by this 
study, provide a starting place for designing teacher education and professional development to 
support teachers in developing the teaching practice of productive use of student thinking. 
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DO YOU NOTICE WHAT I NOTICE? PRODUCTIVE MEDIUMS FOR TEACHER 
NOTICING 

Megan H. Wickstrom 
Montana State University 

megan.wickstrom@montana.edu 

This article is a report on the findings of three case studies that focused on elementary teachers’ in-
the-moment noticing across a month of instruction. Extending Jacobs and her colleagues’ framework 
(Jacobs, Lamb, and Philipp, 2010), this articles categorizes the mediums (i.e., written accounts, 
verbal interactions, physical strategies) by which the teachers attended to their students’ 
mathematical reasoning. Even though the teachers taught similar lessons, they attended to students’ 
actions through different mediums. These mediums reflected and often aligned with individual 
teaching practices and routines. More interestingly, the teachers’ preferred medium was also the 
most productive for them in terms of discussing students’ understanding and informing instructional 
decisions.  

Keywords: Teacher Knowledge; Teacher Beliefs; Mathematical Knowledge for Teaching 

Background 
In our everyday lives, we each attend to and notice different things. When walking down a city 

street, some of us might be drawn to the items displayed in a storefront window, others to the aroma 
of a local restaurant, and some may be drawn to something that they have seen before or perhaps 
something that has changed. We each make sense of our world in different ways and may not notice 
the same details. As Schoenfeld (2011) states, “noticing is consequential-what you see and don’t see 
shapes what you do and don’t do” (p.228). What we notice and make sense of shapes our daily 
decision-making processes.  

In a similar sense, what teachers notice and make sense of in the classroom is often different 
depending on the teacher. Erickson (2011) found that teacher noticing is selective (attending to some 
events, but not to others), multi-dimensional, and influenced by prior experience. He also noted that 
teachers most often noticed events in the classroom that required immediate attention or action on the 
part of the teacher. Even though teachers notice many things during instruction, how to respond to 
what they notice is sometimes difficult. Multiple researchers (Berliner, 2001; Jacobs, Lamb, & 
Philipp, 2010; Mason, 1998) have documented that teachers often have difficulty devising 
instructional responses based on what they notice.  

Even though noticing and responding to students’ thinking is a difficult task, researchers have 
shown, with professional development, it is a learnable skill (Jacobs et al., 2011; Santagata, Zannoni, 
& Stigler, 2007). Using mediums such as classroom artifacts (Goldsmith and Seago, 2011), student 
video cases (Jacobs et al., 2010;), and videos of teachers’ in-the-moment noticing, researchers noted 
growth in teachers’ abilities to attend to students’ mathematical thinking and form instructional 
responses.  

With regard to in-the-moment noticing, researchers have devised ways for teachers to capture 
moments as they occur using a Déjà Vu camera and then later reflect and respond to these moments. 
This camera attaches to the teacher’s body and she can press a button to capture 30 seconds of video 
at any time. Sherin, Russ, and Colestock (2011) discussed that teachers often use these cameras in 
multiple and unexpected ways (i.e., using it as a still life camera). Star, Lynch, and Perova (2011) 
took this idea a step further and categorized what pre-service teachers noticed during practice (i.e., 
classroom environment, classroom management, tasks, mathematical content, and communication).  
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When using the Déjà Vu camera and analyzing their own teaching, teachers have the freedom to 
choose what is significant to them. By using this camera, researchers can gain insight into how 
teachers attend to and make sense of their students’ mathematical reasoning. There is little to no 
research examining the types of events teachers choose in their daily practices and why these events 
are significant. It important to investigate the ways in which teachers naturally attend to students’ 
actions and reasoning.  

 Within this paper, I categorize the mediums used by three teachers to attend to their students’ 
mathematical thinking across a month-long unit of instruction. In art, a medium is the substance the 
artist uses to create his or her artwork. Within this paper, medium refers to the way in which what 
was noticed was conveyed to the teacher (i.e., drawing a picture, counting using fingers). The paper 
describes a framework for categorizing mediums as well as the significance of specific mediums for 
individual teachers.  Within the paper, I address the following research questions: 

• By what mediums do teachers attend to students’ mathematical thinking in the classroom? 
• In what ways, if any, do these mediums aide in teachers’ instructional decision-making? 

Theoretical Framework 
This study is grounded in the theory of teacher research. Cochran-Smith and Lytle (1993) defined 

teacher research as “systematic, intentional inquiry by teachers about their school and classroom 
work” (p.24). Teacher research usually stems from issues and questions that arise within the practice 
of teaching. It is grounded in the epistemological belief that teachers should have a voice and a 
presence in the research community and acknowledges that the teachers’ perspectives are critical 
when implementing and evaluating research. 

This paper embraces this theory by examining teacher noticing from the teachers’ perspectives. 
When we, as researchers, investigate teacher noticing, we often have an end goal in mind or 
something we hope teachers notice and respond to. By allowing teachers to choose important events, 
we gain insight into their natural practices and how they use these practices to guide decision-
making.  

Methods 

Participants 
Three teachers participated in the study: Mrs. Grey, Mrs. Purl, and Mrs. Brownstein. Mrs. Grey 

and Mrs. Purl were both fourth-grade teachers while Mrs. Brownstein taught fifth grade. The teachers 
had 10-18 years of teaching experience and were second-year participants in a two-year professional 
development (PD) focused on measurement topics. Throughout the PD, each of the teachers had 
experiences watching and writing about videos of their teaching in terms of students’ thinking and 
instructional implications. These teachers were chosen as case studies from the PD because they 
taught similar grade levels at the same school, Terrace Elementary.  

Terrace Elementary 
The study took place at Terrace Elementary, located in an urban city in the Midwestern United 

States. At the time of the study, 554 students attended Terrace and of these students 54% were boys, 
46% were girls. They identified according to the following ethnicities: 54.7% Black, 23.3% White, 
10.3% Multiracial, 9.6% Hispanic, 1.6% Asian, 0.4% Native American, and 0.2% Native Hawaiian. 
The average class size of the school was 18 students and the student to teacher ratio was 12 to 1. At 
the time of this study, 80% of the students came from low-income households and were eligible for 
free or reduced-price school meals.  
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Data Collection 
During a month-long unit on measurement topics, each teacher was asked to wear a Déjà Vu 

camera to record events that she noted as important. This camera was a small device pinned to the 
teacher’s shirt that connected to a collection box clipped to the teacher’s pants. When the teacher 
pressed a button on the collection box, the camera collected and saved a 30-second video clip of the 
events prior to her pressing the button. Each teacher was asked to press the button on the camera 
when she felt that she noticed something important about students' thinking or when she made an 
important decision based on student thinking. All of the lessons were videotaped with a secondary 
camera, as well.  

At the end of each day, I watched the videos and marked time stamps on the main video for each 
of the events that the teachers found important. These clips were then used as the main focus of a 
one-on-one interview. On a daily basis, each teacher and I would sit down for an interview in which 
we discussed the clips that she noted. For each clip, the teacher was asked to describe what the 
student(s) was doing, why she chose the clip, what she thought the student was thinking or 
understood, and in what ways this clip might inform her instruction going forward.  

Following each teacher-researcher interview, I transcribed each conversation verbatim. This 
resulted in over 300 pages of written transcripts (100 pages per teacher).  

Data Analysis 
To examine what and how the teachers noticed, I began with the teacher noticing framework 

(Jacobs, Lamb, & Philipp, 2010) as my primarily analytical tool. However, the construct of teacher 
noticing has been primarily used in clinical interview settings and I experienced limitations in 
analyzing the data I had collected for this study. Using qualitative methods (Miles, Huberman, & 
Saldana, 2014), I instead envisioned the three tenets of teacher noticing as broader analytical 
categories to be explored. I incorporated provisional coding (Miles, Huberman, & Saldana, 2014) to 
expand and elaborate codes to better fit the aims of this study. 

I decided to call each episode that the teacher noticed an event. The event was composed of four 
components: what the teacher noticed, interpreted understanding, implications for teaching, and 
significance to the teacher. It is important to note that an event could be composed of multiple 
student actions because a child could be doing two things simultaneously (e.g., drawing and counting 
area units). 

I began the analysis by first reading the transcripts and taking descriptive, qualitative notes about 
each of the events. I recorded where an event began and ended and notes related to each of the 
constructs. I repeated this process for each of the teachers. Following the note-taking phase, I used an 
event-listing matrix (Miles, Huberman, & Saldana, 2014) to record the events the teacher noted in a 
chronological manner. I devised a matrix for each teacher in which the columns were the analytical 
categories of the event (what the teacher noticed, interpreted understanding, implications for 
teaching, and significance to the teacher) and the rows represented a description of each event in 
terms of those categories.  

Because of the brevity of this piece and the focus on mediums of teacher noticing, I will only 
describe how what the teacher noticed was coded. For each event, I began by coding what the teacher 
noticed within the event and what task the action centered around. After each event was coded, I 
scanned the events again to see if codes were similar in nature or could be collapsed. I repeated this 
process for each lesson and each teacher. For this piece of analysis, the codes usually centered on 
specific tasks or routines within the classroom. As new codes emerged in the analysis, I reanalyzed 
each event for each teacher looking to see if the code had been missed. 

For each teacher, I created codes that described what the event pertained to. In the results section, 
each of these codes are described in detail in the mediums framework (See Fig 1).  
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Results 
What the Teacher Noticed Description 

Written Accounts Drawing Strategy The event involved a student’s drawing a picture to 
represent or help find their answer.  

Written Answer  A solution or student’s work recorded during 
instruction.  

Journal Account Written reflections, definitions, and homework 
recorded by students in their journal.  

   
Verbal Interactions Statement The student makes a claim or states a response in class.  

Question The student poses a question to the teacher. 

Student to 
Student Interactions 

Interactions, discussions, conversations made by 
students to each other within groups or pairs.  

Language 
Comprehension/Usage 

The way in which students use and interpret language. 
Example: The teacher notices the student is confusing the 
words area and perimeter.  

   

Physical Strategies Length/Area/Volu
me Counting Strategy 

The way in which the child counts length, area, or 
volume. Example: For area, students may count individual 
units, skip count by rows, or use the algorithm.  

Length/Area/Volu
me Measurement 

Strategy 

The student uses tools to find length, area, or volume. 
Example: laying tiles down and counting them to find the 
area of a rectangle.  

Building Strategy Students using tools to construct something. Example: 
Building a rectangle with a certain area or a prism with a 
certain volume.  

   

Visualization 
Strategies 

Visualization 
Strategy 

A statement, the student makes, involving how they see 
volume or area. Example: Students states that the volume of 
a prism is like an elevator visiting multiple floors.  

   

Non-Mathematical 
Behaviors 

Behavior Mainly non-mathematical events such as students 
rushing to complete a problem or not attempting a task.  

Figure 1: Mediums by which the teachers attended to students’ actions 

When using the Déjà vu camera to indicate important events, the teachers noticed different types 
of student actions related to length, area, and volume measurement. These actions centered around 
five themes: written accounts, verbal interactions, physical strategies, visualization strategies, and 
non-mathematical behaviors (as shown in Fig 1). The types of actions the teachers attended to varied 
by teacher (as shown in Figure 2). Mrs. Purl primarily attended to verbal interactions, Mrs. Grey to 
written accounts, and Mrs. Brownstein to physical strategies. The teachers’ classroom norms and 
practices often aligned with the ways in which they attended to students.  

Written Accounts. Written accounts included when teachers noticed students’ written strategies, 
drawings, or journal accounts. Of the three teachers, Mrs. Grey most often noted students’ written 
accounts.  Mrs. Grey reflected that she found it difficult, at times, to manage her classroom and 
implemented the concept of a math journal. On a daily basis, Mrs. Grey asked students to write down 
thoughts, explanations, and definitions in a personal journal. The math journal allowed her to 
maintain control while also allowing students to write and reflect on their mathematical 
understanding. Mrs. Grey viewed the journal as a window into her students’ mathematical reasoning. 
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When asked to use the Déjà Vu camera, Mrs. Grey often used it as a still life camera to take photos 
of students’ work or drawings. In the transcript below, Mrs. Grey had asked students to write their 
own definition of area, prior to instruction. She noticed one student’s definition changed over time 
and speculated what the student might be thinking.   

Researcher: What stood out to you at this moment? 
Mrs. Grey: I think it was in her definition that she wrote down. When I looked at it, her 

definition was “area is the inside of a triangle, rectangle, or square”. So that was when I 
asked her about the inside of a circle. Then, when we talked about changing our definition 
today, as a class, and I noticed she wrote “area is the inside of every shape and every shape 
has area”.    

Researcher: So what do you think she was thinking, initially? 
Mrs. Grey: Um, it looks like maybe, from her drawing, that the units we use to fill in a shape 

don’t fit the right way into a circle or oval because she is drawing square-ish shapes.  

For Mrs. Grey, students’ drawings and written explanations were powerful in helping her to see 
the ways in which students were reasoning about mathematics.  

Verbal Interactions. Verbal interactions included statements, questions, language 
comprehension, and student-to-student interactions. Of the three teachers, Mrs. Purl primarily 
attended to students’ verbal interactions. Mrs. Purl’s classroom was designed as ELL (English 
Language Learners). During interviews, she described the need to help students explain their thinking 
aloud as well as explore the meaning of different words. She listened carefully to students’ 
discussions, purposefully arranged students in groups or pairs, and encouraged them to share ideas 
aloud. During instruction, Mrs. Purl circulated the classroom and listened to different groups as they 
worked. For example, when measuring the area of a rectangle using tiles, Mrs. Purl noticed that two 
girls were using rulers as place markers to help structure rows and columns. The place markers took 
up space and Mrs. Purl noted the conversation that unfolded between the girls. She stated,  

I loved the interaction between Stephanie and Marlaysia. Stephanie thought using the rulers to 
mark rows and columns was a great idea, but she was missing the space under the ruler where she 
used them. Marlaysia realized and explained to Stephanie that the ruler took up space so their 
measurement was off.  

Mrs. Purl often noted the questions students posed as well as the wording they used. She thought 
that this could tell her more about the ways in which students were thinking mathematically and what 
remained unclear to the class.  

Physical Strategies. All of the teachers used square tiles, cubes, and measurement tools to help 
students study length, area, and volume. They attended to students’ physical strategies as they 
measured, counted, and built areas and volumes. Mrs. Brownstein, a math and science teacher, 
frequently used physical materials as a starting point in the lesson.  She noted how students counted 
volume units and the strategies they used. For example, when asked to find the volume of a 
rectangular prism that was 10 units high, 10 units wide, and 5 units long, Mrs. Brownstein noticed 
Promise’s counting strategy. 

She was able to count 50 in a layer by then she ended up focusing on rods (vertical sections) of 
10 and skip counting by 10. I think she is moving from seeing rods to seeing layers, but she isn’t 
using the layers to find the total volume. Last class period she was able to count 50 (cubic units) 
in a layer but when I asked her to find the total volume she focused in on the rods of 10.  
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Beyond counting strategies, physical strategies also involved the ways in which students used a 
ruler, how they used tools like tiles to measure area, and how they built different figures with 
specified areas or volumes.  

Visualization Strategies. Teachers also noted visualization strategies during instruction. These 
strategies were statements that included how students imagined area or volume or metaphors for area 
and volume. During a hands-on volume task, Mrs. Brownstein noticed students discussing the idea of 
volume as an elevator, a hamburger, and a waterfall. She stated: 

When I heard him say elevator, he was describing this kind of motion (moving her hand up and 
down). From what he said, I think that he is imagining a cart or an elevator going up and going 
down the prism.  

It is important to note that visualization strategies were always coded with another strategy. 
Students had to speak or write down how they imagined the concept for the teacher to notice it.  

Non-Mathematical Strategy. Lastly, teachers sometimes noticed students’ non-mathematical 
behaviors in relation to the task. This included teachers describing that students had worked too 
quickly through the task, or they did not put enough thought into it. Since teachers were asked to 
focus on what they noticed mathematically, these events did not arise often.  

 
 

 
 

 
Mediums by which the teacher attended to students’ 

strategies. 

Teachers 
Mrs. Purl 
37 Events 
48 Student 

Actions 

Mrs. Grey 
24 Events 
31 Student 

Actions 

Mrs. 
Brownstein 

27 Events 
29 Student 

Actions 
Written 

Accounts 
Drawing 4  6  0 

Written Strategy (in class) 0 1 2 
Journal  Account 0 6  0 

Total 4 (8%) 13 (42%) 2 (7%) 
Verbal 

Interactions 
Statement 8  6  1 

Question 1 0 0 
Student to Student 

Interaction 
3  1 2 

Language 
Usage/Comprehension 

2  1  5  

Total 14 (29%) 8 (26%) 8 (28%) 
Physical 

Strategies  
Length Measurement 

Strategy 
2 0 N/A 

Length Counting Strategy 0 0 N/A 
Area Measurement Strategy 10  4  0 

Area Counting Strategy 9  5  0 
Building Strategy 1 0 0 

Volume Measurement 
Strategy 

N/A N/A 4  

Volume Counting Strategy N/A N/A 8  
Total 22 (46%) 9 (29%) 12 (41%) 

Visualization 
Strategies 

Area Visualization 6  0 0 
Volume Visualization N/A 0 6  

Total 6 (13%) 0 (0%) 6 (21%) 

Behaviors Non-Mathematical 
Behavior 

2 1 1 

Total 2(4%) 1 (3%) 1 (3%) 

Figure 2: Mediums that led to instructional implications 

 
 

1 Implication Arose 2 Implications Arose 3 Implications Arose 
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Significance of the Mediums. Each of the teachers attended to students’ actions through 
different mediums, as shown in Figure 2, even though they enacted similar lessons. Mrs. Purl 
primarily attended to students’ physical strategies (46%) and verbal interactions (29%), while Mrs. 
Grey attended to students’ written accounts (42%) and physical strategies (26%). Mrs. Brownstein 
noticed students primarily through physical strategies (41%) and verbal interactions (28%). It is 
important to consider these mediums because they can act as pathways into how the teachers see and 
understand their students.  

As prior researchers have noted (Jacobs et al., 2010), it is difficult for teachers to enact the cycle 
of noticing students’ actions, reasoning about the students’ thinking, and describing implications for 
instruction. Teachers often see students doing something but are unsure of what the student is 
thinking and how the students’ thinking can be addressed in instruction. For example, the teachers 
within this study were only able to complete this cycle for 22% to 25% of events noticed (Mrs. Grey, 
25% of events, Mrs. Purl, 25% of events, Mrs. Brownstein, 22% of events).  

 In figure 2, the cells that are shaded show student events in which the teacher was able to 
describe students’ thinking as well as implications for instruction. Cells that are darker indicate a 
greater number of events led to instructional implications. The darkest cell indicates that three of the 
events led to instructional implications while the lighter cells indicate two events and one event. For 
example, in the table, we can see that Mrs. Grey noticed six events that involved students drawing. 
Of these six events, three of them resulted in an implication for instruction. 

As shown in Fig 2, the student actions that teachers attended to most frequently were the most 
productive for describing students’ thinking and instructional implications. For example, Mrs. Purl, 
who primarily attended to students verbal interactions, had five incidences where she was able to 
describe students’ understanding and instructional implications related to verbal interactions. This 
was the highest of any of the categories. The same is true for Mrs. Grey in terms of written accounts 
and Mrs. Brownstein in terms of physical strategies.  

Discussion and Concluding Remarks 
In considering the cases of Mrs. Brownstein, Mrs. Purl, and Mrs. Grey several themes emerge. 

The data highlights that teachers notice in different ways when teaching. The mediums by which 
teachers notice are often dependent on the tasks they pose, classroom norms and practices, and 
beliefs. Strategies that teachers use on a daily basis (i.e., math journals, encouraging discussions) can 
be productive mediums and pathways for teachers to glimpse students’ mathematical thinking.  

Secondly, the types of actions more frequently noticed were also most productive in reasoning 
about students’ thinking and instructional decisions. Each of the teachers had 10 or more years of 
teaching experience and noticed in ways that aligned with their teaching. This result seems logical 
because the teachers had many years to think and reflect on their teaching and its ramifications. For 
example, Mrs. Grey used mathematics journals for several years and had practice reading and 
reviewing students’ journals. It made sense that she could see things about her students through these 
journals that perhaps she had witnessed before.  

This article highlights that teachers learn about their students through multiple and varied 
mediums. As researchers, it is important to consider this phenomenon when working with teachers 
and choosing professional development tasks. Examining teachers’ current practices can aide in 
determining how best to help teachers understand students’ thinking and reasoning. It is also 
important to expose teachers to multiple and varied mediums by encouraging multiple forms of 
expression in the classroom.   
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Utilizing narrative inquiry, this study documents the experiences of one middle level mathematics 
teacher (Andrew) as he works to design mathematics lessons focused on student empowerment and 
power-sharing. We share snapshots of Andrew’s three-year story—a story focused on engagement, 
push-back, collaboration, and Andrew’s decision leave his school after three years. Implications for 
teacher education and support programs are shared.  
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Development; Instructional Activities and Practices 

Background Information and Relevance to PMENA Audience 
Andrew and I are sitting together over drinks and cheese fritters on a Tuesday in February; he 

came directly from school so it is relatively quiet in the bar. Andrew is in his second year of full-time 
teaching at a local middle school and in his third year of participating in interviews with me—we 
have met regularly from the beginning of his university student teaching experience until now. We 
engage in casual conversation first and then he updates me a bit on his new position at Parkview as a 
6th and 7th grade teacher teaching all four content areas; he’s still overwhelmed at times but 
managing. I probe a bit more and ask about his recent mathematics lessons—he prides himself on 
creating “outside the box” projects—and he hesitates; “I’m leaving,” he says. “I got my contract for 
next year…I didn’t sign it.”  

Andrew was a part of a larger study focused on mathematics pre-service teachers’ experiences 
throughout university coursework, but we were struck by his case in particular. In his words, Andrew 
taught lessons with one goal in mind: “to produce informed, driven, fulfilled individuals capable of 
making an impact on the world.” From the beginning of student teaching he talked frequently about 
his desire to engage in “authentic power sharing” with students. Intrigued by Andrew’s curriculum 
design process and also the struggles he faced as he engaged in this sort of teaching, we decided to 
follow him throughout his first few years of teaching. Using data from interviews, observations, and 
coursework artifacts, our study centered on one main research question: What are the experiences of 
a new middle level mathematics teacher engaged in “against the grain” (Simon, 1992) teaching 
practices?  

Brief Literature Review 
Research on new teacher induction concludes that nearly half of all new teachers in the U.S. exit 

the classroom within their first five years (AACTE, 2010). In urban schools, it only takes about 3 
years for half of all new teachers to leave. This high rate of attrition often results from challenging 
working conditions and the absence of a supportive professional culture. For mathematics teachers in 
particular, this attrition may also be related to curricular issues as teachers are increasingly placed in 
schools where a predetermined curriculum dictates what mathematics is covered and how it is taught. 
Through the adoption of specific mathematics textbooks, pacing charts, or state and national 
frameworks, districts are mandating curriculum materials and curricular frameworks as a strategy for 
improving student achievement (Corcoran, 2003). As mathematics teacher educators, we need to 
understand how these mandates position new teachers as they engage in teaching while still learning 
how to teach.  
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Inquiry and Analysis 
We utilized narrative inquiry throughout this study; we “began with the experiences as expressed 

in lived and told stories” by Andrew (Creswell, 2007). Closely following Creswell’s (2007) process 
for implementing narrative inquiry, we gathered data through the collection of Andrew’s stories and 
reporting of his individual classroom experiences and “chronologically ordered the meaning of those 
experiences” (p. 54). Drawing on Clandinin and Connelly’s (2000) procedural guidelines for 
narrative inquiry, we spent considerable time gathering Andrew’s story through multiple types of 
information: interviews (eight formal recorded interviews and multiple informal conversations each 
year); written artifacts from Andrew including lesson plans, reflections on teaching, and statements 
of teaching philosophy; and stories about Andrew from others close to him. All formal interviews 
with Andrew and veteran educators who worked with him were audio-recorded and transcribed for 
inclusion in the data set, along with all written reflections and philosophies. We also created research 
memos after informal conversations or meetings with Andrew and others when audio-recordings 
were not used. As described by Creswell (2007), our narrative inquiry describes the story of Andrew 
“unfolding in a chronology of [his] experiences, set within [his] personal, social, and historical 
context, and including the important themes in those lived experiences” (p. 57).  

Andrew’s Story 
When he entered his teacher education program, Andrew was several years older than most 

students in his cohort. He talked about his path to education and his road to finding passion: 

It took me ten years to get through a degree. I was out doing other things. Looking back on it was 
trying to discover what a passion for me would be. Then I decided to give education a shot. I 
walked in my first class and my professors came in and gave this impassioned rant about 
oppression and training and—I mean, really, he gave a step-by-step account of my life in 
education thus far. I was convicted and inspired and thought, “Okay, something feels different.” 
I’d finally found that one thing that I have to do.  

During student teaching, Andrew continued to talk about his passion: 

What drives my passion is that I feel like I was failed by my education. It wasn’t that I wasn’t 
good at it; I graduated top of my class. I was able to do what they wanted me to do. I figured out 
pretty early that I could give back what was asked of me and do it well. It doesn’t sit right with 
me to know that millions of others are coming up the same way.  

Andrew’s curriculum appeared to come out of a space of frustration with what he encountered as 
a student, and also his desire for his students to develop a passion for and reason to engage in 
mathematics. During student teaching, when Andrew was required to create and teach a 4-week unit 
around several standards related to ratios and proportions within the 7th grade mathematics 
curriculum, he talked about wanting his students to encounter life and math “more naturally” and 
decided to design a math unit around fear: 

Okay, we’re taking the next four weeks of math to study proportions, but more so talk about our 
fears, and how we can decide whether or not our fears are rational. Are we okay with our fears 
being a little unreasonable if it means it keeps us out of danger? We can explore how fear might 
be mongered purposefully by media in order to get something. Through all that, we encounter 
proportions; we encounter ratios; we encounter a mathematical thing that yes, is going to be 
tested on the [end of grade test], but encountering it that way, it’s more meaningful, and I think 
there’s room for that.  

After teaching this unit, Andrew and others (his mentor teacher and many students) reported 
success. Andrew discussed his students’ initial apprehension when he positioned himself as a 
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facilitator, someone off to the side allowing student voice and choice to dictate the classroom 
environment and activities. Andrew wrote the following reflection at the end of student teaching: 

I am convinced that if the purpose of education is to produce informed, driven, fulfilled 
individuals capable of making an impact on the world, then authentic power sharing is absolutely 
necessary in our schools, and this sharing must be prominent in relationships, in what content is 
taught, and in how content is taught. 

Andrew received an offer to come on as a lead teacher the following year, and he frequently cited 
his fear unit as the reason he got the job. Like most new teachers, Andrew found himself struggling 
at the beginning of his first year of full-time teaching, explaining that “I don’t feel like I belong in 
my classroom right now.” However, different from most new teachers, Andrew cited collaboration as 
one of his biggest frustrations and felt like there are “all these demands and all these emphases on 
collaboration that force me to be on a particular pace.” Andrew related this to Paul Simon and 
Nickelback: 

I went to see Paul Simon speak earlier this year and the topic was “The solo artist in an 
increasingly collaborative culture.” What I took away from it was that you’ve got people who are 
gifted. He is a gifted guy. And you wouldn’t ask Paul Simon to do a duet with the guy from 
Nickelback, right? …. You wouldn’t ask Mozart to collaborate with Beethoven. They are both 
fantastic—but they have their own way of doing things and it would likely be disastrous. That’s 
kind of the way I feel about collaboration right now.  

When talking about collaboration with other teachers, Andrew also talked about “having had 
more freedom as a student teacher.” He explained further: 

I’m not playing into my strengths, you know. That’s where the not having a sense of belonging 
comes from. My strengths of sitting and going through this organic process of taking math 
content and figuring out, okay, what can we learn from this? What is the big idea that may not 
even be content related, but we’ll use the content to get there. That’s where I’m at my best and 
I’m not—I just can’t do that right now. 

As Andrew moved into his third year of teaching at Parkview, he interviewed for and accepted a 
position as a 7th grade teacher tasked with teaching all content areas. When we met in October, he 
continued to talk about a lack of opportunity to create math lessons “my way” and about how hard it 
was to teach lessons that he did not design: “When I design a lesson or unit, I know the purpose of 
each piece of the lesson, and I can more easily modify in the moment. It’s much harder to do that 
when using someone else’s plan.” Despite this frustration, he thought it might get better as thought 
about how to integrate the subjects. He will not, however, have the chance to find out. When we met 
in February he told us he had resigned. When asked what his plans were next he responded: “I do not 
know what I’ll be doing next year, but I will not be at Parkview. I haven’t been able to talk about it 
yet and it’s hard to say out loud, but I’m done.” 

Findings and Discussion 
Andrew talked a lot about the overall purpose of schooling during the three years we worked 

with him. He talked about the importance of developing close relationships with students. He spoke 
frequently about his desire to design math lessons that would empower students to take control of 
their own learning. Considering carefully the role of mathematics in this quest, Andrew spoke of the 
importance of designing lessons around “bigger” questions about culture, society, and topics of 
particular interest to middle schoolers. He felt quite certain that it was then, as students engaged in 
projects around these topics, that they would learn the math.  
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Despite this belief, Andrew found himself quite often using daily lessons designed by other 
teachers—lessons that (1) did not align with his belief that there should be some larger goal in mind 
when teaching math and (2) lessons that Andrew felt would not position him to be “at his best” in the 
classroom. In short, Andrew’s recognition of this inconsistency between actions (his use of other 
teachers’ lesson plans) and beliefs (that the lesson plans he designed himself designed to empower 
students were better) caused cognitive dissonance (Festinger, 1957).  

Cognitive dissonance theory (CDT) posits that dissonance is resolved in three basic ways: change 
beliefs, change actions, or change perceptions of actions (Festinger, 1957). When analyzing 
Andrew’s narrative through the lens of CDT, it is interesting to consider the choices he had as he 
tried to resolve dissonance and move towards internal consistency. First, Andrew could have 
changed his belief—he could have concluded that designing empowering lessons around larger 
questions was no longer important. This happens to many new teachers in the field; they believe in 
the power of new curricular innovations learned during university coursework but then their beliefs 
about what could happen in a mathematics classroom change when they are in the field. This move to 
alleviate cognitive dissonance was unlikely for Andrew. He felt strongly that math should be taught 
differently and did not waiver in that during his three years teaching.  

Alternatively, Andrew could have changed his actions. This was also unlikely for Andrew and 
for most teachers faced with competing responsibilities and assignments in their first few years in the 
field. Changing his actions to align with his original beliefs and cognition would mean that Andrew 
would have had to design all lessons on his own. In order to teach in the way he wanted to teach, 
Andrew would have likely had to work nights and weekends designing these new curricular units; 
there was simply no time in the day to do that work.  

Finally, Andrew’s third choice was to change his perception of action. Andrew’s narrative made 
it clear that he tried to justify his actions in his first and second years as a lead classroom teacher, at 
least for a short period of time. He found himself reconceptualizing his decision to utilize other 
teachers’ lessons because he wanted a life outside of work. He rationalized his decision to collaborate 
and use others’ lessons because his administration asked him to work with other teachers and share 
lessons. For Andrew and other new teachers, policies (and politics) in place in his school—like a 
severe lack of planning time, additional responsibilities often placed upon teachers at charter schools, 
etc.—could be seen as levers that push teachers towards changing their perceptions of actions 
designed to relieve dissonance—actions made in their classrooms that do not align with their beliefs. 
Even worse, like in Andrew’s case, teachers leave teaching all together. For Andrew, who no longer 
felt that his passion—the thing he “could not not do”—was teaching, leaving was the only option.  
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Experimentation has been proposed as a key mechanism by which teachers learn through 
experience. However, few studies have illustrated what experimentation looks like or how teachers 
think while experimenting during instruction. This paper investigates the experimentation used by 
two secondary mathematics teachers that exhibit responsive teaching practices using point-of-view 
observations to gain access into teachers’ in-the-moment thinking. Both teachers engaged in 
deliberate experimentation around how to influence student thinking. Similar to qualitative methods 
of inquiry, this experimentation is focused on developing contextually-relevant models of the way 
that student thinking is influenced by instruction.  

Keywords: Teacher Knowledge; Teacher Education-Inservice; Metacognition; High School 
Education 

Supporting teacher learning and growth is essential for improving student outcomes. However, 
the processes by which teachers are able to improve their teaching, particularly from a cognitive 
perspective, have been overlooked in empirical studies of teacher change. Researchers have 
suggested that experimentation with teaching practice may be an important process by which 
teachers improve their teaching (Hiebert, Morris, & Glass, 2003; Little, 1993). This paper takes a 
first step at investigating the role that experimentation plays in changing teaching practice and the 
teacher thinking involved during this experimentation. 

Experimentation and Teacher Growth 
While there is an intuitive idea that teachers improve through experience, research about the 

impact of teacher experience on student learning has been inconsistent. Additionally, this work 
largely ignores how teaching experience influences teaching and the different ways that teachers may 
learn through experience (Sullivan, 2002). The framework of teacher noticing suggests that the 
experiences teachers attend to and the way they make sense of them should have a profound impact 
on the way that teachers grow through experience (Sherin, Jacobs, & Philipp, 2011). 

One proposed way that teachers are thought to learn through experience is using experimentation 
(Hiebert et al., 2003; Little, 1993). While research has documented that teachers report 
experimenting with their practice (Grosemans, Boon, Verclairen, Dochy, & Kyndt, 2015; van den 
Bergh, Ros, & Beijaard, 2015), and examined hypotheses developed by pre-service teachers from 
classroom video (Yeh & Santagata, 2015), there has not been a focus on understanding how the 
process of experimentation unfolds in practice. This study investigates the experimentation that 
teachers engage and examines the teacher thinking that is at play for teachers that exhibit consistent 
responsive teaching practices. In other words, these teachers typically attend and base instruction off 
of the substance of student thinking (Hammer, Goldberg, & Fargason, 2012; Pierson, 2008). This 
selection of teachers allows this work to examine whether experimentation could support the 
development or refinement of responsive teaching practices, which are complex, difficult for teachers 
to enact, and take time to fully develop (Hammer et al., 2012).   
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Methods 

Participants 
This paper focuses on two secondary mathematics teachers, Rachel and Mary, who have 

consistently used responsive teaching practices. Both teachers were videotaped several times since 
the 2003-2004 school year, and most recently during the 2013-2014 school year. Examining two 
videotaped lessons from each teacher, one from the beginning and one from the most recent data 
collection, both teachers were found to have stable responsive teaching practices (Dyer & Sherin, in 
press). Specifically, the majority of their turns of talk during whole class discussions included 
substantive probes of student ideas (Pierson, 2008), invitations for students to comment on each 
other’s ideas or “student uptake” (Lineback, in press), and substantive comments on students’ ideas 
or “teacher uptake” (Lineback, in press; Pierson, 2008). 

Data 
The data used include interviews with the two teachers from the 2013-2014 school year. The 

interviews come from a series of point-of-view (POV) observations (Sherin, Russ, & Colestock, 
2011) with the teachers. During these observations, the teacher captures video from their perspective 
using a small wearable camera. The camera records the previous minute of action when the teacher 
presses a button on a remote. Teachers were asked to save moments they “wanted to reflect on or 
think about later”, After the lesson, the teachers were interviewed about each of the saved clips 
(referred to as moments) in order to access what the teacher was thinking. The discussions focused 
on (a) the reason the moment was saved, (b) what the teacher noticed in the moment, (c) the teachers’ 
interpretation of the moment, and (d) what implications the teacher drew from moment. Fifteen POV 
observations were completed with the teachers, 10 with Rachel and seven with Mary. These 
observations provided a total of 91 discussed moments.  

Analysis 
The discussion with a teacher around a saved clip or moment was the unit of analysis. The first 

phase of analysis identified discussions where the teacher implemented or proposed a change to their 
teaching. In the second phase, the process of using an experience as feedback in each discussion was 
characterized through open coding. Deliberate experimentation was one of several processes 
identified. In deliberate experimentation, the teacher purposefully tried or proposed to try multiple 
ways of achieving an instructional goal. This process was defined by meeting two criteria: (1) the 
teacher describes or references experiences that use different methods of achieving an instructional 
goal, and (2) the effectiveness of the methods are compared. These methods or tests could happen 
during the same lesson or across different lessons, as well as with similar students or across different 
groups of students.  

Findings 
The analysis found that both teachers engaged in deliberate experimentation, both during the 

same lesson and across different lessons (see Table 1). The results also indicate a difference in the 
frequency by which the two teachers experimented. Across Mary’s discussed moments, most of the 
changes she proposed or implemented were a part of experimentation. Rachel, by contrast, seemed to 
use her experiences in a variety of ways to inform changes to her teaching.  

The following example from Mary is used to illustrate an instance of deliberate experimentation. 
In this example, Mary considers what questions she could ask different groups to help them 
accurately model the snow shoveling situation students were working on in her AB Calculus class. 
The students were developing an equation that modeled the total amount of snow that had been 



Teaching!and!Classroom!Practice:!Brief!Research!Reports! 1108! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

shoveled from 6AM to 7AM when they were given the rate of snow shoveling was 0 ft3/hour from 
12AM to 6AM and 125 ft3/hour from 6AM to 7AM. 

Table 4: Distribution of Deliberate Experimentation Across Lessons 
 Mary Rachel  
Observation Number 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 Total 
Moments Discussed 15 17 13 5 8 4 2 7 3 2 3 4 1 4 3 91 
Deliberate Experimentation 2 2 3 2 1 0 0 0 0 0 0 0 1 0 1 12 
  During one lesson 0 1 3 0 0 0 0 0 0 0 0 0 1 0 0 5 
  Across multiple lessons 2 1 0 2 1 0 0 0 0 0 0 0 0 0 1 7 

 
Mary explains the experimentation that was at play when discussing the moment, “[I knew] that 

this is where they were going to screw this up. This group had the 125t and the 108t…and initially, 
some of them aren't doing subtraction, [they] divide by 6 first. So they know that there's something 
that you do with 6…So, and, I think I just experimented with different ways, like, how I interact with 
the groups, like, sort of, the best way to get them to understand that it was t minus 6 as opposed to 
just t [which was asking students how much snow had been shoveled as specific times between 6 and 
7].” In this example that Mary explicitly mentions experimentation in the ways that she interacted 
differently with multiple groups in the same lesson. Additionally, she mentions her goal in this 
experimentation of trying to find the best way to help students understand the equation. Mary also 
considered how asking students to respond to the idea that the time term in the equation is (t-6), but 
decided that method was less “cognitively demanding”. 

One striking feature of all of the experimentation identified was that both teachers were 
experimenting around how to influence student thinking. This experimentation involved complex 
teacher reasoning. First, the teachers interpreted how students are thinking during the multiple tests 
as well as before and after each test. In addition to these interpretations, the teachers make 
hypotheses about how that student thinking was changed or influenced. In the discussions, teachers 
mentioned a variety of aspects of the classroom environment that influenced student thinking, 
including the design of mathematical tasks, the wording of questions, or the representations used in 
diagrams or graphs. Overwhelmingly, the teachers created hypotheses that were contextualized in the 
specific thinking, specific students, or environment of the classroom. This thinking is well aligned 
with responsive teaching in that these hypotheses identify the different ways that student thinking can 
be influenced, which is the basis for responsive teaching.  

This was apparent in Mary’s example described above when she went on to describe the way the 
questioning helped students understand the equation: 

What I think right now is the best way to approach it is [a round of questioning about] “how 
much snow has she shoveled at 6?” And you know, they say “0.” “How much snow has she 
shoveled at 6:30?” And they say, “125 divided by 2, 125 times one half”. “How much snow has 
she shoveled at 6:45?” Asking them those questions for them to get to the t-6, um, but then still 
kind of affirming that “yeah, 125t is good, like, you're thinking antiderivative, and like, it's a 
constant rate, therefore like, G(t) would be, you know, 125t,” but then a nuance is the t-6, and 
then the t-7, and so on for the next part. 

In this quote, Mary explains how this line of questioning relates to what students are initially 
thinking about the equation, namely that students start with 125t for the equation. Throughout this 
quote and the previous excerpts, she makes three different interpretations of student thinking, (1) the 
initial idea that the situation is modeled by 125t, (2) the idea that the time variable in the equation 
should be divided by 6, and (3) the idea that time variable should be shifted by 6. Mary also develops 
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a model of how the questioning influenced students to think in a different way. In particular, she 
recalls how students are able to determine how much snow has been shoveled at discrete points in 
time, and how that progression can be leveraged to off of the initial thinking that 125t is an accurate 
way to model the snow shoveled at 6AM.  

Discussion 
In many ways, the findings reflect much of the theory that has been proposed about the existence 

of experimentation. However, these findings suggest that making conclusions about an experiment 
and developing hypotheses for future experiments, seen in the findings as models that teachers 
created for the ways that student thinking is influenced by teaching, are in many ways intertwined. 
These models may represent a key part of the teacher thinking that is involved in experimentation. 
This type of contextually-valid mental model is similar to how Hiebert et al. (2003) describes 
experimentation as a test of “a teacher’s local theory of how students learn and how instruction 
facilitates learning” (p. 208). The contextual nature of these models suggest that video-based studies 
of experimentation or learning through experience may not accurately reflect the process that 
happens in real classrooms. 

Additionally, the findings show that experimentation happens on a moment-to-moment basis, 
suggesting that this micro-level time scale may be important level for looking at experimentation, 
and more generally mechanisms for teacher growth. Thinking about experimentation in small 
moments during a lesson also stands in contrast to many of the ways that experimentation is 
supported in current teacher education contexts, which often focus on more long-term 
experimentation and study of teaching practice. The findings suggest a more balanced approach 
where teachers are also supported in engaging in experimentation at a more micro-level that could be 
easily incorporated into everyday instruction.  
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This study presents an analysis of geometry teachers’ willingness to create opportunities for student 
discussion in the classroom as revealed through the use of a multimedia survey instrument. We 
presented 42 geometry teachers with 8 multimedia narratives and asked them to choose between a 
normative instructional action which closed off discussion and a less typical action that encouraged 
student discussion. Our analysis provides insight into the professional obligations that teachers use 
to justify their departure from the norm in order to encourage student talk as well as the background 
variables that are associated with such decisions. We found that while experienced geometry 
teachers are more likely to make a normative decision than those who are less experienced, there are 
some cases in which experienced geometry teachers will justify their departure from the norm with 
their obligation to the discipline.  

Keywords: Geometry; Teacher Knowledge; Classroom Discourse; Teacher Beliefs 

The importance of discussion in the mathematics classroom has been argued by a number of 
researchers (O’Connor, 2001; Stein & Smith, 2011) whether it takes place in the context of whole 
class interactions or within small groups. However, the positive benefits of discussion can only be 
realized if a mathematics teacher creates opportunities for such interactions in the classroom. The 
persistence of lecture and recitation format in mathematics classes, however, suggests the importance 
of understanding the conditions under which a mathematics teacher is willing to choose discussion as 
an appropriate thing to do. This paper presents initial results from the use of a scenario-based 
instrument that probes the decision-making of secondary mathematics teachers and, in particular, 
explores if and when teachers are willing to depart from customary instruction in order to give their 
students opportunities to discuss problems in small groups or as a whole class.  

 Theoretical Framework 
Researchers have catalogued many benefits of small group and whole class discussions. These 

interactions provide unique opportunities for thinking and learning (Yackel, Cobb, & Wood, 1991; 
O’Connor, 2001; Ge & Land, 2003; Stein & Smith, 2011). These studies do not, however, look at 
what influences mathematics teachers’ willingness to depart from customary instruction in order to 
encourage discussion in their classroom. Researchers who examine intact secondary instruction have 
documented the presence of customary ways in which teachers carry out their work, both at the large 
grain size of cultural teaching scripts (Stigler & Hiebert, 1999) and at smaller grain size in 
instructional situations customarily used to teach particular mathematical ideas (Herbst et al., 2009; 
Chazan & Lueke, 2009). This literature suggests that opening the classroom discourse to include 
more classroom discussion might require departing from some of the norms that characterize 
instructional practice. How can we gauge teachers’ disposition to do so?  

Most of the research on teachers’ decision making is qualitative and is difficult to replicate at 
a larger scale. Outside the field of educational research, researchers have examined decision 
making in professional settings (Chan & Schmitt, 1997; Lievens, Peeters, & Schollaert, 2007) 
using written vignettes and video-based representations as a stimulus for a particular context-
based decision. In mathematics education Herbst, Aaron, and Erickson (2013) have shown that 
animations of cartoon characters work just as well as live-action video clips for provoking 
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teachers’ thinking about content and pedagogy; and Herbst and Chazan (2015) have shown how 
storyboards realized with cartoon characters can be used to study decision making. Thus, we 
argue that a scenario-based instrument where the scenarios are realized with cartoon characters 
may provide a means of conducting larger-scale studies of teacher decision-making.  

These instruments are grounded in the theory of practical rationality which posits that 
instructional norms, obligations to the profession, and individual teacher resources (such as beliefs, 
knowledge, and skills; Herbst & Chazan, 2012) come into play in teachers’ in-the-moment 
instructional moves. We argue that teachers’ decision-making can be understood as part of an 
instructional system wherein the teachers’ role is to manage the terms under which students interact 
with the mathematical content to be learned. Further, we theorize that a practical rationality of 
instruction enables teachers to call on their professional obligations as sources for justification to 
support deviations from customary practice (Herbst & Chazan, 2012). In earlier work we gathered 
evidence that we can use scenario-based assessments to help determine whether teachers recognize 
departures from a norm in the situation of doing proofs, where those departures might increase 
students’ opportunities to participate in mathematical discussions  (Herbst et al., 2013); the data 
gathered in that pilot study supported the contention that these departures might be justified on 
account of professional obligations to individual students, the class as a whole, the discipline of 
mathematics, and the institution. From that work the question remained—if an individual teacher was 
given the opportunity to depart from a norm of doing proofs in ways that might increase chances for 
students’ discussions, would they choose to do so? What could explain the variance of these 
responses?  

Methodology 
The Decision instrument was designed as a means of assessing teacher decisions in the context of 

an instructional situation. The participant is presented with a storyboard depicting a teaching scenario 
set in a geometry classroom where the teacher is about to assign a proof problem to their students. 
For each item, there is a choice between four actions where one action is consistent with a norm (e.g., 
the teacher provides the givens and prove statement) and the other three are breaches of that norm in 
favor of a participation structure that may or may not incorporate greater student talk: discuss the 
problem as a class, work on the problem in small groups, or work individually. After choosing one of 
those options participants are asked to choose justifications for their choice from a collection of ten 
statements which contained pairs tied to each of the four obligations respectively and another pair 
which served as distracters. The distracters are statements that make the decision a personal matter 
for the teacher (e.g., “This action best aligns with my beliefs about mathematics teaching”). The 
participant may choose as many of these statements as they wished which meant that we could give 
them a composite score between 0 and 8 across the four items corresponding to a norm for each 
obligation. In the following section, we describe some of the significant differences between items 
with respect to opportunities for student talk and with respect to the obligations chosen to justify 
teaching decisions. We also looked for relationships between these choices and whether a participant 
had more than 4 years experience teaching geometry (EGT; N = 22) or not (non-EGT; N = 20).  

 Results 
While the modal choice for each of the eight decision items was either small group or whole class 

discussion, thus showing that teachers tended to prefer increasing opportunities for discussion, there 
were some items that evoked more responses encouraging discussion than others. For example, in 
item 61001, the teacher writes a proof problem without an accompanying diagram and a student asks 
for clarification. The participant can choose between rewriting the problem with a diagram or 
encouraging the students to work through the problem themselves, as a whole class, or in groups. 
Similarly, in item 61003, the teacher draws a figure and tells the students what they are going to 
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prove. The participant can choose to clarify the givens and prove statement on the board or make 
moves to encourage student discussion. There were significantly more EGTs who chose the small 
group discussion option for the first item while there were significantly more non-EGTs who chose 
the small group option for the second item. Why were EGTs more supportive of discussion in one 
case than the other? Looking across the open responses to 61001 reveals that many of the EGTs who 
chose the small group option wanted students to draw the diagram while the non-EGTs either did not 
address the diagram or suggested that the teacher provide one. A review of the teachers who did not 
choose the small group option for 61003 suggests that the EGTs may have been more concerned with 
maintaining control of the conversation in order to clarify the problem for their students whereas the 
non-EGTs focused more on encouraging student contributions.  

In order to learn more about how teachers justify departures from the norm, we looked for 
connections between the professional obligations that participants used to justify their decision and 
their personal characteristics as well as their responses to the decision items. We ran a two-tailed t-
test and found that there was a significant difference in favor of EGTs for justifying decisions on 
account of the disciplinary obligation (p < .0001) and that there was a significant difference in favor 
of non-EGTs for doing so on account of the institutional obligation (p < .05). By way of contrast, 
there was no significant difference with respect to experience for the individual or interpersonal 
obligations. We conjecture that more experienced geometry teachers have a better conception of the 
demands of the discipline while teachers with less experience may feel more bound by the school 
curriculum. We also found that use of the interpersonal obligation to justify a decision was 
negatively correlated with the normative option and positively correlated with the whole class 
discussion option. These results have face validity since the choice of a whole class discussion 
suggests concern for the manner in which students communicate with one another. 

Conclusion 
We have demonstrated how scenario-based assessment of teachers’ decision-making can be used 

to find out when mathematics teachers are willing to depart from an instructional norm in order to 
encourage student talk. Taking as a case the situation of doing proofs in high school geometry and 
looking in particular at the setting of a task that might encourage student discussion, our results 
suggest that a majority of high school teachers approve of actions that encourage discussion (either in 
small groups or whole class form) even if these actions may depart from common practice. We have 
further evidence about the nature of the professional obligations that these teachers see either 
justifying the encouragement of talk or else justifying a normative action. In particular, we found that 
appeals to the disciplinary obligation featured more often as justifications for those teachers who 
have more experience teaching geometry while the institutional obligation did so for teachers with 
less experience teaching geometry.  
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This study examined class practices of two Calculus 1 classes to understand what really happens in 
the class. The mathematicians’ and students' questions as well as tasks used in class were analyzed 
to examine students' opportunities to engage in cognitively demanding tasks and discussions. The 
findings of this study indicate that students in these particular calculus classes did not seem to have 
enough learning opportunities to explore high-level cognitively demanding questions, to experience 
multiple representations and alternative solutions, and to engage in meaningful discussions. 

Keywords: Classroom Discourse; Instructional Activities and Practices; Post-Secondary Education 

Introduction 
Recent studies show that work–force demands for students with science, mathematics, and 

engineering backgrounds have increased in the last few decades, but the number of students pursuing 
these majors in the U.S. and other countries either remains constant or is declining (Hurtado, Eagan, 
& Chang, 2010). One influencing factor of pursing a degree in these areas is students’ experiences in 
undergraduate mathematics, especially calculus classes (Ellis, Kelton & Rasmussen, 2014). Since the 
nature of classroom teaching significantly influences how students learn mathematics (Hiebert & 
Grouws, 2007), it is important to know what transpires in calculus classrooms. Here are the research 
questions that we attempt to answer.  

• What types of questions, in terms of cognitive demand and mathematical content, are asked 
by both the calculus instructor and students?  

• What types of representations are presented in Calculus 1 class? 
• What discourse patterns are found when various calculus concepts are introduced to students? 

Related Literature 

Studies on calculus teaching and learning 
The overall consensus among calculus studies is that students do not have full conceptual 

understanding of various calculus concepts (Bezuidenhout, 2001). There has been criticism that 
calculus students’ understanding is heavily procedural and algebraic without conceptual depth 
(Swinyard, 2011). In a recent calculus study by Ellis and her colleagues (2014) showed that “Good 
and progressive teaching” includes listening to students, presenting more than one method of solving 
problems, and more actively engaging students.  

Theoretical Framework 
It is very complex to understand classroom practices because it is both an individual and social 

process (Sfard, 2001). Mathematical tasks and questions should also be examined to understand class 
practices (Franke et al., 2007). Providing worthwhile tasks is a critical part of class practices (Boston, 
2012). Teachers can provide productive discourse when tasks enable students to connect various 
mathematical ideas with multiple representations and alternate solution strategies (Franke et al., 
2007).  
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Methodology 

Setting, Data Collection and Analysis 
The setting for this study was a Midwestern research university in the United States. Two 

mathematicians, Jenny and Tom1, have a PhD in mathematics. All calculus classes were videotaped 
in 2014. In total, we collected 59 video clips. In all, we analyzed 602 questions by the 
mathematicians, 370 tasks, 32 student questions, and 91 calculus concepts. 

Categories of Analysis 
The analytic framework used for this study was based on previous studies that examined class 

practices and class observation theory (Boston, 2012; Franke et al., 2007). 

Analyzing Questions  
A two-dimensional framework was used to analyze each question – cognitive demand and 

mathematical content. We carefully analyzed the cognitive demand of each question asked by both 
mathematicians and students. In addition to cognitive demand, we examined the mathematical 
content (algebra or calculus) of each question. Lacking understanding of algebra concepts is one 
difficulty for calculus students (White & Mitchelmore, 1996). Tables 1 illustrate each example.  

Table 1Questions by Code 

 Mathematical Content 
Algebra Calculus 

Higher level Cognitive 
Demand  

Task: Understanding the 
derivative of a function.  
Question: What does it mean to 
have slope of tangent is zero? 

Lower Level Cognitive 
Demand 

Task: Find the slope of the 
tangent to  at x = 2. 
Question: (after graph was 
sketched) What is the y – 
coordinate?  

Task: understanding anti-
derivative.  
Question: What function would 
be an anti-derivative of x? 

Representations and Alternate Solution Methods of Implemented Mathematical Tasks 
Providing multiple representations to students has been emphasized in calculus teaching 

(Haciomeroglu et al., 2010). Thus, we paid attention to types of representations used to solve 
implemented tasks. Whether alternate solution methods were presented to students or not was also 
examined. 

Presenting Concepts, Theorems, and Properties in Calculus 1 
One interesting finding from a very well–known classroom-based study, the Trends in 

International Mathematics and Science Study (TIMSS) video study, is the way mathematical 
concepts are presented to students. In U.S., compared to other countries, large number of concepts 
(78 %) were presented to students without being developed (Stigler & Hiebert, 1999). We also paid 
attention to how these concepts and rules were presented to students.  

Coding Reliability  
After the codes were set for analysis, we went over each code carefully to fully understand their 

meanings. The second author and the third rater, a doctoral student in mathematics education, were 
trained to code the questions, tasks, and segments. Both authors and the doctoral student in 
mathematics education viewedthe video clips several times to code each question and task. Next, the 
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three raters coded each segment independently and discussed the discrepancies. When the two 
authors disagreed, those items were coded based on majority rule using the third rater’s codes. There 
were no questions or tasks in which all three raters disagreed. The percent agreement of the three 
raters was between 93% and 96% for questions and tasks.  

Results 
In this section, we present results of our analysis. 

Analysis of Questions  
There is a large difference in the number of questions asked by the two mathematicians. Jenny 

asked 17.5 questions per lesson while Tom only asked 1 question per lesson. The way Tom taught his 
classes, which were mostly lecture based, could account for this. Over 80% of their questions 
required low cognitive demand, meaning that many questions asked by both mathematicians were 
about simple recall and/or procedures. A question such as “What is the derivative of  only 
requires procedural knowledge of finding the derivatives of simple function. On the other hand, to 
answer “Can anyone explain why the derivative of a constant function is zero?”, students need to 
think about rate of change, slopes, and the derivative.  

In Jenny’s lessons, algebra and calculus related questions were asked a comparable number of 
times, where 269 (46.6%) were algebra related and 276 (47.8%) were calculus related. About half of 
Jenny’s questions were algebraic nature, which suggests that algebraic skills are necessary to solve 
some of the tasks in her calculus class. On the other hand, 76% of Tom’s questions were about 
calculus; however, there were only 25 questions, about one per class, so it is difficult to come to a 
definite conclusion about Tom’s questioning. A total of 27 questions were asked by Jenny’s students 
in contrast to only 3 questions from Tom’s students. These numberssuggest that regardless of 
cognitive demand and content, students had few opportunities to pose any questions. Out of the 27 
questions asked by Jenny’s students, none required high level cognitive demand and 25 were related 
to algebra concepts. Here is one question asked by Jenny’s students. When the task, “Find the tangent 
line of was given, one student asked (after the derivative 

 “Why don’t we cancel ” This question is about finding the 

common denominator for rational expressions, an algebra topic. This indicates that the implemented 
tasks in their calculus classeswere about algebraic procedures or that they still lacked understanding 
of these algebra concepts. While we can say a few things about Jenny’s students, it is very difficult to 
say anything about Tom’s students because they asked only three questions. In Tom’s class, 
opportunities to create norms by asking questions were too limited. 

Analysis of Representations and Solution Strategies 
The first notable finding from this table is the difference in the total number of tasks solved in 

each instructor’s classes. The main reason that contributes to this is that Tom spent large portions of 
instructional time lecturing. Also, we can see that many implemented tasks were solved algebraically 
in both classes. It appears that opportunities to synthesize different representations were not often 
provided to these calculus students (21.6 %) . Furthermore, in both mathematicians’ lessons, there 
were only few times, one time in Jenny’s classes and three times on Tom’s classes, in the semester 
that alternate solution strategies were presented to students. In Jenny’s lesson, the problem was to 
differentiate .  She first stated that there were two functions,   and 

 so that it can be solved by the chain rule, but in an alternate approach, she also 

noted that it can be written as  Thus, it can be differentiated by the power rule. From these 
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two ways, students not only saw how these two rules are related but they also reviewed the algebra 
topics of the law of exponents. However, such opportunities were very rare in this calculus class.  

Concepts Presented without Development 
In total, there were 46 calculus concepts, theorems, and rules presented to students during the 

semester in Jenny’s class while 45 were presented to Tom’s students. Among these, 29 (63%) were 
not developed and simply stated by Jenny while 30 (66.7 %) were developed in Tom’s class 

In all, there were differences in class discourse when various calculus concepts and rules were 
introduced. The fact that more than 60% of calculus concepts were not developed in Jenny’s class 
and 98% of concepts were either developed uni–directionally or not developed (30 were developed 
uni–directionally and 14 were not developed) indicates that it is rare for students to express, reason, 
and evaluate their own or someone else’s mathematical thinking when these concepts were presented 
in class.  

Discussion and Conclusion 
Results of this study reveal that calculus students may not have opportunities to answer high 

level cognitive demanding questions, experience multiple representations and alternate solutions, and 
engage in meaningful discussions. Moreover, many calculus concepts, theorems, and rules were 
introduced either not being developed in any way or developed uni–directionally by the 
mathematicians. Since opportunities to engage in meaningful discussions and tasks are limited, it 
may be difficult to establish norms − acceptable and adequate mathematical answers, interaction, and 
activities in classes. Finally, an important question we need to ask is, Can we find similar results 
from other calculus instructors’ classes? More studies that examine other calculus instructors’ classes 
will be needed to fully understand what needs to be done to improve calculus teaching.  

Endnote 
1Pseudonyms 

References 
Bezuidenhout, J. (2001). Limits and continuity: Some conceptions of first-year students. International Journal of 

Mathematical Education in Science and Technology, 32(4), 487–500. 
Boston, M. D. (2012). Assessing the quality of mathematics instruction. Elementary School Journal, 113(1), 76- 

104. 
Brendefur, J. L., & Frykholm, J. A. (2000). Promoting mathematical communication in the classroom: Two 

preservice teachers' conceptions and practices. Journal of Mathematics Teacher Education, 3(2), 125-153. 
Ellis J., Kelton, M., & Rasmussen, C. (2014).Student perceptions of pedagogy and associated persistence in 

calculus.ZDM, 46(4). 661 – 673.  
Franke, M. L., Kazemi, E., & Battey, D. (2007). Mathematics teaching and classroom practice. In F. K. Lester (Ed.), 

Second handbook of research on mathematics teaching and learning (pp. 225-226). Greenwich, CT: 
Information Age Publishers. 

Haciomeroglu, E., Aspinwall, L., & Persmeg, N. (2010). Contrasting cases of calculus students’ understanding of 
derivative graph. Mathematical Thinking and Learning, 12, 152-176. 

Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students’ learning. In F. K. 
Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 371-404). Charlotte, NC: 
Information Age Publishers.  

Hurtado, S., Eagan, M.K., & Chang, M. (2010). Degrees of success: Bachelor’s degree completion rates among 
initial STEM majors. Retrieved from: http://www.heri.ucla.edu/nih/downloads/2010%20-
%20Hurtado,%20Eagan,%20Chang%20-%20Degrees%20of%20Success.pdf 

Sfard, A. (2001). There is more to discourse than meets the ears: Looking at thinking as communicating to learn 
more about mathematical learning. Educational Studies in Mathematics, 46, 13–57. 

Swinyard, C. (2011). Reinventing the formal definition of limit: The case of Amy and Mike. Journal of 
Mathematical Behavior, 30, 93-114. 

White, P. & Mitchelmore, M. (1996). Conceptual knowledge in introductory calculus. Journal for Research in 
Mathematics Education, 27(1), 79–95.  



Teaching!and!Classroom!Practice:!Brief!Research!Reports! 1118! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

SUPPORTING FRACTION OPERATION ALGORITHM DEVELOPMENT: NUMBER 
SENSE AND THE ENACTMENT OF ADDITION 

Debra I. Johanning 
University of Toledo 

debra.johanning@utoledo.edu 

Lindsey R. Haubert 
University of Toledo 

lindsey.haubert@utoledo.edu 

Number sense is a key component in being able to make sense of problem situations that involve 
fraction addition. Positioning students to invent algorithms for adding fractions involves their ability 
to use number sense-based reasoning. This paper offers five forms of mathematical interaction that 
teachers engaged in during classroom discussions to support student engagement in number sense-
based reasoning when estimating fraction sums.  

Keywords: Rational Numbers; Classroom Discourse; Instructional Activities and Practices 

This study of teacher practice is situated in the context of fraction operations with a specific 
focus on number sense-based estimation in preparation for fraction addition and subtraction 
algorithm development. It is founded upon arguments that practice should have more attention in an 
effort to unpack the professional work teachers do in classrooms (Grossman et al., 2009). In an effort 
to understand teacher practice and the orchestration of mathematical discourse in the domain of 
fraction operations the following question was studied: What were the key mathematical ideas 
teachers elicited or accepted from student reasoning that framed mathematical conversations about 
students’ number sense-based work related to fraction operation algorithm development for addition? 

Background and Theoretical Framework 
The literature on fraction number sense and operation development has revealed the struggles 

students have had related to fraction addition and subtraction (Petit, Laird & Marsden, 2010). For 
example, when asked to estimate in computational settings, students often want to compute an exact 
solution and then round that to the nearest benchmark. Students may also view the numerator and 
denominator of a fraction as individual numbers that are unrelated. In turn, students struggle to 
engage in number sense-based reasoning with fractions. Gravemeijer and van Galen (2003) 
differentiate between engaging students in the learning of algorithms as a process of building number 
sense and the direct teaching of algorithms. Instructional activities that support the construction of a 
network of number relations are a key part of the process where algorithms emerge from the 
development of number sense. Engaging students in modeling and representation use are also 
important components in the development of fraction number and operation sense (Petit, Laird & 
Marsden, 2010).  

The findings reported here draw from the initial days in a fraction operation unit that began with 
a three to five-day task sequence for approximating and estimating sums of fractions that preceded a 
task sequence to draw out algorithmic strategies for adding and subtracting fractions. During the 
estimation sequence, it was not uncommon for students to fail to fold back and use fraction number 
sense developed in prior instructional units. It is argued that these moments represent common 
scenarios that emerge in classrooms when asking students to engage in number sense-based 
reasoning related to fraction addition and subtraction. This research will share five forms of 
mathematical interaction that teachers routinely used to position and support students when they 
struggled to engage in number sense-based reasoning. 

Methodology 
The settings for this qualitative study were the classrooms of four experienced skillful sixth-grade 

teachers and their students. Each teacher used the Connected Mathematics Project (CMP) II 
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instructional unit Bits and Pieces II: Using Fraction Operations (Lappan, Fey, Fitzgerald, Friel & 
Phillips, 2006). The instructional unit used a guided-reinvention approach (Gravemeijer & van 
Galen, 2003) allowing algorithms to arise through student engagement with both contextual and 
number-based situations. During the teaching of the Bits and Pieces II unit, classroom lessons were 
videotaped each day during the five to six weeks it took to cover the unit. In addition, the teachers 
wore an audio recorder during each lesson. When a teacher completed a lesson, they audio recorded a 
short five-minute reflection about their teaching and student development during the lesson. The first 
researcher visited each classroom approximately once every ten days. This timeline was repeated 
across two school years. Data analysis was guided by Erickson’s (1986) interpretive methods and 
participant observational fieldwork, which addresses the need to understand the social actions that 
take place in a setting.  

Findings 
There were five forms of mathematical interaction (see Figure 1) that occurred routinely in 

teachers’ mathematical conversations with students when they were working on the three to five-day 
estimation sequence. These five forms of interaction are in response to common ways that students 
struggle in this mathematical domain. They suggest fraction-specific ways that teachers can support 
and further students’ ability to reason with fractions and to make sense of what fraction addition is an 
enactment of. Two classroom examples will be used to illustrate the forms of interaction. 

• Prompting students to rename benchmarks (0, 1/2, 1) in terms of specific fractional 
denominators; 

• Developing and eliciting levels of precision: closest to a benchmark, greater than or 
less than a benchmark, or how far from a benchmark; 

• Drawing out explicit distinction between exact and estimated solutions; 
• Pressing for consideration of how estimated sums and exact sums are related; and 
• Highlighting when estimation is used as a reasoning tool. 

Figure 1: Five Forms of Mathematical Interaction Framing Number Sense-Based  Estimation 
Instructional Conversations 

Example 1: Making Fraction Strips To Think About “How Large” and “How Far” 
At the start of the fraction operation unit, most students were able to reason about the size of an 

individual fraction in relation to benchmarks and other nearby quantities. However, the main focus of 
the instructional sequence was to engage students with reasoning about the approximate size of the 
sum of two or more quantities. One teacher provided grid paper to students who needed support to 
visualize fractions in relation to benchmarks (see Figure 2). For example, when trying to estimate 
whether the sum of 7/10 + 2/5 would be closer to 0, 1, 2, or 3, a student was directed to make a tenths 
strip and then locate and mark 0, 1/2, and 1 on the strip. Next, they labeled 0/10, 5/10, 10/10 and 7/10 
on the strip. The student then marked, and labeled a strip for 2/5. This allowed the student to 
visualize and count how far 7/10 and 2/5 were from neighboring fractions. 

This teacher was working to support a student who had not yet developed a strong visual sense of 
where individual fractions were located in relation to nearby benchmarks. Without this reasoning a 
student would struggle to understand what estimating a sum would entail and to use location and 
magnitude when estimating. This discussion highlights the first form of mathematical interaction: 
prompting students to reinterpret benchmarks in terms of specific fractional units being used (i.e.; 
tenths or fifths). This episode also highlights the second form of mathematical interaction: 
determining how far a fraction is from a benchmark. In addition, this work supported conversations 
about what an estimate was and how reasoning with quantities as locations is important. 
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Teacher: How far is 7/10 away from one 
whole? 

Student: Three tenths. 
Teacher: How far is it away from the 1/2? 
Student: Two tenths. 
Teacher: So which is it closer to? 
Student: 1/2. 
Teacher:  How far is 2/5 from 0? 
Student: Two fifths. 
Teacher: How far away from 1/2 is it? 
Student: Half of a fifth. 
Teacher: Is 2/5 closer to 0, 1/2, or 1 whole?  
Student: To 1/2. 
Teacher: So would 7/10 + 2/5 be closer to 0, 1, 

2 or 3? 
Student: 1/2 + 1/2 would be 1. Closer to 1. 

 

Figure 2. Discussion with Fraction Strips When Estimating Sum of 7/10 + 2/5. 

Example 2: Plausibility of a Calculational Approach  
This episode supports students to understand number sense-based estimation entails. In this 

episode students had been asked to think “about how big” the sum of 1/9 + 9/10 would be.  

Teacher: Tell me where you would start. How big would the sum of 1/9 and 9/10 be? 
Student: Well, first I would try to find a common denominator. 
Teacher: I really don’t want the exact answer. Can you tell me about how big it is? 
Student: 10/20. 
Teacher: Around 10/20 so about 1/2? Tell me how you did that. 
Student: I thought 9 + 1 is 10. 
Teacher: So you are doing 1+9 is 10. 
Student: Yeah. Then I just thought on the bottom 9 + 10 was 19. 
Teacher: Okay, about how big is 9/10?  
Student: Almost a whole. 
Teacher: And you think if I add something more to that [teacher points to 9/10] I am going to 

get around 1/2? 
Student: Wait. No, that wouldn’t [work]. 
Teacher: Yeah. It seems like it’s going to be more than 1/2, doesn’t it. So I think you were 

trying out a strategy like add these [numerators] and add these [denominators]. It 
didn’t seem to work very well did it? Could you show this with some kind of model?  

Another student then offered a strip model of 9/10. Pointing to the unmarked 1/10 of her fraction 
strip she said, “I knew that 1/9 is bigger than 1/10. So it would be over one. Maybe right here.” She 
gestures to show how it would be a short distance beyond one whole.  

At the beginning of the episode the first student showed awareness of how to calculate an exact 
sum using common denominators. He also correctly reasoned that 10/19 was about 1/2 and that 9/10 
was about 1. In his struggle to understand what estimation involved, he tried adding numerators and 
adding denominators to calculate a sum. While he was able to think about magnitude and location for 
an individual fraction, he struggled to reason about the resulting location and magnitude of the 
fractional quantities when combined. 
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In this episode the teacher did multiple things to move the conversation forward and focus on 
using number sense-based reasoning. With the first student she utilized the third and fifth form of 
mathematical interaction. She made an explicit distinction between finding an exact sum and an 
estimate by stating, “I really don’t want an exact answer”. Second, she prompted the student to use 
number sense-based estimation as a reasoning tool to determine if his approach of adding numerators 
and adding denominators led to a reasonable result. When the second student offered reasoning that 
would allow one to consider how the estimated sum and the exact sum were related, the fourth form 
of mathematical interaction was utilized. 

Discussion 
The students highlighted in the cases represent learners a teacher might typically encounter. This 

includes students who are able to reason with individual fractions but not sums. The forms of 
interaction in Figure 1 offer ways teachers can support students to use number sense-based reasoning 
when adding fractions together. These interactions support the development of number relations. 
According to Gravemeijer and van Galen (2003), students’ invented algorithms emerge from the 
development of a mathematical framework of number relations that they use as tools when solving 
problems. This focus on reasoning about the combining of fractions as quantities and as locations can 
help support reasoning needed if the goal is for students to develop valid computational strategies for 
adding fractions. 
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This study aimed to explore pre-service elementary teachers’ (PSTs’) conceptions of effective teacher 
talk in mathematics instruction through a two-phase task that involved analyzing and evaluating a 
sample teacher-student talk and developing alternative ways of communicating with students. 
Findings were interpreted in terms of PSTs’ views of mathematics, their perceived roles in classroom 
discourse, and their conceptions of effective forms and functions of teacher talk. The outcome has 
implications for teacher education and future research in addressing this important aspect of 
mathematics teaching practice and opening up pedagogical possibilities for teacher educators.  

Keywords: Teacher Education-Preservice; Classroom Discourse; Teacher Beliefs 

Effective classroom communication calls for teachers to facilitate meaningful mathematical 
discourse and pose good questions. With this said, it is an important first step to identify teachers’ 
conceptions of effective communication in a mathematics classroom. The purpose of this study is to 
explore PSTs’ conceptions of effective communication in mathematics instruction through a series of 
tasks that involve analyzing and evaluating a sample teacher talk and developing alternative ways of 
communicating with students. Specifically, this study examines how the criteria PSTs used in 
analyzing, evaluating, and modifying a sample teacher-student talk reflect the following aspects: (1) 
PSTs’ views of mathematics and teacher roles in classroom discourse and (2) PSTs’ conceptions of 
effective forms and functions of teacher talk.  

Theoretical Framework 

Teachers’ Views of Mathematics and Roles in Effective Classroom Discourse  
Teachers’ communications enacted in mathematics instruction are highly associated with their 

conceptions of teacher roles. Ernest (1989) categorized three different models of teaching 
mathematics by focusing on the teacher’s role and intended outcome of instruction: (a) Teacher as an 
instructor: aims at skills mastery with correct performance, (b) Teacher as an explainer: aims at 
conceptual understanding with unified knowledge, and (c) Teacher as a facilitator: aims at confident 
problem posing and solving. Which of these roles the teacher adopts will have a great impact on the 
overall classroom communication and actions such as the teacher’s questioning strategies or 
feedback patterns.  

Forms and Functions of Teacher Talk  
The analytical frameworks used in the previous research differ across various studies, and there is 

no prescribed equation for knowing what and when to say because teacher talk can be used for 
various purposes. In terms of cognitive level, higher-order versus lower-order thinking 
questions/prompts framework is frequently used. Whether the type of teacher question/prompt is 
open or closed is also frequently addressed in the prior studies. Generally, the more open 
questions/prompts, which are designed to ensure that multiple answers are valid and valued, the more 
they will identify the students’ mathematical understanding and abilities (e.g., Blosser, 2000). 
However, studies also comment that posing open-ended questions alone is not a sufficient condition 
to initiate an explorative interaction for investigating the child’s own understanding of mathematical 
knowledge. In this regard, researchers suggest that it is necessary to distinguish between form and 
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function when analyzing and evaluating teacher-student interactions (Wells, 1999 cited in Mercer & 
Dawes, 2014).   

Methods 

Participants 
Data from this study came from 46 PSTs who enrolled in a K-8 mathematics methods course at a 

Midwestern university in the United State. For most of PSTs, it was one of their last two semesters 
before student teaching.  

Tasks and Data Collection 
The following short transcription of the teacher-student talk was provided for PSTs to analyze 

and evaluate.  

 
Using this sample teacher-student talk, PSTs were asked to engage in two tasks.  
Task 1: Critique of sample teacher-student talk. PSTs were asked to comment on/evaluate 

each of the teacher’s statements (T1 ~ T12). PSTs first indicated whether they evaluated it positively 
or negatively and then provided their justifications to explain their evaluation. They were also asked 
to suggest alternative statements for the negatively evaluated statements.  

Task 2: Small group discussions for revisions of the sample teacher-student talk. Small 
groups were formed for this task. Each group needed to reach a consensus if they wanted to replace 
the original teacher statement. If a group was unable to reach a consensus, they were asked to note 
why it could not be resolved. Each group’s final revision was shared with the researcher in a small 
group discussion setting.  

Data Analysis 
PSTs’ written responses from Task 1 were analyzed using an inductive content analysis approach 

(Grbich, 2007). Thus, throughout the data set, each sentence was coded for whether it referenced in 
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some way the categories identified. At the completion of coding, frequencies of coded themes were 
identified. The data from Task 2 were analyzed descriptively, highlighting the features of teacher talk 
on which PSTs agreed or disagreed.  

Results 
Table 1 shows the major themes found in the PSTs’ evaluations of the sample teacher talk in 

Task 1.  
Table 1:Aspects considered in evaluating the sample teacher-student talk 

A. Interpersonal skill A. Offering encouragement, compliments, reassurance (to provide emotional support) 
B. Follow-up 

questions/prompts  
B1. Asking for content-specific explanation (to press students to restate/ explain the math 

content) 
B2. Asking for procedure-specific explanation (to press students to recall mathematical 

procedures) 
C. Format of 

questions/prompts 
C1. Asking open-ended questions (to probe student thinking and make it explicit) 
C2. Asking close-ended questions (to get or guide to predetermined answers)  

D. Language/word 
choices 

D1. Using appropriate words/ expressions; non-mathematical in nature (to improve 
clarity/politeness) 

D2. Using correct math terms and concepts (to be mathematically precise) 
E. Response to 

student 
work/question 

E1. Offering clear directions (to avoid confusion) 
E2. Offering straightforward/ neutral responses (to avoid confusion, but not to be directive) 

F. Information 
provided by 
teacher 

E3. Confirming correctness of student work (to immediately confirm) 
F1. Refraining from talking or providing direct solutions (to encourage student’s own thinking) 
F2. Offering detailed explanations (to offer more instruction and guidance) 

 
Figure 1(a) shows the distribution of number of positive/negative comments on each teacher 

statement.  T4 and T5 received the most comments from the PSTs, and the negative comments were 
the majority in the evaluation of these two teacher statements. While most statements received more 
negative comments than positive ones, there are several statements that received more positive 
comments than negative ones (e.g., T3, T7, and T11 for emotional support). Figure 1(b) shows the 
distribution of positive/negative comments per each theme. Theme A was most frequently used in the 
evaluative comments of the teacher statements. PSTs used this theme more to address positive 
aspects than negative aspects. Other themes used in positive evaluations also included C2 and E3. 
Most of the themes were more frequently used to negatively evaluate teacher statements, especially 
themes D1 and D2.  

  
Figure 1: Frequencies per teacher statement Figure 2: Frequencies per theme 

There were several consenting improvements suggested in the group revision process (Results 
from Tasks 2). Those include the need to strengthen the following aspects: (a) checking for student 
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prior knowledge, (b) increasing clarity/specifications, (c) asking for more explanations/justifications 
from the student, and (d) employing more positive tones. Several conflicts/disagreements noted in 
Task 2 were mainly focused on the following questions: (a) Who is responsible for learning? (b) 
What is the role of compliment? (c) When to stop probing questions in response to student struggles 
and confusions? (d) How to interpret students’ mistakes?  

Discussion and Implications 

Teachers’ Views of Mathematics and Roles in Effective Classroom Discourse 
While the view of the teacher as a facilitator was a more supported view in Task 1, it was 

difficult to see the same pattern in Task 2. The small group discussion in Task 2 noted only minimal 
changes in the forms of teacher statement and also showed that even though PSTs shared similar 
views of mathematics and teacher role in mathematics communication, they revealed a wide range of 
differences on the quality and quantity of teacher talk and showed varied levels of struggles with 
deciding what should be the right amount of information or teacher assistance in specific contexts. 
One notable pattern in PSTs evaluations and modifications was that using vague languages were 
considered defects (e.g., T4: “Well sort of”). PSTs strongly revealed the ‘teacher as a knower’ view in 
this critique. The perception of “the traditional hierarchy of teacher as the autocratic knower and 
learner as the unknowing” (Fosnot, 2005, p. ix) seems to be still prevalent among the PSTs. Many 
PSTs noted that this kind of vague teacher statement would cause student confusion by implying 
confusion as a negative experience to be avoided.  

Forms and Functions of Teacher Talk  
Despite the acknowledgement of various forms/functions in Task 1, many PSTs did not fully 

demonstrate a deep understanding of the pedagogical moves, nor an ability to plan for effective 
alternative statements. Disagreements/conflicts within group discussions in Task 2 were usually 
raised by a small number of PSTs. This implies that although the PSTs have already been familiar 
with many features/forms of effective classroom talk and many have entertained the idea of 
facilitating effective classroom talk, they seemed to be unsure of what it actually looked like or how 
it functioned in context.  

This study provides a window into the potential roadblocks for PSTs to shape the nature of their 
classroom talk. It is anticipated that the patterns identified in this study would provide teacher 
educators with insights into how they can better offer the opportunities to learn to teach. Reflection 
and critical discussion in the teacher education program that scaffold new understandings about the 
pedagogical knowledge teachers should have will eventually help PSTs develop the foundation for 
their professional career.  
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Using interactional analysis we examined the content of interactions during a whole group 
discussion in a 9th grade geometry classroom with the intent to identify the teachers’ modes of 
intervention as he tried to engage students in criticizing two mathematical arguments raised in 
proving uniqueness of midpoint of a line segment.  The teacher’s multiple invitations for engaging 
students in identifying problems with the two arguments were not well received.  

Keywords: Classroom Discourse; High School Education; Cognition; Reasoning and Proof 

Introduction 
It is widely agreed that peer interaction and group discussions can positively influence the growth 

of mathematical understanding among learners.  A major interest in mathematics education 
community is describing modes of teacher intervention that allow for development of productive 
interactions leading to increased learning for all students. Analysis of teachers’ practices according to 
the type of learning opportunities they attempt to create is far more useful than judging learning 
outcomes instantaneously, since time and space may be needed for learning to manifest. 

In this work we examined the practices of a teacher and his attempts at structuring students’ 
reflections on, and analysis of the validity of two arguments that were offered as proofs to a 
mathematical proposition. Two inter-related questions guided our analysis: What type of 
mathematical actions does the teacher try to enable in the course of his interventions during the large 
group interactions? What results from the teacher’s interventions? 

Literature Review and Theoretical Grounding 
Kahveci and Imamoglu (2007) proposed that all instructional interactions have the purposes of 

increasing participation, developing communication, receiving feedback, enhancing elaboration and 
retention, supporting learner control and self-regulation, increasing motivation, team building, 
discovering, exploring, clarifying understanding, and/or closure (p.139). In synthesizing factors 
considered in studies concerning classroom interactions and mathematics learning the authors 
included: Structure of lessons, norms/context established and maintained for judging mathematical 
arguments, student motivation to learn, teacher goals and teacher knowledge, how the teacher 
interacts with students or leads discussion, and physical and social environment of the classroom. As 
it pertains to the activities of the teacher in the course of interactions, some studies have focused on 
unpacking teacher talk within the whole or small group settings (Cobb & Bausersfeld, 1995), while 
others have captured the strategies that teachers used (or did not use) or the knowledge bases from 
which they drew (or could draw) while doing so (Stein et al., 2008). Not all these reports though 
focus on the activity of teaching focused on supporting inquiry or conceptual development among 
learners. For instance, Sinclair (2005) reported on study conducted by Towers (1999) in which the 
investigator catalogued twelve intervention strategies used by teachers when interacting with 
students:(1) managing—carrying out administrative and disciplinary work, (2) checking—asking if 
the student understands, (3) enculturating—introducing students to terminology and processes used 
in the mathematics community, (4) reinforcing—stressing an idea, (5) clue-giving—deliberately 
pointing the student to the correct answer or path, (6) anticipating—trying to prevent the student 
from making a mistake, (7) blocking—stopping a student from following a particular path, (8) 
inviting—suggesting “a new and potentially fruitful avenue of exploration” (p. 201), (9) modeling—
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providing an example of the teacher's own approach, (10) rug-pulling—deliberately introducing a 
puzzling idea, (11) retreating—walking away and allowing the student to think further, and (12) 
praising.(Sinclair 2005, page 90).  According to Towers the strategies of “rug-pulling” and “inviting” 
were most effective in facilitating growth of understanding in mathematics (Sinclair, 2005, pg. 91). 
Nonetheless, Sinclair reported that the teachers in Towers’ study were not particularly concerned 
about nurturing student centered learning. 

Wagner (1994) defined identified two specific purposes associated with instructional 
interactions:  to change learners and to move them toward an action state of goal attainment. (p.8). 
This spontaneous acting and reacting towards increasing understanding in mathematics classrooms is 
what Cobb and Bauersfeld (1995) characterized as co-learning, "a process of mutual adaptation 
wherein individuals negotiate meanings by continually modifying their interpretations" (p. 8).  As 
such the teacher is recognized as a co-learner in the classroom enterprise.  It is this perspective that 
guided our data analysis. 

Methodology 
The case on which we based our analysis for this report is grounded in data from one session in 

one 9th grade geometry classroom taught by Mr. Chris, a highly qualified teacher who stressed the 
importance of student-centered instruction and utilized it in his lessons daily. The session that 
became the focus of our analysis was a part of an instructional unit on logical reasoning and lasted 
approximately two weeks. During this session the students were asked to consider three propositions 
and to prove or disprove them (Diagonals of regular pentagons are of equal length; Angle bisectors 
of rectangles are concurrent, A line segment has only one midpoint). Approximately 20 minutes of 
the class time was devoted to small group work on the tasks. The whole group discussion of the first 
two propositions progressed quickly as all students had identified counter-examples to each of the 
two statements.  The discussion of the third proposition however, became complicated due to the 
group’s lack of willingness to conform to the teacher’s goal of registering flaws in two arguments 
presented in class.  The teacher’s struggle to avoid direct instruction and the students’ reluctance to 
comply to the teachers’ requests provided a fruitful ground for careful analysis of interactions. 

Data Analysis 
Data Analysis consisted of three phases. First, an interactional diagram was constructed to 

capture the group’s exchanges, depicting turns in discourse by the contributing members, 
highlighting episodes of “action-reaction” during the interactional event. Since the goal of our 
research was to catalogue the teacher’s types of interventions during the whole group interactional 
episode as a starting point in our coding process we used Towers’ (1995, cited in Sinclair) typology 
of interventional strategies. Particular Teacher’s interventions that did not fit Towers’ typology were 
identified accordingly. Lastly we considered the students’ reactions to the comments that the teacher 
made so to trace how his comments influenced their thinking.  

Results 
The session included a total of 70 turns.  Eleven of the 33 teacher utterances either invited 

students to reflect on arguments or aimed to provoke them to examine ideas more carefully. 8 of his 
comments challenged students’ claims.  3 comments reinforced socio-mathematical norms of 
reasoning and thinking in his class.  Two comments attempted to provide a structure for students’ 
thinking as he asked them to recall specific events from previous class sessions. The remaining 
comments were either reflective of his own thinking or provided evidence of his reflecting on 
arguments raised in group.   Here we also counted the teacher’s prolonged silences as another 
interventional strategy since they were perceived as invitations for extended thinking.  
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Although the majority of the teacher’s comments intended to gauge students towards identifying 
flaws in reasoning of peers his pleas were not well received. Throughout the whole group dialogues 
students reflected on each other’s and their own ideas, provided additional explanations and refined 
their previously stated ideas. They referenced and verified knowledge and conventions by examining 
textbook definitions; they considered consequences of definitions and re-stated their ideas in 
presence of anomalous results from their search and yet throughout the episode students resisted the 
teacher’s persistence that their peers’ arguments be confronted.  

Uniqueness of the midpoint  
The whole group discussion began as one student (S1) presented her group’s argument for why a 

line segment can have only one midpoint.  Their method consisted of drawing 5 segments of varying 
lengths and then using a ruler they had marked the midpoint of each segment.  The group then argued 
that since the midpoint moved with the segment then there was only one midpoint for each segment 
(S1). Although the teacher recognized that this mode of reasoning was not a proof he was unsure of 
how to respond to it during the group deliberations.  During this segment the teacher’s comments 
were primarily reflective (turns 2,3,4), disclosing his desire to learn more about how the students had 
resorted to this approach (turns 6), or his appreciation for the connections that the students had made 
to the work previously done in class (turns 8, 10). He also expressed his confusion about how to react 
to the argument and that he needed time to contemplate the idea (turn 13, 15).  Indeed the first six 
minutes of the whole group discussion were devoted to the teacher seeking space to think about the 
proposed argument and in doing so he even appealed to the group for help (turn 10).   Interestingly, 
despite the fact that the students did not object to the first group’s argument they appeared to respect 
the teacher’s need for thinking since a member of another group asked if they could present their 
method (turn 14). This delicate intervention resonated Towers’ retreating strategy, though the 
strategy was enacted by the students, in reaction to their acknowledgement of the teacher’s need for 
space to think. 

During the second segment of the whole group discussion a second argument was offered: since 
in a triangle from each vertex only one median could be constructed and that since a median 
demanded a midpoint then it “proved” uniqueness of the midpoint.   The teacher invited students to 
respond to the new argument while acknowledging that he was still thinking about the first group’s 
reasoning (t 19, 21, 24) and yet the group defended the validity of their peers’ arguments and 
expressed that they found both reasonable and convincing. The teacher was solitary in his quest to 
reveal flaws in reasoning and in doing so he attempted to provide learning opportunities for students 
to realize and share his mathematical goal.  Indeed, among the 15 student utterances expressed during 
the second segment 9 were statement of peer approvals (t 18,20,21, 23, 26, 29). Rather than 
confronting the arguments of the two groups the teacher then resorted to a different strategy and 
asked if other students had used different approaches to proving the proposition (t 28).  It was during 
the third segment of the episode that he became more explicit in his judgment of the arguments.  He 
asked the students to consider specific assumptions that each group had made and in examining the 
assumptions he asked that they revisit definitions and conventions.  

Refinement and Resistance 
The third segment of the session marked the teacher’s direct attempts at pointing out areas in at 

least one of the arguments that needed careful attention.  He asked students to identify the specific 
assumptions that the second presenting group had made (turn 32).  In response to this call, members 
of the first group offered further explanation for why their argument was true (turn 37).  The 
additional explanations they provided indeed resembled proof by contradiction.   Nonetheless, the 
discussion returned to whether uniqueness was a part of the definition of the median, as one student 
in defense of the second’s group’s argument stated (turn 38, 39).  Pleading to the norms of practice in 
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his classroom the teacher reminded students that in presence of even one disagreement then claims to 
definitions needed to be carefully verified and in doing so he reminded students that they must 
distinguish statements of definitions from consequences of those definitions (turn 51).  Despite these 
efforts the group remains unsure of the teacher’s expectation (turn 52, 53, 54, 56).  Only one student 
responds to the teacher (turn 55) and yet his comment goes unnoticed by peers. During the last 
segment of the session, and as a final resort the teacher asked the students to recall what they had 
done in class the previous week and in doing so he appealed to their memory as a strategy for 
structuring their activities (turn 61, 64), which he ultimately used to engage the students in revisiting 
both arguments (turn 70).  Students’ responses to the teacher’s comments indicated their awareness 
of what the teacher intended for them to consider as they stated specific memories they had attached 
to the mathematics discussed in class (turn 67, 67, 69).  

Discussion 
In the case we presented here, the teacher’s desire to refrain from dictating what technique 

students may use to prove the proposition he had assigned certainly created an environment for 
students to think, reflect, and in some cases make connections and explore ideas they had not 
considered themselves.   The learners were in tune with the arguments that their peers had raised and 
yet they were not responsive to the teacher’s pleas for conforming to reason and convention; they 
were not alert to the mathematical performance they were expected to display. Their cognition was 
only shifted in presence of the teacher’s plea to collective memory and remembering.  Here, of 
course, we do not make a claim that the students came to identify theirs and their peers’ arguments as 
less convincing or even flawed, only that the collective remembering provided them with a platform 
for understanding the teacher’s expectations for their mathematical work. It remains unclear, 
considering the multitude of research on learners’ difficulties with proofs and proving what modes of 
teacher interventions might be fruitful in advancing learning while supporting student autonomy.  
Studying classroom interactions using content as a lens for analysis of forms and types of 
interventions is highly needed.   
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We discuss findings from a study of 226 K-12 mathematics teachers who rated the appropriateness of 
instructional actions in a scenario-based assessment. The teaching actions shown in the scenarios 
were designed to represent mathematics teachers fulfilling their obligation to the discipline of 
mathematics. Our analysis of the participants’ follow-up responses provides insight into how other 
professional obligations interact with teachers’ obligation to the discipline. We describe our method 
for detecting what we call conditional construals—assumptions participants regarded as critical for 
rating the appropriateness of instructional actions. In addition, we report preliminary findings about 
how those assumptions can be accounted for in terms of the professional obligations of mathematics 
teaching. 

Keywords: Instructional Activities and Practices; Teacher Knowledge; Teacher Beliefs; Research 
Methods 

Introduction 
Scenario-based assessments are widely used to assess judgment in professional fields, such as 

medicine, police work, army tactics, and human resources (Weekley & Polyhardt, 2006). In this 
study, we analyzed a set of open-ended responses to scenario-based assessment items of K-12 
mathematics teaching. Open responses from participating teachers followed forced-choice ratings of 
instructional actions shown within scenarios of K-12 mathematics classrooms.  There were two parts 
to the analysis. The first part of the analysis involved validating a procedure for identifying when a 
response contained linguistic markers that indicated that the appropriateness of an instructional 
action was dependent on an element of the scenario (e.g., traits of the students, the amount of 
available time, the content that had been previously covered) that was unspecified in the 
representation that they viewed. We call such markers conditional construals. For the first part of the 
analysis, we analyzed responses from 226 teachers to 15 items (n=3405) designed to probe teachers’ 
professional obligation to the discipline of mathematics (Herbst & Chazan, 2012). The second part of 
the analysis was a qualitative examination of the kinds of additional information participants stated 
they would need to know about a scenario in order to rate the appropriateness of an instructional 
action. The qualitative analysis examined the responses to 2 of the 15 items that had the highest 
incidence of responses that contained a conditional construal. In this paper we report on the results of 
the preliminary qualitative analysis of the responses to these 2 high construal items.  

We looked for additional aspects of the represented scenario that teachers considered critical in 
deciding whether an action was appropriate. The following research questions guided our inquiry: 1) 
What types of assumptions do teachers make in order to justify instructional decisions that respond to 
a professional obligation to the discipline? 2) How do the different professional obligations support 
or constrain teachers’ departures from “business as usual” in favor of their obligation to the discipline 
of mathematics?  Our purpose with this study is to investigate the types of assumptions teachers 
make when considering instructional actions that respond to the professional obligation to the 
discipline of mathematics. 
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Theoretical Framework for Research  
Herbst and Chazan’s (2012) account of the practical rationality of mathematics teachingattempts 

to synthesize rational actor theories of teacher decision making (e.g., Calderhead, 1996; Schoenfeld, 
2010) with accounts of teaching as a sociocultural activity (Stigler & Hiebert, 1999).    Herbst and 
Chazan (2012) propose that while teachers have personal resources such as knowledge and beliefs, 
teachers also play roles in activity systems (e.g., algebra instruction) that have customary norms 
(Much & Shweder, 1978). Within such activity systems, teachers are accountable to four professional 
obligations—to the discipline of mathematics, to individual students, to the classroom community, 
and to the institutions of schooling (Herbst & Chazan, 2012). While actions following customary 
norms may be enacted without reflection, a teacher’s deviations from those norms, whether 
motivated by individual resources or in response to social demands, need justification (Buchmann, 
1986). Herbst and Chazan (2012) argue that the four obligations provide a basis for the sources of 
professional justification. For example, while the obligation to the discipline of mathematics would 
require a teacher to limit the range of symbolic strings that she allows herself to call equations (e.g., 
2x = 5 is an equation but 3x -7 is not an equation), this same obligation could also justify her calling 
equation a symbolic string like 2x = x2 in spite of the fact that the beginner’s algebra curriculum 
might not include it under the equations that algebra students learn to solve (Herbst & Chazan, 2012).  

While much work has been carried out to establish links between teachers’ beliefs and 
conceptions about mathematics and instructional practices (Skott, 2001; Stipek et al., 2001), the 
notion of practical rationality suggests that teachers’ decision-making is not driven by individual 
resources alone. Rather, teachers’ decisions are context-dependent and a fuller understanding of the 
resources that they can employ for departing from normative practice can be achieved through the 
use of instruments that represent the situated nature of practice. As such, we approach the work of 
understanding teachers’ decision making by presenting them with scenarios of instruction in which 
the represented teacher departs from instructional norms in order to act on behalf of the professional 
obligation to the discipline.  

Methodology  
We conducted our study on data collected from K-12 inservice mathematics teachers with a 15 

item scenario-based instrument designed to measure recognition of teachers’ professional obligation 
to the discipline of mathematics. Within each item, participants examined a scenario in which a 
teacher departs from an instructional norm in order to attend to one of the professional obligations. 
Participants were asked to rate the extent of their agreement (using a 6-point Likert-like response 
format from strongly disagree to strongly agree) with the teacher’s action. Participants were then 
prompted to comment on their ratings. In order to identify conditional construals in these responses, 
we located circumstances of contingency (Halliday & Matthiessen, 2004, p. 271) which are 
accompanied by linguistic markers such as “depending on”, “as long as”, and “assuming”. In 
particular, we examined the nominal group introduced by the circumstances of contingency. These 
nominal groups are usually “a noun denoting an entity whose existence is conditional, a noun 
denoting an event that might eventuate, or a nominalization denoting a reified process or quality” 
(Halliday & Matthiessen, 2004, p. 272). We present an example with the following response, “This 
depends on timing. I think it can be valuable information for students to see common errors played 
out in a solution, but time will dictate whether or not that can happen in any given scenario.” We 
argue that “timing” is marked here as a circumstance of contingency by the prepositional phrase “this 
depends on”.  We then categorized those circumstances by professional obligation. In this example, 
we placed the conditional construal in the institutional category because the participant indicates that 
the appropriateness of the action is contingent on the amount of time available, and time constraints 
are imposed by the institution.  



Teaching!and!Classroom!Practice:!Brief!Research!Reports! 1132! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

Findings 
We found that teachers consider the other obligations—to the students as individuals, to the 

classroom community, and to the institution—as they consider whether to respond to their 
professional obligation to the discipline of mathematics. We illustrate these categories of conditional 
construals by sharing teachers’ responses from the two items with the highest number of responses 
that contained conditional construals. The analysis reported below qualitatively assesses the content 
of these conditional construals, with respect to the professional obligations.   

In the first item, participants view a scenario in which the teacher announces that students seem 
to be on the right track and, rather than spend time on practice problems (which we hypothesize 
would be the normative action in such a situation), the teacher decides to discuss mathematical 
theory related to the topic at hand. Participants were asked to rate the statement: “The teacher should 
give students additional practice problems, rather than elaborate on mathematical theory.” Of the 226 
participant responses, 16% indicated that their decision depended on assumptions they had made 
about the scenario. In the second item, participants viewed a scenario in which a student makes a 
mistake while working a problem at the board; rather than point out the mistake directly (which we 
hypothesize would be the normative action in such a situation), the teacher allows the student to build 
on the mistake. Such an action could be justifiable on the disciplinary grounds that the teacher is 
creating an opportunity for a contradiction or anomaly to arise from mathematical reasoning that 
builds on the mistake. Participants were asked to rate the statement: “The teacher should correct the 
mistake observed, rather than ask students to build on mistaken work,” and we found that 7% of the 
participants indicated that their decision depended on assumptions they made about the scenario.   

These items highlight the variety of factors that teachers consider in order to make instructional 
decisions that respond to the disciplinary obligation and demonstrate how the role of the other 
professional obligations can vary depending on the scenario. For example, while there were 30 
participants who referenced the individual obligation in their responses to the first item, the 
individual obligation was used in different ways. One perspective suggested that knowing the “level” 
of the class is essential for determining whether or not a particular instructional action is appropriate; 
another perspective suggested that it was of primary importance to determine whether students had 
been taught relevant information. While these are both manifestations of the obligation to the 
individual student, they have different implications for how the teacher perceives the agency of the 
students and the responsibility of the teacher. Such differences manifested themselves across items as 
well: In the case of the first item, there were 30 references to the individual obligation, but there were 
only 9 references to the individual obligation for the second item.  Ongoing analysis is being to 
conducted to perceive patterns in the way each of the obligations are manifested within participants' 
construals. 

Study’s Significance  
Mathematics instruction is beholden to the discipline of mathematics as the source of legitimacy 

of the knowledge at stake in the classroom as well as the practices that govern the development of 
that knowledge. Nonetheless, there is often a tension between the type of instruction advocated by 
mathematicians and mathematics educators and the everyday reality of K-12 education (Schoenfeld, 
2004). We have demonstrated how we have been able to collect a corpus of data from K-12 teachers 
of mathematics describing the circumstances that dictate whether they approve of a fellow teacher 
departing from customary classroom practice in order to respond to their perceived professional 
obligation to the discipline of mathematics. Our analysis of that corpus suggests that, for these 
teachers, their professional obligation to the individual students (e.g. students’ understanding), to the 
discipline of mathematics (e.g. mathematical value), to the classroom community (e.g. class norms), 
and to the institution of school (e.g. time) all have a bearing on their approval of such decisions. It 
remains an open question for us whether individual differences account for part of the variance in 
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participants’ conditional construals.  To explore this, we could examine how proxies for such 
differences, such as mathematical knowledge for teaching and experience, are related to the ways 
that they see the professional obligations impinging on their practice. 

While surveys of teachers’ beliefs about mathematics provide one way of conceptualizing how 
the discipline of mathematics may influence instructional decisions, our work presents a different 
approach by suggesting that there are aspects of the professional position (for example, the need to 
teach a given curriculum, a limited allowance of time, the characteristics of the class being taught, 
the various characteristics and needs of individuals one is assigned to teach) that may mediate a 
teachers’ willingness to respond to the discipline regardless of their beliefs about the subject. As a 
better model is developed of the way that the professional obligations interact both with one another 
and with personal resources of the mathematics teacher, and as the different aspects of the 
professional obligations themselves are further analyzed as we have begun to do here, we will be 
closer to being able to understand the hidden factors that obstruct or facilitate the take-up of 
instructional practices that depart from the norm in order to align with the discipline of mathematics. 
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This study traced students’ chat and whiteboard interactions in an online, synchronous environment 
as they collaborated to solve cognitively demanding, open-ended mathematical problems. The 
objective was to document the emergence of discourse that showed accountability to a community of 
practice when doing thoughtful mathematics.  Findings also revealed that the students transitioned 
into empowering stances about their ability to think mathematically. The pedagogic conditions under 
which the students worked and how those influenced students’ development as a learning community 
are also discussed. 

Keywords: Classroom Discourse; Problem Solving; Technology 

Purpose 
As Ernest (2002) indicates, there is a need to research teaching practices that encourage student 

accountability and empowerment in mathematics education. With the increased demand for online 
learning, it is critical to understand how these attributes can be fostered in online synchronous 
environments (Stahl, 2009). The online learning environment can be designed for students to engage 
in the mathematics on their own terms. Yet issues and challenges may arise as students figure out 
how to collaborate and, ideally, form a learning community. The purpose of this study was to engage 
students from diverse backgrounds in doing thoughtful mathematics by working to solve open-ended 
problems and justify their approaches and solutions. Through capturing students’ chat and 
whiteboard representations, researchers traced their discursive interactions and mathematical 
reasoning to seek evidence of empowerment and accountability. 

Theoretical Perspective   
This study is rooted in sociocultural theory that highlights the meditative role of social interaction 

in the development of individual knowledge (Vygotsky, 1978).This perspective acknowledges that 
learners actively construct knowledge and that their knowledge is constantly modified by their social 
interactions. It is further posited that (a) students need to be engaged to support the transfer of 
knowledge; (b) engagement is best accomplished through discourse and a sense of belonging to a 
community of learners; and (c) this can be an empowering experience for students. Through 
practicing mathematics collaboratively, students increase their own accountability, and that leads to a 
strengthened empowerment over the subject of mathematics.   

Michaels, O’Connor and Resnick (2008) propose three forms of accountability in the classroom: 
accountability to the learning community, accountability to accepted standards of reasoning, and 
accountability to knowledge. Their research also draws on constructivist and sociocultural principles 
that emphasize the importance of learning through discussion.  In accountability to the learning 
community, participants listen to each another, build on each another’s ideas, and question each other 
to expand upon their own individual ideas. Accountability to accepted standards of reasoning 
emphasizes logical connections and the drawing of logical conclusions that occur during interactive 
reasoning and discussion. The third and most complex form, accountability to the knowledge, 
depends upon the accurate use of facts and knowledge in the discussion. One focus of this study was 
on the students’ accountability to a learning community as they shifted away from individual, 
competitive work and more towards a collaborative group sharing of mathematical ideas.  
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The second focus, empowerment, can be divided into two domains:  mathematical and 
epistemological. Mathematical empowerment is a social process of acquiring facility in talking about 
mathematics, using its specialized language, and gaining proficiency in using and applying 
mathematics (Ernest, 2002). Mathematical empowerment occurs over time as a result of social 
interactions and achievement in a mathematics classroom. Epistemological empowerment concerns 
the individual’s growth in confidence: the development of a personal identity so as to become a more 
personally empowered person. As Ernest (2002) contends, students cannot be autonomous learners or 
think critically without first becoming empowered. To foster student empowerment, an environment 
must first allow them to overcome internal inhibitions and perceptions of inadequacy. Classroom 
practices can facilitate the process of encouraging students to assume responsibility for their learning 
(Stinson, 2004). 

Methods 
The data for this report is a subset of a larger data corpus. Total participants consisted of 17 

seniors from two different high schools in New Jersey. Eight of the students were from an urban 
public high school, and the remaining nine students were from a suburban private high school. Twice 
a month, during their regular class time, they participated in the research project by solving 
mathematical tasks in the online environment, called Virtual Math Teams (VMT). The VMT project 
was a NSF-funded research program designed to investigate sustained collaborative problem solving 
in a computer-supported environment. Its two main interactive components are a shared drawing 
board, referred to as a workspace, and a chat window. All VMT sessions were observed while the 
students worked on tasks, as well as afterward, and chat discussions were downloaded for coding. 
Students worked on open-ended combinatorial tasks not seen in their traditional mathematics 
classroom.  

Online chat discussions were coded for accountability to their learning community and 
mathematical and epistemological empowerment. Coding identified the nature of the chat in order to 
observe whether there were shifts in their behavior during the six sessions. Chat statements that built 
on the efforts of the group as they solved the mathematical task were coded as accountable to the 
learning community. Examples include (a) encouraging one another to join or continue efforts in the 
problem task; (b) agreeing with the current approach; and (c) asking clarifying questions that show 
positive participation towards the group effort of solving the mathematical task. Coding for 
epistemological and mathematical empowerment highlighted moments that displayed the individual’s 
growth in confidence within the group as they solved the mathematical tasks. Instances of showing 
epistemological empowerment include: (d) taking the lead, (e) redirecting, and (f) posting an answer 
to the chat and/or workspace. Mathematical empowerment (g) was evidenced during the creation or 
validation of the knowledge.  

Results 
This study focused on analyzing data from Team Two, which consisted of four male students:  

Pedro, JohnC, John, and Jordan (not their actual names). The following narrative reports online 
interactions among Team Two and how they evolved over six sessions. During the opening 12 
minutes of the first session, the students socialized and questioned their virtual teammates about 
gender, sports, and music. Pedro initiated the lead by encouraging his teammates to shift from their 
initial socializing and begin the task. There were statements of apprehension from each member of 
the team as they commented that they were unsure how to proceed with the mathematics. Jordan 
persuaded Pedro to enter his work onto the whiteboard, claiming they he and John had an idea but 
would like to see Pedro’s solution strategy first. Pedro submitted the first solution onto the 
whiteboard and to that, John responded, “I had the same idea but was doing it on paper b/c I didn’t 
know how to put it on the computer.”  John then immediately submitted his own solution, which 
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contained an error, directly to the final solution tab and requested that Pedro write up the summary. 
Pedro complied with the directive. The team accepted John’s final solution and did not question why 
it was different from Pedro’s solution.  JohnC’s only contribution was several apprehensive 
comments in the beginning about how to proceed but he did not engage in any of the problem 
solving. Jordan was the last to log off, thanking Pedro for writing up the summary. At first it 
appeared that Pedro was the leader and everyone was extending him a turn to show his work. It 
quickly changed when John posted his work and positioned himself as the one who provided the 
solution. Jordan encouraged the team to produce solutions but did not submit any work of his own. 
For three teammates, the session ended on a positive note, however, for JohnC, the session might not 
have been as positive. Not only did he not engage in any of the problem solving, he drew pictures on 
the whiteboard that were erased by his teammates without discussion, and he logged off several 
minutes before the session ended. 

As the sessions progressed, routines and rituals emerged that were similar to the first session. 
Pedro often began his chat statements with the words, “we,” and “let’s,” as he encouraged the team 
to work together. He was tenacious in his desire to always contribute a solution; however, he rarely 
stated that he was sure of his strategy. Most of his statements began with, “I think this is it,” or, “I am 
not sure.”  John initially did not consider his teammates’ solutions or strategies. He would show his 
frustration by entering one word at a time into the chat log, commanding his teammates to agree with 
his solution to the task. However, as the sessions progressed, he began to display evidence of 
accountability by asking whether his teammates agreed with his solutions and, in the sixth session, he 
considered a solution other than his own. Jordan’s chat entries were not frequent, yet the content of 
his contributions were pivotal to the community coming together. At first his accountability was 
exclusively slanted towards his co-located teammate John. Yet, as the sessions progressed, Jordan 
began to value solutions other than John’s and expanded his notion of community to the four 
teammates. In contrast, JohnC generally entered negative comments and used the shared whiteboard 
to occasionally doodle. The other team members allowed him to stay adrift, and erased his doodle 
without mention. Yet in the fourth session, JohnC tried to work on the task and argue his point 
contrary to John’s solution. However, JohnC’s solution was never accepted and he appeared to 
harbor anger from this point forward. 

A very interesting exchange occurred during the last session as John assigned tasks to Jordan and 
Pedro.  Jordan’s task was to tally John’s listed items as he entered them into the chat and Pedro’s task 
was to re-enter them into the workspace. The process was seamless as the three boys worked, 
however, two times John entered a duplicate into the chat, which was counted by Jordan, but not 
transferred to the workspace by Pedro. He intentionally left out the duplicates thus correcting John’s 
mistakes.  He did not at any time mention his corrections or his teammates error. Interpretation of 
these results is discussed below. 

Discussion 
Accountability to community means that group members listen to each other, build on each 

another’s ideas, and question each other to expand on their own individual ideas (Michaels et al, 
2008). Pedro displayed a strong sense of accountability to the community from the first session to the 
last. He continuously encouraged the team to work together and solve the tasks assigned to them.  
John and Jordan’s accountability to community evolved during the study, in the sense that they 
expanded their definition of community. John displayed a modest shift in his accountability as he 
eventually considered solutions other than his own and Jordan expanded his view of the team from 
himself and John to a team of four.  JohnC struggled with his accountability to community, notably 
supported by evidence of his involvement being oppressed by the other members. It appeared that 
lack of contribution was construed as inattentive by his teammates. 
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Sharing mathematical ideas is an empowering experience and from this empowerment, a 
student’s mathematical identity is strengthened (Ernest, 2002).  Pedro’s and John’s mathematical 
empowerment was evidenced in their submitted solutions. Initially each student created his own 
solution in the workspace and neither discussed nor justified their reasoning. However, in the last 
session, both used the heuristic of controlling for variable to create two similar lists that were better 
organized, and each were able to follow the others’ work because of the organization.  

Epistemological empowerment is the individual’s growth in confidence in using, creating and 
validating mathematical knowledge (Ernest, 2002). Pedro’s epistemological growth was evidenced 
when he was confident enough to fix John’s solution without mention. John epistemological shift 
was most poignant as he developed a sense of himself in relation to the group as he began to value 
other members of the team. His epistemological growth is evidenced in how he managed and 
improved in his leadership skills. Team Two went from a group of four boys individually solving 
combinatorial tasks to a cohesive team under John’s leadership. 

In summary, the analysis revealed that the students displayed accountability to their learning 
community, as well as epistemological and mathematical empowerment, as they engaged in 
thoughtful mathematics in an online synchronous environment. As they worked in a small group to 
solve open-ended mathematics problems, they shifted away from individual, competitive work to 
more group cooperation and collaboration. They developed their own unique practice, expectations 
of one another, and most importantly, how to work together as a unique learning community. The 
data also indicated that this accountability was an empowering experience for the participants, one 
that may affect their relationship with the subject of mathematics. This study indicated that the 
environment provideda virtual and empowering forum for diverse students to construct mathematical 
ideas and reason collaboratively, even when remotely located. 
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SUPPORTING PEER CONFERENCES IN INTRODUCTORY CALCULUS 

Daniel Reinholz 
University of Colorado, Boulder 
daniel.reinholz@colorado.edu 

This paper focuses on the nature of student talk during peer conferences about calculus problems. 
Conversations were studied in the context of Peer-Assisted Reflection (PAR), an activity structure 
that supports communication and conceptual understanding through peer assessment. Despite a 
wealth of research on peer assessment, relatively little has been published on the specifics of 
students’ conversations as they discuss each other’s work. This paper introduces a coding scheme for 
analyzing such conversations, and applies it to illustrate the impact of a systematic training 
procedure on improving student conversations. 

Keywords: Classroom Discourse; Design Experiments; Metacognition; PostSecondary Education 

Calculus is an area of persistent challenge for students pursuing STEM careers (Bressoud, 
Carlson, Mesa, & Rasmussen, 2013). This paper focuses on student conferences in Peer-Assisted 
Reflection (PAR), a promising activity for improving student outcomes; PAR increased pass rates 
(completing the course with a C or higher) by 13% and 23% during two phases of study (Reinholz, in 
press-a, in press-b). PAR is built around peer assessment, a core part of formative assessment (Black 
& Wiliam, 2009). Broadly, formative assessment is focused on eliciting information about student 
thinking and using it to modify learning activities, which improves student outcomes (e.g., Black, 
Harrison, & Lee, 2003). In peer assessment, students collaborate and explain their reasoning to each 
other, developing self-assessment skills as otherwise invisible assessment processes become more 
explicit and transparent (Reinholz, in press-b). 

Despite considerable work on peer assessment (e.g., Falchikov & Goldfinch, 2000), little is 
published on student talk during peer conferences. As a result, it is difficult to design to improve such 
discussions, because they are not well understood. This paper focuses on student talk during two 
phases of a design experiment (Cobb, Confrey, Disessa, Lehrer, & Schauble, 2003), exploring the 
impact of systematic training included in Phase II. It addresses two questions: 

• What was the focus of student conferences on calculus problems? 
• What was the impact of systematic training on student conferences? 

Method 

Design 
Each week, students completed a challenging PAR problem as a part of their homework (14 

problems total). After completing an initial solution, students came to class and exchanged their work 
with a peer. Students read each other’s work silently for five minutes before discussing it together for 
five more minutes. After conferencing, students revised their work and turned in a final solution. 
This cycle of activities was implemented during both Phase I and Phase II. 

During Phase II, a systematic training procedure was added. Each week, the instructor led a 
whole-class discussion in which students analyzed three sample solutions to a part of the PAR 
problem and discussed how to improve them; these discussions focused on how the solutions 
explained and communicated the mathematical concepts of the PAR problem.  

This paper focuses on conferences from three PAR tasks: PAR06, PAR10, and PAR14. These 
tasks were chosen to span the duration of the semester. These tasks had: a low floor and high ceiling, 
multiple solution paths, and required explanation (cf. Schoenfeld, 1991); PAR6 explored the 
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difference between radians and degrees with sine and cosine functions, PAR10 focused on the 
approximation of complex areas using simple shapes (as a precursor to Riemann sums), and PAR14 
involved creating a bead as a solid of revolution (the napkin ring problem). 

Participants and Data Collection 
Students in a semester-long introductory calculus course at a research university attended four 

50-minute class periods each week. Phase I (409 students) took place in the fall, while Phase II (336 
students) took place in the subsequent spring semester. There were a total of ten parallel sections 
each semester (taught by 8-9 different instructors) with a common curriculum. PAR was 
implemented in a single experimental section each semester; this paper focuses on only these two 
sections (not the comparison sections). Student PAR assignments were collected and scanned, and 4-
7 student dyads were randomly chosen each week to be audio recorded during their peer conferences. 
A total of 155 conferences were recorded (66 during Phase I, 89 during Phase II).  

Analysis 
A total of 44 conferences were transcribed and de-identified. The transcripts were coded 

randomly to avoid systematic bias across tasks or phases of study. Each conversation was coded by 
assigning each sentence of talk to one of seven dimensions. Using a single sentence as a unit of 
analysis, it was possible to assign each sentence uniquely to a single category.  

The categories were: (1) communication (focused on how mathematical ideas were expressed), 
(2) comparison (of different solutions or multiple parts of the same solution), (3) concepts (the 
underlying mathematics of the problem), (4) procedures (computational fluency), (5) task (clarifying 
the parameters of the task), (6) other (mathematical talk in none of the above categories), and (7) 
unrelated (talk not related to the problem). These categories were drawn from the framing of PAR 
(asking students to talk about communication and correctness), the nature of the tasks (focused on 
multiple solutions, allowing for comparison), and an iterative process of working with transcripts to 
develop a minimal set of codes. Because students often introduced themselves to start a conversation 
and said “thank you” to end the conversation, “unrelated” talk from the beginning and end of 
conversations was not analyzed. This also meant that off-topic talk that took place after students 
finished their discussion was not analyzed. 

Results 
 Student conferences during Phase II were more than twice as long as those during Phase I (see 

Table 1). Conversations were also analyzed for percentage of on-topic talk (categories 1-6); overall, 
98% of talk during Phase I and 97.8% of talk during Phase II was categorized as on-topic. This 
indicates that students during Phase II spent more than twice as much time as the Phase I students 
discussing the mathematics of the PAR problems. 

Table 1. Length of Conversations (Number of Sentences) 

 Phase I Phase II 
PAR06 18.8 31.9 
PAR10 12.8 43.7 
PAR14 17.0 44.8 

 
Figure 1 gives the breakdown of talk for PAR06 and PAR14, averaged over all student 

conversations (PAR10 omitted due to space). During Phase II, students focused more on concepts, 
while Phase I students focused more on procedural computations. Nevertheless, students during both 
phases used peer conferences to deepen their understanding in a variety of productive ways,  
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PAR 06 

 
PAR 14 

Figure 1. Breakdown of Talk (Phase I in Blue, Phase II in Red) 

connecting their solutions, improving their explanations, and discussing mathematical procedures 
and concepts. 

Typical Phase I and Phase II discussions for PAR14 are given in Figure 2. Most of the Phase I 
discussions focused on computations involving solids of revolution (4 of 5 conversations):  

Ben: This is where I screwed up. You're going to want to substitute in 1/2 h, that quantity 
squared…like 1/2 h square root equals that. So when I kept subbing it kept screwing up. I kept on 
putting in 1/2 h to the 3/2, but it's gotta be this quantity squared in that. 

Sam: Gotcha. 

In contrast, Phase II students focused more on concepts. Moreover, while discussing concepts in 
the problem, Dyad 2 realized that they were confused and needed to clarify the nature of the task. 
While Tim was discussing the bounds for their integral, Bethany realized that she was not sure how 
to read the diagram in the problem:  

Tim: So your x bounds are r and big R. Uh, integral of that and then just the 2 times pi… 

Bethany: Wait, I’m confused; can I ask you about this thing? Is this saying that h is this whole 
thing? 

The discussion continued on and the students resolved the confusion, and returned to discussing 
concepts. Returning to the task in this way mirrors how skilled problem solvers may return to a 
problem statement and reevaluate their approaches in the middle of problem solving (Schoenfeld, 
1985). During Phase II, only 2 of 6 conversations were mostly procedural. 

Discussion 
This paper illustrates an approach to analyzing peer conferences and reports preliminary findings 
about the nature of student conversations. Students discussed a variety of aspects of the problems, 
such as communication, the nature of the task, procedures, and concepts. Moreover, the results 
suggest that the systematic training activities had a considerable impact on student discussions. Phase 
II students discussed more than twice as much mathematics as the Phase I students, and the nature of 
the conversations was qualitatively different; the students focused more on concepts than procedures.  
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Figure 2. Comparison of Pairs (PAR14) 

This shift is consistent with the nature of the training exercises that focused on discussing concepts. 
This shift may also be due in part to the deeper understanding that the Phase II students developed 
(Reinholz, in press-a), which allowed them to move beyond the surface aspects of the problems. 
Future work will focus on establishing reliability with multiple coders and analyzing all of the PAR 
problems in more depth. 
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ACHIEVEMENT IN KOREA AND THE UNITED STATES 
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This study compares and contrasts student, teacher, and school factors associated with student 
mathematics achievement in Korea and the United States, using data from the Trends in 
International Mathematics and Science Study (TIMSS) 2011. We examine factors linked to teachers 
who deliver quality instruction with high self-efficacy the association between teachers with high-
quality instruction and high self-efficacy and 8th graders’ math achievement. Years of teaching 
experience and several student background characteristics such as parent’s level of education and 
the number of books at home were associated with achievement in both countries. In addition, 
teacher’s perceived academic emphasis was associated with teachers who claimed to provide high-
quality math instruction with high self-efficacy. However, the two countries’ results differed in the 
effect of teacher’s opportunities to learn in professional development programs on teachers.  

Keywords: Teacher Knowledge; Affect and Beliefs 

Introduction 
Students’ mathematics achievement is often associated with the future economic power and 

competitiveness of a country. Accordingly understanding and identifying factors that may have 
meaningful and consistent relationship with mathematics achievement has been of great interest to 
policy makers and educators in the United States but also all around the world including Korea. 
Researchers have identified multiple variables that have an impact on student learning, including 
family background and socio-economic status (e.g., Bress & Mirazchiyski, 2010), peer influence 
(e.g., Guiso et al., 2008), gender differences (e.g., Else-Quest et al., 2010), and personal 
characteristics (e.g., Chiu & Klassen, 2010). However, growing evidence shows that teacher quality 
is a crucial contributor to student learning which in turn can lead to the development of highly 
knowledgeable and skilled workers. Effective teachers have the intersection of three important 
components including teacher knowledge, pedagogical skills, and dispositions resulting in a strong 
sense of self-efficacy.  

In this study, we hypothesize that teacher’s self-efficacy is a basis for creating quality instruction 
where teachers promote students’ higher order thinking in mathematics. Based on the data collected 
in TIMSS 2011 (eighth-graders), we examine the factors that are associated with mathematics 
achievement of secondary students in Korea and the United States. In doing so, we first examine the 
factors that distinguish teachers who provide quality instruction with high self-efficacy. According to 
Cochran-Smith and Zeichner (2005), effective teachers need to provide not only cognitively 
demanding instruction but also possess high self-efficacy. Thus we first examine whether such 
teacher characteristics is a significant factor associated with student achievement. The factors that 
distinguish teachers who provide quality instruction with higher self-efficacy from other teachers are 
explored. Then, we examine the association between other teacher, school, and student factors that 
are related to students’ mathematics achievement. In particular, by comparing and contrasting 
student, teacher, and school factors that are associated with student mathematics achievement in 
Korea and the United States, we intend to provide suggestions to mathematics education in both 
Korea and the United States. Research questions that guide this study are: (1) What factors are 
associated with teachers who provide quality instruction with high self-efficacy (i.e., teacher math 
instruction and self-efficacy typology) in the United States and Korea? and (2) To what extent 
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teacher mathematics instruction and self-efficacy typology is associated with students’ math scores, 
after controlling for student backgrounds, other teacher factors, and school contexts in the United 
States and Korea? 

Method 
This study used data from TIMSS 2011. Conducted on a regular 4-year cycle, TIMSS has 

assessed mathematics and science at the fourth and eighth grades since 1995. This study focused 
eighth graders, their mathematics teachers, classrooms, and schools in the United States and Korea. 
Note that total sample sizes are, 10,445 students, and 537 teachers in the US, 5,170 students, and 375 
teachers in Korea, respectively. Figure 2 shows our conceptual framework for the study. 

 

 
Fig 2. Conceptual basis for the study 

The outcome measure for this study is students’ math achievement scores. Teacher mathematics 
instruction and self-efficacy typology is selected as an independent variable for the study. Teacher 
background variables such as a teacher’s major, gender, years of experience; student background 
variable including gender, race, number of books at home, and educational expectations; and school 
factors based on teachers’ perceived collaboration and their perceived academic emphasis are 
selected as control variables for the study. We tried to input same background variables into both of 
two county models, however, two variables, race and teacher major, were considered differently. 
First, in the analysis of Korea, race variable was excluded because Korea is well-known as ethnically 
homogenous society (Kang, 2010). Second, when it comes to teacher major, four categories are used 
to represent US teachers whereas two categories are used for Korean mathematics teachers. For 
example, in the United States model, teacher major was classified into four categories including (1) 
no major in education and math; reference group, (2) major in education but math, (3) major in math 
but education, and (4) major in both education and math. In contrast, Korean teachers were classified 
into two categories—(1) Mathematics major or non-mathematics major. Because there are only few 
sample in “no major in education”, and “major in both education and math” in Korea, we combined 
the cases. This study employed multiple imputations (MI) due to missing data on teacher and student 
background variables.  
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Analytic strategy 
To answer the first research question, we first created three different types of math teacher 

typology; (1) a teacher with high-quality instruction and high self-efficacy (High group), (2) a 
teacher with high-quality instruction but low self-efficacy or low-quality instruction but high self-
efficacy (Middle group), and (3) a teacher with low-quality instruction and low self-efficacy (Low 
group). The measure of math instruction is derived from items asking “in teaching mathematics. 
Next, we classified teachers into two groups: (1) above the median as teachers with high-quality 
instruction and (2) below the median as teachers with low-quality instruction. 49.6% and 50.4% of 
teachers are categorized as “low instruction teacher” and “high instruction teacher”, respectively. The 
measure of teacher self-efficacy is derived from items asking in teaching mathematics to this class, 
how confident do you feel to do the following; (1) show students a variety of problem solving 
strategies (2) provide challenging tasks for capable students (3) adapt my teaching to engage 
students` interest (4) help students appreciate the value of learning mathematics.” We summed 
teachers’ responses on these 4 items and then classified teachers into two groups: (1) a teacher who 
reports the highest value for all 4 questions as a teacher with high self-efficacy and (2) a teacher 
reports all other values as a teacher with low self-efficacy. Next, multinomial logistic regressions 
were used to examine the factors that are associated with teachers who provide the quality instruction 
with high self-efficacy (i.e., teacher math instruction and self-efficacy typology). To the second 
research question concerning the degree to which teacher math instruction and self-efficacy is 
associated with students’ math scores, after controlling for student backgrounds and other teacher 
factors and school contexts, we conducted OLS regression analyses. According to the findings from 
research question 2, the third research question was interpreted to provide implications to 
mathematics education in United States and Korea. 

Summary of Results 

Factors associated with teacher math instruction and self-efficacy typology 
We found that several factors are associated with teachers’ mathematics instruction and self-

efficacy typology. In Korea, teachers’ educational backgrounds are not significantly associated 
with teachers who deliver high-quality math instruction with high self-efficacy (high group), 
whereas in the United States data, teachers who majored in “education and mathematics” are 
about 2.4 times likely to be classified into the “high group” compared to teachers who did not 
major in education or mathematics. We also found that several school contexts including 
perceived academic emphasis and perceived safe orderly are positively associated with teacher 
math instruction and self-efficacy typology in the US data. One unit increase in the perceived 
academic emphasis index (e.g., from medium to high emphasis or from high to very high 
emphasis) is associated with a 2 times likely to be teachers who deliver high-quality math 
instruction with high self-efficacy in the United States. In addition, PD opportunities are found to 
significantly distinguish teachers in the middle group (i.e., a teacher with high-quality instruction 
but low self-efficacy or low-quality instruction but high self-efficacy) from teachers in the low 
group. This finding suggest that teachers in both high and middle groups tend to report that they 
participated in PD opportunities focusing on curriculum and inquiry methods more often that 
teachers in the low group who provide cognitively low demanding instruction with low self-
efficacy.  

Factors associated with 8th graders’ mathematics achievement 
There is the significant positive association between teacher math instruction and self-

efficacy typology and student math achievement in the United States, even after controlling for 
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other student, teacher, and school backgrounds. Nonetheless, we found no significant 
relationship between teacher math instruction and self-efficacy typology and student math 
achievement in Korea. Specifically, only US students who taught by high group teachers (i.e., 
teachers with high-quality math instruction and high self-efficacy) have 10.26 higher math 
achievements scores than students who are taught by teachers with low quality of math 
instruction and low self-efficacy. Interestingly, no significant difference in mathematics 
achievement was observed between students who taught by “high group teachers” and those with 
“low group teachers” in Korea. In addition to teacher’s cognitively demanding instruction with 
high self-efficacy, teachers’ year of teaching experience, their perceived academic emphasis, and 
their major were found to be significantly associated with students’ mathematics achievement in 
the US context. Furthermore, we also found that several individual-level characteristics were 
associated with student math achievement.  

Discussion and Implications 
This study contributes to the current literature on student learning and teacher education. The 

current study expands the prior research by creating teacher math instruction and self-efficacy 
typology and finding the factors that are associated with teachers who deliver quality instruction with 
high self-efficacy. In the US context, teachers’ major (i.e., education and mathematics), teachers’ 
years of teaching experience, their perceived academic emphasis, and professional development 
opportunities are collectively associated with teachers who emphasized cognitively demanding 
instruction with high self-efficacy. The findings of this study highlight the importance of 
cognitively demanding instruction but also improvement of teachers’ self-efficacy in the US 
context to improve students’ mathematics achievement. Future research is needed to examine the 
degree to which professional development and teacher evaluation are associated with student 
achievement because current national and state policy in the US emphasize teacher evaluation to 
improve teacher quality.   
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Improving teachers’ practice of using student mathematical thinking requires an understanding of 
why teachers respond to student thinking as they do; that is, an understanding of the goals, 
orientations and resources (Schoenfeld, 2011) that underlie their enactment of this practice. We 
describe a scenario-based interview tool developed to prompt teachers to discuss their decisions and 
rationales related to using student thinking. We examine cases of two individual teachers to illustrate 
how the tool contributes to (1) inferring individual teachers’ goals, orientations and resources and 
(2) differentiating among teachers’ uses of student thinking. 

Keywords: Classroom Discourse; Research Methods; Teacher Beliefs; Teacher Education-Inservice 

Researchers and teacher educators need to better understand teachers’ reasoning about the 
practice of using student mathematical thinking in order to support teachers in enhancing that 
practice. In previous work (e.g., Peterson & Leatham, 2009; Stockero & Van Zoest, 2013), we have 
used classroom observations and recordings of instruction to understand teachers’ responses to 
student ideas; however, these methodologies have been insufficient in two important ways. First, we 
have found that using video of instruction to analyze teachers’ responses to student thinking does not 
provide sufficient data to make certain inferences, particularly when teachers do not respond to 
students’ ideas—we have no way of knowing whether the lack of response was deliberate, or whether 
the teacher did not notice the importance of an idea. Second, we have found it difficult to make 
comparisons among the practices of teachers who are teaching different content, in different contexts, 
with different student responses, and thus, have different opportunities to use student ideas. To 
provide a mechanism for better understanding how different teachers respond to student mathematical 
thinking in similar contexts, we developed a scenario-based interview (Scenario Interview) as a tool 
to further understand teachers’ use of student thinking. Here, we describe the interview tool and 
illustrate the type of information it avails us in regard to teachers’ goals, orientations, and resources 
(GOR) in the context of using student thinking. 

The Instrument 
Schoenfeld’s (2011) theory of goal-oriented decision making describes teachers’ decisions as 

being shaped by their GOR. A goal is “something that an individual wants to achieve, even if simply 
in the service of other goals” (p. 20). Goals can be short- or long-term, and may relate to the learning 
of specific content, to broader outcomes for students or to teacher actions. Goals may or may not be 
conscious to the teacher, meaning that one cannot simply ask teachers to state all of their goals for 
their students and their classroom. Orientations are defined to include teachers’ “dispositions, beliefs, 
values, tastes and preferences” (p. 29) of which, like goals and resources, teachers may not be 
explicitly aware (Leatham, 2006). Resources include everything a teacher could access to support 
instruction. They include not only physical materials, but also teachers’ knowledge (of, for example, 
things such as mathematics content, teaching strategies, and typical student conceptions). Schoenfeld 
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(2011) stipulated that, together, teachers’ GOR drive their behavior in the classroom. Understanding 
GOR in the context of using student thinking is critical to understanding why teachers engage with 
student mathematical thinking as they do and what might help them further develop this teaching 
practice. The Scenario Interview was created to provide insight into how a teacher thinks about 
attending to student thinking during instruction and to infer teachers’ GOR in the context of using 
student thinking. 

Throughout the Scenario Interview the teacher is presented with statements from eight individual 
students—four each from algebra and geometry contexts—that represent a range of thinking, 
including statements of answers, explanations of solution processes, a suggestion to modify a problem 
context, and unclear thinking. The interviewee is situated as a classroom teacher and asked to describe 
what they might do next were the student statement to occur in their mathematics classroom. 
Although normally a classroom teacher would know details of the context of the situation in which 
the student thinking occurred (e.g., the task that students are working on, what prompted the student 
statement, etc.), the Scenario Interview initially does not reveal to the interviewee any contextual 
information. Rather, after being presented with a student statement, the teacher is given an 
opportunity to ask questions about the context, which offers insight into possible GOR that the 
teacher relies on to make decisions. The interviewee is then given five more opportunities to reveal 
their GOR as they are asked to: (1) describe what they would do immediately after the student’s 
statement was made, (2) explain why they would respond in that way, (3) articulate assumptions they 
were making that informed their decision, (4) explain their reason for wanting to know the contextual 
information they asked about, and (5) describe how their response may have been different had they 
known additional contextual information. 

Usefulness of the Instrument 
Here we describe two teachers who were chosen to highlight different GOR that might affect 

teachers’ decision making with respect to using student thinking. Although the interviews revealed 
several GOR for each teacher, we limit our discussion to just one main goal for each (along with one 
related orientation and resource) to illustrate how the Scenario Interview allows us to infer the 
reasoning that underlies each teacher’s use of student thinking. After discussing each teacher 
individually, we look across the teachers to highlight differences in their GOR that the interview 
revealed and discuss how this knowledge might inform the work of researchers and teacher educators. 

Ms. Shaw 
Ms. Shaw’s main goal for having students share their thinking is to engage them in making sense 

of the mathematics behind the thinking. She wants to engage the sharing student in sense making 
through questions that highlight important mathematical ideas in the thinking, such as, “What are you 
assuming when you’re giving me 4 pi? How did you come up with that band as 4 pi?” and “Why are 
you using [2] as your radius?” She also wants to engage the whole class in making sense of student 
ideas. For example, in a situation where a student modified a problem, she proposed turning that 
modification to the class and asking questions such as, “What would my table look like [in this new 
situation]? What would my graph look like? How does [this modification] change those two 
representations?” 

One of Ms. Shaw’s orientations—that an important part of student learning is providing students 
ample opportunity to think about mathematical ideas—helps her achieve her main goal by ensuring 
the presence of plenty of student thinking to ground the class discussion. She values providing 
students individual “think time” before hearing others’ ideas about a problem, as well as time to 
individually “process” ideas that surface during whole-class discussion. Furthermore, Ms. Shaw 
believes in providing opportunities for students to collectively think about and, when appropriate, 
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compare ideas during whole class discussion: "I want the class to look at the two methods… tell me 
what they're doing differently. What is similar?" 

Consistent with the above goal and orientation, Ms. Shaw considers student mathematical 
thinking a resource for making instructional decisions and helping students make sense of the 
mathematics in a lesson. She thinks through what students might be able to contribute, and wonders 
“Can they talk through it?... Is someone going to bring that up for me?" For Ms. Shaw, having a 
student clarify their ideas provides a means to help all students make sense of the mathematics. For 
example, she sees student responses to her probing questions as opportunities for all students to “start 
to see” the compelling mathematics behind student thinking. 

Mr. Mead 
Mr. Mead’s main goal for having students share their thinking is to position students as thinkers. 

He wants students to elaborate on their thinking, both “to see what they think about [a] situation” and 
to encourage that thinking by “grab[bing] onto that thinking”. Although he sometimes has his own 
ideas about what students might be thinking, he still wants to “dig into” student ideas to “try to figure 
out what… the student [is] actually thinking,” thus positioning students as mathematical thinkers. 

Not surprisingly, Mr. Mead’s orientations include the belief that students can learn mathematics 
through exploration—“developing their understanding through [a] problem.” He is comfortable 
leaving ideas that surface early in a lesson unresolved, knowing that students will have opportunities 
to think about them further during the lesson: “If this was a launch of the lesson then… I would say, 
‘Ah, okay, that’s interesting Chris. So how did you get that?’… and maybe get a couple others. If I 
didn’t get any other ideas, then I would just go ahead with the lesson. I wouldn’t even address the fact 
that Chris is wrong at this point.” 

Mr. Mead uses student thinking as a resource to develop the mathematical ideas in a lesson and to 
tie ideas together. For example, after two students shared different methods of solving a problem, he 
suggested that he would position the lesson as “more of a verification of what [they] did for us today, 
so… let’s verify whether… the methods… are correct or not, and that would give me something to go 
back to at the end as well.” In another instance, he positions a student idea as a resource for “helping 
me [and] the students with this context—understand this,” because “it’s… just a little bit ahead of 
where we wanted to go at that point, but it seems like it's great to take an idea like that and to run with 
it.” Viewing the student’s idea as an opportunity to help the class increase their mathematical 
understanding, even though it is “a little bit ahead” helps Mr. Mead meet his goal of positioning 
students as mathematical thinkers. 

Discussion and Conclusion 
The Scenario Interview helped us to infer subtle differences in teachers’ GOR. For example, Ms. 

Shaw and Mr. Mead both viewed student thinking as a resource for helping students develop an 
understanding of the mathematics in the lesson. Their main goals for having students share their 
ideas, however, are slightly different. Ms. Shaw’s primary goal is to engage students in making sense 
of the mathematics behind the thinking that is shared—a content related goal. By contrast, Mr. 
Mead’s primary goal is to position students as mathematical thinkers—a goal more closely related to 
identity formation. Ms. Shaw’s belief in the importance of providing students ample opportunity to 
think about mathematical ideas individually or as a group supports her goal of using student thinking 
as a vehicle for students to make sense of the content. Mr. Mead’s orientation that students can learn 
through mathematical exploration positions them as the “doers” of mathematics, and thus supports the 
development of their mathematical identity. These two cases illuminate the value of the Scenario 
Interview for inferring GOR at a level that one can make distinctions among teachers—even those 
who use student thinking in similar ways. If we observed Ms. Shaw and Mr. Mead questioning 
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students about their ideas, we might conclude that they had the same goals and orientations related to 
using student thinking as a resource. 

However, the Scenario Interview revealed subtly different purposes for similar teacher actions. 
Because GOR are often implicitly held, they cannot be accessed merely through observation or direct 
questioning (Leatham, 2006). The Scenario Interview appears to be an effective mechanism for 
prompting teachers to discuss teaching practice in ways that contributes to revealing their GOR. For 
example, requiring teachers to ask for the contextual information they feel is relevant for deciding 
how to respond to an instance of student thinking provides information about what resources they 
draw on and what they value in making decisions. 

Prompting teachers to talk about the same varied collection of instances of student thinking 
provides multiple opportunities to infer their GOR, allowing us to develop themes that characterize 
each teacher’s GOR while also providing the similar context needed to identify important differences 
among teachers in terms of the GOR that underlie the practice of using student thinking. The Scenario 
Interview appears to be a valuable addition to our methods of collecting data that allow us to 
confidently infer teachers’ GOR and thus better understand teachers’ practice of using student 
mathematical thinking. Understanding the current state of this practice for particular teachers has the 
potential to support researchers and teacher educators in designing learning opportunities to enhance 
this teaching practice that are responsive to teachers’ current thinking. 
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Recent scholarship in mathematics education has increasingly supported the power of connecting 
mathematics lessons to students’ lived experiences. This case study, drawn from a larger multi-year 
study, traces the reflections and pedagogical practice of a middle school mathematics teacher who 
regularly connected her lessons to real-world contexts. We highlight how the teacher connected a 
fractions lesson to the context of making soup for her family to accomplish several goals including: 
(1) sharing stories to learn more about students, (2) moving beyond numbers to build understanding, 
(3) building students’ mathematical confidence, and (4) making space for students to connect 
mathematical ideas. These findings provide insight into how making real-world mathematical 
connections may impact students’ understanding. 

Keywords: Instructional Activities and Practices; Teacher Knowledge 

Mathematics educators increasingly agree that connecting school mathematics to experiences, 
situations and contexts outside of school, including students’ own experiences and understandings of 
the world, is a critical element important to student learning (Ladson Billings, 2009; Turner, Aguirre, 
Bartell, Drake, Foote, Roth McDuffie, 2014; Turner & Strawhun, 2007). This argument is supported 
by studies that suggest that the knowledge and experiences that students bring from their everyday 
lives can serve as resources for learning mathematics (Civil 2002, 2007), as well as evidence that 
student learning is enhanced when concepts and skills are connected to realistic contexts and 
situations (Boaler, 2008). In this paper, we refer to teaching that includes connections to real-world 
contexts and situations, including students’ own experiences outside of school, as real world 
mathematics teaching.  While some prior research has documented examples of how mathematics 
teachers make real world connections, still needed are in-depth analyses of teachers’ reasoning about 
these connections, and investigations of how these connections play out in teachers’ instruction.   

In one study of secondary teachers’ understandings of real world mathematics teaching, 
Gainsburg (2008) found that although the teachers had a wide range of practices they classified as 
real world, the fleeting connections that teachers made did not often require students to actively 
engage or think deeply about the mathematics. Moreover, some teachers believed that real world 
mathematics learning should occur after students have mastered mathematical skills and concepts. 
Gainsburg also found that although some teachers saw great worth in rigorous tasks, others were 
apprehensive that challenging and poorly executed real world mathematics tasks might overwhelm 
students. Gainsburg’s study illustrates the complexity and challenge that real world mathematics 
teaching poses for classroom teachers, and raises questions about what it might mean for teachers to 
connect their mathematics teaching, in meaningful and sustained ways, to students’ experiences 
outside of school.  

In this study we analyzed one early career 7th grade teacher’s understandings and practices 
related to real world mathematics teaching, guided by the following research questions: 

• What are the teacher’s (Evelyn’s) understandings about real-world mathematics teaching?   
• How does Evelyn plan for, enact and reflect on connections to real-world contexts and 

situations, including students’ own experiences outside of school?  
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Methods 
Evelyn, an early career middle school mathematics teacher, is a participant in a larger ongoing 

research project, [TEACH MATH]that follows preservice teachers from their preparation programs 
and into early career classrooms. Across three years, we observed Evelyn teach 22 mathematics 
lessons; two observations occurred during student teaching and the remainder during her first two 
years as a classroom teacher. Evelyn was purposefully selected for this case study because she 
frequently made connections in her mathematics lessons to real world contexts, and her own and 
students’ experiences in and out of school.  

Data included transcripts of recorded pre and post observation interviews, field notes detailing 
the observed mathematics lessons, classroom handouts, and sample of student work. During the first 
round of analysis, the three authors reviewed all data for instances of real world connections during 
mathematics lessons, including Evelyn’s planning or reflections on such connections. Then, through 
iterative analysis, secondary codes were developed that focused on specific instructional moves that 
Evelyn used to a) elicit and incorporate her students’ knowledge and experiences, b) introduce a real 
world context for a lessons, or c) to share about her own experiences. Codes also attended to key 
ideas in Evelyn’s reflections on connecting mathematics to real world contexts and/or students’ home 
and community funds of knowledge. From this broader analysis, one specific lesson, “Making 
Tortilla Soup for my Family” was identified as a case of Evelyn building a mathematics lesson 
around her own experience. This lesson was then analyzed to build the following case study. 

Findings 
We first overview the “Tortilla Soup” lesson. We then use this lesson to highlight key features of 

Evelyn’s understandings and practices related to real-world mathematics teaching.  
Evelyn began her second year of teaching seventh grade mathematics at a different school and 

with a different curriculum. Although Evelyn saw merit in the curriculum she was expected to teach, 
she worried about the lack of real world examples and how/if her students would personally connect 
to, and see the relevance of the content they would be learning.  

Evelyn recognized that her students had a limited understanding of multiplication of fractions. 
After teaching a “very numbers-based lesson,” she realized students lacked conceptual 
understanding, leaving them apprehensive and unsure about following the procedure they had been 
taught. Although Evelyn felt pressure to “move” through the curriculum she was reluctant to do so, 
and opted instead to reteach the lesson. She considered presenting a “hands-on” activity from the 
textbook to support students’ learning, but decided to veer from the text. She planned a lesson around 
cooking and scaling recipes that she believed might support understanding of multiplication of 
fractions in a “real way.”  Evelyn’s choice of context was informed by a beginning of the year survey 
in which students reported using mathematics in family cooking and/or baking activities. 

Evelyn began the reteach by presenting a handwritten version of her family’s favorite tortilla 
soup recipe. She shared her experience of cooking soup and adjusting the recipe for groups of 
different sizes, hoping to link her experiences cooking to those of her students. Evelyn drew students’ 
attention to the different ingredients, as well as how many people the recipe would serve (16). She 
then posed the task to students: Adjust the recipe for smaller and larger groups of family and friends. 
For example, how much of each ingredient is needed to serve 8, 32, 40, or 82 people? Evelyn’s goal 
was for students to understand how to scale up or down the quantities in the soup recipe by 
multiplying each quantity by a fraction or mixed number. 

 As students worked on the task, Evelyn probed their thinking, asking questions such as, “What 
did you do to get this number?” or “What happened when you were feeding more people?” Students 
used multiple strategies to adjust the recipe, envisioning themselves cooking the soup, and 
questioning if their adjusted ingredients made sense. Some students made connections between 
multiplying ingredient quantities by a fraction and their prior understanding of operations with 
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decimals and percents (i.e., multiplying by ½ is like taking 50% of a quantity). In summary, the 
lesson helped students connect the real world experience of adjusting a recipe to the mathematical 
concept of multiplying by a fraction. 

Shared experiences leads to learning about students 
A key feature of Evelyn’s real world mathematics teaching was that she created spaces for 

students to share their experiences during her lessons. One way that Evelyn invited students to share 
about themselves was by telling stories from her own experience. She reported: 

I get [students] an hour each day, and it's been a lot more harder to make those connections.  I 
say, "Hi" in the hall all the time and stuff like that to try and get them to feel comfortable with 
me. When I have something like [the recipe] that's sharing a part of me, they're willing to share a 
part of themselves.  I just feel like everybody's a little bit more open to sharing and taking risks. 

When Evelyn introduced her family’s tortilla soup recipe, several other students shared food they 
made with their families and/or enjoyed eating (i.e. the making of enchiladas, the enjoyment of corn 
tortillas). Evelyn used this practice of sharing her out of school experiences as a means to discover 
more about her students’ own experiences.  

Moving from numbers to meaning 
A key motivation underlying Evelyn’s use of real world contexts in her mathematics lessons was 

that the connections would help students make sense of the mathematical tasks. Evelyn used 
gesturing to illustrate the concept of doubling the recipe of all the ingredients into two separate pots. 
When one student expressed confusion about how to adjust the recipe, and wondered whether he 
should add the quantities of all the ingredients together, Evelyn drew the student’s attention to the 
activity of cooking soup to support his sense making. She noted: 

Yeah, but if we’re cooking – I was like, “Sure we put it in the pot [the ingredient] but if you add 
them, what does that number mean?” He goes, “Oh! Okay!” Then it was like he thought about it 
in a real way.  

This aspect of Evelyn’s practice suggests she recognized that providing students with a familiar 
real world context (the making of soup) might help students move beyond seeing only numbers in 
mathematical tasks towards sense making and understanding. 

Stepping up to do the mathematics 
Additionally, Evelyn thought that real world connections in mathematics lessons would enhance 

students’ engagement, particularly for students who tended to be less confident and more reluctant to 
share their thinking. In reflecting on the soup lesson, she explained: 

There was just this level of confidence from the start because they could connect to what we were 
doing.  It wasn't just the digits and operations and think about it as math.  It was, "This is an 
experience, and you guys know how to do it, so how do you do it?"  Then it was more of them 
using the math to help them, but they had this huge experience that they could draw from to help 
them work with the numbers.  

Evelyn reported that because students could relate to the context of cooking “A few people that 
are normally really quiet all of a sudden felt like they were experts, and they ‘stepped up.”  Students’ 
confidence appeared to flourish, as they used the experience of cooking (something they were 
familiar with) to make sense of the task of adjusting the recipe. Evelyn reflected that making these 
kinds of connections in her lessons seemed to support more equitable participation.  
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Making space to connect mathematical ideas 
Finally, Evelyn saw the use of real world contexts in mathematics lessons as a means for students 

to create connections among mathematical ideas. For example, Evelyn found that when she invited 
students to share experiences and to make connections to lesson tasks, this opened a space for 
students to connect a range of mathematical ideas and understandings. In the soup lesson, as students 
were reasoning about multiplying fractions, they made connections to other mathematical operations. 
She explained: 

Then, one thing that I was impressed with [is that multiplying fractions] wasn’t so much of a 
struggle.  So many of them used a reference to money, or a reference to just decimals in general.  
One student changed, I think, all of his numbers to decimals, and then it was so easy for him to 
figure out what half of that was, and he just did it. 

Evelyn felt that part of the value of real world mathematics teaching was that it encouraged 
students to make connections and  to utilize multiple mathematics strategies to solve the tasks. 

Discussion 
This study provided a glimpse into one middle school teacher’s understandings and practices 

related to real world mathematics teaching. More specifically, Evelyn’s case highlights the 
importance of teachers sharing their own experiences with students as one entry point to connecting 
with students and eliciting students’ experiences. Additionally, our findings suggest that teaching 
through familiar real-world experiences is important not only for student engagement and 
understanding, but also a way to address issues of confidence and status that may surround 
mathematics learning. Finally, our findings contribute understandings about the ways that teachers 
might plan, enact, and reflect on real-world connections in their teaching, which may inform 
mathematics teacher educators in their efforts to support other teachers in this complex and 
challenging practice.  
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The following case study details the analysis of a Lesson Study where middle grades teachers focused 
on the core teaching practices to teach and understand the different student generated models for a 
task on proportional reasoning. We analyzed the significant mathematics teaching practices that 
teachers engaged in during the planning, teaching and debriefing phases to depict ways in which 
teachers used students’ representational models as a discursive tool to make mathematical thinking 
visible and instrumental in moving the mathematics agenda forward. 

Keywords: Classroom Discourse; Teacher Knowledge; Rational Numbers; Instructional Activities 
and Practices 

Theoretical Framework 
In the Principles to Actions, NCTM (2014) calls for the mathematics education community to 

focus our attention on the essential core teaching practices that will yield the most effective 
mathematics teaching and learning for all students. Over the years, mathematics education scholars 
have challenged the profession of teaching to identify a common set of high-leverage practices that 
yield effective teaching. Ball and Forzani (2010) describe high-leverage practices as  “those practices 
at the heart of the work of teaching that are most likely to affect student learning” (p. 45). Authors of 
the Principles to Action (NCTM, 2014) responded to this challenge by defining eight research-based 
core teaching practices that include: 1) Establishing mathematics goals to focus learning; 2) 
Implementing tasks that promote reasoning and problem solving 3) Using and connecting 
mathematical representations; 4) Facilitating meaningful mathematical discourse; 5) Posing 
purposeful questions; 6) Building procedural fluency from conceptual understanding; 7) 
Supporting productive struggle in learning mathematics; and 8) Eliciting and using evidence of 
student thinking. In the design of our professional development project, we used the eight listed 
Mathematics Teaching Practices outlined in the Principles to Action, through our content institute 
and our Lesson Study cycles. The intentional design of using a school-based Lesson Study as a 
follow up to the professional development institute was so that we could examine how teachers 
employed these eight teaching practices in the enactment of the lesson. Lesson Study (Lewis, 2002) 
allows for collective professional “noticings”(Mason, 2011)during Lesson Study that attends to 
children’s strategies, interpretations and response to student learning. The focus of this research 
report is to share how professional development designed around these important teaching practices 
impacted teachers’ knowledge, beliefs and practices for in-service teachers. By focusing on the 
research lesson we examine how these core teaching practices played a role in enhancing the 
teaching and learning of mathematics. 
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Method for Our Study 

Research Questions 
To explore how teachers engaged in the core teaching practices as they collaboratively planned 

and delivered a research lesson on proportional reasoning, we asked: 1) In what ways do teachers use 
the core teaching practices to make mathematical thinking visible through student-generated models? 
2) What is the nature of teachers’ reflection on a) their practice, and b) their beliefs as they engage in 
Lesson Study focused on the uses of students' representational models as a discursive tool? 

Data and Procedures 
Teachers’ reflections, video clips and researchers’ memos were collected of the preplanning, 

teaching and debrief sessions. This case study was part of a larger project involving forty elementary 
and middle grades teachers from grades 5 – 8 who met for eight weeks for a fall content institute and 
continued to meet as school teams over four face-to-face meetings before conducting Lesson Study 
by the end of the first semester. In order to sustain teachers’ professional learning through the fall 
semester, the instructors met with teachers after the eight-week content institute in small vertical 
teams of five to six multi-grade teachers. In the following sections, we present the analysis of a 
Lesson Study focused on proportional reasoning called the “Candy Dilemma” problem as shown 
below. 

I bought a box of candy for myself last week. However, by the time I got home I had eaten ¼ of 
the candies. As I was putting the groceries away, I ate ½ of what was left. There are now 6 
chocolates left in the box. How many chocolates were in the box to begin with? Be sure to show 
and explain all of your reasoning. 

Data Analysis 
To begin analyzing the themes, we used the document analysis technique using teachers’ 

reflections from the Lesson Study, the group lesson plan and the researchers’ memos. To display and 
organize the collected data, we systematically analyzed data by developing initial codes then used the 
method of axial coding to find categories in such a way that draws emerging themes (Miles & 
Huberman, 1994). To verify and compare recurring themes and categories, the research team worked 
individually on coding the documents before comparing preliminary codes in order to agree upon 
recurring themes from the reflections. 

Results 

I. Taking Stock of Student Generated Work to Make Mathematical Thinking Visible for 
Worthwhile Discussions 

For the first research question, In what ways do teachers use the Core Teaching Practices to make 
mathematical thinking visible through student-generated strategies, we examined the videotaped 
lesson, debrief and reflections from teachers. While teachers focused on the core practices of using 
and connecting math representations to engage in math discourse, we found explicit attempts to use 
student thinking to adapt their instruction in situ to enhance and extend student learning. Teachers 
used student-generated models to take stock of what their student generated work revealed about 
their understanding while highlighting efficient strategies or novel approaches to build collective 
knowledge in the classroom; and question or incorporate manipulatives to repair misunderstandings. 

We found that teachers planned very carefully so that they could take stock of student- generated 
work by creating the space for students to show their thinking. The host teacher in the Candy 
Dilemma Problem offered students a “work mat” to display student thinking. “I chose to give each 
student a “work mat” (large piece of construction paper). The teachers observing my lesson thought 
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this was a great way to show all possible strategies with plenty of room to work and large enough to 
observe problem-solving abilities” (Kate’s reflection).  Initially, students hesitated to start the 
problem but then began by rereading the problem to themselves quietly before attempting to solve. 
All students attempted to solve the problem by using numbers and were not eager to try a different 
method and needed prompting.  Additionally, students needed prompting to justify their answer, 
which in turn had them question their answer or pushed them to explain what the numbers meant in 
terms of this problem. The host teacher who adopted the Five Practices for Orchestrating Math 
Discourse (Smith & Stein, 2011) during the course referred to it in her reflection as she selected, 
sequenced and connected student strategies. 

“After looking at the student work around the room, I chose students to come up to the board to 
show their solution/s.  I had ordered them for specific reasons according to what they had shown 
on their work mats.  The second student asked up, documented their strategy and then talked 
about how theirs connected to the strategy of the person’s before them.  I have used this 
procedure a lot and find that it is a good way to further solidify student learning and 
understanding.” 

Teachers noticed that students were relying mostly on guess and check and although they had 
learned the multiplication of fractions, some did not use that operation. Students also did not know 
how to make sense of the whole number that was left over. This made teachers think about the next 
steps in their teaching, where they would introduce more related problems and see how the 
conceptual understanding in these work backward problems can connect to students working through 
some of the operations they are learning. 

II. The Nature of Teachers’ Reflection on the Core Teaching Practices  
For the second research question, what is the nature of teachers reflection on the core teaching 

practices in terms of their a) their teaching and classroom norms, and b) their beliefs as they engage 
in Lesson study focused on students' generated models as a discursive tool, we found two important 
recurring themes of the importance of setting up mathematical norms and teachers experiencing their 
own unique productive struggles. 

Teaching practices and learning expectations need to be set up as classroom norms.  
Teachers focused on the new practice of connecting students’ strategies but also recognized that 

engaging students in the “math talk” was not something that happens over night. The host teacher 
shared how she spent the beginning of the school year setting expectations for students to show their 
thinking in more ways than one. It was a mathematical norm/expectation set up in her classroom. She 
also was thoughtful in creating collaborative groups that would be able to share their thinking despite 
their diverse abilities. The mathematical norms set up in Kate’s classroom was observable by the 
other teacher observers. Ashley, in her reflection noted how skillfully Kate sequenced the strategies.  

At the end, Kate asked several students to come up to the board and show/explain their strategy. 
Each subsequent student who came up was to do the same, and then explain how it connected to 
the previous ones. They saw that they did the same thing, but with a different representation, or 
working backwards from what someone else had (Ashley’s reflection). 

Nature of teachers’ reflection on their beliefs-Teachers experienced their own productive 
struggles. 

Implementing these core teaching practices were new to some of our teacher participants. 
Engaging in professional development that focused on these eight core practices provided our teacher 
participants with the opportunity to not only reflect on these essential practices but enact these 
practices during their research lesson. One teacher reflected on how watching the host teacher’s use 
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of these practices convinced her to try to incorporate problem solving and create productive struggle 
in her own classroom. 

I like seeing the process of problem solving and watching most of the kids struggle, get a little 
frustrated, and then have the moment where they figure it out. Rewarding! I am working to make 
my classroom a place with more of those opportunities and participating in this lesson study 
allowed me to see how I can make that work in my room (Jessica’s reflection).  

Conclusion 
Implementing these eight Mathematics Teaching Practices outlined in the Principles to Action 

provided opportunities to engage teachers in high leverage practices during our professional 
development project. Our study addressed ways in which teachers enacted these core teaching 
practices during their research lesson. In many ways, teachers who engaged in enacting these 
teaching practices also experienced the “productive struggle” that we try to create for our students 
through the problem-solving task. In other words, teachers also “grappled” with their own unique 
“problem of practice”. Although teachers voiced the challenges of the constraint of time and the 
pressures of standardized test as a hurdle in providing the time and space for students to engage in 
problem solving, they also shared how the productive struggle and reasoning created good 
mathematicians in their classroom. By analyzing student thinking through a problem-solving task 
such as the Candy Dilemma allowed teachers to learn more deeply about how students approach 
problem solving and some misconceptions that arise in understanding fraction concepts. Using 
student-generated models to engage in the core teaching practices made students’ mathematical 
thinking visible and an important discursive tool in their mathematics classroom.  

References  
Ball, D.L. & Forzani, F.M. (2011). Building a Common Core for Learning to Teach and Connecting Professional 

Learning to Practice. American Educator, 35(2), 17–21. 
Lewis, C. (2002). Lesson study: A handbook of teacher-led instructional change. Philadelphia: Research for Better 

Schools. 
Mason, J. (2011). Noticing: roots and branches. In M. Sherin & R. Philips. Mathematics Teacher Noticing:  Seeing 

Through Teachers’ Eyes. p.35-50.Mahwah: Erlbaum. 
Miles, M. B. & Huberman, A. M. (1994). Qualitative data analysis (2nd ed.). Thousand Oaks, CA: Sage. 
National Council of Teachers of Mathematics. (2014). Principles to actions: Ensuring mathematical success for all. 

Reston, VA: NCTM. 
Smith, M. S. & Stein, M.K. (2011). 5 Practices for Orchestrating Productive Mathematics Discussions. Reston, 

Va.: National Council of Teachers of Mathematics. 



Teaching!and!Classroom!Practice:!Brief!Research!Reports! 1158! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

NATURE AND UTILITY OF TEACHER QUESTIONING: A CASE OF 
CONSTRUCTIVIST-ORIENTED INTERVENTION 

Ron Tzur 
Colorado University – Denver 

ron.tzur@ucdenver.edu 

Jessica Hunt 
University of Texas at Austin 

hunt.jessica.h@gmail.com 

ArlaWestenskow 
Utah State University 

alra.westenshow@gmail.com 

This study examined question types utilized by a researcher-teacher to facilitate children’s 
knowledge of unit fractions through a constructivist-oriented mathematics intervention. Data were 
derived from six tutoring sessions; analysis examined the nature and utility of employed questions. 
Preliminary analysis shows the teacher employed four main types and nine sub-types of questions. 
Future analysis will delineate the how questioning shifted to correspond with the evolution and 
solidification in children’s conceptions.  

Keywords: Rational Numbers; Learning Theory; Instructional Activities and Practices 

This case study examined question types utilized by a researcher-teacher in a constructivist- 
oriented intervention as a means to foster conceptual understanding of students with learning 
disabilities (SLD). Development of conceptual understanding for SLD is critically important and 
presents an enduring challenge for researchers and practitioners. Current questioning methods used 
throughout much of the special education literature are rooted in Reductionist models (Poplin, 1988). 
Not surprisingly, interventions created for SLD use questioning based on student responses to teacher 
demonstration (e.g., Fuchs et al., 2014), as opposed to teacher’s responses to student thinking. The 
issue we take with such interventions types is that although they are considered to yield procedural 
efficiency, they disallow SLD to cognitively reorganize and extend their informal thinking into 
abstracted, transferable conceptions (Hiebert & Grouws, 2007). Nonetheless, there is little research 
with respect to the nature of alternative questioning teachers might employ in interventions that have 
as their aim SLD’s construction of conceptions. Initial depictions of questioning might support later 
studies that reveal how varying questions may be used to support thinking and, ultimately, how 
teachers may employ responsive interventions in the classroom. The research question was, What 
types of conceptually-driven questions were utilized by the researcher-teacher during a 
constructivist- oriented mathematics intervention used to promote unit fraction knowledge in one 
fifth grade SLD? 

Conceptual Framework 
One constructivist-oriented notion of knowing and learning that can guide teacher questioning is 

the Reflection on Activity-Effect Relationships (Ref*AER) framework (Simon, 2004). This 
framework defines the beginning of a mathematical conception as the assimilation of a situation into 
a child’s existing conceptions. The perceived experience sets a goal for the child’s learning that 
regulates his or her goal-directed, mental activity in a problem situation. In such activity, the child’s 
mind makes two types of reflections. The first, within problem situation reflection (i.e., Type-I 
reflection), occurs when the child notices and reflects upon what they anticipated would occur as a 
result of their activity versus what actually occurred. The second, across problem situation reflection 
(i.e., Type-II reflection), occurs when the child reflects on and compares their effects of their activity 
across similar problems and begins to notice commonalities in the relationship between the mental 
activity and its effects. The child begins to anticipate that similar activity will result in similar effects 
as it did in past situations, and can thus use this anticipation to figure out effects in novel situations. 
Activity-based conceptions are participatory or anticipatory (Author, 2004). A learner who has 
participatory conceptions may know what activity leads toward an intended result, but he or she is 
relying on prompts in order to call upon the anticipation. Conversely, a learner who has anticipatory 
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understanding of a concept has abstracted the anticipation resulting from their mental activity – 
learners can then apply abstracted conceptions to new situations. 

The Ref*AER framework entails an adaptive, constructivist-oriented instructional approach 
comprised of facilitative activities (Author; Simon, 1995) that (a) identifies the child’s goal- directed 
activities, mathematical objects they may operate on, contexts familiar to children, and effects they 
may notice and (b) focuses children’s activity and reflection based on conjectures about how the 
child’s activities and reflections may bring forth the intended learning. An essential part of focusing 
children’s activity and indirectly influencing the child’s advance or development from participatory 
to anticipatory conceptions involves “orienting students’ noticing of differences between their 
anticipated and actual effects and interjecting prompts [questions] that orient reflection across the 
learners’ mental record of activity-effect dyads” (p. 2). More explication is needed in the literature 
with respect to the types of questions teachers employ within constructivist-oriented interventions 
that utilize an Adaptive model. 

Methods 

Participants and Data Sources 
Lia (11-year old, grade-5) attended elementary school in the Northwestern United States. She 

was purposively chosen to participate in the teaching experiment and subsequent tutoring sessions 
because she was identified by her school system as having a learning disability specific to 
mathematics performance. According to her Individualized Education Plan (IEP), Lia was 1.5 grade 
years behind her peers in terms of her mathematics performance, and had failed the district’s state 
mandated testing in mathematics. Data collection was facilitated through a constructivist teaching 
experiment (Steffe & Thompson, 2000). We worked closely with Lia once a week for 60 minutes 
(fixed-time period) over six, non-consecutive weeks between February and April. Data collected for 
each teaching episode consisted of transcribed video-recordings and observation field notes taken 
independently by two observers during the episode. 

Analysis 
Constant comparison analysis (Glaser & Strauss, 1967) was used to delineate codes and themes 

from the data as to the main types of questions the researcher-teacher utilized in the tutoring sessions. 
The unit of analysis in this study was a speaking turn, that is, a tri-part interchange consisting of a) 
the child’s utterance or action, b) the researcher-teacher’s question in response to the child’s 
utterance or action, and c) the child’s responding utterance or action. Emergent coding was utilized 
within the constant comparison method across two dimensions: a) the overall type of each question 
asked by the researcher-teacher (e.g., to assess the child’s understanding; to foster Type I reflection) 
and b) any varying utility or subtype (e.g., asking for more explanation; requesting clarification). To 
categorize the utility of varying questions found within each overall question type and the level of 
cognitive complexity the question was meant to elicit, a coding theme adapted from Webb’s (1997) 
Depth of Knowledge (DOK) was used as a deductive framework (Leech & Onwuegbuzie, 2007). 
Additionally, researchers performed classical content analysis to obtain percentages of overall 
question types and subtypes across the six tutoring sessions. Additional analysis is currently 
underway to delineate how the utility of questioning changed across sessions to align with how the 
child’s conceptions evolved. 

Results 
Preliminary analyses show the teacher employed four main types of questioning and nine utilities (or 
subtypes) of questions within and across overall question types (Table 1 illuminates themes and 
codes). Preliminary analysis shows that Assess the Child’s Understanding questions were most used 
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by the researcher-teacher across the tutoring sessions, followed in frequency by Focus Type-II 
Reflection, Focus Type-I Reflection, and Invite Application of Concept questions. In terms of 
question subtypes, Make a Prediction/Formulate a Plan (DOK Level 3), Explain and Defend (DOK 
Level 3), Explain (DOK Level 2), and Evaluate Cause and Effect (DOK Level 3) were the most often 
noted utilities across the tutoring sessions. 
 

Table 1.  Researcher-teacher’s questions in constructivist mathematics intervention 

Types of questions and their codes Examples 
1.  Assess  understanding 
Define/Recall 

 
Clarify 

 
Explain 
Explain and Defend 
Defend reasoning 
 
 
Critique 

 
OK. I'm going to take one of your pieces and pull it out of 
there. Let’s label that. What would we call that piece? 
Do you mean that it takes three of these, if I wanted to make 
the whole back up, that I would have to have three of these? 
One of the whole?  Say more. 
One-third. Why do we call it one-third? 
So we can call this one 11 elevenths, and we can call this one 
nine ninths, even though the numbers are different, it's still 
the same thing?  How can that be? 
Couldn’t you just put that entire amount of the 
[shortage/overage] on your next estimate?  Why would that 
not work? 

2.  Invite Type-I Reflection 
Cl:  Clarify 

 
Ex:  Explain 
CE:  Cause/Effect 

 
DrC:  Defend reasoning/conclusions 

 
Was your estimate too long or too short?  Too long? The 
piece should have been shorter? 
What happened with your second estimate? 
When you repeated your estimate, is that about where you 
thought it would stop? 
You said it wasn’t big enough.  Why wasn't that one 
[estimate] big enough? 

 
3.  Invite Type-II Reflection 
Cl:  Clarify 
 
Ex/DrC:  Explain and Defend 
DrC:  Defend reasoning/conclusions 
 
FP:  Make a Prediction/Formulate a 
plan 

 
 

What do mean when you say make the piece a little bit 
bigger? 
How did you know how much longer to make it? 
Smaller than the one-fourth you made.  Can you say how you 
knew it was going to be that much smaller? 
How much less will you have to put onto each to cover it all? 
Convince me of the amount before you do it. 

 
4.  Invite Application of Concept 
Ex:  Explain 

 
Crt:  Critique 

 
Ana:  Analyze 

 
The more you're giving away, the smaller the size gets? Talk 
about that more. What's that mean? 
There's an eleventh. And there's a ninth. You're right.  But 
when I count, 11 is a bigger number than nine.   
Which one's bigger, a ninth or an eleventh?  Say why. 
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Although analyses are preliminary, two discussion points can be offered. First, Assess the Child’s 
Understanding questions seemed predominant, and consistent with a two-fold constructivist teacher’s 
purpose—inferring the child’s current conceptions and inviting the child to voice their reasoning 
(elaborate on and make public her ideas). This is an important departure from Reductionist models of 
teaching and learning often provided for SLD. Assess questions facilitate the teacher’s inferences 
about an SLD’s mental activity and subsequent instruction builds on these inferences to foster the 
child’s conceptualization of the intended mathematics. Such an assessment is based on the teacher’s 
response to the child and her present conceptions to guide subsequent questioning to support 
learning. In contrast, Reductionist-framed mathematics interventions focus on measuring the child’s 
responsiveness to the teacher’s thinking as a finite gauge of learning or knowledge (Author, 2004; 
Poplin, 1988). 

Second, an associated utility of Assess questions involve an effort to reorient the child’s 
disposition in her own mathematical learning toward taking ownership of and justifying her own 
mathematical reasoning. Utilizing questioning in this manner originates from teaching approaches 
consistent with constructivism (von Glasersfeld, 1995), and help situating the child’s notion of 
“doing” mathematics. This valuing of children’s reasoning stands in contrast with Reductionist 
questioning utilities that seem to render the child a passive, compliant participant in mathematics 
learning (Poplin, 1988), and submit SLDs to scripted instruction of rather minute skills through a 
series of targeted, teacher-directed questions and rapid child responses (Fuchs et al., 2014). We 
contend that, if the goal of mathematics intervention is the SLD’s conceptual reorganization and 
growth, then questioning needs to shift so a teacher responds to the child’s available and/or forming 
notions of mathematics, situating questioning as a formative, dynamic mechanism within and a basis 
for instruction. 
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This study concerns a discourse analysis of questioning and mathematical development in three 
middle level science classrooms. Teachers who received the same professional development on a 
mathematics and science integrated curricular unit adapted and assimilated the materials and 
content differently when implementation occurred. Each teacher’s lesson enactment of measuring 
distances between objects in the sky was examined at length to determine the ways in which 
questioning and mathematical discourse were developed and how this impacted student responses. 
Two of the three teachers had high levels of questioning and highlighted mathematical content such 
as ratios, angles, measuring tools, and graphical representations. Higher level mathematical 
questioning led to higher occurrences of classroom interactions that promoted students’ 
mathematical reasoning.  

Keywords: Middle School Education; Measurement; Classroom Discourse 

Objective and Theory 
In this study, discourse analysis was conducted on three middle level teachers’ science 

classrooms as they implemented a mathematics-science integrated curricular unit. All teachers 
received approximately 20 hours of professional development utilizing the curriculum and its 
materials. Teachers adapted and assimilated the unit within their individual classrooms differently 
when implementation occurred. We argue classroom discourse influences how well students learn 
mathematical content. Specifically, we examined the teacher’s use of questioning and mathematical 
reasoning within their classrooms. Our research questions were: In what ways did classroom 
discourse drive the implementation of curricular materials by teachers? How did questioning promote 
productive mathematical discourse in STEM classrooms? 

Duschl and Osborne (2002) emphasized that adequate instruction cannot occur within a STEM 
classroom without having students engaged and actively learning through means of questioning. 
They claimed that teaching is “a process of enquiry [and] without the opportunity to engage in 
argumentation, the construction of explanations and the evaluation of evidence is to fail to represent 
a core component of the nature of science or to establish a site for developing student understanding” 
(p. 41). Walshaw and Anthony (2008) similarly insisted that ‘discourse’ is not simply a one-way 
conversation, but entails the teacher and students actively engaged in back and forth questioning and 
evaluative discussion. In terms of mathematical discourse, White (2003) conducted a year-long study 
of an IMPACT (Increasing the Mathematical Power of All Children and Teachers) camp and found 
several key features to productive classroom interactions. These features include: (a) Valuing and 
highlighting students’ ideas, (b) Exploring student answers, (c) Incorporating students’ background 
knowledge, and (d) Encouraging student-to-student communications. 

Enyedy and Goldberg (2004) argued that “social frameworks and microcultures established in the 
classroom have a direct impact on what students learn” (p. 928).  So even when teachers receive the 
same professional development and materials, classroom culture, teacher beliefs, and teacher content 
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knowledge will drive the instruction and classroom discourse that results in how and what students 
explore, connect with prior knowledge, and communicate to their peers. 

Research Methods 

Participants  
Research subjects were three sixth-grade science teachers and their students from one south-

central US middle school (ButternutMiddle School). Three student groups (N = 229) were taught by 
Mr. Land and Ms. Apple (both 2nd year teachers), and Ms. Roling with 16years teaching experience. 
Butternut middle school demographics showed 74% of the students as White, 10% Black, 8% 
Hispanic, 5% Asian, and 3% other races, with 26% of the students eligible for reduced lunch. 
Pseudonyms were used for the school and teachers. 

Data Collection and Analysis 
In order to determine how classroom discourse drove implementation and how teacher 

questioning promoted mathematical discussion, we implemented a qualitative research design. Three 
science teachers’ implementation of one heavily integrated math/science lesson was videotaped and 
transcribed. We coded video clips using mathematical concepts and questioning as parent codes, then 
refined our questioning code into high and low level types of questions. The transcripts were 
analyzed separately by each researcher and then traded and reviewed. Finally, they were jointly 
coded in agreement. The inter-rater reliability was relatively high as most of the coded material 
agreed amongst the three researchers. The few instances of non-agreement initially were on the level 
of a question. 

The lesson that was taught by all three teachers concerned measurement with a focus question of 
How do I measure the distance between objects in the sky? The intended lesson design goes as 
follows. The lesson begins with students using body parts such as their thumbs and fists to measure 
lengths of objects in the classroom (from their seats). Discussion ensues in terms of the requirement 
of consistency in their measurements (extended arms) and why each person would have similar 
numbers even when people’s fists are different sizes. Constant body ratios are discovered as students 
plot data of arm lengths versus fist widths. Students then determine that one fist width per person is 
equivalent to 10 degrees as they utilize a protractor in their measuring. Finally students determine 
that a fist (with arm extended) can be used to measure the distance between objects in the sky as well 
as the altitude distance of the Moon from the horizon. Azimuth and altitude angles together can 
determine the location of an object in the sky. Students determine the number of fists required to go 
from horizon-to-horizon as well as full circle around their body. Students further confirm that each 
fist width equals approximately 10° after experiencing these activities utilizing body movements 
(arms extended while measuring). Students document altitude and azimuth angles of various objects 
in the classroom or outdoors. 

Results 
Although teachers received the same materials and professional development on the lesson 

enactment, each utilized their individual strengths, comfort levels with mathematics, and  

Table 1. Number of Questioning (High and Low) and Mathematical Episodes 
Teacher Years of 

Teaching 
Experience 

Total 
Questioning 
Instances 

Low Level 
Questioning 
Instances 

High Level 
Questioning 
Instances 

Mathematics 
Instances 

Ms. Apple 2 52 29 23 7 
Mr. Land 2 34 18 16 12 
Ms. Roling 16 6 4 2 4 
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instructional beliefs when implementation occurred. Instances of questioning (high and low) and 
mathematical episodes are illustrated in Table 1. 

Two teachers (Apple and Land) tended to use more questioning and mathematics in their 
classrooms. Ms. Roling did not use as much of either category. If a question occurred that required 
only for the students to respond with a simple yes or no, we coded it as a low-level question. When a 
more substantial thoughtful response was required, we coded this as a high-level question. An 
example of a high-level question occurred with Ms. Apple’s class when she asked students to 
consider how a scientist might determine the location of an object in the sky. 

Apple: So raise your hand if you have an idea of how scientists measure and communicate the 
location of objects in the sky. 

Student: Um, azimuth and the altitude? 
Student: Satellites 
Student: Knuckles? They used their knuckles to measure. 
Student: Perhaps, like, stack their hands … one hand’s equal to or equivalent to so many miles 

This is a high-level question, since students drew from their real world background knowledge to 
speculate how scientists might determine the location of an object in the sky. The students who 
claimed that “knuckles” or “stack their hands” could be used as units of measurement were not far 
off since they were soon going to be learning how to use their fists as a measuring device.  

A mathematical episode as well as high-level questioning was observed in Mr. Land’s teaching. 
Students just finished plotting the class’ arm lengths versus fist widths.  

Land:  All right let’s look at the data now, so let me get…trend line. We’ll add a linear trend line, 
so what’s happening here? Somebody explain this slope. Is this positive or negative? 

Class: Positive 
Land: Positive, so what’s happening, what does this slope mean? What can I extrapolate  from 

this data? What can I take away from this data? Okay, what do you think? 
Student: Okay, um, like the longer their arm to eyes are, um, wait never mind 
Land: So the longer their arm is, what? 
Student: Yeah, um, like the longer the arm is the or the, bigger their fist 

Mr. Land requested that students explore the data set and determine a mathematical relationship 
between arm length and fist width. Students observed the linear relationship and were able to link the 
slope of the trend line to the body ratio of arm length to fist width.  

Along with high-level questioning, teachers also asked a good deal of low-level questions. Ms. 
Roling tended to teach by telling for much of her class instruction. She explained to students the 
difference between an azimuth angle (cardinal direction where North means 0°, East means 90°, 
South means 180°, and West means 270°) and an altitude angle (angular measurement from the 
horizon). She followed each lecture with “Does this make sense to you?” Students responded by 
shaking their heads or saying “yes”.  

In contrast to Ms. Roling’s azimuth explanation, Mr. Land had his students experience azimuth 
angles as they determined the number of fists that would go around one’s body (360°) with arms 
extended.  

Land: …360° in a circle, make sure you write down a little circle mark that represents degrees. 
Okay, because if you just write down 360, how the heck do I know what you’re talking 
about? You could be talking about 360 pigmy elephants!  

Student: But Mr. Land, it says how many degrees. 
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Land: It does, but generally speaking you always put the unit with the number. Okay, if there’s 
360 in a circle, and my 10, and my fists is how many degrees?  

Class: 10 
Land: 10 degrees, how many fists should I be able to do?...I want you to stand up and try it. 

Calculate how many fists it takes to go around your body. In one full circle. 
Class: 36!! 

Ms. Apple and Mr. Land emphasized mathematical terminology and concepts, such as degrees, 
ratios, data collection and graphing, slope, and angular measurements. They used these concepts 
embedded in science as a way of contextualizing the mathematics in order to make it more 
meaningful. Ms. Roling did not utilize much questioning or mathematics, and when it was used, it 
was at a low-level. 

Discussion and Conclusion 
Students’ responses in the classroom corresponded with the level of discourse for which the 

teacher probed. The ways teachers used discourse as they enacted the measurement lesson influenced 
student learning as determined by their responses. In a related study, students of Land, Apple, and 
Roling were given a pre/post test that assessed both mathematical and scientific understandings. 
Figure 1 displays student gain scores by teacher with students of Land and Apple achieving higher 
gains than Roling’s students from pre-instruction to post.  

Within our qualitative study, we found that the teachers’ approach to questioning and how they 
implemented the measurement lesson related to the amount of mathematical discussion in the 
classroom. Mathematical concepts tended to emerge when classrooms also had higher questioning 
episodes. Mr. Land and Ms. Apple incorporated White’s (2003) discourse categories in terms of 
highlighting and exploring students’ ideas and 
incorporating students’ background knowledge. It is 
clear there was a discrepancy in how individual 
teachers enacted an identical curricular lesson. As 
described by Enyedy et al. (2004), these differences in 
implementation and ultimately in student learning can 
be explained by the microcultures each teacher 
established within their own instructional spaces. Even 
though all three teachers in our study were from the 
same school, Land and Apple appeared to have 
developed classroom cultures where students were 
encouraged to communicate their ideas and use 
language of the disciplines, rather than sitting at their 
seats being passive recipients of knowledge. 
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The NCTM (2000) suggests that students should be “actively building new knowledge from 
experience and prior knowledge” (p.11) and that teachers should be “listening carefully to students’ 
ideas” (p. 19). The idea of teachers listening to students’ thinking to help students build on prior 
knowledge is key within the enduring theme of teaching as responsive to various conceptions of 
mathematics. Our studies investigated how teachers support students to build on prior knowledge, 
paying particular attention to what teachers do as they listen to students’ thinking. Here we explore 
these results, and make inferences regarding how the NCTM recommendations on students’ prior 
knowledge and teachers’ listening can be implemented widely and in tandem.  

Through several recent projects, we have been considering the notion of ‘setting aside’ – that is, 
that teachers may guide or encourage students to ‘set aside’ some ideas and build on other ideas that 
have more potential in a current situation. Here, we explore the notion of setting aside as it relates to 
teachers’ preferred approaches to a mathematics problem and expectations of students’ thinking. Our 
data analysis draws upon Davis’ (1996) three types of listening: hermeneutic, interpretative, and 
evaluative. Evaluative listening focuses on listening to student thinking to identify the correctness of 
a solution. Interpretative and hermeneutic listening focus on listening to make sense of students’ 
thinking. Hermeneutic listening involves the teacher being “a participant in the exploration” (Davis, 
1997, p. 369) and is often associated with a listener’s learning.  

We present classroom instances from a grade four lesson involving probability, and a post-
secondary lesson for pre-service teachers that considered multiplication strategies. Analysis of our 
data suggests that teachers, while listening to students’ thinking, ‘set aside’ some of their own 
preferences and build upon some of their students’ preferences for ways of approaching/solving a 
mathematics problem. For example, to estimate 250x97, the teacher preferred (and also expected 
students) to compute 250x100. As she listened to a student explain that he divided 100 by 4 and then 
multiplied it by 1000, she set aside her own preference, learnt a new strategy for that question, and 
began to think about 250x36. The two classroom instances we share will include a description of the 
teachers’ preferences that were set aside, the thinking that students and pre-service teachers shared, 
and the teachers’ learning that took place. This poster adds to the literature on mathematics teacher 
listening and it is hoped that the notion of setting aside preferences for approaching/solving a 
mathematics problem will be helpful to teachers in enhancing their classroom practices to more fully 
engage with student thinking. 
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The relationship between teachers’ beliefs and practices has been the focus of previous 
investigations because teachers’ deeply held beliefs influence their decisions about what and how 
they teach, and how they design their learning environments (Fives & Buehl, 2008). To augment 
prior research on how teachers’ beliefs shape their perceptions and practices, the main aim of this 
study is to gain a deeper understanding of teachers’ beliefs about mathematics and the links between 
their beliefs and the mathematical quality of their classroom instruction. Accordingly, this 
investigation was guided by three main research questions: whether teachers’ mathematics-related 
beliefs are reflected in their instructional practices, whether teachers’ self-efficacy beliefs play a role 
in their practices, and whether the alignment between teachers’ beliefs and practices brings about 
high-quality mathematics instruction. 

My research, as part of a long-term project, was a collective case study involving data from six 
participants; six individual cases were compared and contrasted to explore the relationship between 
teachers’ beliefs and practices, and then two selected cases were analyzed in terms of their quality of 
mathematics instruction. Interview transcripts, videos of classroom instruction, and responses to self-
efficacy surveys were examined for evidence of the teachers’ beliefs and practices in teaching 
mathematics. A priori codes (i.e.. productive beliefs, unproductive beliefs) were determined before 
examining the interview data in hand (NCTM, 2014). Also to examine teachers’ classroom practices, 
I used an observational instrument, the Mathematical Quality of Instruction (MQI; Learning 
Mathematics for Teaching Project, 2011). Data from the teacher self-efficacy survey were analyzed 
by conducting descriptive analysis. 

My findings indicated that, with the exception of two cases, the teachers expressed beliefs that 
could be considered as both productive and unproductive as the NCTM suggests. Their professed 
beliefs were in fairly close alignment with their instructional practices although they described 
varying productive and unproductive mathematics beliefs, which affected their instruction 
accordingly. I see that the alignment between teachers’ beliefs and practices did not guarantee high 
quality mathematics instruction. Although there was a quite close alignment between teachers’ 
beliefs and practices, no clear linear relationship between them could be established, and other 
factors, such as the nature of their beliefs, that influence how teachers perceive and enact their roles 
in the classroom might have affected the mathematical quality of their instruction. 

References 
Fives, H., & Beuhl, M. (2008). What do teachers believe? Developing a framework for examining beliefs about 

teachers’ knowledge and ability. Contemporary Educational Psychology, 33(2), 134-176. 
Learning Mathematics for Teaching Project (2011). Measuring the Mathematical Quality of Instruction. Journal for 

Mathematics Teacher Education 14(1), 25-47.  
National Council of Teachers of Mathematics (NCTM). Principle to action: Ensuring mathematics success for all. 

Reston, VA: NCTM, 2014.  



Teaching!and!Classroom!Practice:!Poster!Presentations! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

1168!

RETHINKING MATHEMATICS TEACHING WITH PAPERT, BROWN AND OTHERS 

Geneviève Barabé 
Université du Québec à Montréal, Canada 

gebarabe@gmail.com  

Jérôme Proulx 
Université du Québec à Montréal, Canada 

proulx.jerome@uqam.ca 
Keywords: Instructional Practices and Activities 

This project aims at rethinking and exploring mathematics teaching theoretically and empirically. 
Papert’s (1980) suggestions about what teaching mathematics should be diverge from usual views 
that center on attaining predetermined goals/objectives and keeping the attention of the class 
precisely on them while teaching. In Papert’s view, mathematics teaching is about allowing students 
to be and act in mathematics (as mathematicians do and act), rather than focusing on teaching 
specific mathematical content. He proposes that students do mathematics by exploring them, asking 
new questions, developing new ideas, and so forth, which leads teachers to work and explore 
mathematical objects without having predetermined end points to reach. These ideas have also been 
explored by Brown & Walter (e.g. 2005), on issues of problem posing; they propose that 
mathematics teaching occurs through, and is grounded in, students’ questioning on a given problem. 
Starting from a specific theme provided by the teacher, the intention is to make mathematics emerge 
in the classroom by working with students on/from their ideas and questions, which leads to 
mathematical explorations where students do mathematic; this acting thus as the central goal. Other 
like Kieren, Davis, Lampert, and Lockhart, to name a few, have also discussed similar ideas about 
mathematics teaching. However, these ideas have not been integrated into an encompassing 
framework that grounds theoretically and offers a coherent organization of these teaching ideas and 
their implications. This study aims to develop this grounding framework, which is to be developed by 
exploring Holton’s (1988) three nested dimensions: the empirical (i.e. observations to develop 
meaning); the analytical (i.e. theories to explain the phenomena); and the thematic (i.e. reflections 
about the underlying assumptions, meanings, vocabularies, and methodologies). This poster presents 
preliminary results gathered from combining the analytical and empirical dimensions, taken from a 
case study of a teacher who adopts these views about teaching mathematics; the results in return lead 
to reflections on the third dimension, that is, the thematic. These preliminary analyses underline 
significant characteristics, three of which are: (a) Author/ity (e.g. Povey & Burton, 1999), where the 
teacher and students work together to develop a mathematics community in which all have a personal 
voice and are makers of knowledge; (b) Openings (e.g. Remillard & Geist, 2002), which refers to 
important unpredicted instances that emerge when doing mathematics, which expand and deepen the 
mathematics under study and demonstrate by their presence that learning happens and that 
mathematics evolves; (c) Complicity (e.g. Davis & Sumara, 1997) refers to the fact that the teacher 
becomes complicit in students’ knowledge in shaping what is learned, from mathematics itself to 
their views/philosophies of mathematics. These characteristics and others will be presented/discussed 
in light of the thematic issues they underline about mathematics teaching.  
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Mathematics teachers’ difficulties implementing high cognitive demand tasks is well documented 
in the mathematics education literature, although teachers’ perspectives on this issue are largely 
absent from such literature (e.g., Stein, Grover & Henningsen, 1996). In this study, I examined 
factors teachers discussed as inhibiting or promoting the use of high cognitive demand task. My 
intention was to give voice to middle school mathematics teachers who were trying to implement 
these tasks. This study can inform those providing professional development in relation to high 
cognitive demand tasks.  

I conducted a multiple case study (Yin, 2003) with the seventh grade team of three teachers at 
Yellow Brick Middle School in the Southeastern United States, all of who had less than five years 
experience. The theoretical framework used in this study was the task implementation framework 
developed by Stein and colleagues (1996).I planned with the teachers for the specific implementation 
of two high cognitive demand tasks, observed the lesson, and interviewed each teacher after. The 
goal for data analysis was to gain teachers’ perspectives of implementing high cognitive demand 
tasks. I realized the factors the teachers mentioned, not included in the task implementation 
framework, specifically related to events that happened before planning tasks. I used the new factors 
I identified, along with those in the task implementation framework to code the interviews 
accordingly making note of where the teachers had common barriers and supports, and then 
identified factors each teacher individually pointed to as being a barrier or a support.  

During the course of this study, I looked at a more broad view of the task implementation process 
and gained teachers’ perspectives on the entire process from planning, to implementing or not 
implementing a high cognitive demand task, and then into the classroom for the implementation of a 
high cognitive demand task. I found factors did not fit in with the task implementation framework 
(Stein et al.,1996) that included teachers’ perceptions of students, time, district requirements and 
curriculum, and parental dispositions. I labeled these factors collectively as factors influencing 
teachers’ use of high cognitive demand tasks and suggest these factors be attended to before the 
teachers implement high cognitive demand tasks. By knowing what factors teachers’ perceive as 
affecting the decision to implement high cognitive demand tasks, researchers can help find ways to 
overcome perceived obstacles and support mathematics teachers. Teachers should realize how 
important and beneficial implementing high cognitive demand tasks is for their students and thus 
make the decision to find and implement high cognitive demand tasks. It is my intent this study will 
be a catalyst for further conversations about how to support mathematics teachers implementation of 
high cognitive demand tasks.  
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This study examined middle school math teachers’ perceptions of the Standards for Mathematical 
Practices (SMP) in the Common Core State Standards for Mathematics (CCSSM), which are the de-
facto intended U.S. national curriculum (Porter, McMaken, Hwang, & Yang, 2010).  The SMP have 
their foundation in the NCTM process standards and strands of mathematical proficiency identified 
in the National Research Council’s report, Adding It Up (Common Core State Standards Initiative, 
2010).  The authors of the CCSSM indicated that the SMP are intended for students to exhibit while 
engaging in mathematics.  Therefore this analysis operated from the perspective that teachers’ 
perceptions of the SMP will influence their enactment of the SMP in their planning and instruction.  
The background interview data were collected as part of a larger study with NSF funding (DRL-
746573 & DRL-1222359) from 48 teachers from eight states.  This analysis considered teacher 
responses that indicated the SMP represented a significant change from previous standards. These 
questions guided the analysis: 

• What are the teacher’s perceptions of the SMP their role in CCSSM and how should the SMP 
be enacted in the classroom? 

• How are teacher’s perceptions of the SMP evident their planning and daily instruction? 

The primary finding is that teachers characterized the SMP as a measuring stick with regard to 
the level of rigor required by the CCSSM.  One teacher expressed that the SMP showed the 
performance expectations associated with the CCSSM; “[SMP] gives us an opportunity to look at 
what we’re expecting students to do and raise those expectations” (Granville, NY, all names are 
pseudonyms).  Teachers stated that the SMP increased the rigor emphasizing a deeper level of 
engagement with mathematical content. For example, Ross (NY), stated that the SMP required “a lot 
more in-depth, a lot more deep thinking about math and explaining your reasoning and how you got 
to these conclusions, the number is no longer just enough.” Teachers also indicated that the language 
of the SMP provided justification for their current instructional practices, which were not validated in 
their prior state standards. In addition, the SMP provided a mathematical authenticity to the content 
in CCSSM.  For example, Tomar (NH) stated “that’s probably a major innovation like we’re defining 
what a math classroom looks like, what the practices of a mathematician look like.”  The 
implications of these findings provide a structure for further analysis of teachers’ usage of SMP for 
instruction and formative assessment decisions, and for professional development designers 
providing learning opportunities.  
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The body of research in teacher-held beliefs in mathematics education is wide and varied, with a 
legacy spanning more than four decades. Research topics in this literature base include teachers’ 
beliefs regarding the use of manipulatives, incorporation of constructivist learning principles in 
instruction, and the degree of affiliation of beliefs and practice. It is not just important, but critical, to 
note that this body of research explores mathematics teachers’ beliefs largely without consideration 
of race of the teacher or of the students. I problematize this in two ways. First, the absence of race of 
student and of teacher implies a generalizability of the research to all races, all ethnicities, all 
marginalizations. Second, the absence of race establishes a monolithic teacher and a monolithic 
student, each without color or culture 

My study creates spaces for understanding conceptualizations of race in purportedly race-neutral 
mathematics, exposing uninterrogated aspects of secondary teachers’ beliefs. In this session, I report 
on the preliminary results of my research focusing on secondary mathematics teachers’ beliefs about 
race in conjunction with their beliefs about mathematics and mathematics education. In this 
qualitative multicase study of two white and two Hispanic secondary mathematics teachers in New 
Mexico, I explored two questions: (1) what are the intersections of teachers’ beliefs of 3 areas: 
mathematics, teaching/learning mathematics, and race; (2) what are the origins of their beliefs? 
Participants engaged in four one hour-long interviews over a period of one month, and also provided 
three journals in which they responded to researcher-selected prompts on mathematics and 
mathematics education. Data from the interviews, journals, and researcher’s field notes were coded 
and analyzed using the constant comparative method.  

Preliminary results from the study indicate the complexity of teachers’ beliefs in working with 
diverse student populations. Beliefs about the nature of mathematics and of methods of instruction 
varied substantially. Of the nature of mathematics, participants presented a wide range of thoughts 
from mathematics as independent of humans, and was discovered rather than invented, to 
mathematics as a purposeful tool to approach problems and find appropriate solutions. Beliefs of 
teaching methods also varied, from a traditional lecture model to constructivist only methods. 
Discussions of teaching methods were often in tandem with discussions of classroom management. 
Issues of performance in mathematics were often associated with student drive, work ethic, 
perseverance, determination, and grit. Success in mathematics was often presented as a binary 
construct of trying vs. quitting. Race and ethnicity were factors that white participants did not readily 
bring into the conversation, but were prevalent in discussions with one Hispanic participant, and 
evident to a lesser extent in the data from the second Hispanic participant. For white participants, 
student diversity was not a significant factor in planning for instruction. Survival mode as a teacher 
was a concern among participants that arose several times. Origins of beliefs were occasionally 
detailed, although probes into the sources of beliefs often returned vague replies, or the lack of 
specific episodes from which beliefs emerged.  
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Previous researchers have analyzed the types of questions teachers ask during mathematics 
lessons and have generated frameworks for categorizing teachers’ questions (Boaler& Humphreys, 
2005). This body of research has identified specific types of questions as effective in eliciting 
students’ mathematical thinking and reasoning and other types of questions as effective in eliciting 
rote, procedural, or factual mathematical knowledge. In this study, we aim to extend the literature to 
provide a better understanding of the close connection between teacher questioning and student 
engagement. Specifically, we investigate the extent to which question types identified as higher-order 
questions actually serve to generate high-level student responses during whole-group discussions in 
mathematics lessons. We hope to make a contribution to the field by providing empirical evidence to 
support previous theoretical frameworks for teachers’ questioning. 

Data have been collected from 6 mathematics teachers in a large urban school district. Eight 
mathematics lessons (two teachers recorded twice) were analyzed from video recordings of 90-
minute block class periods for: 1) types and levels of questions the teacher asks, 2) types of responses 
students provide, and 3) the length of students’ responses (number of words used). Teacher-student 
dialogues were transcribed from the whole-class discussion part of each lesson. Frameworks used in 
the analysis include Wimer’s (2001) categories of higher order and lower order questioning, Boston’s 
(2012) rubrics for high vs. low-level student responses, and Boaler and Humphreys’ (2005) 
questioning types: Gathering information, checking for a method (G), Inserting terminology (IT), 
Exploring mathematical meanings and relationships (EMM), Probing (P), Generating discussion 
(GD), Linking and applying (LA), Extending thinking (ET), Orienting and focusing (OF), and 
Establishing context (EC). 

Results from the study indicate that the level of teacher questioning significantly impacted the 
level of student response (χ² =39.61; p< .0001).Consistent with Boaler and Humphreys’ (2005), we 
found: 1) the majority of questions were Gathering Information (G), and these questions almost 
always (94%) generated low-level student responses; 2) low frequencies of questions (38 of 120; 
32%) considered to support students’ mathematical thinking and reasoning (e.g., EMM, P, LA, ET); 
and 3) Probing (P) and Linking and Applying (LA) were likely to generate a high-level student 
response. Last, the mean number of words in students’ responses is significantly higher for higher-
order questions than for lower-order questions (t (118)= 3.17; p< .0001 [one-tailed]). Hence, the type 
and the level of teacher questions affect how much students engaged in providing responses.   
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Ambitious teaching practices provide opportunities for all students to engage with mathematics. 
Within the broader challenge of preparing future teachers to enact more ambitious teaching practices, 
teacher educators must specifically prepare future teachers to facilitate productive classroom 
discourse. Facilitating discourse-intensive situations is complex and requires practice and reflection. 
It is therefore important that teacher educators provide opportunities for teacher candidates (TCs) to 
enact more ambitious teaching practices through coursework and to provide them the opportunity to 
reflect and refine their practice. This case study research follows two teacher candidates enrolled in 
year-long, post-baccalaureate certification programs. Specifically, it addresses the following research 
question: what discourse moves and question types do two teacher candidates utilize during 
instruction?  

To address this research question three video-recorded lesson enactments were analyzed. The 
first video recording took place in June 2014 at the completion of the TCs’ first mathematics 
methods course. This recording was of an approximation of practice (Grossman, Compton, et al., 
2009), during which TCs taught a 30-minute lesson to their peers. The second video was recorded in 
November 2014 at the completion of the TCs’ second mathematics methods course. The third video 
was recorded in March 2015 as part of a performance-based assessment. The last two video 
enactments were recorded in the TCs’ field placements with actual middle school students.  

Transcriptions of video recordings were coded for specific discourse moves such as revoicing, 
restating someone else’s reasoning, applying someone else’s reasoning, or using wait time (Smith & 
Stein, 2011). The questions each TC posed during instruction were classified as one of nine-question 
types identified in Boaler and Brodie’s (2004) study of secondary mathematics classroom instruction. 
The nine question types are as follows: (1) gathering information, leading students through a 
procedure, (2) inserting terminology, (3) exploring mathematical meanings and/or relationships, (4) 
probing, getting students to explain their thinking, (5) generating discussion, (6) linking and 
applying, (7) extending thinking, (8) orienting and focusing, and (9) establishing context. Initial 
findings show that both TCs’ were successful in applying a variety of question types and using some 
discourse moves, even in the earliest video recording.  
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Intro & Background. This study explores the dialectic between the semiotic resources (e.g., gesture 
and language, as well as conventional tools such as tables/graphs) to which students have recourse to make 
mathematical assertions, and the hierarchical subject positions that participants co-construct through these 
multimodal interactions. I focus on processes of objectification (Radford, 2003) and subjectification 
(Foucault, 1977) as a method of exploring this dialectic. I present a detailed analysis of a 35 min. span of 
data involving three high school students engaged in a collaborative generalization task. I observe that 
objectification and subjectification are co- constructed through mathematical discourse. Below is a sample 
transcript segment and analysis. 

Ailani:  [counts on fingers] Eleven, twelve, thirteen… Figure ten 
will be… nineteen. [10 sec pause] (Figure ten).. nineteen. 

Thalia:  [gazes down at her sheet; indicates her table of values] 
Figure ten will be fifteen. 

Ailani:  [responds to Thalia] Nineteen. 
Thalia:  [gazes down; shakes head] Figure ten will be fifteen. 
Ailani:  [loudly] Figure ten will be nineteen! 
Thalia:  [gaze down; indicates entries with her finger as she 

talks] It goes two-three-six, then it goes two-three- seven, 
then it goes two-three-eight, then it goes two- three-nine, 
then it goes two-three-ten, then it goes two- three-eleven, 
twelve, thirteen, fourteen, fifteen. [keeps gaze down, 
continues working] 

Ailani:  I say nineteen. [4 sec pause] I’m not even sure I counted 
that right, but who cares? 

 

T
h
a
l
i
a 

 
 
 
 
 
 

Thalia 

Ailani 
 
 
 
 

Xeni 
 
 
 

Ailani 

Results. Ailani’s semiotic means of objectification consisted of a counting strategy and verbal speech 
(with a certain illocutionary force) to assertively express a partial solution, in the form of f3(10) = 19. In 
contrast, Thalia too resorted to verbal speech, yet she also used rhythm, gesture, and repetition, and a 
mathematical table as semiotic resources. Entering a rhythmic cadence (Line 6) enabled Thalia to objectify 
a recursive generalization, in the form of {f1(n), f2(n), f3(n)} = {2, 3, f3(n−1)+1} which, in this context, is 
more informative than Ailani’s solution. 

Whereas both students made statements that tacitly positioned themselves as having the correct answer, 
Thalia resorted to a broader arsenal of semiotic resources to make her point. Additionally, Thalia did not 
make eye contact with Ailani, instead keeping her gaze on her work. This social-mathematical power 
encounter resulted in differentiated status positions, and an opportunity was missed to engage in dialog and 
collaborate on the shared goal, to determine Figure 10. In this way, Thalia’s and Ailani’s respective 
semiotic means of objectification also functioned, simultaneously, as semiotic means of subjectification. 
Thus Thalia gained mathematical ascendency over Ailani, which is a construct that I claim is a version of 
Foucault’s (1977) theory of power-knowledge, as a co-constructed, semiotic-based status hierarchy. 
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Today’s middle school mathematics classrooms are marked by increasing cognitive diversity—an 
enduring challenge in the field. Traditional responses to cognitive diversity are tracked classes that 
contribute to opportunity gaps (Flores, 2007) and result in achievement gaps. Differentiating instruction 
(DI) is a novel but untested response to cognitive diversity in which teachers proactively plan to adapt 
curricula, teaching methods, and student activities to address individual students’ needs in an effort to 
maximize learning for all students (Tomlinson, 2005).  

The purpose of this poster is to present preliminary findings about what characterizes differentiating 
mathematics instruction for cognitive diversity with middle school students. In the first two years of a 5-
year project to study DI we conducted three 18-session design experiments, each with nine cognitively 
diverse 7th and 8th grade students. In keeping with design experiment methodology (Cobb, Confrey, diSessa, 
Lehrer, & Schauble, 2003), we made changes between experiments in order to foster the most possible 
progress while studying our interventions. For example, we knew that it was important to develop norms 
(Tomlinson, 2005) with students to help them learn to work autonomously and to honor differences among 
classmates. However, we found that we needed to help not just individuals but small groups work 
autonomously, and so we developed a focus on small group functioning. 

Our preliminary findings include the following. When aiming to differentiate instruction:  
(1) The teacher needs to use formative assessment to develop working models of students’ ways of 

thinking and organize those ways of thinking into a network (Ulrich, Tillema, Hackenberg, & Norton, 
2014). Planning for this network involves a “web-like” approach in which the teacher anticipates multiple 
(2-4) broad pathways for students. Implementing these plans requires a continual cycle of posing tasks, 
asking questions and listening, and making interpretations and adaptations for students moving along and/or 
across each of these pathways. 

(2) The teacher needs to help structure students’ exposure to different ways of thinking in order to help 
students navigate interaction with, and potential learning from, others. Doing so may help students make 
sense of and try out different ways of thinking without being overwhelmed by them. One aspect of this 
structure involves explicit conversations about how to respond to another’s way of thinking. We view these 
findings to be components of a theory of differentiating mathematics instruction for middle school students. 
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Mathematics instruction that builds on children’s mathematical thinking is advocated for within the 
larger mathematics education community (Carpenter et al., 1989; NCTM, 2014). This type of classroom 
instruction relies on what Pimm (1987) describes as genuine conversations in which students share the 
responsibility for determining the direction of lessons; however, established classroom routines in the U.S. 
favor IRE exchanges (Mehan, 1979). We describe instruction that incorporates children’s thinking as 
responsive to children’s mathematical thinking. Hiebert and Grouws(2007) claim that, “Documenting 
particular features of teaching that are consistently effective for students’ learning has proven to be one of 
the great research challenges in education” (p. 371). In this session we propose a framework that documents 
a key feature of instruction that will allow researchers to specify relationships between responsiveness and 
other established constructs, to refine current theoretical models of teaching and learning, and to provide 
teachers with a tool to describe one aspect of their classrooms.  

The framework is based on earlier research and has been revised based on recent data from over 160 
lessons across 11 classrooms. Responsiveness reflects the extent to which student thinking is taken up and 
built on during mathematics instruction. Students’ mathematical ideas must be expressed in order for 
teachers to be responsive.  As such, a characterization of students’ mathematical ideas is a necessary 
component of characterizing responsiveness. Thus, we holistically categorize segments of discourse in 
terms of two interrelated features of whole-class discussion in mathematics classrooms: (a) students’ 
mathematical contributions, and (b) teacher responsiveness to these contributions. Categories of students’ 
mathematical contributions express increasingly sophisticated contributions ranging from recalling facts and 
performing calculations (minimal); to sharing mathematical information without justification (limited); to 
participating in mathematical argumentation (substantial). Categories of teacher responsiveness reflect the 
extent to which students’ mathematical ideas are made public, taken up, and the basis for instruction: low 
(ignoring, brushing-off, or evaluating student contributions), medium (revoicing student ideas, asking 
probing questions), and high (directing students to engage with others’ mathematical ideas). Applications of 
this framework are presented on the poster. 
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The work of teaching is complex. There are numerous, not readily observable components involved in 
the decisions teachers make while carrying out a lesson that builds on students’ mathematical thinking 
(Ball, 2008).  One important decision involves deciding how to use evidence of student thinking during 
instruction.  There are a number of factors that impact this decision.  Developing goals for lessons is part of 
the work teachers do and help to drive the decisions they make during instruction (NCTM, 2014).  
Teachers’ available resources also impact decisions. (Schoenfeld, 2011).  Teachers come to a classroom 
with an already developed set of beliefs about how children learn mathematics (Vacc & Bright, 1999).  
These beliefs have an impact on the decisions teachers make in planning and implementing a lesson.     

This research was part of a larger study in the domain of fraction operations when using a guided-
reinvention approach to algorithm development.  The purpose of this study was to examine the influence 
teachers’ goals, resources, and beliefs about teaching mathematics have on the decisions they make during 
the planning and teaching in this domain.  Data was gathered from three fifth-grade teachers and one sixth-
grade teacher who were observed teaching an initial lesson in a unit on fraction multiplication.  The lesson 
engaged students in solving contextualized problems where students bought fractional parts of partially full 
pans of brownies. All teachers, at some level, were observed eliciting student thinking in this lesson.  
However, how each teacher made use of students’ reasoning in relation to supporting students’ developing 
understanding of fraction multiplication differed. Through observation and post teaching interviews we also 
considered how beliefs, goals and resources impacted the mathematics developed as a result of the lesson. 
The portraits developed for each teacher revealed the importance of particular fraction multiplication 
questioning frameworks, how teachers interpreted and used students’ reasoning in relation to their goals as 
revealed in these questioning frameworks, and how past teaching experiences, curricular and school-based 
resources were related to the mathematics developed in the lesson. 
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Background and conceptual framing. Peers Engaged as Resources for Learning (PEARL) integrates 
understandings of small group learning environments using three frameworks:  Mathematics Task 
Framework (Stein et al., 1996), Math Talk Learning Communities (Hufferd-Ackles et al., 2004), and Peer 
Cultures of Effort and Achievement (Hamm et al., 2012).  Small groups offer opportunities to address goals 
for all students in Principles to Actions (NCTM, 2014) and Common Core State Standards for Mathematics 
(NGA, 2010). 

Research questions. The PEARL project’s initial research questions are: “In current practice, what 
strategies do teachers use as they enact tasks, promote discourse and manage peer cultures of effort and 
achievement, and for what purposes? What challenges do teachers experience as they focus on tasks, 
discourse, and peer cultures?” 

Research design and findings. The PEARL study combines examination of mathematics instruction 
for conceptual understanding and adolescent classroom peer processes through investigation, design 
experiment, teacher learning experiences, and experimental study. This presentation focuses on 
investigation using naturalistic field study.  A preliminary study of existing data reinforced the importance 
of all three frameworks, leading to hypotheses about productive equilibrium, balancing areas such as 
exploration with sense-making; individual with group responsibility; and natural with guided peer 
interactions. These hypotheses informed the naturalistic field study of 11,6-9th grade teachers’ classrooms, 
involving lesson observations, interviews with teachers, and focus groups with students.  Findings illustrate 
productive equilibrium in small groups, pinpointing ways that teachers support productive equilibrium, and 
depict ways that small group learning environments can lack or lose productive equilibrium.  The study 
indicated sparse explicit attention with students to establishing, supporting, and reflecting on small group 
functioning as an environment for learning mathematics. 

Conclusion. PEARL aims to build stronger theoretical and practical framing of small group learning 
environments to inform teachers’ professional practice in three domains: mathematics tasks, student 
discourse, and peer cultures. Situated authentically in classrooms, initial findings reveal opportunities and 
challenges for teachers to produce and maintain balance within and across these three domains to deliver on 
the promise of small group work. 
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This study about mathematical games concerns non-traditional way of teaching for improving and 
deepening students’ experiences of mathematics. In addition to arguments in favor of using games to 
increase students’ motivation as well as classroom interactions, researchers like Bragg (2003) or Peltier 
(2000), using pre- and post- tests and interviews, show students’ improvement on mathematical content like 
arithmetic, geometry and probability through using mathematical games. However, few studies have 
analyzed in details what takes place during mathematical games in a classroom, that is, what are the actual 
learning opportunities and mathematical activity that students are immersed in while actually playing these 
mathematical games. This poster presentation presents such an analysis, taken in the context of an 
experimentation conducted in a Grade 1-2 elementary classroom. 

There are many definitions in the literature about what a mathematical game is. For example, it can be 
described as a stage in the child development, as a social activity, as a fun teaching tool to develop 
knowledge, as an educational activity aimed at developing specific knowledge, and so forth. For this study, 
a mathematical game is defined as a teaching material explicitly designed to work on and explore a specific 
mathematical content. The game studied here is a memory game about base 10 complements in which two 
students, playing one against each other, have to match two cards picked from a stock of 30 face-down 
cards to make 10. Various representations are used (numeral, literal, box of ten, etc.) and numbers vary 
between 0 and 12 (11 and 12 are used for subtraction with 1 and 2). Figure 1 presents examples of possible 
combinations to make 10.  
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The interest of this study is non-traditional ways of teaching for improving and deepening 
students understanding of mathematics. Various researchers have argued in favor of using games 
in classrooms to learn mathematics. For example, using mathematical games in elementary 
school has shown to increase students’ motivation as well as classroom interactions among 
students. Other studies on the use of games, through pre- and post-tests and interviews, shown 
students’ improvement in arithmetic, geometry and probability (see e.g. Bragg, 2003; Peltier, 
2000). However, few studies have analyzed in details what takes place during mathematical 
games in a classroom, that is, the learning opportunities and the mathematical activity that 
occurs. In this poster presentation, I present such an analysis, in the context of a mathematical 
game on base 10 complements with 16 students in a Grade 1 and 2 elementary classroom. 

But what is a mathematical game? There are many definitions in the literature. It can be 
described as a stage of the child development, as a social activity that can be used in school, as 
fun teaching tools to develop knowledge, as an educational activity that is developed to bring out 
a specific and expected knowledge. In this study, a mathematical game is defined as some 
teaching material explicitly designed to work on and explore a specific mathematical content. 

For this particular analysis, the game we studied is a memory game based on base 10 
complements. In pairs, students had to match two cards, picked from a stock of 30 face-down 
cards, which would add up to ten. Various representations were used (numeral, literal, box of ten, 
dots, fingers, cards, short sentences) and numbers were between 0 and 12 (11 and 12 were used 
for subtraction). Figure 1 presents possible ways to obtain 10. 
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Figure 1: Examples of base 10 complement pairs 

This poster presents a description and an analysis of how the game took place and how the 
students interacted (? Est-ce que c’est ça que tu veux dire? Ta phrase était incomplete). Students 
had a variety of different strategies to operate, as some counted the numbers illustrated, either 
with dots or drawings, to get to 10, whereas others used their hands or counted mentally without 
any physical support. Also, students sometimes made strong associations between a number and 
its complement, linked numbers were seen as connected, as an 8 was linked to 2 and not 
considered alone: when picking a card many knew what number to look for because of the 
number or anticipated the next card they had to find and even ‘’cheated’’ by looking through the 
cards, others opted choose at times to a value for the blank 2 cards and joker card deciding what 
it had to be to match the other cards for getting to 10.  
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This poster presents a description and an analysis of how this game took place in a Grade 1-2 
classroom, how the students interacted with it and what was the nature of the mathematical activity they 
were immersed in. For example, students engaged in a variety of strategies to operate, as some counted the 
numbers illustrated on the cards, either with dots or drawings, to get to 10, whereas others used their hands 
or even counted mentally without any physical support. Students also developed strong associations 
between a number and its complement. E.g., when kids picked 8, it was as if they also picked up a 2 “at the 
same time”, where 8 was not considered alone but came with 2 as well. In that sense, when picking up a 
card, many knew what number to look for or anticipated the card to find (often by “cheating” through 
looking into the not-so-opaque cards!). Others students opted, at times, to decide for the value of the cards 
chosen (e.g. blank or joker cards, previously assigned the value of 0 in the game, were re-assigned the 
needed value to make 10 with the other chosen card). Students also demonstrated fluency and flexibility 
with the diverse representations: the various representations of numbers were not problematic at all to 
students, as they navigated through all of them and mixed them to make 10. These strategies (and others) 
will be shared and discussed in the poster presentation. 
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The value that the mathematics education community places on student thinking is clear. What is less 
transparent in mathematics education research are the nuances of how a teacher can talk about, and enhance, 
the classroom practices by emphasizing and using student mathematical thinking in-the-moment. The 
NCTM principle, “students must learn mathematics with understanding, actively building new knowledge 
from experience and prior knowledge” (NCTM 2000, p.11) has inspired us to think about ‘taking up’ 
student thinking as a teaching practice. For us, taking up student thinking involves an emergent, cyclical, 
continuous process where students share what they think, teachers listen to student thinking, and then 
teachers make in-the-moment decisions about how to respond to student thinking. This research speaks to 
the enduring challenge of teaching as responsive to various conceptions of mathematics, and is grounded in 
the question: What kinds of in-the-moment decisions do teachers make in response to student thinking? 

This study builds on research that examines teaching interventions from an enactive perspective 
(Towers & Proulx, 2013) and emerging research related to in-the-moment pedagogy (e.g., Mason & Davis, 
2013). We specifically use notions of in-the-moment pedagogy and ideas from Towers and Proulx’s (2013) 
work to identify, describe and characterize teachers’ decisions that were made while taking up students’ 
thinking. Similar to some of the research that this study builds upon, our ideas are framed by enactivism (a 
theory of cognition). Teaching and understanding, in this framework, have an in-the-moment quality. In-
the-moment teaching decisions are neither easy nor predictable, as they stand in a reciprocal relationship 
with student thinking, perpetually influencing, and influenced by, one another. 

We present findings from a project that occurred in the context of student-generated multiplication 
strategies and involved the authors co-teaching and co-planning with an in-service teacher. Students in a 
grade four classroom were asked to complete twenty multiplication questions, identify ‘easy’, ‘easier’ and 
‘harder’ questions, and to explain their thinking/strategies. In our findings we will describe students’ 
thinking and two types of teaching decisions that were made in response to what students shared. Drawing 
on Towers and Proulx’s (2013) constructs, we will be investigating how these in-the-moment decisions 
oriented students’ attention for a doubling strategy to emerge, and coordinated the possible for a strategy 
that was grounded in the associative property, but did not only involve doubling, to unfold. We hope to 
offer practical insight into, and generate interest around, the broad discourse of in-the-moment pedagogy. 
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Giving examples in mathematics instructions is a widespread instructional practice, but not a 
straightforward process.  How mathematics teachers use examples can have significant effects on students’ 
opportunities to learn because students can interact with abstract mathematics concepts through given 
examples in classrooms.  Thus, it is necessary to observe instructors’ use of examples to reveal its possible 
influences on students’ learning in calculus classroom.  The purpose of this study is to investigate 
mathematicians’ use of examples in their calculus courses.  In this case study, use of examples to teach the 
concept of continuity was observed.  

In this research, the definition of an example is aligned with those suggested by a couple of previous 
studies; an example is referred as mathematical object serving a cultural mediating tool between a person 
and mathematical concepts or theorems (Goldenberg & Mason, 2008).  An example in instructions should 
allow learners to mentally interact to mathematical objects with abstract mathematical ideas in educational 
settings (Zodik & Zaslavsky, 2008).   

We observed two mathematicians teaching calculus 1 at a Midwest university.  Data were collected by 
classroom observation, initial and reflective semi-structured interviews, and field notes.  Video-recorded 
lessons were mainly analyzed with constant comparison to interviews and field notes.  Based on the 
definition of example in this research, analysis units were identified in videotaped lessons.  All data were 
analyzed using existing codes for examples in previous research (Goldenberg & Mason, 2008;Zodik& “ “ 
<Zaslavsky, 2008) and modified in a data analysis process.  Member checking was conducted with 
participants in reflective interviews in order to ensure the accuracy of analysis. 

Remarkably, both mathematicians used incorrect examples of target concepts and theorems in order to 
check understanding of concepts or show impossibility (Goldenberg & Mason, 2008).  In introduction of 
the definition of continuity, both mathematicians similarly employed examples of discontinuous functions 
after presenting the definition of continuous functions.  These incorrect examples for the continuity concept 
allowed the instructors to check whether students not only understood the definition but also could apply it 
to a certain function.   

However, the participants showed different patterns to teach the intermediate value theorem (IVT).one 
mathematician asked students to build non-existing examples as an informal proof of IVT and assessment 
of students’ previous knowledge; a continuous function satisfying following conditions of (a) f(1) = -3, (b) 
f(2) = 4, and (c) the function never crosses the x-axis.  In the recall interview, the mathematician mentioned 
that asking students to create impossible examples can be an intuitive way to begin proving theorems like 
IVT.  This use of incorrect examples could be students’ preliminary opportunity for mathematical formal 
reasoning.  Therefore, use of incorrect examples on instructional purpose can be an appropriate way for 
formative assessment as well as a bridge between informal and formal proofs in college mathematics. 
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For several decades, teachers and researchers alike have sought to create mathematically productive 
discourse in classrooms, that is, discourse focused on sense-making, creating coherency by relating 
mathematical concepts, and appealing to mathematical reasoning as the authority. Despite the widely-
recognized importance of productive discourse, efforts to create it have not always been successful. Many 
examples exist of teachers who have successfully increased the quantity of discourse without achieving 
productivity. Furthermore, discourse may superficially appear productive while creating low press for 
conceptual thinking (Kazemi & Stipek, 2001). Social and sociomathematical norms are useful constructs for 
analyzing and explaining regularities in discourse. Research has indicated that certain social norms seem to 
be correlated with productive discourse, such as the expectations that students explain and justify their 
thinking, collaborative in problem-solving, listen actively, and find multiple solution paths. Certain 
sociomathematical norms also seem to be correlated with productive discourse, such as explaining the 
rationale behind computations, and using explicitly defined criteria to differentiate between different 
solutions (Kazemi & Stipek, 2001). Many studies investigating norm development have focused analysis on 
an episode-level. While offering insight, such analysis does not consider episodes in light of previous or 
subsequent episodes. A longitudinal study offers this broader perspective on norm development. However, 
comparatively few longitudinal studies of norm development exist. 

My study intends to longitudinally investigate the development of norms conducive to productive 

discourse. Thus far, the first phase, a pilot study, has been performed in a case study 5th grade classroom. 
Video recordings and observations notes have been made twice per week for most of the 2014-2015 school 
year, confirming that productive discourse frequently occurs in this classroom. I intend to observe the case 
study classroom daily for the first two months of the upcoming school year, since research indicates that the 
majority of norms are established during this period (Yackel, Cobb, & Wood, 1991). Using grounded 
theory principles such as the constant comparative method, video footage will then be analyzed to identify 
specific social and sociomathematical norms that emerged. A chronology of each norm’s development will 
be created. I will then identify teacher strategies, methods, and key interactions that contributed to norm 
development. 
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Proportional Relationships and Geometric Similarity 
One of the goals in mathematics teaching is to help students build connections among mathematical 

concepts/ideas and use them for future learning (NCTM, 2000). Geometric similarity and proportional 
relationships are two of these areas that students need to benefit from such connections. Studies reveal that 
students often struggle with recognizing the proportional relationships in similarity problems, and as a 
result, making inappropriate additive comparisons instead of multiplicative ones (Kaput & West, 1994; 
Lobato & Ellis, 2010). One possible reason for students' difficulties with recognizing proportional 
relationships is that they usually have trouble iterating or partitioning a composed unit (Lobato & Ellis, 
2010). As a result, students often fail to consider coordinated changes of lengths in both dimensions. 

Dilation is defined as “a transformation that moves each point along the ray through the point emanating 
from a fixed center, and multiplies distances from the center by a common scale factor” (CCSS; Common 
Core State Standards Initiative 2010, p.85). According to CCSS, eighth graders should use ideas about 
similarity to define and analyze two-dimensional figures and describe how these figures change under some 
geometric transformations (i.e., translations, rotations, reflections, and dilations). Beckmann and Izsák 
(2015) suggest using the Dilating Perspective Approach (or Fixed Numbers of Variable Parts Perspective of 
Ratios) for developing students’ understanding of geometric similarity from a transformational approach. 
The Dilating Perspective Approach suggests that “two quantities are said to be in the ratio A to B if for 
some-sized part there are A parts of the first quantity and B parts of the second quantity” (Beckmann & 
Izsák 2015, p. 21).  

In this paper, we have examined the effectiveness of the Traditional Approach (including the Cross-
multiplication) and the Dilating Perspective Approach with embedded representations of similar rectangles. 
The Traditional Approach does not necessarily lead to the understanding of proportional relationships, 
because it does not enable students to be aware of uniform stretching and shrinking between the sides that 
need to be compared. On the contrary, the Dilating Perspective Approach with embedded figures enables 
students to realize uniform stretching or shrinking in both dimensions by providing an easier visual 
comparison of similar figures.  
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There is a recent shift in the United States, driven by the National Council of Teachers of Mathematics 
(NCTM) and the Common Core State Standards (CCSS), from mathematics instruction in an inclusive 
classroom that traditionally used teacher initiation, student response, followed by teacher evaluation to an 
approach that is more student centered.  According to NCTM (2014) and the CCSS for Mathematical 
Practice (CCSSI, 2011) kindergarten through high school mathematics instructional practices should 
promote mathematical discourse for all students, including students with disabilities. The I-THINK 
framework promotes reflective and conceptual instructional practices, such as student justification of 
solutions and mathematical discourse, which helps students to become aware of and learn to monitor and 
evaluate their mathematical thinking (Lynch, Lynch & Bolyard, 2013).  

A quasi-experimental control group design was used to determine whether the I-THINK problem-
solving framework leads to greater problem solving performance versus a structured Think-Pair-Share 
(TPS) framework (Kagan, 1994). Participants included 118 elementary students from six fully included 
classrooms. Two classes from each grade level, 2nd, 3rd, and 4th, were selected based on voluntary 
participation by the classroom teacher in a professional development session on discourse and problem 
solving frameworks. For this study, we utilized a nonequivalent control group design consisting of a pre-
assessment, a six-week instructional cycle, and a post-assessment.  One class from each grade was 
randomly assigned to the intervention group that received problem-solving instruction using the I- THINK 
framework. The other class was assigned to the alternative intervention group that received problem-solving 
instruction using the TPS framework. 

Within the combined groups, participants in the I-THINK groups scored statistically significantly higher 
on the post-test, as opposed to the pre-test. Participants in the TPS groups scored statistically significantly 
higher on the post-test, as opposed to the pre-test. Post-test scores for second grade were statistically 
significantly greater in the I-THINK vs. the TPS group (p = .037).  There was also a statistically significant 
difference in post-test scores between the frameworks for third grade, with statistically significantly greater 
scores in the I-THINK vs. the TPS group (p = .016). There was no statistically significant difference in the 
post-test scores between the frameworks for fourth grade. When analyzing the scores from the two grades 
that had significant improvements in both groups (2nd and 3rd), there was a statistically significant difference 
in post-tests cores between the I-THINK and TPS groups, with statistically significantly greater scores in 
the I-THINK vs. the TPS groups (p = .008). Detailed results and implications will be discussed.  
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CALCULUS I TEACHING: WHAT CAN WE LEARN FROM SNAPSHOTS OF LESSONS FROM 
18 SUCCESSFUL INSTITUTIONS? 
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During classroom observations conducted as part of the Characteristics of Successful Programs in College 
Calculus (CSPCC) project we observed 73 lessons taught by 65 instructors at 18 institutions. In this poster 
we present an analysis of nearly 500 math problems enacted in those observed lessons, attending to how the 
tasks were enacted (lecture, group work, etc.), technology used, representations used, and other 
mathematical features of the problems. 

Keywords: Post-Secondary Education; Instructional Activities and Practices; Curriculum Analysis 

Relative to the literature in K-12 mathematics education, there is a dearth of information about what 
transpires in college classrooms. Although there are some exceptions (Laursen, Hassi, Kogan, & Weston, 
2014; Mesa, Celis, & Lande, 2014), we know little about teaching or the nature of the tasks that instructors 
use in classrooms in lower division courses. One of the goals of the CSPCC project(NSF-DRL REESE 
#0910240, Bressoud, Rasmussen, Mesa, & Pearson) was to document such work for Calculus I. We 
observed 73 calculus lessons across18 institutions (including associate-, baccalaureate-, master-, and PhD-
granting institutions) identified by the CSPCC project as having successful calculus programs. Our 
observation protocol included a Problem Log with which observers recorded the specific mathematical 
tasks seen in classes as well how the task was enacted (e.g., lecture or group work), what representations 
were called for (e.g., symbolic or graphical), what technology was used (e.g., graphing calculators or CAS) 
and other important features (e.g., presenting multiple solutions or doing a proof; see White & Mesa, 2012). 
By focusing on the content of the tasks and their enactment, we gain a disciplinary-rich perspective on the 
nature of Calculus I instruction at these institutions. In this poster we describe the pedagogical and 
mathematical features of the almost 500 observed tasks. We also report on similarities and differences 
within and across institutions and across institution types using various analytical techniques (e.g., 
ANOVAs, odd-ratio estimations, clustering), to account for the nature of the data. 

In our analysis thus far we have found no significant difference in the method of task delivery across 
institutions types—that is, there is a uniform predominance of lecture across all institutions types. When we 
focus on the mathematical features of the tasks, however, PhD-granting institutions use fewer problems 
emphasizing symbolic representations than the other institutions and baccalaureate-granting institutions use 
more problems emphasizing skills and techniques than the other institutions. This analysis will allow us to 
better understand what teaching in successful institutions looks like and how that varies by institution type. 
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Graduate student instructors (GSIs) teaching introductory calculus participated in a semester-long 
working group to learn to use Peer-Assisted Reflection (PAR) in their recitation sections (Reinholz, in 
press), an activity which was developed through a three-phase design experiment (Cobb, Confrey, Disessa, 
Lehrer, & Schauble, 2003). PAR involves students analyzing one another’s work and exchanging feedback 
before revising their solutions, which helps students improve their explanations, collaboration, and 
persistence (Reinholz, in press). The GSIs met six times during the semester, for one hour each time. This 
poster focuses on the learning of Beth, a second-year graduate student with two semesters of prior teaching 
experience. 

All six of Beth’s lessons were coded for teaching practices. Two lessons were double-coded, with 90% 
agreement. The two disagreements were on teacher probing for explanations. Teacher position was coded 
holistically, while all other practices were coded for frequency (see Table 1). 

 
Table 1. Beth’s Observed Classroom Practices 

Week Teacher 
Position 

Teacher 
Probes for 

Explanations 

Teacher Links 
Student 

Responses 

Students 
Respond to 
Each Other 

Students 
Present at 
the Board 

2 Front of room 2 0 1 0 
4 Front of room 2 0 0 0 
6 Circulating 6 0 0 0 
8 Circulating 7 4 9 1 

10 Circulating 11 2 5 0 
13 Circulating 0 0 21 2 

 
Table 1 shows a dramatic shift in Beth’s teaching. In a post-semester interview, Beth noted: 

I've definitely become a lot more reflective about my teaching, and I think about it a lot more than in the 
past. Just, I question, is this working. I feel like honestly when I first starting teaching, I would just do 
stuff, and think it's good, oh it's great, and I never really asked, is this working, do I think they are 
learning this way…compared to past semesters, I got students to come up to the board more and got 
them to explain their words more. 

This poster highlights the potential of PAR to support GSIs to grow as teachers.  
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Instructional technology (IT) offers a number of potential benefits toward enhancing student learning, 
yet many teachers do not effectively integrate IT in their instructional practices, a critical issue in 
mathematics education. By effective, I mean using IT to increase students’ conceptual understanding of 
mathematics through reflection and communication (Hiebert et al., 1997), as well as through using and 
connecting mathematical representations (NCTM, 2014). Effective IT integration is essential to student 
learning and a necessary component of effective teaching (Ertmer & Ottenbreit-Leftwich, 2010). However, 
an important factor that influences teachers’ use of IT is their beliefs about IT (Zbiek & Hollebrands, 2008).  

This poster reports on the findings of a study that sought to investigate secondary mathematics teachers’ 
beliefs and practices regarding instruction and IT integration, as well as how teachers describe effective IT 
integration. Rather than relying on Likert scale and multiple-choice questions to investigate beliefs, this 
study employed a new tool for investigating teachers’ beliefs using an online survey implementing 
constructed-response questions (Philipp et al, 2003). The constructed-response questions provided 
situational context for investigating beliefs and how teachers described effective IT integration (Holstein & 
Gubrium, 2011).  

Findings suggest that the constructed-response survey, designed to address shortcomings of previous 
tools used to investigate teacher beliefs, provided new insights into teachers’ beliefs about “effective” IT 
integration, and highlighted that targeting beliefs is a necessary component of professional development 
aimed at increasing the effectiveness of IT integration. Teachers’ responses indicate that there may not be a 
relationship between a teacher’s preferred teaching style and how they use IT or what they believe is an 
effective use of IT. Survey questions, participants’ responses and more detailed findings will be shared 
during the poster session. 
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Introduction 
As recommended by Proulx and Bednarz (2009), the study’s goal is to contribute to research on 

supporting mathematical thinking.  It focuses on practices that maintain cognitive demands of rich tasks. 
This is a significant focus because meaningful experiences with rigorous curriculums depend on cognitive 
demands during enactment. This report is part of a grounded theory developed from analysis of classroom 
video data, artifacts, and interviews. Participating students were in grades 3-5 at six schools. Students 
worked on pattern finding activities. 

Results and Conclusion 
Launching with minimal instructions. The way the tasks were launched was critical in maintaining 

the cognitive demands of the tasks. The best launching practice, judged based on the variety and quality of 
student responses during instruction, involved giving only minimal instructions that were enough for 
students to understand what they are expected to do without funneling their thinking. Teachers described 
this approach as relaxed and a flexibly structured teaching style whereby you give students a task with an 
attitude of “here it is, see what you can do with it. And just ask them few questions and not trying to lead 
them, just seeing where they go.” Teachers’ view of the launching styles that maintained open-endedness of 
tasks of algebraic thinking had an emphasis on exploring mathematical relationships other than a focus on 
trying to find an existing specific algebraic generalization. As one teacher explained: 

My goal is to make learning discovery based, let the students work through it, not feel like there is an 
answer that they have to achieve as their goal, but help them to understand that there might be, and 
sometimes there is more than one answer.  

Workspaces. Workspaces are “opportunities for students to use their own critical thinking.” One of the 
critical practices for creating workspaces was moving from traditional worksheets that provide minimal 
spaces for exploring to ‘work spaces’ with minimal words and a lot of space. With ‘work spaces,’ students 
explored more, and the quality of their visible thinking improved greatly because they communicated the 
unspoken expectation of engaging with the mathematics more than the tradition worksheets did. 

In conclusion, launching with minimal instructions and providing workspaces are critical in maintaining 
cognitive demands of rich tasks.  This poster presentation will show a striking difference in students’ visible 
thinking between classes with and without these practices.  

References 
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Researchers who examine the experiences and opportunities of African-American children in learning 
mathematics identify certain mindsets and dispositions of teachers that can be productive or unproductive in 
supporting students’ development (e.g., Ladson-Billings, 2009; Milner, 2010). Ladson-Billings (2009) 
describes teachers’ ways of being, and the relationships teachers seek to form with African-American 
students, as critical in fostering students’ learning.  

The purpose of this study is to create and validate a survey to assess teachers’ beliefs and practices in 
teaching mathematics to African-American students. Beyond our specific study and context, the survey can 
be used more broadly to raise awareness and analyze change over time of productive and unproductive 
mindsets at the personal, school, and district level.  

The current version of the “Assessment of Equity in Beliefs and Practices of Teaching Mathematics to 
African-American Students” survey contains 80 questions spanning eight categories: Beliefs about Student 
Achievement and Motivation, Culturally Responsive Teaching, Perceptions of Challenges of African-
American Students, Perceptions of Success of African-American Students, Mathematics as a Civil Right, 
Missionary Beliefs, Beliefs about Critical Thinking, and Student Behavior. The majority of the categories 
are derived from the components of culturally relevant pedagogy described by Ladson-Billings (2009) and 
the mindsets identified by Milner (2010), Martin (2007), and Jackson and Wilson’s (2012) literature review. 
In addition to its emphasis on culturally relevant pedagogy, the instrument asks teachers to reflect on their 
schools’ curriculum and course offerings for students of color.   

We intend for the results of the survey to provide an indication of: 1) teachers’ mindsets that may be 
more or less productive in supporting the mathematical learning of African-American students, 2) teachers’ 
awareness of and attribution for successes and barriers in African-American students’ learning of 
mathematics; and 3) teachers’ feelings of self-efficacy and/or support (i.e., whether teachers feel equipped 
and supported) in enacting equitable teaching practices in mathematics. We hope to make a contribution to 
the field by providing a validated survey that could be used to foster critical reflection and awareness on a 
personal, school, or district level. By triangulating and correlating survey results with other data (e.g., 
teacher observations and interviews), we may be able to add specificity to Ladson-Billings’ notion of 
teachers’ “way of being” that supports mathematical achievement in African-American students.  
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The urgency of improving teaching and learning in undergraduate mathematics education is deepening 
and graduate teaching assistants (GTAs) are becoming increasingly responsible for taking on this task. 
However, differences in GTAs training, and GTA actual teaching experience, makes it difficult to assess the 
GTAs’ efficacy and ultimately their effectiveness in the undergraduate classroom. This study addressed the 
research question; do previous teaching experiences of graduate teaching assistant’s impact teacher 
efficacy.  

Graduate students often times enter school with little to no teaching experience. In fact, serving as a 
GTA may be the very first time these students have the opportunity to teach. Research has also shown that 
GTAs with more experience have reported higher levels of self-efficacy toward teaching (Prieto & 
Altmaier, 1994) and have been regarded as more effective by students  (Ferris, 1991). More importantly, 
teaching assistants play vital roles in the mathematics education of undergraduates and may become 
mathematics professors one day. 

Denham and Michael’s (1981) Teacher Sense of Efficacy Model is used as a theoretical lens through 
which this study is framed.  Denham and Michael “theorized that a teachers’ sense of self efficacy is a 
strong mediating variable in teacher effectiveness and consequent to student achievement” (Prieto & 
Altmaier, 1994, p. 482). Denham and Michael’s model suggests that a heightened sense of efficacy in 
teachers should affect their perceived and actual ability to teach more effectively” (Prietto and Altmaier, 
1994, p. 483). This theoretical model is vital to the proposed study because it allows associations to be 
made between levels of efficacy among GTAs in the undergraduate mathematics classroom and increased 
student achievement. 

Using the Teacher Sense of Efficacy Survey – long form (Tschannen-Moran& Woolfolk Hoy, 2001), 
this correlational study collected data regarding the demographics (i.e. previous teacher 
training/professional development, teaching experience and future career plans) and teaching beliefs of each 
the 184 voluntary GTA from the 32 participating mathematics departments classified by Carnegie as 
research extensive universities.  

Based on the literature, it was hypothesized that positive relationships would be found between teaching 
experience and TE. A weak positive relationship was found among teacher efficacy and K-12 teaching 
experience. Implications for relationships among teaching experience and teacher efficacy call for more 
structured teaching assistantships (similar to those in the k-12 experience) during the graduate student phase 
in mathematics departments in order to enhance the effectiveness of GTA future teaching practices. This 
information moves the teaching experience forward in that it advocates for greater supervision and a larger 
amount of responsibility during the GTA phase.  
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This study was designed to investigate the experiences of teachers implementing social justice 
themed lessons for the first time. Teaching mathematics through social justice activities has been 
proposed as a way to support students in building personal connections with and a sense of relevance 
when learning mathematics (Gutstein, 2003; 2006; Turner & Strawhun, 2007). Recent research has 
shown that supporting teachers in teaching math through a social justice lens is not a straightforward 
process (Bartell, 2013). Our central questions were: 

• How do teachers view the role of math and context in social justice-themed activities? 
• What are the challenges teachers experience as they implement social justice-themed 

activities?  
• What are the supports that they find helpful as they implement these activities?  

To address these questions, the authors designed a multiple-case study to examine teachers 
teaching mathematics through social justice contexts for the first time. Walther co-planned social 
justice themed lessons or units with the cooperating classroom teachers. All planning sessions were 
audio-recorded. After planning, the classroom teachers in each case implemented the lessons with 
students in their classroom. The lessons were video-recorded, with the authors present, taking field-
notes throughout. After the lesson or unit concluded, interviews were conducted with teachers and 
students to gain further insights into their experiences during the events. Data were analyzed using 
open-coding in order to identify relevant themes and significant themes across cases.  

The authors employed a situated perspective that theorizes one’s learning as dependent upon 
social and cultural contexts, not solely on one’s individual cognition that is tied to specific contexts 
(Lave & Wenger, 1991).  Initial findings show that teachers experience tensions between math and 
context in implementing social justice activities, and they navigate these tensions in different ways. 
In addition, teachers view social justice in different ways that have implications for their 
implementation of this approach.  
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We compared classroom interactions during two episodes in a seventh grade virtual mathematics 
class. Both episodes were drawn from virtual live lessons utilizing different lesson layouts. We 
investigated how mathematical knowledge was negotiated in both episodes. The results show that the 
layout of live lessons had an effect on how students shared their thinking. 

Keywords: Classroom Discourse; Technology  

Technology is changing communication patterns as it introduces new forms of human 
interactions, asynchronously through emails, texts, blogs and discussion forums, and synchronously 
between large spatial distances. More remarkably, technology is altering how people experience 
education. In the U.S., the number of K-12 full-time virtual distant schools is growing exponentially 
(Barbour & Reeves, 2009). Mathematics too, is being encountered by K-16 students and teachers in 
virtual environments. Yet, research studies that carefully examine the content of interactions in such 
educational settings are rare. Such studies are necessary in order to unpack intricacies of mathematics 
learning and teaching specific to this type of environment. As Morgan and colleagues (2014) posited, 
there is an emergent need in the field to investigate online and mobile communication that are unique 
in mathematics contexts. Our goal of the case study we report here was to address this need. Our 
research aimed to unpack the nature of interactions taking place in one virtual mathematics 
classroom. 

Background Literature 
The utility of computer technology as a cultural tool for mediating knowledge construction has 

long been recognized (Saxe, 1991). The internet as a new form of technology-based learning 
medium, has also penetrated educational research in recent years. The range of reported research 
includes exploration of online teacher professional development, and online language programs 
(Bairral, 2009; Jonassen, 1986). Previously the main audience for online learning consisted of self-
motivated adult professionals who clustered around a common interest. Asynchronous settings such 
as discussion forums and self-study online learning tools have provided the main context for learning 
among this population. Researchers and educators who explored the use of hypermedia or hypertext 
for online instruction have concluded that: (a) content representation in the web is not linear and can 
be hyper-linked; and that (b) it is beneficial for novices to access web automated knowledge 
representations that are pre-constructed by experts (Carlson, 1992). However, K-12 online or blended 
learning has entered the education arena and grown rapidly in the past five years. In comparison to 
the adult online learning format, synchronous lessons that are analogous to traditional brick-and-
mortar classrooms represent a large part of online K-12 school curriculum. How mathematics is 
taught and learned in this environment has not been a subject of careful analysis. Arguably the most 
prominent and unique feature of a synchronous environment is how the teacher and students 
communicate about and with mathematics in the course of their interactions. As a starting point in 
developing a systematic research agenda surrounding online mathematics teaching and learning, a 
focus on unpacking synergistic interaction offers a productive scholarly venue.  

Carlson (1992) provided a simple, but precise description of communication in a synchronous 
setting: “As a simple case example, participants are able to converse in dyads or triads with 
classmates not in close physical proximity; whereas, in the real classroom multiple, simultaneous 
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discussions quickly degenerate into a cacophony of voices” (p.57). A systematic study of language 
usage and the internet was conducted within the linguistics discipline. For synchronous group chats 
in particular, linguists have identified the delaying feature (Crystal, 2001). Crystal posited that lags in 
conversations interrupt the conversational turn in traditional face-to-face interaction, because in the 
virtual synchronous environment, turn-taking as seen on the screen was dictated by the software 
rather than the intentions of the end-users. However, Crystal and other linguists’ studies of 
synchronous group chats were drawn from social networks rather than educational settings. Other 
features absent from synchronous group chat that are critical to the educational environment, such as 
facial expressions and physical body language, provide challenges for teachers in receiving cues 
from learners. The constraints of online interactions can certainly impact the quality of discourse 
taking place. Yet, we know little about specific features of the environment that may motivate 
classroom interactions and mathematics learning. To address this topic, we planned to study a 
seventh grade virtual mathematics classroom as the teacher delivered live lessons over the course of 
one academic semester. In this report, we chose two different live lesson layouts to study 
mathematics classroom interactions. Two specific questions guided our data analysis: (a) What is the 
nature of interactions between the teacher and students, and among students in the virtual 
synchronous mathematics classroom? (b) How do different settings of synchronous virtual 
mathematics instruction promote productive interactions and discussions about mathematics? 

Methodology 
Data was collected from a seventh grade mathematics teacher’s class at a full-time virtual school. 

At the time of data collection, two mathematics classes were combined, and the total number of 
students was around 70. The researchers observed the teacher on a regular basis. A number of live 
lesson recordings were collected for virtual classroom interaction research. 

Since our plan was to examine how the use of various features of the online lessons impacted 
modes of communication among the students and the teacher, we selected two episodes from two 
virtual live lessons to complete a comparative analysis. Each live lesson was an hour long. Both 
lessons shared a similar structure, consisting of four parts: (a) greeting and pre-assessment of 
previous content (approximately 15 minutes); (b) teacher-led instruction of the main learning 
objectives for the day (15 minutes); (c) students solving problem(s) and whole-class discussions 
about the problem(s) (15-20 minutes); and (d) the teacher offering a whole-class summary or 
students completing exit questions (10 minutes). The selected episodes concerned the third part of the 
lessons as students worked on assigned problems and discussed their solutions. Episode 1 was 13 
minutes and 32 seconds long. Episode 2 was 10 minutes and 7 seconds long. We selected these two 
episodes to ground our comparison of the two sessions since the teacher’s live lessons relied on 
different layouts, giving rise to contrasting interactions both between the teacher and students, and 
between students. The teacher’s oral communications were transcribed and textual records were 
downloaded. Both sets of transcripts were then organized in the order in which they appeared in the 
screen. 

Adobe Connect virtual lesson setting 
The software used during both virtual live lessons was Adobe Connect. The software connected 

the teacher and students in real time in various locations. The students were “participants”, and chat 
pods were the only communication tool they were allowed to use. The teacher was the “host” with 
access to audio, chat pods, drawing tools, and other presentational features. The teacher 
communicated with the students using primarily audio, whiteboard drawing and the chat pods.  

In Episode 1, the teacher intended for the students to write an algebraic expression representing a 
real-life situation. The layout of this episode is shown in Figure 1. The teacher utilized three 
functions of Adobe Connect: the poll question to gather student responses at the beginning, a chat 
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pod labeled “EXPLAIN your thinking”, and a “chalkboard” demonstration. In Episode 2, the content 
of the lesson concerned engaging students in solving two-step equations. In addition to the poll 
question and “chalkboard”, two chat pods were utilized in the lesson: one labeled “QUESTIONS 
Only”, and the other labeled “Responses to QUESTIONS” (Figure 2). 

 

 
Figure 1:Layout of Episode 1 

 

 
Figure 2:Layout of Episode 2. 

Data Coding 
The transcript was coded and analyzed in four phases by two researchers. First, we reorganized 

the individual exchanges by topics of conversation. Second, we segmented both episodes according 
to the questions that the teacher posed or the type of instructions that the teacher initiated. Then, in 
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each segment, we coded each exchange in three dimensions: (a) whether it was a response or 
initiation; (b) potential subjects of the exchange (e.g., whether it was addressing the teacher, students 
or everyone); (c) language functions of each exchange using the Analytical Framework of Peer-
Group Interaction (Kumpulainen & Wray, 2002), including experiential (sharing how students 
experienced the class or the problem), interrogative (asking questions), instructive (providing 
instructions), affective (sharing feelings and attitudes), judgmental (agreeing or disagreeing), and 
argumentative (providing arguments). We also added a few language function codes that existed in 
the data, but not in the Analytical Framework. These codes are observational (providing 
observations, often about the mathematics), encouraging (students encouraging students), receptive 
(responding neutrally to a command or idea) and the unclear category. In our last step of data 
analysis, we identified the mathematical knowledge that was shared and negotiated in both episodes. 
Relations were mapped out according to the classroom interactions taking place in both cases. 

Results 
In this section, we will first present findings related to the observed differences between the two 

episodes according to the number, the sequence, and the nature of exchanges that took place relying 
on analysis of language functions. We will then discuss how mathematics was shared and negotiated 
during each discussion session.   

Modes of interactions 
42 students actively contributed to the chat pods in Episode 1, and 29 in Episode 2. Based on the 

teacher’s instructional initiations, Episode 1 was divided into s segments according to the 
instructional moves of the teacher. In this episode, only one problem was discussed. Students were 
given time to solve and comment on the problem in the first two segments. The teacher then raised a 
few questions for students to consider as they explored the problem. During this time she prepared 
the virtual whiteboard (segment 3). Once the whiteboard was prepared, the teacher redirected the 
class to think about the context of the problem, and then led them through solving it (segments 4-5). 
This part was followed by a Q&A session, which lasted less than one minute (segment 6). Among 
eleven segments, students contributed 146 exchanges in total, including 20 exchanges that were 
initiative (e.g. "would the first month be 47 because of the 15 dollar fee?"), and 122 exchanges that 
were responsive (e.g. "the one time fee is important"), 112 of which were replies to the teacher’s 
questions. In summary, the mode of interactions in Episode 1was dominated by teacher-student 
interactions, with a typical pattern of teacher verbal questions, followed by student text responses. 
The teacher served as the primary initiator of the interactions. 

In Episode 2, two group chat pods, the QUESTIONS pod and the EXPLAIN pod, were 
accessible to students, and two problems were discussed. This episode consisted of five segments. 
The teacher first reviewed and demonstrated one student’s solution (segment 1), followed by a three-
minute session (segment 2) devoted to addressing students’ questions raised during segment 1. She 
then posed another similar problem to the class and students were given time to think and respond 
(segment 3). Then, the teacher again modeled how the problem could be solved on the virtual 
whiteboard (segment 4) and then devoted over three minutes to respond to students’ discussions in 
the chats (segment 5). In comparison to Episode 1, more evidence of the teacher’s facilitation of 
discussions and student thinking was present in Episode 2; the layout of the “QUESTION” and 
“Responses to QUESTIONS” pods provided a platform for students to raise questions and invite peer 
discussions, and for the teacher to facilitate student-student discussions. The teacher spent more than 
six minutes addressing students’ discussions in Episode 2, whereas the teacher spent less than one 
minute in Q&A during Episode 1. In total, students contributed 65 exchanges with 34 of these 
exchanges contributed in response to peer comments. This evidenced a higher proportion of student-
student interaction compared to the first episode. 
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Sequence of interaction 
In the sessions that we have examined, the sequence of virtual interactions heavily depended on 

how the conversations were initiated by the teacher (e.g., yes/no questions, comments of the 
mathematics problem) and the opportunities for responding to the initiation (e.g., the availabilities of 
chat pods in the layout). When only one chat pod was available in Episode 1, the teacher modeled the 
solutions of the problem. She was able to maintain a sequential and focused teacher-student 
interaction by posing closed or dichotomous questions as exemplified in the excerpt below. 

123. T: If I am paying something everything month, what operation is gonna help achieve that? 
124. Mel:32*m 
125. Des: multiplication 
126. Mak: multiplication 
... ... 
140. Pri: Multiply 
141. Nic: I added instead of multiplying OOPS 

In the above exchange from lines 124 to 141, students were directly responding to the teacher’s 
question in line 123, though the responses were presented in slightly different ways. Indeed, the 
interaction was highly sequential in the sense that exchanges could be traced naturally without 
disruptions. It was also highly spontaneous, since almost twenty exchanges appeared in the chat 
within a few seconds. Yet, this interaction mode took place only in Episode 1, when dichotomous or 
closed questions were posed, and responses required short-typed words. 

In Episode 2, such a sequential and simultaneous interaction mode was not evident. Instead, 
interactions between the teacher and students or among students were highly non-sequential and 
overlapping. Students now had two different chat pods for interaction instead of one, as illustrated in 
Figures 1 and 2. Because the two chat pods were designated for student questions and student 
responses to those questions, they promoted student-student interaction in comparison to promoting 
only teacher-student interaction as in Episode 1. The sequence of interaction became more complex 
as demonstrated in the excerpt below. 

25. (Audio) T: Let's do another one I'm gonna throw at you and then we talk about it. Ok? 
26. (QUESTION) Al: I just used mental math is that okay..?lol  
27. (Audio) T: How about -2y-4 
28. (QUESTION) Des: I am confused NO NEVER MIND  
29. (QUESTION) Miv: what is it called when you put a line in the equal sign  
30. (EXPLAIN) Ken: xD 
31. (Audio) T: Try to specific, Des. We will try to help you. 
... ... 
35. (EXPLAIN) Sha: Al-That is fine! As long as you get the right answer. :) 

Within these eight exchanges, several conversations were taking place: (a) the teacher was posing 
a new problem (#25, 27); (b) two students were asking separate questions (#26, 29), one of whom 
received a student response in #35; and (c) another student was expressing confusion (#28), which 
caught the teacher’s attention in #31. Meanwhile, Ken (#30) may have been responding to either the 
teacher or the use of the caps lock by Des (#28). We use linear to describe the interaction in the 
Episode 1 excerpt, and multi-directionalto describe this interaction in the excerpt from Episode 2. 
Students raised questions in Episode 1, but due to the large number of chat messages in a single chat 
pod, the questions became invisible; they did not become a source of contemplation or discussion, 
and never disrupted the lesson flow. In contrast to Episode 1, questions in Episode 2 had a designated 
place during the teacher’s instruction, which made it easier for students and the teacher to notice 
questions thus providing an available space for group discourse.  
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Language Functions 
Examining the language functions of the texts of student chats, two features distinguished the 

quality of interactions in the two episodes. First, the proportion of student-self initiated conversations 
was greater in Episode 2 than in Episode 1. Students openly shared their experiences of the problem 
(experiential), commented on characteristics of the problem (informative), and asked questions 
(interrogative). Second, students in Episode 2 engaged in each other’s problem solving processes. 
Some students questioned and answered, commented, and judged each other’s mathematics while 
other students took a lead on sharing information about the problem.(e.g. “Don't forget, the 4 isn't 
negative”). Texts were informative, interrogative, and judgmental inEpisode 2, while texts were 
mostlyreceptive (e.g., yes, ok), observational, and addressing the teacher in Episode 1. 

Taken-and-shared mathematics 
In the first half of Episode 1, the teacher asked students to discuss the problems. The teacher’s 

questions provided ample opportunities for diverse student responses, though interactions were one-
directional, short, and sequential as the teacher responded to the majority of students’ questions or 
answers.  Thus the primary source of knowledge was the teacher who verified answer and confirmed 
accuracy of responses. Some of the important mathematical information that the individual students 
provided during the discussion went un-noticed or un-acknowledged. Even more importantly, 
discussion around these different ideas was not pursued in places where conflicting views on the 
same question were expressed. Instead, the teacher directed the class, judged the answers, and moved 
on to a new problem or task. This was partly because student replies in the chat pod were quick, rich 
and non-uniform, which made it difficult for the teacher to closely follow each contribution. As 
shown in Figure 3, the content of mathematics discussed became rather linear. 
 

 
Figure 3: Map of knowledge shared in Episode 1. Blue indicates student contributions. Red 

indicates teacher contributions. 

In Episode 2, mathematical knowledge shared was what we refer to as the “popcorn” style 
(Figure 4); which characterized features of open and simultaneous discourse. For instance, while the 
teacher was demonstrating the procedure for solving an equation on the “chalkboard”, students’  
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Figure 4: Knowledge shared and negotiated in Episode 2: popcorn style. Blue indicates student 
contributions. Red indicates teacher contributions. 

discussion in the chat pods did not necessarily relate to each step of the teacher’s demonstration. The 
students’ comments often corresponded to other issues related to the problem, such as how and when 
mental arithmetic can be an effective approach to solve two-step equations, negative operations, and 
the conventions of algebraic expressions, which were separate from the teacher’s original agenda of 
demonstrating the procedure. The content presented by the class was multidirectional. Students who 
were sitting in front of the computer could follow different “pops” of knowledge shared on the screen 
and could comment on those that they found interesting or useful. In this episode, students were 
sharing and negotiating different elements of solving two-step equations and the teacher was no 
longer the dominating source of knowledge. Instead of acting independently from the students by 
focusing on her own agenda of the problem’s procedure as in Episode 1, the teacher depended on 
student responses to guide her facilitation of the discussion in Episode 2. The teacher’s organization 
of the chat pods in Episode 2 allowed for greater opportunities for student thinking to be expressed, 
and for the teacher to have a greater role in facilitating the students’ discussion. 

Discussion 
The purpose of this study was to explore the nature of interactions within online synchronous 

mathematics lessons resulting from different features of these lessons. By mapping out the transcripts 
of two episodes, it became evident that classroom interactions in a synchronous environment can be 
different when the layouts of the classroom were changed. These differences include changes from 
(1) teacher-students interactions to student-student interactions; (2) a linear conversation sequence to 
a multi-directional conversation sequence; and (3) students mainly responding to the teacher to 
interacting with each other. Consequently, these changes effected how students discussed and 
negotiated mathematics. The literature has documentedthe major feature of virtual interaction as non-
sequential and overlapping (Crystal, 2001). Yet, our data showed that a synchronous lesson can be a 
highly structured lesson guided by the teacher, and communication quite spontaneous and sequenced 
as it would be in traditional brick-and-mortar classroom interactions. However, as soon as the layout 
of the lesson changed as in Episode 2, the interactions became non-sequential.   
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Our results indicate that the teacher’s ability to closely monitor the students’ interactions and 
mathematical discussions simultaneously in different chat pods helped effectively initiate and 
facilitate generative discourse among students. When opportunities were provided for students to 
negotiate their mathematical knowledge with one another, as seen in Episode 2, the dominating role 
of the teacher’s mathematics was challenged. This issue raises several important questions that merit 
careful attention from the research community, some of which include: How could mathematics 
teachers synthesize multiple sources of students’ mathematics to advance students’ discussions 
towards building generalizations and identifying important mathematical structures? What type of 
knowledge might a mathematics teacher need to develop in order to do so?  How might teachers 
manage social interactions using the chat pods or other functions in the environment so as to gear 
students towards mathematics learning and knowledge construction (Yackel & Cobb, 1996)? With a 
rapid increase in the desire to converge learning environments towards a virtual paradigm, it seems 
inevitable that our understanding of how such an educational setting might best be organized and 
moderated to allow for development of inquiry skills and conceptual understanding of mathematical 
ideas. The questions we raised here relate explicitly to this agenda. 
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This study investigated the impact of a dynamic geometry (DG)-centered teacher professional 
development program on high school geometry teachers’ content knowledge and their students’ 
geometry learning. 64 geometry teachers were randomly assigned to an experimental (DG) group and 
a control group. Both groups received appropriate and relevant professional development. Classroom 
observation data and the teachers' responses to the implementation questionnaires revealed that most 
teachers in the DG group were faithful to the DG instructional approach. Teachers in the DG group 
scored higher on a conjecturing-proving test than did teachers in the control group. The students of 
teachers in the DG group scored significantly higher than the students of teachers in the control 
group on a geometry achievement test.  

Keywords: Teacher Education-Inservice (Professional Development); Technology 

Introduction 
Dynamic geometry (DG) refers to an active, exploratory study of geometry carried out with the 

aid of interactive computer software available since the early 1990’s that allows for learner 
knowledge construction and exploration. The most widely used current DG software packages 
include the Geometers’ Sketchpad (Jackiw, 2001), Cabri Geometry (Laborde & Bellmain, 2005) and 
Geogebra (Hohenwarter, 2001) as well as variations that are applications within handheld graphing 
calculators or applets on web sites. DG environments provide students with experimental and 
modeling tools that allow them to investigate geometric phenomena (CCSSI, 2010). With 
distinguishing features of dragging and measuring, DG software can be used to help students engage 
in both constructive and deductive geometry (Schoenfeld, 1983) as they build, test and verify 
conjectures using easily constructible models. 

In a funded four-year research project, we conducted repeated randomized control trials to 
investigate the efficacy of an approach to teaching high school geometry that utilizes DG software as 
a supplement to regular instructional practices. Our basic hypothesis was that the use of DG software 
and DG teaching methods that engage students in constructing mathematical ideas through 
experimentation, observation, data recording, conjecturing, conjecture testing, and proving would 
result in improved geometry learning experiences for most students. The use of DG software and 
teaching methods was referred to as the DG approach in the project. The DG software used by the 
project was the Geometers’ Sketchpad (GSP). 

In this paper, we report the results from the second year of the project on teacher content 
knowledge and student achievement. We investigated the impact of the professional development of 
teachers and their students’ geometry achievement in the DG group.The study built upon related 
research studies on mathematics teachers’ professional development (e.g., Carpenter et al., 1989), 
including those concentrating on technology-centered (and especially DG-centered) professional 
development (e.g., Meng & Sam, 2011). 
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Theoretical Framework and Research Questions 
An integrative framework (Olive & Makar, 2009) drawing from Constructivism, Instrumentation 

Theory and Semiotic Mediation was used to guide the study. Within this framework, as teachers and 
students interact in DG environments, their interactions with the DG technology tool influence the 
next act by each person, and continue in an interplay between the tool and user. As a user (teacher or 
student) "drags" an object and observes outcomes from that act, the user adjusts her or his thinking, 
which in turn influences the next interaction with the tool. Because DG technology allows users to 
adjust their geometry sketches and the relationships within them, users are transforming the tool, 
their use of the tool, and their thinking. 

This study addresses the following research questions:  

• Did teachers in the experimental (DG) group develop stronger conjecturing and proving 
abilities than did teachers in the control group? 

• How well did the teachers implement the DG approach with fidelity in their classrooms? 
• Did the students of teachers in the experimental group over a full school year achieve 

significantly higher scores on a geometry test than did the students of teachers in the control 
group? 

Method 
The participants in the study were sampled from the geometry teachers at high schools and some 

middle schools in Central Texas school districts. The study followed a randomized cluster design, 
randomly assigning 64 teachers to either an experimental group or a control group receiving relevant 
professional development, implementing the instructional approaches respectively assigned to them, 
helping the project staff in administering the pre- and post-tests of the participating students, and 
participating in other data collection activities of the project. 

Professional Development and the DG Treatment 
In order to effectively implement the DG approach in their classrooms, teachers must first master 

the approach. Without professional development, “teachers often fail to implement new approaches 
faithfully” (Clements et al., 2011, p. 133). So teachers’ professional development (PD) was a critical 
component of the project. For our PD to be effective, it had to be sustained, rigorous, and relevant to 
participating teachers, with substantial support from their school districts. Based on these guiding 
ideas, a weeklong summer institute was offered to the participating teachers in the DG group, 
followed by 6 half-day Saturday PD sessions during the school year. The PD was planned and 
implemented collaboratively by project staff that included mathematics and education university 
faculty members and school-based master teachers selected based on their success as mathematics 
teachers and their experience with DG software.  The project team and master teachers served as 
partner facilitators for all PD sessions. 

The teachers in the experimental (DG) group were actively involved in each PD session and 
focused on developing their conceptual understanding of mathematics using the DG software as a 
tool. They worked on challenging problems and developed important geometric concepts, processes, 
and relationships while building DG skills and teaching methods. They experienced how DG 
environments encourage mathematical investigations by allowing users to manipulate their geometric 
constructions to answer "why" and "what if" questions, by allowing them to backtrack easily to try 
different approaches, and by giving them visual feedback that encourages self-assessment.  

Typically, each activity in a PD session consisted of the following instructional events: 1) 
Presenting a task (exploring concepts/relationships or solving a problem) to the teachers; 2) 
Requesting teachers to use DG tools to construct the related geometric object or problem situation 
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(with help if necessary) or providing them with a prepared DG environment; 3) Asking teachers what 
conjecture(s) they can make based on their initial observation; 4) Requesting teachers to use 
dragging, measuring, and multiple, linked representations to experiment with the constructed or 
provided DG environment, and observe what characteristics change and what remain the same; 5) 
Asking teachers to further make and test conjecture(s); 6) Reminding teachers to redo events #4 and 
#5 in a new aspect or at a higher level, as appropriate; 7) Asking teachers to summarize and reflect 
on what they have conjectured; and 8) Helping teachers develop explanations to prove or disprove 
their conjecture(s). 

In each PD session, teachers either worked individually at a computer or in small groups. In 
either case, PD facilitators encouraged teachers to share ideas and help each other. The facilitators 
circulated, observed (to monitor the progress) asked questions, and provided necessary assistance. 
They also initiated whole group discussions as needed.  

In terms of content, the summer PD sessions concentrated on important and commonly taught 
topics of high school geometry: triangle congruence and similarity, properties of special 
quadrilaterals, properties of circles, and geometric transformations. School year follow-up PD 
aligned with the course scope and sequence determined by the participating school districts. 

The PD facilitators modeled what teachers were expected to do with their students in geometry 
investigations. To help teachers change their instructional practices, their engagement of students, 
and how they facilitated student learning, mathematical explorations were always followed by 
discussions on questions such as “How will you teach this content using DG software?” and “How 
will you lead your students in conjecturing and proving using DG software?” The PD facilitators 
valued teachers learning from each other and sharing ideas and also sought to provide opportunities 
to apply new teaching skills. Therefore, teachers were encouraged to present their insights on and 
experiences with the DG approach and to describe problems they might have experienced or 
anticipated with other teachers offering suggestions to address the concern. Teachers also prepared 
lesson plans that they shared with the entire group. 

The Control Group 
The teachers in the control group taught geometry as they had done before. They also 

participated in a PD workshop that addressed the same mathematical content as the DG group but 
without the use of technology. The PD sessions for the control group utilized teaching methods with 
which teachers were already familiar. The PD facilitators lectured and involved teachers in activity-
based instruction. Participants engaged in problem solving without using technology tools. They 
spent the same amount of time in PD training as the teachers in the DG group. The control group PD 
was included in the research design to control the variables tied to professional development and 
ensure both groups experienced sustained, rigorous, and relevant development in high school 
geometry teaching. Since all teachers participated in PD sessions and all were presented with the 
same mathematics content, any differences measured between the two groups would be attributed to 
the presence (or lack of) the interactive DG learning environment (since it was the only instructional 
difference between the two groups).  

Measures and Data Analysis 

Measures 
A measure of teachers’ conjecturing-proving knowledge. A conjecturing-proving test was 

developed by the project team to measure teacher knowledge. As a result of a thorough literature 
review, geometry construct development, item construction, Advisory Board members’ review, and 
several pilot tests with resulting revisions, a test consisting of 26 multiple-choice items and 2 free-
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response proofs was produced. The test was administered to the teacher participants as both a pre- 
and post-test at the PD summer institute.   

Teachers’ implementation fidelity and classroom observations.The DG approach involves 
intensive use of dynamic software in classroom teaching to facilitate students’ geometric learning. 
The critical features of the DG approach include using the dynamic visualization to foster students’ 
conjecturing spirit, their habit of focusing on relationships and explaining what is observed, and their 
logical reasoning desire and abilities. To capture these critical features of the DG approach, two 
measures of implementation fidelity (the DG Implementation Questionnaire [DGIQ] and the 
Dynamic Geometry Observation Protocol [DGOP]) were developed. The DGIQ  was adapted from a 
teacher questionnaire developed by the University of Chicago researchers (Dr. Jeanne Century and 
her colleagues) in an NSF-funded project, based on the critical features of the DG approach. The 
final version of the DGIQ consisting of six multiple-choice items and ten open-response questions 
was administered to the teachers in the experimental group six times across the school year. A 
different version of the questionnaire was administered to the control group teachers (also six times) 
to examine how they teach geometry without using dynamic technology.  

The DGOP was developed to address the critical features of the DG approach.  It was adapted 
from the Reformed Teaching Observation Protocol (Sawada et al., 2002). The final version of the 
DGOP consisted of 25 items with a 4-point Likert response scale from Never Occurred  toVery 
Descriptive addressing four different aspects: (1) Description of intended dynamic geometry lesson, 
(2) Description of implemented dynamic geometry lesson, (3) Assessment of quality of teaching, and 
(4) Assessment of engagement and discourse. For the control group, an observation protocol (CGOP) 
was developed by removing from the DGOP items related to the implementation of DG software 
functions such as dragging and dynamic measuring. The DGOP or CGOP was administered in 16 
Geometry classrooms (8 selected from each group). Each classroom was visited by two observers. 
Each selected teacher was observed four or five times across the school year. 

Student level measures. Two instruments were used for measuring students’ geometry 
knowledge and skills: (for the pre-test) Entering Geometry Test (ENT) used by Usiskin (1981) and 
his colleagues at University of Chicago; and (for the post-test) Exiting Geometry Test (XGT). The 
XGT was developed by selecting items from California Standards Tests – Geometry. The final 
version for XGT had 25 multiple-choice items. (See Jiang et al., 2011 for the details of the two tests.) 

All research instruments mentioned above, except the student geometry pre-test, were developed 
by the project team. For all project-developed measures, the Cronbach's Alpha statistical values were 
within the acceptable ranges for reliability (e.g., reliability was calculated with Cronbach’s alphas of 
0.957 and 0.952 for the DGOP and CGOP, respectively.) Item Response Theory (IRT) scoring 
routines were applied to the DGIQ and students' post-test data providing evidence for the 
instruments' construct validity.  

Data Analysis 
Two-level hierarchical linear modeling (HLM), other statistical methods, and the constant 

comparison method (Glaser & Strauss, 1967) were employed to analyse the quantitative and 
qualitative data.   

Results 

Findings about Teacher Content Knowledge from the Conjecturing-Proving Test 
The participating teachers completed the conjecturing-proving test at the beginning and end of 

the summer PD institute. A statistic for teacher content knowledge as measured by the instrument 
was calculated by adding the number of correct multiple-choice responses with points from free-
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response items. Average scores were 20.49 on the pre-test and 21.86 on the post-test with an average 
gain of 1.37. A paired-sample t-test showed that this gain was statistically significant (p = .003). 
These results show that the PD had a positive effect on teachers’ conjecturing and proving 
capabilities. The teachers in the experimental group showed a greater average gain (1.56) than the 
teachers in the control group (1.18); however, this difference was not statistically significant (p = 
.670).  

Findings about DG Approach Teaching from the Classroom Observations 
Table 1 provides the results of the DGOP administration measuring the levels of fidelity of the 

dynamic approach implementation in the DG group. If we focus our attention to the mean scores 
(with a maximum score of 4) for the DG group, we observe that the three aspects with the highest 
scores were Good Lesson Design, Use of DG Features, and Teachers’ Knowledge. The data provides 
evidence that the teachers in the DG group demonstrated an intention to implement the DG approach 
and to some extent they demonstrated knowledge about how to integrate the dynamic approach to 
teaching geometry. Overall, teachers in the DG group were implementing the DG approach at a 
moderate level (2.28). In part, this moderate level of implementation was explained by the challenges 
reported during the school year such as the inaccessibility of computer labs in the first several weeks 
and the pressure to spend time preparing for the state required tests. However, the majority of the 
classrooms observed can be described as being faithful to the DG teaching approach. 

Table 1: Comparison between DG and Control Groups 
Aspect Sub-aspect Mean 

DG 
Mean Control p-value 

Intended Dynamic Lesson Good lesson design 2.81 1.85 .032* 
 Use of dynamic features 2.75 0.70 .000* 

Implementation Actions beyond use of software 2.06 1.33 .095 
Quality of Teaching Cognitive demand 2.30 1.78 .113 

 Teachers’ knowledge 2.89 2.84 .924 
 Conjecture/Proof 1.93 1.40 .206 

Engagement and Discourse  2.37 2.29 .735 
Overall DGOP  2.28 1.68 .088 

 
Comparing the two groups, Table 1 also shows the mean values of the CGOP and the p-values 

assessing the significance of the treatment effect computed using a mixed effect ANOVA. Results 
confirm the efficacy of the DG treatment by showing significant differences in the two aspects 
related to the intention to implement a dynamic lesson.  As a whole, lessons in the DG group had a 
significantly better design aligned with the DG teaching approach, moving students from initial 
conjecture, to investigation, to more thoughtful conjecture, to verification and ultimately to proof. 
Further, lessons in the control group did not use dynamic features in teaching geometry. With respect 
to the other aspects of the DGOP (or CGOP), the two groups did not differ significantly, however all 
the DG ratings were higher than those of the control group. Note that most of those aspects assessed 
elements of the lesson that were not related to the use of dynamic features. 

Findings about DG Approach Teaching from the Implementation Questionnaire 
The purpose of the DGIQ was to assess the DG group teachers’ effectiveness and comfort in 

using GSP in teaching geometry. Also, the questionnaire results provided the frequency of teacher 
and student use of GSP. Figure 1 shows how the teachers rated themselves on their effectiveness and 
comfort in using GSP. Out of 31 teachers who completed the questionnaire, 29% felt that they were 
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at the high level of effectiveness, 61% at the middle level, and 10% at the low level. However, the 
majority of the teachers (97%) felt very comfortable or somewhat comfortable in using GSP in 
teaching. Overall, the teachers felt more comfortable than effective in using GSP with only one 
teacher not feeling comfortable in using GSP in teaching of geometry. 

 

 
Figure 1: Effectiveness in Using GSP and Level of Comfort in Using GSP 

Figure 2 shows average teacher and student use of GSP throughout the school year for those in 
the DG group. The “average teacher use of GSP” represents the average number of times per week 
the teacher used the demonstration computer in his/her classroom to do GSP presentations and 
demonstrations. The “average student use of GSP” represents the average number of times per week 
students worked in a computer lab doing hands-on explorations with GSP. Out of the 31 teachers 
who completed the questionnaire, 77% of them used GSP at least one time per week and 38% at least 
two times per week. However, the student use was lower, with 61% of them using GSP at least one 
time per week, and only 10% two times per week. 

 
Figure 2: Average Teacher Use of GSP and Average Student Use of GSP per Week 

Therefore, in terms of “taking students to the computer lab to do hands-on activities with GSP,” 
the teachers’ implementation of the DG approach was at the medium level of intensity. This finding 
is consistent with data from the classroom observations. However, almost all teachers were positive 
or enthusiastic in using GSP in geometry teaching. Again, considering the challenges that the 
teachers experienced during the school year, data supported the conclusion that most of the teachers 
implemented the DG approach faithfully.  

Even though some teachers in the DG group might have not felt as effective in using GSP 
because of the students’ limited use of GSP (one time or less than one time per week), some of them 
might still be considered very effective if we focus on the ways they used the DG approach. One 
teacher provided such an example. He felt “somewhat effective” and his students used GSP on 
average one time per week, but his classroom observations showed very effective use of GSP. During 
one of the observations, his students were exploring the midsegments of a triangle and their goal was 
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to come up with as many conjectures as possible. Students completed the constructions on their own, 
made initial conjectures based on their observations, used measurements to confirm their conjectures, 
and wrote their final conjectures. The teacher circulated among students and provided guiding 
questions when needed. One student made many measurements but no conjectures. The teacher 
asked this student, “Do you notice any relationships? What conjectures can you make?” These 
questions helped the student focus on the objective of the lesson and form conjectures based on the 
measurements and observations. During the lesson, students also engaged in conversations with one 
another to discuss their observations and conjectures. Students were actively involved in their 
learning and the teacher took on the role of a guide by prompting his students through questioning. 
This lesson not only showed effective use of GSP, but also addressed higher-level thinking. 

Findings about Student Achievement from the Geometry Test  
Two-level hierarchical linear modeling (HLM) was employed to model the impact of the use of 

the DG approach on overall student geometry achievement measured by the student post-test (XGT). 
The model was analysed using student pre-test (ENT) scores as a covariate. The sample of 
classrooms studied included three different levels of Geometry: Regular, Pre-AP and Middle School 
(middle school students taking Pre-AP Geometry). Since the classroom expectation and quality of the 
students in each of these levels were very different, the factor Class Level was included in the model. 
Additionally, the covariate Years Exp (number of years of classroom experience) was included in the 
model. The results of the model indicated that the DG effect was strongly significant (p = .002). 
Comparing the means, the DG group was higher than the control group in each level of Geometry 
and the effect size (.45) was substantially larger at the Regular Geometry level. (See Jiang et al., 
2011 for the details of the HLM analysis results.)   

Using the integrative framework (Olive & Makar, 2009) as a lens, further quantitative and 
qualitative data analysis on the impact of the DG professional development is ongoing. 

Discussion 
The HLM model taking pretest, class level, and teaching experience into account provided 

evidence that the students of DG group teachers scored significantly higher than the students of 
control group teachers on the Exiting Geometry Test. Given that teachers were randomly assigned to 
the two groups and both groups received comparable sustained, rigorous, and relevant professional 
development on the same geometry topics, the results of this study provide evidence to support the 
finding that the DG professional development positively impacted the students’ geometry 
achievement. Both DG and control group teachers demonstrated significant gains on the 
Conjecturing-Proving Test through the one-week summer PD institute. This result suggests that both 
the PD sessions designed for the DG group and those designed for the control group had an effect on 
teachers’ conjecturing and proving ability. Although the DG and control teachers did not differ 
significantly on their mean gain scores, the DG teachers’ mean gain score was 32% higher than that 
of the control teachers. Classroom observation data revealed that lesson plans that the DG group 
teachers prepared were designed significantly better than the control group teachers’ lessons by 
facilitating students’ conjecturing and proving abilities. The teachers’ DGOP ratings (overall and in 
each sub-scale) were consistently higher for the DG group although most of the differences were not 
statistically significant. In summary, the results of this study suggest that the DG professional 
development offered to the participating teachers had a significant positive effect on the teachers’ 
mathematics conjecturing-proving content knowledge and their ability to implement a dynamic 
geometry approach to teaching. The teachers, in turn, helped their students achieve better geometry 
learning.  



Technology:!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

1209!

Acknowledgments 
This material is based upon work supported by the Dynamic Geometry in Classrooms project 

funded by the National Science Foundation under Grant No. 0918744. Any opinions, findings and 
conclusions or recommendations expressed in this material are those of the authors and do not 
necessarily reflect the views of the funding agency. 

References  
Carpenter, T., Fennema, E., Peterson, P., Chiang, C., & Loef, M. (1989). Using Knowledge of Children's 

Mathematics Thinking in Classroom Teaching: An Experimental Study.  American Educational Research 
Journal, 26, 499-531. 

Clements, D. H., Sarama, J., Spitler, M. E., Lange, A. A., & Wolfe, C. B. (2011). Mathematics learned by young 
children in an intervention based on learning trajectories: A large-scale cluster randomized trial. Journal for 
Research in Mathematics Education, 42, 127-166. 

Common Core State Standards Initiative (CCSSI). (2010). Common core state standards for mathematics. 
Washington, DC: National Governors Association Center for Best Practices and the Council of Chief State 
School Officers. 

Glaser, B. G., & Strauss, A. L. (1967). Discovery of grounded theory: Strategies for qualitative research. Chicago: 
Aldine. 

Hohenwarter, M. (2001). GeoGebra (4.2.3.0 ed.). 
Jackiw, N. (2001). The Geometer’s Sketchpad (V4.0) [Computer software]. Emeryville, CA: Key Curriculum Press. 
Jiang, Z., White, A. & Rosenwasser, A. (2011).  Randomized Control Trials on the Dynamic Geometry Approach. 

Journal of Mathematics Education at Teachers College, 2, 8-17. 
Laborde, J.-M. &  Bellemain, F. (2005). Cabri II [Computer software]. Temple, TX: Texas Instruments. 
Meng, C & Sam, L. (2011). Encourage the innovative use of Geometer’s Sketchpad through lesson study. Creative 

Education, 2, 236-243. 
Olive, J. & Makar, K. (2009). Mathematical knowledge and practices resulting from access to digital technologies.In 

C. Hoyles & J-B. Lagrange (Eds.), Mathematics Education and Technology: Rethinking theTerrain (pp. 133-
178). The Netherlands: Springer. 

Sawada, D., Piburn, M. D., Judson, E., Turley, J., Falconer, K., Benford, R., & Bloom, I. (2002). Measuring reform 
practices in science and mathematics classrooms: The reformed teaching observation protocol. School Science 
and Mathematics, 102, 245-253.  

Schoenfeld, A. (1983). Problem solving in the mathematics curriculum: A report, recommendations, and an 
annotated bibliography. Washington, D.C.: Mathematical Association of America. 

Usiskin, Z. (1982). Van Hiele levels and achievement in secondary school geometry (Final report of the Cognitive 
Development and Achievement in Secondary School Geometry Project). Chicago: University of Chicago. 



Technology:!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

1210!

DYNAMIC GEOMETRY SOFTWARE AND TRACING TANGENTS IN THE CONTEXT 
OF THE MEAN VALUE THEOREM 

Cesar Martínez Hernández  
Universidad de Colima 
cmartinez7@ucol.mx 

Ricardo Ulloa Azpeitia 
Universidad de Guadalajara 
ricardo.ulloa@cucei.udg.mx 

In this paper we analyze and discuss the postgraduate students’ performance related to the tracing of 
tangent lines to the curve of a quadratic function within Dynamic Geometry Software in the context 
of Mean Value Theorem. The purpose is to show the possibility of using Dynamic Geometry in 
promoting learning of such Theorem, based on its geometric interpretation. The theoretical elements 
adopted in this study are based on the instrumental approach to tool use. The results illustrate the 
epistemic role of the Dynamic Geometry Technique, as well as the difficulties associated with their 
paper-and-pencil Techniques. 

Keywords: Technology; Advanced Mathematical Thinking; Teacher Education-Inservice 

Background 
In literature, there is evidence about the influence of using Dynamic Geometry Software (DGS) 

to encourage students’ mathematical thinking (e.g., Guven, 2008; Leung, Chan & Lopez-Real, 2006; 
Reyes & Santos, 2009). In these studies the possibility of using dynamic geometry is raised to 
discuss mathematical relationships exploring different cases. In particular, Guven (2008) and Reyes 
and Santos (2009) show how the dragging and the locus, that emerge in the explorations that let the 
DGS, promotes the development of conjectures about the mathematical relationships of the objects 
embedded in the mathematical dynamic model, in the sense of Reyes and Santos. From these studies, 
and the interest of the community in analyzing the influence of the technological environments in 
teaching and learning calculus (Ferrara, Pratt & Robutti, 2006), we propose the possibility of using 
DGS to analyze its potential in promoting the learning of Mean Value Theorem (MVT), based on its 
geometric interpretation. 

In Ferrara, Pratt and Robutti (2006) a study compilation is included about central concepts of 
calculus such as function, limit, derivative and integral in technological environments; from these 
backgrounds, we consider that it is important to research the role of technology in the learning of 
calculus in which the concept of derivate is embedded. Therefore, this paper focuses on studying the 
use of DGS in learning the MVT through its dynamic modeling. 

The understanding of MVT is important because it is the base of contents like the criteria for 
maximums and minimums. Taking into account the use of DGS allows us to approach the MVT and 
the mathematical concepts associated, through mathematical dynamic models, and not just in analytic 
ways, as it is usually presented in textbooks. In this sense, in the dynamic geometry environments, 
the approach to MVT can be done by tracing tangent lines to the curve of a function in the context of 
its geometrical interpretation. Thus, the aim of this study is to answer the question: how does the use 
of dynamic geometry influence the tracing of tangents to the curve of a particular function in the 
context of the MVT, based on its geometric interpretation? 

Theoretical Framework 
The theoretical framework adopted in our study is the instrumental approach to tool use 

(Artigue, 2002; Lagrange, 2003, 2005). The use of this approach in dynamic geometry environments 
is feasible (Leung, Chan & Lopez-Real, 2006). According to Artigue (2002) the instrumental 
approach encompasses elements from both cognitive ergonomics (Vérillon & Rabardel, 1995) and 
the anthropological theory of didactics (Chevallard, 1999). In this sense, there are two possible 
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directions within the instrumental approach: one in line with the cognitive ergonomics framework, 
and the other in line with the anthropological theory of didactics (Monaghan, 2007). In the former, 
the focus is the development of mental schemes within the process of instrumental genesis (Drijvers 
& Trouche, 2008). Within this direction, an essential point is the distinction between artifact and 
instrument. 

In line with Chevallard’s theory, researchers such as Artigue (2002) and Lagrange (2003, 2005) 
focus on the techniques that students develop while using technology. According to Chevallard 
(1999), mathematical objects emerge in a system of practices (praxeologies) that are characterized by 
four components: task, in which the object is embedded (and expressed in terms of verbs); technique, 
used to solve the task; technology, the discourse that explains and justifies the technique; and theory, 
the discourse that provides the structural basis for the technology.  

Artigue (2002) and her colleagues have reduced Chevallard’s four components to three: Task, 
Technique and Theory. The term Theory combines Chevallards’s technology and theory components. 
The Technique is a complex assembly of reasoning and routine work and has both pragmatic and 
epistemic values; techniques are most often perceived and evaluated in terms of its pragmatic value, 
but their epistemic value contribute to the understanding of the objects they involve, that is to say, 
they are a source of questions about mathematical knowledge (Artigue, 2002, p. 248). According to 
Lagrange (2003), Technique is a way of doing a Task and it plays a pragmatic role (in the sense of 
accomplishing the task) and an epistemic role in that it contributes to an understanding of the 
mathematical object that it handles during its elaboration; it also promotes conceptual reflection 
when the technique is compared with other techniques and when discussed with regard to 
consistency. The consistency and effectiveness of a Technique, according to Lagrange (2005) are 
discussed in a theoretical level; mathematical concepts and properties and a specific language appear. 

Our study is in line with the anthropological theory of didactics; thus the focus of this research is 
the epistemic value of technique. That is, we are interested in studying the students’ Techniques they 
develop within the dynamic geometry environment. 

The Study 
In the present paper, we discuss and report the results of the designed Activity. Its rationale, the 

population and the data collection, is detailed bellow. 

The Design of the Activity 
The design took into consideration the Anthropological line of the instrumental approach. Thus, 

the three elements Task, Technique and Theory were used. The Activity, as Kiernan and Saldanha 
(2008) note, is a set of questions related to a central Task. In our case, the Task is “Drawing a tangent 
line to the curve of the quadratic function f(x) = -(x – 3)2 + 4 and parallel to a secant line to the 
curve. The Activity consisted of two phases; the first one involves just working with paper-and-
pencil, in order to know the techniques used by the participants in this environment. The second one 
includes working with the DGS, in order to know how the use of DGS influences and modifies the 
initial participants’ techniques and what other emerges; both phases include technical and theoretical 
questions. The DGS used was GeoGebra. 

The Task consists in given the function f(x) = -(x – 3)2 + 4, participants are asked to plot the 
curve and draw a secant line to the curve and determine its equation (blue line, Figure 1). Once this 
part of the Task is completed, participants are asked a Theoretical question related to whether or not 
a tangent line (red line) to the curve and parallel to the secant line could be traced (i.e., the 
geometrical interpretation of MVT). If the answer is affirmative, they are asked to trace and 
determine its equation, first in a paper-and-pencil environment; then, using DGS (with the restriction 
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that differential calculus techniques are not allowed in this environment). The Figure 1 shows a 
graphic representation of the proposed Task. 

 
 

Figure 1: Graphic representation of the Task (graphic interpretation of MVT) 

Population 
The participants were 16 postgraduate students enrolled in a master program in the teaching of 

mathematics in Mexico. At the time of collecting data, they were in the 4th semester of the Master’s 
degree. All participants knew GeoGebra and were familiar, at least a year and a half, with this 
software. All participants, except one, have teaching experience, some of them in university-level, 
others in senior-secondary-level and just a few in secondary-level. The professional degrees of the 
participants were among graduates in mathematics, engineers in different areas and one economist. 

Implementation of the study 
The data collection was carried out in three sessions, during one of the Master’s degree courses 

conducted by one the researchers; each session lasted around 2 hours, which were recorded. The 
students worked in self-created pairs, in order to promote the dialogue among them and consequently 
make an audio recording about their own reflections in the use of GeoGebra according to the Task. 
Each team had a printed Activity, the GeoGebra software installed in their laptops, besides the 
SCREEN2EXE software which captures the computer screen in order to view the sequence of the 
students’ work with the DGS. In this way, the research data sources include worksheets (printed 
Activity), the GeoGebra files, SCREEN2EXE files, video recorded files and the researcher’s field 
notes. 

Analysis and Discussion of Data 
In this report we analyze and discuss the work of four pairs (Teams I, II, III and IV, henceforth), 

which exemplify the work done by all participants. The analysis conducted is of a qualitative nature 
inasmuch as we are interested in providing a detailed account of the kinds of Techniques that the 
participants used to solve the Task in both environments and the Theory they sustain. The analysis 
makes emphasis in the dynamic geometry techniques which were used by the students; that is to say, 
we are interested in research the kind of mathematical relations which they identified in the dynamic 
model of the Task that lead them to solve it. 

On the paper-and-pencil work 
The paper-and-pencil techniques and the Theory are based on the differential calculus. That is to 

say, on the usual procedure to determine a tangent line associating the function derivative with the 



Technology:!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

1213!

slop of the tangents’ family lines to the curve, although the kind of proposed function influenced in 
their reflections too. About the theory that sustains whether the possibility or not of drawing a 
tangent line with the required conditions, the participants refer the continuity of the function. Some 
of them describe it in an explicit way; others in the opposite way. The following Figures show the 
work of two Teams, that proves what is expressed, once they construct the graphic of the proposed 
function and pose the secant line equation to the referred function. 

 
 
 

 

Figure 2: Theory from Team I 

To the question Ic) whether it will be possible to trace a line that it is parallel to the secant and 
tangent to the curve in a certain interval by the abscissas of the points where the secant line cuts the 
function of the graphic, the Team I sustains its Technique in the continuity concept of the function 
(Figure 2). Other Teams do not express their answers in an explicit way, for example, the Team II 
(see Figure 3). Note that when the students describe that it is possible dragging the secant line, based 
on a dynamic model of the Task, they demonstrate and idea of continuity of the function. 

 
Figure 3: Theory from Team II 

Other teams justify their Techniques from their knowledge about the parabola; in particular about 
one of its specific points, the vertex. The Teams, which worked in this way, propose a parallel secant 
line to the axis of the abscissas, noticing the vertex of the parabola as the tangent point. However, 
they also showed ideas about the continuity of the function when they work in the dynamic geometry 
environment, as later discussed. 

Because the participants’ previous knowledge (Technique and Theory), it was expected that they 
would use differential calculus techniques to find and trace the tangent line equation. The analysis of 
the answers confirms this idea. Once the function is charted and the secant line equation to the curve 
is determined, those Teams that propose a secant non parallel to the axis of the abscissas use the 
derivate of the function to find the tangent point from solving the equation f’(x) = m, (where m is the 
slope of the secant line). The Figure 4 shows this Technique (Derivate Technique) from Team I. 

Ic) Is there a parallel line to the secant and tangent to the curve of the given function in the 
interval (x1 , x2) 
Explain it 
Yes, because the function is a continuous one in the interval. 

 
 
Yes, because we can dragg the 
line that passes through points 
A and B until it touches a single 
point of the function (which we 
denote by P). 
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Figure 4: Technique from Team I 

In other hand, the Teams that traced the parallel secant line to the axis of the abscissas used an 
Analytic Geometry Technique taking the maximum of the function like the tangent point. That is to 
say, they solve the Task using the equation y = k, where they identify k like the ordinate to the vertex 
with coordinates (h,k) of the parabola y = a(x – h)2 + k. 

On the Dynamic Geometry work 
The work from the Teams in the GeoGebra environment, which was asked not to use differential 

calculus techniques, shows three characteristics. Some of them use Algebraic Techniques provoked 
by the dynamic model of the Task, and they use the DGS to trace their answers. Other Teams used 
the geometry dynamic characteristics and specific GeoGebra commands, which we called Dynamic 
Geometry Techniques, to model the Task and look for the mathematical relations that it involves. 
Others did not consider the use of DGS to explore mathematical relations, because it is taken as 
obvious. Next, we present examples from each one of these cases. 

The Team III was one of those which traced the parallel secant line to the abscissas axis (as it is 
shown in Figure 5). On the offered explanations by one of the Team members (Student A) it is found 
that, for them, the answer to the Task is obvious, based on their work that they developed with paper-
and-pencil. The following extract illustrates this case. 

Student A: What we did was tracing this [shows a point that was traced on the function of the 
graphic], and then, traced the parallel [to the secant] […] we moved it, moved it, moved it, 
move it [they dragged it] until the tangent point was found, which it is easy for us because it 
is the parabola vertex. 

As it is shown in the transcription, the students used parallel and dragging commands as 
Technique. This let them trace a parallel to the secant line and that passes through a point (traced by 
them) over the graphic of the function. The mathematical relationship which is shown in their 
dynamic model is that the parallel line that passes through the parabola vertex fits with the given 
conditions of the Task. Nevertheless, the tangent point is known in advance, it is not a result from the 
explorations in the DGS. This is to say, their paper-and-pencil Technique and Theory (their 
knowledge about the parabola) let them solve the Task in the dynamic environment. The answer that 

We derived the [given] function 
f’(x) = -2(x-3)  
We equate to the slope of the secant line 
-2(x-3) = 2 
. 
. 
. 
         x = 2 
We calculate  f (2) = ···= 3 
 
The parallel line passes through the point 
(2,3) and has slope 2 
 
We find b      3 = 2(2) + b   →    b = -1    
 
The equation of the parallel line is             
y = 2x - 1 
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Figure 5: Dragging Technique from Team III 

they give is particular, because if the secant line conditions are changed, the line which is proposed 
by them as the solution will not be the tangent, it just will keep the parallelism condition. 

Meanwhile, for the Team I, the dynamic model leads them to try different paper-and-pencil 
techniques that differ from the calculus. They observed a mathematical relationship in the dynamic 
model of the Task which led them to the solution; it consisted of a system of equations with the 
parabola equation (y = -(x – 3)2 + 4) and the equation of the tangent line (y = mx + b) so that the 
solution has multiplicity 2 (to fit with the tangent condition), where m is the value of the slope of the 
secant (in order to fulfill with the parallelism condition). In this way, they calculate the value of the 
parameter b (of the tangent line). Figure 6 shows this algebraic Technique. 

 
Figure 6: Algebraic Technique from the Team I 

The given solution from the Team I is general; however, their answer is not supported by any 
Dynamic Geometry Technique, but it is an algebraic process. GeoGebra encouraged them to reflect 
in other alternative paper-with-pencil Technique. Once they found an expression for b in terms of m, 
they use GeoGebra to graph the equation with these parameters. 

The Team II explored in the dynamic model by dragging through a slider as a possible Technique 
to solve the Task. Nevertheless, this technique lets them an approximation to the solution of the Task. 
This Team introduced in GeoGebra the requested equation y = mx + b of the line, where m is the 
same as the value of the secant slope (with this, the condition of parallelism is completed) and 
associated the parameter b, the ordinate to the origin, with a slider; in order that they manipulate the 
slider (dragging the line) and propose a solution when, by trial and error, they observe in the graphic 
representation that the line fulfills the tangent conditions. However, they are aware, using the zoom 
Technique that their answer is just an approximation. 

Finally, the Team IV tried to solve the Task, in the GeoGebra environment, based on the 
possibilities that the DGS offers. It is interesting how this Team, using the dynamic model, observes 
mathematical relations in the dynamic construction that they propose in GeoGebra (Figure 7). For 
this Team, the explorations they did in the DGS let them to conjecture that the middle point M from 
the segment AB (see Figure 7), the points where the secant (blue line of the Figure) crosses the 
curve; in particular, the perpendicular bisector (red line) of this segment, lead them to the find the 
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tangent point. 

 

 
Figure 7: Dynamic Geometry Technique from Team IV 

In this case, the students established the tangent point as the intersection of the perpendicular 
bisector and the function of the curve (Point D in Figure 7). Nevertheless, they found out that this 
Technique do not lead them to the solution, making comparisons with their initial paper-and-pencil 
Technique. The most important thing about the work from Team IV is to realize that the dynamic 
model of the Task let them make conjectures about the midpoint of the segment AB, which, actually, 
it is related to the solution of the problem. 

Conclusions 
The offered examples shown in the previous section let us know the influence of the dynamic 

geometry software, from the participants’ Technique and Theory, in the tangent traces. In the paper-
and-pencil environment, two types of Techniques are identified, one based on the differential 
calculus knowledge; the other one, based on the analytic geometry knowledge. Regarding the 
Theory, it is related to the concept of continuity of the function. 

The influence of dynamic geometry is shown in those Teams which use a dynamic model that do 
not use a parallel secant line to the abscissas axis. Therefore, in one side, the DGS encourages the 
emergence of paper-and-pencil Techniques based on the explorations in the dynamic model. In other 
hand, DGS lets them work with their own Techniques and commands from the dynamic geometry 
and establish relationships between the mathematical objects involved and the emergence of others 
(for example the perpendicular bisector). It also let them contrast paper-and-pencil Techniques with 
the software Techniques. According to the instrumental approach, this contrast of Techniques 
encourages to a reflection in a theoretical level. 

In this way, the emergence of new paper-and-pencil Techniques and the reflections about the 
mathematical relationships provoked by the dynamic models in the use of the DGS show the 
epistemic role of the dynamic geometry Technique in the trace of tangent lines in the TVM context. 

1. A, B on the function. 
2. Line that passes through AB. 
3. Midpoint point of AB segment, perpendicular 

[to the AB segment] in this point. 
4. Intersection point between f(x) and the 

perpendicular. 
However, when comparing with the original 
equation, we found out that it is not the same 
tangent point calculated analytically. 
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In addition, the results show difficulties associated with their paper-and-pencil Techniques in the 
sense of holding to this environment, and not exploring the software potentials. 
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We examine relationships between prospective teachers' (PTs’) beliefs about the nature of 
mathematics, learning and teaching mathematics, and the use of technology, and their knowledge of 
how to use technology to teach and learn mathematics. We interviewed 4 PTs and used Ernest's 
(1989) classification of beliefs and Goos, Galbraith, Renshaw, and Geiger’s (2003) perspectives of 
technology to uncover PTs’ beliefs. We examined PTs’ knowledge of using technology by conducting 
a task-based interview based on the TPACK framework (Mishra & Koehler, 2006). We found there 
appeared to be relationships between PTs' beliefs about the nature of mathematics, learning and 
teaching mathematics, and the use of technology and their content knowledge, pedagogical content 
knowledge, and technological pedagogical content knowledge respectively.  

Keywords: Teacher Beliefs; Teacher Education-Preservice; Teacher Knowledge; Technology 

One of the guiding principles in the National Council of Teachers of Mathematics’ (NCTM, 
2014) Principles to Actions: Ensuring Mathematics Success for Allis the use of tools and technology 
to explore and make sense of mathematics, reason mathematically, and communicate mathematical 
thinking. NCTM suggests when tools and technology are used appropriately they support effective 
teaching and promote meaningful learning. However, some teachers are reluctant to use technology 
to teach mathematics or do not use it in meaningful ways (Ertmer, 2005). Ertmer (1999) describes 
two types of barriers to teachers’ integration of technology. First-order barriers are obstacles that can 
be eliminated if money is allocated. These barriers include resources such as access to digital tools, 
software, Internet, and time to plan and teach technology-based lessons. First-order barriers also 
include technology training and support, which contribute to teachers’ knowledge of technology and 
how to integrate it into their practice. Second-order barriers are “typically rooted in teachers' 
underlying beliefs about teaching and learning and may not be immediately apparent to others or 
even to the teachers themselves” (Ertmer, 1999, p. 51). Second-order barriers are less tangible, more 
personal, and more deeply ingrained than first-order barriers (Ertmer, 1999). Moreover, research 
indicates second-order barriers are prevalent among teachers (e.g., Hermans, Tondeur, Valcke, & van 
Braak, 2008). In order to assist teachers to better overcome both types of barriers, we must 
understand the relationships that exist among them. In this paper, we share the results of our study in 
which we examined relationships between prospective teachers’ (PTs’) knowledge of how to use 
technology in the teaching and learning of geometry (first-order barriers) and their beliefs about the 
nature of mathematics, teaching, learning, and the use of technology (second-order barriers). 

Related Literature Review and Theoretical Framework 
Researchers (e.g., Cooney & Wilson, 1993; Pajares, 1992; Wilkins, 2008) have examined the 

relationships between beliefs and knowledge and found that one seems to influence the other. Pajares 
(1992) stated “beliefs influence knowledge acquisition and interpretation, task definition and 
selection, interpretation of course content, and comprehension monitoring” (p. 328). In other words, 
teachers’ beliefs will influence the ways in which their knowledge is created and their instructional 
decisions. Conversely, Cooney and Wilson (1993) stated, “beliefs may be dependent on the existence 
or, perhaps, the absence of knowledge”(p. 150). Therefore, teachers’ mathematical knowledge may 
lead to particular beliefs about the way that mathematical knowledge is best taught (Wilkins, 2008). 



Technology:!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

1219!

Thus, it seems there is a bi-directional relationship between teachers’ beliefs and knowledge such 
that they influence each other. And, both beliefs and knowledge seem to influence teachers’ 
decisions in planning and practice. 

Ernest (1989) noted that teachers’ approaches to mathematics teaching related profoundly to their 
system of beliefs. Ernest (1989) provided a model for conceptualizing teachers’ beliefs. Ernest’s 
(1989) classifications are organized by the possible ways that teachers may view (1) the nature of 
mathematics, (2) teaching and (3) learning mathematics. Goos, Galbraith, Renshaw, and 
Geiger(2003) developed categories, Servant, Master, Partner, and Extension of Self, to describe the 
different ways that teachers may use technology. We use Goos et al.’s(2003) categories as ways that 
prospective teachers may view the use of technology for teaching and learning mathematics (see 
Table 1).  

Table 1: Beliefs Classifications 

Beliefs about Classification of 
beliefs 

Description 

Nature of 
Mathematics 
Ernest (1989) 

Instrumentalist Mathematics is a set of facts and rules 

Platonist Mathematics as a unified body of knowledge that does not 
change 

Problem Solving Mathematics as a human creation that is continually changing 

Teacher’s 
Role 

Ernest (1989) 

Instructor Goal of instruction is for students to master skills  

Explainer Goal of instruction is for students to develop conceptual 
understanding of a unified body of knowledge 

Facilitator Goal of instruction is for students to become confident problem 
solvers 

Learning 
Ernest (1989) 

Passive Reception of 
Knowledge 

Child exhibits compliant behavior and masters skills. Child 
passively receives knowledge from the teacher 

Active Construction 
of Knowledge 

Child actively constructs understanding. Child autonomously 
explores self interests 

Learning 
and 

Teaching 
Mathematics 

with 
Technology 
Goos, et al. 
(2003) 

Master Dependence on technology, not capable of evaluating the 
accuracy of the output generated by technology 

Servant Fast, reliable replacement for mental or pen and paper 
calculations 

Partner Cognitive reorganization, use technology to facilitate 
understanding, to explore different perspectives 

Extension of Self 
Incorporate technological expertise as a natural part of 
mathematical and/or pedagogical repertoire 

 
One framework that has become popular in recent years to describe and examine teachers’ 

knowledge is Mishra and Koehler’s (2006) Technology, Pedagogy, and Content Knowledge 
Framework, known as TPACK. The TPACK framework consists of three main components: Content, 
Pedagogical, and Technological Knowledge (CK, PK, and TK), and the intersections between and 
among them, represented as Pedagogical Content Knowledge (PCK), Technological Content 
Knowledge (TCK), Technological Pedagogical Knowledge (TPK), and Technological, Pedagogical, 
Content Knowledge (TPCK). 

Findings from research on the relationship between teachers’ beliefs and their TPACK or 
integration of technology indicate that there are varying degrees of consistency between the two. 
Kim, Kim, Lee, Spector, and DeMeester (2013) showed that teachers’ beliefs about the nature of 
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content knowledge and learning and about effective ways of teaching influenced their technology 
integration practices. On the other hand, Chai, Chin, Koh, and Tan (2013) revealed discrepancies 
between participants’ pedagogical beliefs and their TPACK. Chai and colleagues found teachers used 
a more traditional teaching practice aimed at knowledge acquisition when using technology even 
though many teachers held constructivist-oriented pedagogical beliefs. The use of a traditional 
teaching practice is likely due to teachers’ lack of knowledge of how to effectively integrate 
technology into their classroom. Given the mixed results of research studies on the relationships that 
may exist between teachers’ beliefs and their TPACK, additional research is needed to examine 
whether relationships, in fact, do exist and to describe those relationships. The purpose of this study 
is to investigate and describe ways in which prospective middle grades mathematics teachers’ beliefs 
relate to their knowledge of technology, pedagogy and content. The research question that guided our 
study is: What are the relationships among middle grades prospective mathematics teachers’ beliefs 
about the nature of mathematics, teaching, learning, and the use of technology in the mathematics 
classroom and their level of knowledge of the TPACK components in the context of geometry? 

Methods 
Our participants were four undergraduate PTs enrolled in a middle grades teacher education 

program at a university in the southeast United States. We collected data from two semi-structured 
interviews. In the first interview, we asked participants questions to uncover their beliefs about the 
nature of mathematics, teaching and learning mathematics, and the use of technology to learn and 
teach mathematics. In the second interview, we examined participants’ TPACK by conducting a task-
based interview (Hollebrands & Smith, 2010). The PTs completed four separate tasks in which they 
analyzed students’ work in a Dynamic Geometry Environment (DGE) and created an activity using 
the DGE to assist students to develop a deeper understanding of the concept or to remedy students’ 
misconceptions (see Figure 1). We analyzed the first interview using Ernest’s (1989) classifications 
of beliefs and Goos et al.’s (2003) perspectives of technology (see Table 1). Independently, each 
member of the research team read the transcripts and classified each participant’s beliefs according to 
Ernest’s (1989) and Goos et al.’s (2003) categories. We shared and discussed our classifications for 
each belief category and came to an agreement. Next, one member of the research team wrote a brief 
narrative that described the participant’s beliefs and justified our classification of his or her beliefs. 
The lead researcher performed a member check (Creswell, 2013) by sharing the narrative with each 
participant. Each participant agreed that we accurately captured his or her beliefs. For the second 
interview, we used rubrics designed by Hollebrands & Smith (2010) to score the PTs’ work on each 
of the four tasks. The tasks and rubrics were designed to assess the PTs’ levels of CK, PCK, TCK, 
and TPCK (see Table 2). Based on the participants’ work on each of the tasks, one of four levels  
 

TASK 1 
Suppose students in your middle or high school mathematics class are studying rectangles and squares. 
They open a dynamic geometry sketch that contains a rectangle and a square, each of which have been 
constructed. Students are asked to consider properties of rectangles and squares, based on their 
exploration of the sketch. One pair of students has measured the diagonals and they have noticed they 
are always congruent. They claim, “quadrilaterals have congruent diagonals.”  
     

a. Is this claim always true, sometimes true, or never true? Explain. 

b. How would you characterize their current level of geometric understanding? 

c. Create a sketch using a dynamic geometry environment that you would like students to 
use to explore diagonals of quadrilaterals. Be sure to include directions and/or 
questions you would provide to students as they use this sketch. 
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Figure 1.Example Task for Examining Participants' TPACK (Hollebrands & Smith, 2010) 

Table 2: Rubric Used to Analyze TPACK Interview Task 1 

Content Knowledge Pedagogical Content 
Knowledge 

Technological Content 
Knowledge 

Technological 
Pedagogical Content 

Knowledge 
A. Responds that the 
claim is sometimes true. 
 
B. Knowledge that there 
exists at least one 
quadrilateral for which 
the diagonals are not 
always congruent. 
 
C. States that for at least 
the rectangle and square 
the diagonals are always 
congruent. 
 
D. Provides a correct 
mathematical 
justification for why the 
statement is sometimes 
true using proofs that 
involve triangles or other 
properties. 
 
 
 
 
Emergent: 0 or no 
response. 
Beginner: 1 of A – D 
Intermediate: 2 of A – D 
Advanced: 3 of A – D 

A. Identifies that the 
student is able to notice 
that for a square and a 
rectangle that the 
diagonals are always 
congruent based on their 
measures.  
 
B. Identifies that the 
student is at level 2 
(descriptive) but 
probably not at level 3. 
 
C. Has students consider 
at least one 
counterexample of a 
quadrilateral that has 
congruent diagonals.  
 
D. Asks students to 
consider at least one 
example of a 
quadrilateral that has 
congruent diagonals. 
   
Emergent: 0 or no 
response. 
Beginner: 1 of A – D 
Intermediate: 2 of A – D 
Advanced: 3 of A – D  

A. Accurately constructs 
or draws a quad using a 
DGE that is a counter-
example. 
 
B. Uses measures to find 
the lengths of the 
diagonals. 
 
C. Drags to create 
multiple examples in a 
DGE. 
 
D. Accurate 
constructions of the 2 of 
the following quads: 
• Square 
• Rectangle 
• Parallelogram 
• Rhombus 
 
 
 
 
 
Emergent:  0-1 of A – D 
or no response. 
Beginner:  2 of A – D 
Intermediate:  3 of A – D 
Advanced: All of A – D 

A. Uses the DGE 
technology to focus 
students on properties of 
different quadrilaterals 
and their relationships to 
the diagonals in the task. 
 
B. Creates more than a 
single example using 
DGE technology to show 
the student that they are 
incorrect in the task. 
 
C. Designs an 
exploration for students 
by creating accurate 
constructions and 
utilizing the 
measurement and 
dragging features 
  
 
 
 
 
Emergent: 0 of A – C or 
no response. 
Beginner: 1 of A – C 
Intermediate: 2 of A – C 
Advanced: All of A – C 

 
(Beginner, Emergent, Intermediate, Advanced) was assigned for each of the four TPACK categories. 
We coded each participant's beliefs and TPACK levels individually, then compared codes and 
reconciled differences. 

Findings 

Content 
We found that participants’ level of CK aligned with their views of the nature of mathematics. 

Ken viewed mathematics as a set of facts, rules, and procedures that are to be utilized to solve 
problems. He said, “I guess personally I would define it as being able to, again using numbers in a 
formula to solve problem.” Thus, we classified his beliefs about the nature of mathematics as 
Instrumentalist. In the task interview, he was able to name various shapes but could not consistently 
identify properties, develop counter-examples, or justify the relationships among properties. We 
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coded Ken’s CK as Beginner. In the beliefs interview, Kim, May, and Sue held, in part, a Problem 
Solving view of mathematics. May said, “I also think math can seem like really rigid and like there is 
one right answer and this is how you do it. So I would also see the role as a mathematics teacher is 
kind of dispelling some of those myths about math.” Sue initially stated she viewed mathematics as a 
unified body of knowledge. However, her college courses have influenced her view of mathematics 
such that she also viewed it as a process of inquiry in which the student creates the mathematics. 
Thus, Sue seemed to have both Platonist and Problem Solving views. The three PTs viewed 
mathematics to be, in part, created by the human mind and, thus, is constantly evolving for the 
learner. The three PTs also displayed high levels of CK. Kim, May, and Sue were able to identify 
properties of different figures, relationships between figures, and determine whether a figure was 
rotated or reflected by examining the orientation of the figure. While May and Sue were able to 
justify why certain conjectures were true, Kim, at times, struggled in this area. Thus, we classified 
May and Sue having an Advanced level of CK and Kim having an Intermediate level of CK. Thus, 
the PTs who held a Problem Solving view of mathematics displayed a high level of CK, while the PT 
who held an Instrumentalist view displayed a low level of CK. 

Pedagogy 
We found two potential relationships between the PTs’ beliefs about teaching and learning and 

their level of PCK even though their beliefs were not the same. Ken believed students learn 
mathematics best when the teacher is in control of distributing the content, that is, he believed 
students learn mathematics through a Passive Reception. During the Task interview, Ken proposed 
activities that could help students see their mistakes, but would not allow students to determine why 
they were mistaken. Rather, his activities consisted of telling them what to do. Thus, we coded Ken 
at a Beginner level of PCK. The three other PTs held, in part, an Active view of learning 
mathematics. Kim thought students should be given the opportunity to pursue their own solution 
paths, to solve the puzzle in their own way. May also emphasized students should have ownership of 
their solutions to problems. She said, “[Students] can figure it out on their own and so I feel like 
they’d be more likely to understand it because they made that discovery themselves, instead of me 
just giving it to them.” Thus, Kim and May viewed learning as an Active Construction of 
Knowledge. Sue believed students learn mathematics best through repetition, but she learns best 
through discovery. Sue seemed to hold both Passive and Active views of learning depending who is 
doing the learning. On the task interview, Kim displayed an Intermediate level of PCK. She analyzed 
students’ thinking and made reasonable claims about students’ understanding and how they came to 
that understanding. However, she did not consistently create activities that would help students fully 
understand why a certain conjecture was true or false. Both May and Sue demonstrated advanced 
levels of PCK. They identified students' levels of understanding and their misconceptions. The 
examples, counterexamples, and exploration tasks May and Sue developed would help students 
recognize whether their conjectures were true and allow them to deepen their understanding of the 
content. Therefore, the PT who held a Passive view about learning mathematics displayed a low level 
of PCK, whereas the PTs who held more of an Active view of learning displayed high levels of PCK. 

There also seems to be a relationship between the PTs’ beliefs about teaching and their levels of 
PCK. Ken believed that good teachers are those who explain mathematical concepts well. He said, “I 
think in order to be a good math teacher you need to be able to show those students different ways of 
solving a problem. I think you also need to be able to show them the longer ways of why formulas 
work.” Thus, we coded Ken’s view of teaching as an Explainer. Kim and May believed students 
should be given the opportunity to pursue their own solution paths to become better problem solvers. 
Thus, they wanted to engage their future students in learning mathematics using exploratory 
activities. Sue said teachers should facilitate discovery, encourage problem solving, and differentiate 
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learning in the classroom. Therefore, Kim, May, and Sue believed that teachers should be 
Facilitators. As we mentioned above, Kim's level of PCK was at the Intermediate level, and May's 
and Sue's were at the Advanced level, all higher than Ken’s. Thus, the PT who viewed the role of a 
teacher as an Explainer displayed a low level of PCK, whereas the PTs who viewed a teacher as a 
Facilitator displayed a high level of PCK. 

Technology 
Comparing the participants’ beliefs about the use of technology in the teaching and learning of 

mathematics with their levels of TCK and TPCK, two relationships emerge. First, there appears to be 
a relationship between teachers’ beliefs about the use of technology in the mathematics classroom 
and their knowledge of how to use it to teach students mathematics (TPCK). Ken, Kim, and Sue’s 
beliefs about the use of technology in the learning and teaching of mathematics aligned, in part, with 
the Servant role; technology is to be used to amplify cognitive process, but not change the nature of 
the activities (Goos et al., 2003). In the task interview, the three PTs struggled to develop 
technology-based activities to help students overcome a misconception and the activities they created 
were limited to a certain number of examples or they did not use some of the basic features of the 
tool. We classified their TPCK at the Beginner level. May viewed technology as a Partner; 
technology should be used to explore and deepen students understanding of mathematics. In the task 
interview, May’s activities focused on correcting students' misconceptions and having students 
understand and consider fundamental properties and relationships that would deepen their 
understanding of mathematics. We coded May’s level of TPCK as Advanced. Thus, it appears that 
the PT who viewed technology as a Partner displayed a high level of TPCK while the PTs who 
viewed technology as a Servant displayed low levels of TPCK. 

Second, there does not seem to be a relationship between their beliefs about the use of technology 
in the teaching and learning of mathematics and their level of TCK. Ken and Kim held very similar 
views that technology could be used as both a Servant and a Partner. We coded both Ken and Kim at 
a Beginner level of TCK because they could use multiple tools and features of the DGE (e.g., 
perform constructions of figures, measure different components of the figures, use the drag feature, 
and label points), but they did not use them consistently across all four tasks and struggled to 
accurately construct some figures. May viewed technology as a Partner. During the Task interview, 
May displayed an Intermediate level of TCK, but she may hold a more advanced level of knowledge 
because she was unable to use the technology on the final task due to time constraints. Sue’s beliefs 
about the use of technology aligned with the Servant view. During the task interview, Sue used 
multiple features of the DGE for the majority of the tasks but struggled performing transformations. 
Thus, Sue had an intermediate level of TCK. Ken, Kim, and May’s views of technology seemed to 
correspond with their level of knowledge of how to use technology; the greater the PT’s TCK, the 
stronger the belief in using it as a way to engage students in learning mathematics. However, Sue’s 
view of technology and her knowledge of how to use it did not follow this relationship. Thus, we 
cannot state with any degree of certainty that a relationship exists between teachers’ TCK and their 
beliefs about technology. 

Discussion, Limitations, & Implications 
The goal of this study was to investigate the relationships among prospective middle grades 

mathematics teachers' TPACK in the context of geometry (first-order barriers) and their beliefs about 
the nature of mathematics, learning and teaching mathematics, and the use of technology (second-
order barriers). We found that PTs' beliefs about the nature of mathematics relates to their CK, their 
beliefs about learning and teaching mathematics relates to their PCK, and the use of technology to 
teach mathematics is related to their TPCK. May was the only PT who displayed high levels in all of 
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the TPACK components. Sue displayed the same levels as May for CK, PCK, and TCK. However, 
she displayed a low level of TPCK. May and Sue’s beliefs were not the same either. May displayed 
student-centered views of learning and teaching while Sue seemed to have both teacher-centered and 
student-centered views. In addition, Sue had a servant view of technology. Sue’s low level of TPCK 
is likely related to her beliefs. Sue struggled in developing appropriate technology based activities for 
students because she had not developed appropriate views of effectively teaching with technology. 
Kim et al. (2013) found teachers’ integration practices differed even though the teachers had access 
to the same technologies, support, and training. Teachers who held more student-centered views were 
able to integrate technology more seamlessly into their practices than those with more teacher-
centered views. Even though the teachers had a similar knowledge base, the researchers found their 
integration practices differed and their beliefs seemed to influence the integration. Based on the 
findings from both our study and Kim et al. (2013), developing a strong knowledge of content, 
pedagogy, and technology will not ensure that teachers will use technology effectively in the 
classroom.  

Unlike May, Ken’s views about the nature of mathematics, learning, and teaching mathematics 
were teacher-centered and he displayed low levels of TCK and TPCK. This leads us to believe that in 
order for teachers to use technology effectively, they must develop student-centered views of 
learning and teaching. However, Kim has student-centered beliefs about teaching and learning, yet 
she displayed low levels of TPACK. This finding is consistent with Chai et al. (2013) who indicated 
that while their prospective teachers had developed student-centered perspectives of learning and 
recognized the advantages of using technology, they struggled designing appropriate technology-
based activities. Thus, having student-centered beliefs will not ensure teachers will be able to use 
technology effectively.  

There are two limitations to our study. The first limitation is the number of participants. Perhaps 
if we had interviewed additional or different participants, we may have found different relationships. 
The second limitation relates to the underpinnings of the rubric used to determine the level of 
TPACK knowledge displayed by our participants. Hollebrands & Smith, (2010) developed the rubric 
based, in part, on what research considers the best practices to teach mathematics with technology, in 
particular a DGE (e.g. Laborde, Kynigos, Hollebrands, & Staesser, 2006). These practices are based 
on constructivist principles. Thus, the rubric is likely biased towards participants with student-
centered beliefs such that participants who held these beliefs would perform at high level compared 
to those who held teacher-centered beliefs. In fact, Ken, who held teacher-centered beliefs, did not 
achieve high levels while May, who holds student-centered beliefs, displayed high levels of TPACK. 
However, Kim and Sue held, in part, student-centered beliefs and did not display high levels for all 
TPACK components. Thus, the relationships between the participants’ beliefs and TPACK were not 
predetermined. Even though there are limitations to this study, we believe there are implications for 
researchers and educators.  

As technology becomes more ubiquitous in the classroom, first-order barriers will persist; 
software developers and curriculum designers are constantly adding new features and creating new 
tools for the classroom each year. Teachers will need training and support to integrate these updated 
and new tools into their classroom. However, our findings indicate that just providing knowledge on 
how to use these tools will not be enough. In order for teachers to use technology effectively, 
mathematics teacher educators should also focus on developing teachers’ beliefs. 

In this study, we examined the relationships that may exist between prospective middle grades 
teachers’ beliefs and their TPACK, although we only analyzed their work with a particular tool, a 
DGE. Future work should examine whether the relationships we found would be the same for other 
technological tools. In addition, we wondered if the same relationships would appear for prospective 
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secondary mathematics teachers and practicing teachers. We believe further research is needed in this 
area to provide a clearer picture of the relationships between teachers’ beliefs and their TPACK. 
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PRESERVICE TEACHERS’ LEARNING MATHEMATICS FROM THE INTERNET 

Aaron Brakoniecki 
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This paper presents the results of a study that examined how preservice teachers used the Internet to 
find information that would help them better understand one of the Common Core Standards around 
the Pythagorean Theorem. A brief review of the research around the participants’ search strategies, 
and content understanding is presented first. The connections between the searching strategies used, 
and the form and quality of the mathematical connections made is the focus of this paper. 

Keywords: Technology; Teacher Knowledge; Teacher Education-Preservice 

Mathematics teacher educators can not prepare preservice teachers for every piece of 
mathematics content they will encounter during their career. This means that these future teachers 
will need to learn mathematics on their own, outside of their teacher preparation programs. Many of 
these teachers will turn to the Internet to learn about unfamiliar mathematics. This paper presents 
results from a study that investigated how preservice teachers learned mathematics online, 
connecting their information seeking strategies and their understanding of the content.  

Information Seeking in Digital Environments 
Several studies have attempted to describe the behaviors of information seekers as they use 

digital tools to locate information. These studies have focused on describing two aspects of the 
searching process; the behavior of the user while seeking resources, and attention to how the user 
interacted with the resources. (An analogy to a non-digital scenario would be looking at participant 
behavior while searching for a book in a library, and how the participant interacted with the book 
once it was located.) Patterns of behavior emerged when looking at how searchers located resources 
within hyperlinked environments and how searchers located information within particular resources. 

Representing and Analyzing Mathematical Connections 
Concept maps are visual tools that can be used to illustrate connections between ideas. Consisting 

of nodes, connecting phrases, and lines, the creator of a concept map can represent their own 
understanding of a topic, and how they are connecting and relating ideas. Concept maps have been 
shown to be an effective way to capture student understanding of content in mathematics (Baroody & 
Bartels, 2000). Concept maps have also been used to track changes in the content understanding of 
mathematics teachers (Hough, O’Rode, Terman, & Weissglass, 2007).  

There have been many attempts in this history of mathematics education to describe ways that 
learners come to know mathematics. Many frameworks attempt to describe deeper and more richly 
connected understandings of mathematics and Jon Star (2005) recently contributed a clarification to 
these approaches, clearly distinguishing between the form of mathematical understanding (i.e. 
conceptual and procedural) and the quality of that understanding (i.e. rich or superficial). He noted 
that both forms of mathematical understanding could be understood richly as well as superficially. 

Preservice Teachers’ Learning of the Pythagorean Theorem from the Internet 
This work is part of a project that investigated how seven preservice elementary teachers learned 

unfamiliar mathematics online. These preservice teachers were enrolled at a large Mid-Western 
university earning a degree and certification toward teaching at the elementary level. Additionally, 
these participants were also earning a minor in mathematics and had been taking additional 
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mathematics courses as part of their coursework. In individual sessions, the participants were 
presented with one of the Common Core State Standards for mathematics (National Governors 
Association Center for Best Practices & Council of Chief State School Officers, 2010) that they may 
be responsible for teaching later in their careers (Standard 8.G.B.6 – Explain a proof of the 
Pythagorean Theorem and its converse). They were asked, via two tasks, to search online for 
resources that helped them better understand the mathematical content related to this standard. 
Before, between, and after these tasks, the participants created concept maps representing how they 
were thinking about content related to the Pythagorean Theorem. The information-seeking behavior 
of these preservice teachers during their Internet searching was examined as well as the series of 
concept maps created over the course of these sessions. 

Information-Seeking Online 
A previous report from Brakoniecki (2014b) looked at the information seeking strategies 

employed by the seven preservice teachers when searching for information online. All the 
participants at some point during their searching exhibited a focus on content of the sites they were 
finding (showing that no person only skimmed the information). Additionally, all participants 
utilized a timid navigation strategy, sticking close to their search results, and not venturing far from 
their search results. However, some of the participants focused predominantly on one format of 
resource, either preferring to spend the majority of their time looking at static resources (e.g. text, 
pictures, etc.) or dynamic resources (e.g. movies, web applets, etc.). This is in contrast to a different 
group who split their time locating information with both of these types of resources, focusing both 
on static and dynamic content. Additionally, there was a distinction in how much time the 
participants spent attempting to locate information on sites. The three participants who spent the 
longest time exploring sites were also the participants who exhibited both a focus on static content 
and a focus on dynamic content, exploring resources with both forms of content. The four 
participants who spent the least time exploring content in sites, showed a preference for one format 
of resource over another. This varied by participant where some preferred static resources and others 
preferred dynamic. Further details on this analysis can be located in Brakoniecki (2014b). 

Mathematical Connections 
A second paper from this same data set analyzed the concept maps the participants made before, 

during and after the two Internet searching tasks. These concept maps were analyzed for the structure 
of the concept maps, the content that was included in the concept maps, and the connections between 
the content in the maps (Brakoniecki, 2014a). The preservice teachers organized their concept maps 
in either a hierarchal or radial design in their first map, and almost always chose the same 
representation for their later iterations where they were asked to redraw their concept maps. When 
looking at the content the preservice teachers included in their concept maps, overall, the most 
content appeared in the final concept maps, constructed after participants had performed both 
searches. A distinction emerged among participants when looking at the connections they included 
among their content. These connections were analyzed for their form (procedural or conceptual) and 
quality (rich or superficial). One group of participants included an overwhelming majority of 
conceptual kinds of connections in their maps, and only toward their final mappings did they include 
procedural connections. This group also had an absence of richly described links in their concept 
maps. In contrast to this group, a second group among the participants was found to have more of a 
balance of between conceptual and procedural links throughout their concept maps. Additionally, 
every one of their iterations of concept maps contained at least one richly described connection. 
Further details regarding this study can be located in Brakoniecki (2014a). 
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Connections Between Information Seeking and Mathematical Connections 
The two previous studies found two patterns of behavior when looking at the preservice teachers’ 

information seeking strategies, and two patterns of behavior when looking at the mathematics 
connections they included in their concept maps. What was surprising was that there was an exact 
correlation between the groupings of these preservice teachers. The participants who showed a 
preference for one form of content and spent less time examining content were also the participants 
who included almost all conceptual links among their content and had a lack of richly described 
connections. This group of participants seemed to have more of a big idea approach, or a zoomed out 
orientation, to the content.  The participants who preferred a balance of forms of content and spent 
longer exploring the resource sites were the same preservice teachers who had more of a balance 
between procedural and conceptual links in their concept maps, as well as always including at least 
one richly described link in their concept maps. This second group seemed to have more of a detail 
approach, or a zoomed in orientation, to the content. 

Preservice Teacher Understanding of the Standard 
Prior to the beginning of these information-seeking tasks, preservice teachers were prompted to 

imagine that they were teachers in their own classrooms and they were asked what their goals would 
be for their classes as they worked toward achieving this standard. All of the participants in their 
responses to this question mentioned goals of having students be able to understand proof or be able 
to reason through a mathematical argument. Some of the participants also described classroom goals 
that were unique to the Pythagorean Theorem including details like the Pythagorean Theorem having 
multiple proofs or multiple representations. Additionally they may have mentioned mathematics that 
was specific to the Pythagorean Theorem. The division in the preservice teacher behavior to this 
question mirrored the split in their behavior to the previous tasks. The participants who responded to 
this preinterview question in the general way were the same participants as the big idea orientation 
from the prior grouping. The participants who responded to this preinterview question in the specific 
way were the same participants as the detail orientation in the prior grouping. 

It wasn’t until the preservice teachers were asked to think about what they wanted to do in their 
classroom, a pedagogical question that details emerged. This is an interesting point that, looking at 
content related questions of the preinterview did not show any distinctions among the preservice 
teachers in this study. Examining the pedagogical content question did show a distinction in the 
responses. This is important as it helps suggest that the “same” understanding of content does not 
imply that enacted lessons would also look the same. Teachers’ pedagogical goals shape their 
classrooms just as much as their understanding of the content does. 

Future Directions 
We do not want preservice teachers to have only a zoomed in orientation or only a detail 

orientation. Being able to focus on details is an important process for teachers, but so too is the 
ability to zoom out and look at where the content of a lesson fits with other content. This is 
sometimes referred to as horizon content knowledge (Ball, Thames, & Phelps, 2008), the knowledge 
of how the content of a lesson fits in with the content from the day before, or the content of the next 
unit. 

This study raises several questions that point to future directions for research. This study 
contributes to the conversation that examination of teachers’ content knowledge must also be 
accompanied by an examination of their pedagogical approaches in order to understand their 
classroom practice. There appears to be a strong connection between the behaviors of participants 
when searching online for mathematical information, and how they chose to represent their 
understanding of content, of which classroom goals may influence this behavior (though other 
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influences may yet be discovered). Additional study might also include how preservice teachers 
might be learning pedagogical content knowledge online. As the internet becomes a more prevalent 
location for teachers to learn about mathematics and ways to teach mathematics, it’s important to 
better understand the ways in which this resource is being used and how it can be better leveraged for 
teacher learning. 
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In this theoretical presentation, we connect research-based mathematics teaching practices with the 
software development movement known as Lean Thinking. By linking these two worlds, we hope to 
create educational technology products better aligned with research-based mathematics teaching 
practices, such as listening to and noticing children’s mathematical thinking. The Lean Thinking 
movement focuses on minimal features, constant listening, and short response cycles as opposed to 
building out massive features with subsequent rounds of testing. Successful mathematics teachers 
position themselves the same way: listening to, noticing, and responding to their students’ 
mathematical thinking in small increments with rapid feedback, as opposed to teaching massive units 
with little opportunity for student voice or formative assessment. 

Keywords: Policy Matters; Teaching Beliefs; Teacher Knowledge; Technology 

Objective 
Current mathematics education research has shown that effective mathematics teaching requires 

teachers positioning themselves as listeners and noticers of mathematical thinking (Empson & 
Jacobs, 2008; Jacobs, Lamb, & Philipp, 2010). This focus on listening and noticing appears in 
multiple forms, from one-on-one clinical interviews (Ginsburg, 1997), orchestrated whole group 
discussions (Smith & Stein, 2011), or targeted strategy sharing techniques (Kazemi & Hintz, 2014). 
This shift from positioning teachers as authorities of mathematical knowledge to listeners of 
children’s thinking is a drastic change within modern mathematics pedagogy (National Research 
Council, 2001). In a similar fashion, the rapidly changing software industry has also undergone 
massive paradigm shifts. Most notable, the Lean Thinking movement, which positions developers as 
listeners and responders to end users, has revolutionized not just the software industry, but our 
increasingly technology-based lives. 

In this presentation, we lay a theoretical foundation connecting reform-oriented mathematics 
education and Lean Thinking. As mathematics educators wary of the over abundance of mathematics 
education technology, we use language from software development to connect to important ideas 
within mathematics educators in order to align paradigms in software development with research-
based mathematics teaching practices. We hope to help technology developers and mathematics 
teachers find common ground and language in order to build technology that connects to teachers’ 
practices and attends to teachers’ and students’ actual needs. 

Theoretical Framework 

Lean Thinking  
The term Lean Thinking comes from Womack and Jones’ (1996) profile of Toyota’s constantly 

evolving car production techniques, which created an aura of dependability and quality around the 
brand. When applied to software development, Lean Thinking focuses on quick response to change, 
collaboration with end users, and short, frequent timescales for delivery (Highsmith, 2001; 
Poppendieck & Poppendieck, 2003). Many of us have benefited from Lean Thinking through 
software products that quickly evolve to meet the needs of its users, such as Facebook and Dropbox 
(Ries, 2011).  
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Figure 1. The quick Build-Measure-Learn feedback loop (Ries, 2011). 

At the heart of Lean Thinking is a quick Build-Measure-Learn (BML) feedback loop (Figure 1), 
an ongoing collection of user data. Using the BML loop, developers start with an idea about how a 
feature might work and then quickly test it with users to see what happens. What sets Lean Thinking 
apart from traditional software development is the speed of this BML cycle. While a traditional 
software company rolls out a new version, beta tests, and then collects feedback data, Lean Thinking 
blasts through dozens of BML loops using a Minimal Viable Product (MVP), a product with only the 
features developers need to test (Ries, 2011). Often, MVP’s are no more than screenshots, with users 
mimicking the pushing of buttons and telling an interviewer what they would be doing. No time is 
wasted in developing or building additional features. Through this mindset, developers are able to 
stay lean by focusing their energy on listening and responding to users as opposed to building what 
they predict a user will want to use. 

Mathematics Teaching as Lean Thinking 
A close reading of the research in mathematics education shows connections between Lean 

Thinking and current mathematics teacher education research. First, the research in how children 
learn mathematics emphasizes a three-step process: 1) Before, in which a teacher connects to a 
child’s prior knowledge; 2) During, in which a student engages in a mathematical tasks; and 3) After, 
in which a teacher orchestrates a discussion of the strategies that students used to solve a task (Van 
de Walle, Lovin, Karp, & Bay-Williams, 2014). These three steps align with the Build-Measure-
Learn loop. Just as Lean Thinking developers frame themselves as building services for users as 
opposed to creating finished products, mathematics education research frames teachers as building 
mathematical thinkers as opposed to creating standardized memorizers.  

The Before/Build phase acknowledges what a child already knows mathematically in order to 
build mathematical tasks that connect to this prior knowledge. The During/Measure phase involves a 
child attempting their own strategies to solve these tasks while the teacher pays careful attention to 
listen to and notice how a child thinks. Finally, the After/Learn phase involves a teacher taking up 
children’s thinking in order to respond to and orchestrate discussions for students to learn from one 
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another. By being flexible to the many strategies and ideas that students bring up, a teacher can 
facilitate productive mathematical discussions and position him/herself as learning from the students. 

Often, outsiders to education assume mathematics teachers facilitate classes using a dated “I do, 
we do, you do” approach (Hunter, 1982). But research in mathematics teaching has time and time 
again shown that an inquiry-based focus on eliciting and unpacking student thinking leads to greater 
mathematical understanding (Carpenter, Fennema, Franke, Levi, & Empson, 1999; Hiebert et al., 
1997; National Research Council, 2001). Like Lean Thinking developers, teachers should not default 
to a single “right way” to solve a mathematical task, but listen to and extend students’ created 
strategies in order to extend their own thinking. And just as traditional development techniques leads 
to a lot of wasted effort as developers build features that users will never actually use, research-based 
teaching practices asks teachers not to spend their energy creating lessons that “tell” students how to 
solve a task (which might be different than how a student conceptualizes the task), but to be flexible 
of the many ways children solve a task and to respond to this thinking appropriately (Carpenter et al., 
1999; Jacobs et al., 2010; Smith & Stein, 2011). Therefore, Lean Thinking is not necessarily a new 
way of conceptualizing of mathematics teaching practice, but a way to connect research-based 
mathematics teacher practices with the vernacular of technology and development. 

Discussion 
We are aware of the challenges of such a marriage of fields, as well as reasons why this merging 

has been avoided in the past. First, educational technology is often purchased at a district level, a 
result of the top-down approach used in our nation’s school systems. While the primary users of any 
educational tools are children and teachers, the decisions makers are often administrators. By using 
language that situates teachers as developers, our hope is for technology developers to see that 
educational technology must allow for teachers to experiment and learn from their students, 
something very similar to what they are doing as they build software. Additionally, by positioning 
teachers as developers, we hope to empower teachers to develop technology solutions for their own 
practice. We want development to start with the teacher, not the administrator. 

Second, forcing children to serve as “beta testers” of an educational intervention traverses ethical 
boundaries, essentially experimenting unfinished products on real children. However, in our current 
educational system in which large scale assessments (e.g., PARCC and Smarter Balance) and 
federal-level standards (e.g., CCSS) are routinely implemented without prior testing, a Lean 
Thinking approach that focuses on small, quick interventions rather than large scale implementation 
causes much less harm for children’s intellectual development.  

In conclusion, we hope that by adapting language from software and technology development 
into our field, we can (1) help educational technology developers create products that align with 
research-based mathematics teaching practices and (2) empower mathematics teachers to see 
themselves as capable of developing and sharing their own technology products. The use of a Lean 
Thinking paradigm within mathematics education technology is not new, we are just connecting 
language from two field in the hopes that we can try to make something better together.  
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Historically, science and mathematics teacher educators’ model best practices in face-to-face 
settings as a way to teach about learner-centered instruction.  This presents a challenge for 
instructors of online settings.  In order to move what is typically considered effective in face-to-face 
practices to an online model, it is essential for teacher educators to push their thinking about how 
they can model best practices in new and different ways and to study how teachers make sense of and 
translate what they learn to the K-12 face to face setting. This study examined science and 
mathematics teachers’ perceptions of their learning in four online courses of an online graduate 
program that focused on the integration of science and mathematics in the middle grades. Findings 
validated the teaching practices that were in place or being developed in the teachers’ own 
classrooms as well as the teachers’ utilization of various teaching activities. 

Keywords:  Instructional Activities and Practices; Teacher Beliefs; Teacher Education-Inservice; 
Technology 

Introduction 
     In the past decade, online education has quickly become a leading force in higher education 

due to the expanding role of technology and the increased access to the Internet (Bourne & Moore, 
2004).  With this increased growth, higher education faculty have found that building an effective 
course in an online environment is much more than just replicating their materials of a face-to-face 
course to an online setting.  Providing effective course content online parallels face-to-face 
instruction in that considerations must include learner characteristics, course organization, and the 
preparation of the instructor.  Also, moving to an online environment does not exempt the instructor 
from what is commonly accepted as effective teaching, such as understanding the learners’ needs 
(Dick, Carey, & Carey, 2001). 

     A strategy for considering how to design effective online instruction is to be informed about 
learner perceptions in online environments. Existing research about learner’s perceptions in online 
environments is on a myriad of topics that focuses mainly on how the learner understands theory 
about the online environment and/or how the learner interacts with various aspects of the online 
environment (Eom, Wen, & Ashill, 2006).  What is missing from the literature are learners’ 
perceptions in online environments when the learner is a teacher. Teachers as learners in online 
environments are unique because of the complexity of teaching teachers about teaching children, 
which is typically done in face-to-face environments.  Adding to the complexity of teaching teachers 
in online environments is the specificity when the teachers are teachers of science or mathematics.   

Purpose of the Study 
The purpose of this study is to gain understanding of science and mathematics teachers’ 

perceptions of online learning experiences over one year in an online graduate program that focused 
on the integration of science and mathematics in the middle grades. In this particular case, the 
teachers had taken four different courses over two semesters. Two courses were specific to 
mathematics education while the other two were specific to science education. Understanding and 
describing teachers’ perceptions of their learning in various coursework is the first step to designing 
effective courses and creating meaningful learning environments for teachers of science and 
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mathematics.  Accordingly, there are two research questions for this study.  First, how do science and 
mathematics teachers perceive online course experiences?  Secondly, do science and mathematics 
teachers perceive their online learning experiences as transferrable to the face-to-face classroom?  

Literature Review 
     There is a body of research (Moore & Kearsley, 2005) that focuses on how the learner 

interacts with their online environment.  However, that research alone is not enough to understand 
the ultimate success of a learner because it is necessary to consider how the learner perceives their 
interaction within an online environment. Research studies in online learning have looked at various 
ways of producing effective and beneficial online class settings through:  multiple types of 
assignments, asynchronous reflection and discussion boards, synchronous conversation, and the use 
of a variety of media tools (Lebaron & Miller, 2005).   Armstrong (2011) & Lin (2011) looked at 
effective online class settings by studying the role of communication in online learning and found 
that students perceived their connection in an online class greater than a face-to-face class because 
they had to take ownership for their learning. Research is now beginning to emerge in the area of 
online professional development (OPD) programs for teachers (Carey, Kleiman, Russell, Venable, & 
Louie, 2008; Dash, de Kramer, O’Dwyer, Masters, & Russell, 2012; Dede, Breit, Ketelhut, 
McCloskey, & Whitehouse, 2006).  In two particular studies focusing on mathematics teachers’ 
education, results showed that teacher’s perceived their learning as effective as traditional methods of 
professional development (Groth & Burgess, 2009; Groth, 2007).  

Methodology and Context 
This study took place within an online Master’s of Education program called Integration of 

Science, Mathematics, and Reflective Teaching (iSMART) which is a two-year program for middle 
school science and mathematics teachers.  [This program is generously funded through the Greater 
Texas Foundation (http://greatertexasfoundation.org/). The opinions expressed here are those of the 
author and do not necessarily reflect the views of the Greater Texas Foundation.] The program 
focuses on the integration of science and mathematics as a means of developing teachers’ content 
knowledge, as well as developing the teachers’ technological and leadership skills. The program 
emphasizes inquiry and reasoning, developing students’ skills in becoming effective problem solvers 
and communicators of mathematical and scientific ideas, and creating learning environments in 
which the teacher is a facilitator of learning rather than a dispenser of knowledge (Graham & 
Fennell, 2001).  Using reflective collaboration with on-line classmates, the iSMART program seeks 
to develop in-depth teacher content and pedagogical knowledge through activities of the program 
including:  analyzing theories and models of integration of science and mathematics, analyzing and 
writing curriculum, studying children’s thinking of content, and reflecting on video of own practices.  
Both asynchronous and synchronous formats are utilized in the program where the teachers meet 
online for three hours for class one week and then the next week has an asynchronous assignment 
that builds from the synchronous meeting or sets the stage for the next synchronous meeting.  

To obtain the data a researcher-developed survey that combined information from published 
literature on both online learning and online professional development was given. The survey was 
constructed of Likert scale items where space for each item was provided for additional comments.  
The questions were addressing the teachers’ perceptions of their online learning in various ways:  
comparing a methods versus a seminar course, how they viewed their participation within each 
course, collaboration with their colleagues in each of the four courses, each of the four course 
structures, the instructors’ facilitation and presence, and the perceptions about the ability to transfer 
the course content. The survey was administered during a week-long face-to-face conference during 
the summer between the two academic years. 
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Once the surveys were completed, the surveys were collected and photocopied.  The following 
day the surveys were then re-distributed to participants and they discussed their responses in small 
groups and were allowed to add to their responses accordingly.  In order to best analyze both the 
Likert and free response data obtained, qualitative data analysis measures were employed.  The open-
ended responses of each question were coded using a constant comparative method, according to the 
categories of research significance, as supported by the literature (Merriam, 1998). 

Results 
A necessary component to understanding the complexity of teaching online graduate courses for 

middle grades science and mathematics teachers is to analyze the perceptions of the teachers that 
currently engaging in the coursework. During the coding process the following themes emerged: (a) 
the instructors’ instructional practices, (b) community development within the courses (c) 
development of content & pedagogical knowledge & (d) ability to transfer knowledge to their own 
teaching practice.  

The teachers emphasized that the format of the class impacted the learning process.  Specifically 
when the structure was more direct instruction (or lecture format), as described by the teachers, less 
time in conversation occurred, and thus less community was developed which in turn impacted the 
learning process. In the other courses where the structure was focused on discussion-based, student-
led activities, the teachers “enjoyed collaborating because the nature of the courses dealt with how to 
become stronger teachers/coaches.” The teachers’ also felt that they could share with colleagues who 
were in similar teaching situations that they may not otherwise have the opportunity to engage in 
because the instructors made the online environment a ‘safe place’ to discuss and aided in the 
understanding of curriculum they were currently teaching.  

 Several teachers felt that the coursework was challenging and that the design of the courses 
offered enough time to process the material in order to understand it as well as to make changes to 
their teaching practices.  The teachers felt that the questioning strategies used by the instructors were 
highly beneficial to their own pedagogy in their classrooms.  Additionally, there were teachers that 
felt that the way the instruction was structured and modeled assisted them in planning for instruction 
in their own classrooms.   

Implications 
Online learning has quickly become a means of delivering graduate education to teachers (Allen 

& Seaman, 2014).  As this study shows, teachers perceive learning in an online setting as effective as 
a face-to-face class. Teachers are required to continue their professional learning even after they 
finish their graduate education.  Many times this professional learning is place-based (off of the 
teacher’s campus) and does not meet the content criteria they need.  However, given the results of 
this study, that teachers’ perceive their learning in an online setting as beneficial, then online 
professional development (OPD) could be an avenue for future research with teachers’ of 
mathematics and science in the middle grades. Teachers could be in a community of practice while 
engaging in OPD at their home campus or district location. This type of OPD option for professional 
development as a venue for research is a new, barely explored, territory, particularly in the areas of 
science and mathematics education.  The overall goal of any educational program, whether it is a 
graduate program or an OPD program, is to help teachers gain the technology skills and knowledge 
needed to improve their teaching practice.  It is through these future studies that the refinement of 
teaching teachers about teaching mathematics and science in an online setting can occur.   
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This paper investigates middle school students’ interactions while participating in learning activities 
in which they explored the connections between an arithmetic expression and the motion of a robot 
along a number line. Results indicate students utilized the technology to form conjectures, justify, 
and reflect on their experiments as they worked to interpret multiple meanings of the minus sign in 
the context of the robot’s motion. 

Keywords: Algebra and Algebraic Thinking; Number Concepts and Operations; Technology 

Introduction 
Technology-based learning environments can provide novel opportunities for students to build 

conceptual bridges between real-world phenomena and mathematical formalism. Often, these 
environments emphasize graphical representations of phenomena. Calculator Based Lab devices, for 
example, allow students to collect data about phenomena such as breathing patterns and to graph a 
function that fits that data (Doerr & Zangor, 2000).  Motion detectors invite learners to directly 
experience the translation of physical motion into a graphical representation, and simulation 
environments can build the same bridge in reverse, allowing students to explore the ways that 
manipulating the graph of a position-versus-time function affects the motion of an animation 
(Roschelle, Kaput & Stroup, 2000). 

In this paper, we explore a different approach, using the movement of physical robots as a 
context for students to explore the meaning of arithmetic expressions. We present results from a 
study in which the research team developed an iPod interface that allowed students to manipulate 
robot movement along a number line by inputting numbers and operations. Students’ interactions 
with these tools and one another were examined through the framework of cycles of mathematical 
reasoning (Lehrer & Chazan, 1998) in order to investigate the ways enacting robot motion through 
mathematical expressions can support student learning. 

Why Arithmetic Expressions: Importance and Challenges of Learning Signed Numbers 
Signed numbers and operations are fundamental algebraic concepts, as the transition from 

arithmetic to algebra contributes to students’ subsequent learning of more advanced mathematics 
(Vlassis, 2004; Lamb et al., 2012). However, the transition from arithmetic to algebra presents 
learners with complex cognitive challenges (Herscovics & Linchevski, 1994). Researchers suggest 
that the challenge of comprehending minus signs may reflect students’ attempts to assimilate 
negative numbers with the characteristics of natural numbers (Vlassis, 2004). The minus sign can 
represent the binary operation of subtraction, as in the expression 5-3 = 2. The same minus sign, 
however, can also represent the unary operation of negation, as in the case of the integer -5 (Lamb et 
al., 2012). These varied uses of the same symbol may contribute to students’ difficulty in grasping its 
mathematical meaning (Vlassis, 2004). However, understanding the multiple meanings of the minus 
sign, and developing the ability to flexibly shift among these different interpretations, are critical 
underpinnings of algebra learning.  
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Research Design 
We developed a graphical user interface for this study in order to enable students to interact more 

directly with mathematical representations. The robot moves along a number line in order to enact an 
arithmetic expression entered by one or more students through handheld devices. The robot 
behaviors and position are intended to model the mathematical expression in order to provide an 
accessible medium for students to explore its meaning.    

In this activity, students in pairs used handheld devices (iPod touches) to jointly construct integer 
expressions by entering a series of operations and values into the devices through the graphical user 
interface (Figure 1). A number line was placed on the floor using velcro tape (Figure 2). After both 
students constructed and agreed on the inputted expression, the robot moved forward or backward 
depending upon the sign of the value, and turned around in place when it encountered a negative 
number. For example, 3+-4-2 indicates that the robot would move from position 3 backward for 4 
units, then spin around and move forward towards a negative direction for 2 additional units.  The 
backward motion enacted the unary interpretation of the minus sign, and the turning motion enacted 
the binary format of the minus sign.  In situations where the previous experiment resulted in the 
robot facing the negative direction, the software made an adjustment accordingly. 

The study took place in two semi-urban K-8 schools in northern California with approximately 
130 7th and 8th grade students in six Algebra classes taught by two mathematics teachers. The 
activity was implemented for one week. Video and audio were recorded with cameras, and additional 
audio data was recorded from all participating students through the iPods. All student inputs from the 
iPod devices were captured through the computer server.  

     
Figures 1 and 2: iPod interface and Robot with Number Line 

Data Analysis 
Analysis of these data was oriented toward three main research questions: 1) How do students 

understand arithmetic procedures in the context of robot motion? 2) How does using robot enactment 
of arithmetic expressions support students’ understanding of integer and operation though motion 
metaphor? 3) How does the related robot behavior influence students’ understanding of the minus 
sign’s multiple meanings? The research team collected around 50 hours of video and 300 hours of 
audio of students’ interactions with the handheld and robot tools.  Next, we present an episode in 
which one pair of students demonstrated the potential opportunities for reasoning about signed 
numbers afforded by this learning environment. 

Results: Reasoning about Binary and Unary Interpretations of the Negative Sign 
In an early cycle of classroom activity with these tools, students were prompted by the teacher to 

freely explore the robot motions resulting from different expressions. After a few initial attempts to 
get familiar with the iPod interface and the robots, these two students jointly decided to search for a 
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mathematics expression that would change the direction in which the robot faced by making it spin 
around 180 degrees. Table 1 provides the log record of the students’ inputs in the iPod interface 
while completing this task.  

Table 1. Record of students’ inputs “make the robot spin” 

Sta
ge 

Robot 
initial 

position 

Student input 
Expression Operatio

n 
Signed 

Number 
1 1 + -6 1 + -6  

2 -5 + -7 -5 + -7 + 
6 + 6 

3 
-6 - 6 -6 – 6 + 6 + 6 

-6 - 8 -6 – 8 + 4 + 4 

4 -10 + 9 -10 + 9 + 
-9 + -9 

5 

-10 - 5 -10 – 5 + 
3 + 3 

-12 - 3 -12 – 3 + 
2 + 2 

-13 - 4 -13 – 4 + 
2 + 2 

      
The episode started with the robot positioned at 1 and facing the positive direction. Student 1 

suggested that they “Subtract. Make it a negative 6,” then a moment later revised to “subtract 6.” 
However, Student 2 followed the original suggestion, entering plus negative 6. At this stage the 
students were failing to distinguish between binary and unary meanings of the minus sign. In Stage 2, 
Student 2 reflected on the previous result and said “just add another, just add a positive, then it might 
spin.” They entered the next expression, -5 + -7 + 6, and voiced optimism that they would “see if this 
works”. The students’ long sighs illustrated their disappointment at the unexpected resulting 
movement. In stage 3, the students then decided to attempt a subtraction with an addition, asserting 
“maybe we should do a negative and a positive” because “last time we used two positive.” The 
students were now acknowledging that the minus sign has multiple meanings: after inputting -6 + -6, 
Student 1 asked “Plus a negative sign or is that the opposite? Should be minus a positive?”  The two 
students decided to submit -6 – 6 + 6, and the robot spun.  However, Student 1 voiced lingering 
confusion, stating “But I don’t know why it spun.” Students then experimented with the expression -
6 – 8 + 4 to confirm their prediction.  Next, in stage 4, despite Student 1’s proposal to “put random 
stuff in,” the fact that the signs and operations of the inputted expression -10 + 9 + -9 were all 
reversed from the previous attempt suggests this student may in fact have been testing the impact of 
these variations on the robot’s behavior.  The robot moved and failed to spin in this experiment. 
Stage 5 began with the students returning to their previous assumption from stage 3. While seeking 
ways to trigger the robot behavior of spinning, Student 2 concluded after attempted few more 
experiments that “so all it is is the negative, the operation” and “so it will have to be the operation 
instead of the sign”. 
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Discussion 
The episode offers evidence of examples where students identified the unique behavior of the 

robot changing direction as representing the binary meaning of the minus sign, which reveals her 
discovery that different meanings of the same symbol produced distinctive robot movements. 
Although this student demonstrated her acknowledgement of the relationship between robot 
movement and various meanings of the minus sign, the group also drew incorrect inferences. For 
example, these students had mostly chosen to submit two additional terms, when in fact users only 
need to input one mathematical term for the robot to spin. We suspect that this may be an artifact of 
students working in pairs, as each felt the need to each contribute a term. 

The environment offered the opportunity to observe the robot motion as a direct enactment of the 
mathematical expression constructed by students.  The activity and technology design provided the 
appropriate context for students to develop understanding through the cycle of mathematical 
reasoning (Lehrer & Chazan, 1998), offering learners a tool with which to form conjectures, justify, 
and reflect on the experiment result, and develop new experimentation to refine their conjectures. 
Frequent comments such as “Let’s try it. Let’s see what happens” suggest that students saw their 
mistakes not as errors, but as necessary elements of their process of exploration. Furthermore, 
students often justified and reflected on the result of each experiment, as illustrated through student 
statements such as “What did we do last time?” This experimental cycle repeatedly occurred within a 
single episode, resulting in students voicing comments such as, “this was actually easy, all it took 
was experimenting.” 

Conclusion 
The analysis of this episode has enabled the authors to describe students’ interactions when 

offered the opportunity to manipulate robot movement by inputting symbolic expressions.  Students 
used these tools to experiment with signed numbers, using feedback from the technology to confirm 
or deny their hypothesis, and build up empirical evidence for interpreting the result of their 
conjecture.  Our data demonstrate directly exploring the relationships between arithmetic expressions 
and robot motion allowed students to treat the environment as an exploratory setting to develop their 
mathematical reasoning through investigation. 
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This study examines how prospective teachers in Korea and the U.S. demonstrate Technological 
Pedagogical Content Knowledge (TPACK) and respond to new technology in mathematics learning. 
Overall, preliminary findings show that U.S. prospective teachers scored higher in most domains of 
TPACK than Korean participants. Korean participants demonstrated lower self-efficacy in 
Pedagogy Knowledge (PK) and Pedagogical Content Knowledge (PCK) when compared to U.S. 
participants. There were noticeable differences in the ways they evaluated technology and the ways 
in which they use new technology in instruction. 

Keywords: Technology; Teacher Education-Preservice; Teacher Knowledge; Teacher Beliefs  

A variety of approaches helpful in guiding teachers in implementing technology in mathematics 
classrooms have been developed (Kinuthia, Brantley-Dias, & Junor-Clarke, 2010; Polly, 2011). 
However, the ever-changing nature of technology demands a continued examination of the ways 
teachers develop successful technology-integrated practices. Researchers have considered a number 
of areas including teacher knowledge of technology, related pedagogical strategies, and the level of 
support available for teachers to implement technology in classrooms – we still need more detailed 
work that describes specific ways that teachers in different cultural and education settings respond 
to new technology and provides insight into effectively guiding teachers to implement appropriate 
use of technology in classrooms. 

Purpose of the Study 
The purpose of this study is to examine the ways teachers respond to new technology (e.g. 

equation solving apps) and how their perceptions of the technology may impact instruction. 
While exploring various teacher responses toward new technology, we looked at two groups of 

prospective teachers in Korea and the U.S. Research questions guiding our study included (1) How 
do prospective teachers orient their instruction in response to the perceived benefits or hindrances of 
technology in mathematics instruction? (2) To what degree were prospective teachers in Korea and 
U.S. similar or dissimilar with regard to ways to respond to new technology? 

Perspectives 
Research on barriers and challenges affecting technology integration as well as strategies to 

overcome them have long been studied (Hew & Brush, 2007).  Our frameworks include TPACK 
(Mishra & Koehler, 2006), the role of technology in the learning of mathematics (Goos, Galbraith, 
Renshaw, & Geiger, 2003), and psychological perspectives associated with teacher knowledge and 
beliefs, including its impact on teacher change (Ertmer & Ottenbreit-Leftwich, 2010). TPACK and 
other literature regarding the process of using technology in mathematics classrooms enabled us to 
conceptualize how teachers perceive the affordances and constraints of technology. Teacher 
knowledge, as well as attitudes and beliefs (Howard, Chan, & Caputi, 2014) are key attributes that 
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influence teachers’ decisions in the classroom. Therefore, understanding these attributes in light of 
educational technology may provide better insight into how teachers are likely to use technology in 
their classrooms in the future (Wachira & Keengwe, 2011). With this perspective, we are better able 
to understand technology integration as participants describe their belief systems about the learning 
of mathematics and teacher change after experiencing new technology. 

Methods 
The study setting included two teacher preparation programs in Korea and the U.S. Both 

programs offer middle grade mathematics education coursework. The program in the U.S. was at a 
large state university in a southeastern state in the U.S., while the other program was at a mid- sized, 
private university in a southern city of Korea. The participants included 18 U.S. prospective middle 
school mathematics teachers (15 female and 3 male) enrolled in a mathematics methods course prior 
to the semester of full-time student teaching experience in local school districts, and 22 Korean 
prospective middle school mathematics teachers (15 female and 7 male) enrolled in a mathematics 
education seminar course prior to student teaching. 

The design of the study included three distinct stages: (1) collecting base-line data of belief, 
skills, and attitudes, (2) providing interventions to experience new technology, and (3) collecting 
data to document participant perceptions and changes. In the first stage, researchers conducted a 
survey titled “Survey of Preservice Teachers' Knowledge of Teaching and technology,”(Schmidt, et 
al. 2009). This survey included 28 Likert items with a scale from 1 (strongly disagree) to 5 (strongly 
agree), and provided data indicating the level of TPACK demonstrated by the participants. In the 
second stage, researchers introduced new technology in three separate 30- minute instructional 
sessions. Each session included a demonstration of PhotoMath, yHomework, and TI-83/84 linear 
regression demo. PhotoMath is a free app that solves math problems (mostly equations) through 
smartphone cameras; yHomework is a Math solver app that provides worked-out solutions when 
equations are entered. The TI-83/84 demo uses the linear regression equation to calculate the slope 
and the y-intercept of the line containing two points instead of multiple scattered points. Lastly, the 
third stage included conducting a survey with open response items (see Table 1). 

Table 1: Six Open Questions in Our Response Survey 

 
 
The analysis included calculating the mean scores for each student in the TPACK domains. 

Then we used open-coding on the response survey data to identify patterns related to benefits and 
hindrance, describing how participants’ knowledge, beliefs, and attitudes impact their instruction by 
comparing the level of TPACK and participants’ perceptions of new technology. We first conducted 
the analysis for the U.S. and Korean participants. Then we looked for any emerging patterns with 
regard to the participants’ beliefs and attitudes, as well as the interaction between TPACK and 
responses to new technology. 

1. Describe perceived benefits of each technology. 
2. Describe perceived hindrance of each technology. 
3. Describe ways you would use each technology in instruction. 
4. Describe situations when students should or shouldn’t use each technology. 
5. Describe your ideal practice of teaching with technology and how your students engage in the learning of 
mathematics with technology. 
6. Describe ways you want to integrate technology in your instruction (e.g., learning tasks, collaborative projects, 
homework, assignments) in response to the emerging technology. 



Technology:!Brief!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

1244!

Results 
Our preliminary findings include the mean scores for TPACK by group. The response survey 

also yielded some findings about participants’ perceptions of the three technology’s affordances and 
constraints (see Table 2). The table below shows representative comments after the participants 
experienced each app. 

Table 2: Most Common Responses about New Technology 
 PhotoMath yHomework TI-83/84 “Linear 

Regression” 
Perceived 
benefits of 
each 
technology 

• Effective tool for 
autonomous learning (Korea; 
82%) 

• Easy access to solutions 
(US; 61%) 

• Effective tool for 
autonomous learning (Korea; 
86%) 

• Display of detailed steps 
(US; 83%) 

• No benefits (Korea; 
59%) 

• Experiencing technology 
in mathematics (US; 
56%) 

Perceived 
hindrance of 
each 
technology 

• Limitations including errors 
in producing correct answers 
(Korea; 64%) 

• Student cheating (US; 83%) 

• Not available for free 
(Korea; 59%) 

• Decrease student motivation 
(US; 61%) 

• Prevents opportunity to 
reason (Korea; 86%) 

• Too many steps before 
finding the solution (US; 
50%) 

How to use 
each 
technology in 
instruction 

• Checking answers for 
practice problems (Korea; 
68%) 

• Not to be used (US; 66%) 

• Checking answers for 
practice problems (Korea; 
86%) 

• Not to be used (US; 61%) 

• Illustrating a case of 
linear regression (Korea; 
55%) 

• Use it for writing linear 
equations (US; 77%) 

Situations 
when students 
should or 
shouldn’t use 
each 
technology 

• Use it for getting help with 
procedural homework 
problems (Korea; 45%) 

• Do not use it at all (US; 
72%) 

• Use it for identifying 
mistakes in test corrections 
(Korea; 45%) 

• Use it during homework w/ 
adult supervision (US; 33%) 

• Do not use if possible 
(Korea; 82%) 

• Use it for prepping 
standardized tests (US; 
72%) 

 
With regard to the degree of which the level of TPACK relates to (1) the ways participants 

describe an ideal integration of technology in instruction and (2) the ways the new technology 
influences their instruction, Table 3 shows the themes found among those with high TPACK scores 
and those with a low TPACK scores. 

Table 3: Descriptions of Integration of Technology in Instruction 
 Korean Participants U.S. Participants 

Those with higher 
TPACK score (4 
points or above) 

• Use technology to enhance mathematical 
understanding 

• Use the new technology selectively for those 
who struggle with procedural problems. 

• Design assignments which the technology 
cannot solve 

• Use technology to improve 
problem solving skills 

• Use the new technology to check 
answers and find mistakes. 

• Avoid using the technology in 
class. 

Those with lower 
TPACK score (2 

• Use technology to produce accurate solutions 
• Use the new technology to finish homework 

• Use technology to engage students 
in learning 

 

points or below) assignment • Not to use the new technology 

Discussion 
The new technology in the study focused on solving equations and providing worked-out 

solutions for students. Since the apps solve mostly procedural problems—especially single variable 



Technology:!Brief!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

1245!

equations—those valuing the teaching of procedures may have felt “threatened” by the emerging 
technology. It is not surprising that most prospective teachers whose school mathematics experiences 
were predominantly procedural mathematics would express concerns about students using the new 
technology mentioned in the study. However, participants expressed conflicting levels of resistance 
towards the technology depending upon the apps’ mathematical capacities. For example, 72% of 
U.S. participants reported they would not allow students to use PhotoMath, but the same participants 
said they would encourage students to use yHomework at home if adults are present – we note that 
yHomework has more capabilities in detailing procedural steps. Also interesting is how most Korean 
participants considered the apps as similar to calculators and indicated that such apps are limited in 
their capacity to solve complex mathematics problems. 

There was a variety of differences in how the two groups responded to the surveys and evaluated 
the technologies. First, Korean participants demonstrated lower self-efficacy scores for TPACK than 
U.S. participants. The cultural differences in expressing self-efficacy may explain this phenomenon 
(Ertmer & Ottenbreit-Leftwich, 2010). Most Korean participants felt negatively about abusing the 
linear regression feature of TI calculators; however, U.S. participants were more positive in their 
view of how such a function of the calculator may improve performance 

on standardized tests. Those who had higher TPACK scores also differed between the two 
countries. Korean participants supported the use of technology to enhance mathematical 
understanding, while U.S. participants emphasized the potential of technology in serving as a tool for 
problem solving. 

A further analysis of the data including a future study with a large group of participants is in 
order. We need more detailed work about the persistent patterns underlying prospective teachers’ 
beliefs and skills related to technology integration, and developing ways to increase their abilities in 
successfully integrating technology in the classroom. 
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Tasks can be vehicles for productive mathematical discussions. How to support such discourse in 
collaborative digital environments is the focus of our theorization and empirical examination of task 
design that emerges from a larger research project. We present our task design principles that 
developed through an iterative research design for a project that involves secondary teachers in 
online courses to learn discursively dynamic geometry by collaborating on construction and 
problem-solving tasks in a cyber learning environment. In this study, we discuss a task and the 
collaborative work of a team of teachers to illustrate relationships between the task design and 
productive mathematical discourse. Implications suggest further investigations into interactions 
between characteristics of task design and learners mathematical activity. 

Keywords: Technology; Geometry; Teacher Education-Inservice; Classroom Discourse 

Mathematical tasks are central as they convey what mathematics is and what it means to do 
mathematics. Sierpinska’s (2004) considers that “the design, analysis, and empirical testing of 
mathematical tasks, whether for purposes of research or teaching, is one of the most important 
responsibilities of mathematics education” (p. 10).Mathematical tasks shape significantly what 
learners learn and structure their classroom discourse (Hiebert & Wearne, 1993).Such discussions 
when productive involve essential mathematical actions and ideas such as representations, 
procedures, relations, patterns, invariants, conjectures, counterexamples, and justifications and proofs 
about objects and relations among them. Nowadays, these mathematical objects and relations can be 
conveniently and powerfully represented in digital environments, and many contain functionality for 
collaboration. However, for such collaborative, digital environments, the design of tasks that promote 
productive mathematical discussions is an enduring challenge and requires continued theorization 
and empirical examination (Margolinas, 2013). In this brief research report, guided by the question—
What features of tasks support productive mathematical discourse in collaborative, digital 
environments?—we articulate theoretical and practical principles for designing such tasks for small 
teams of individuals working in online, collaborative environments.  

Our work employs a specific online environment that supports synchronous collaboration and 
discussions and provides tools for creating graphical and semiotic objects for doing mathematics. 
The environment, Virtual Math Teams (VMTwG), has a multiuser version of a dynamic geometry 
environment, GeoGebra. Here, we first indicate our task design to promote potentially productive 
mathematical discourse among small groups of learners working in VMTwG. Afterward, we present 
an example of a task along with the mathematical insights a small team of teachers developed 
discursively as they engaged with it. We conclude with implications and suggestions areas for further 
research. 

Task-Design Principles 
Our principles of task design embody particular intentionalities for a virtual synchronous, 

collaborative environment that has representation infrastructures (GeoGebra) and communication 
infrastructures (social network and chat features). The intentions are for mathematical tasks to be 
vehicles “to stimulate creativity, to encourage collaboration and to study learners’ untutored, 
emergent ideas” (Powell et al., 2009, p. 167) and to be sequenced so as to influence the co-
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emergence of learners instrumentation and building of mathematical ideas. To these ends, sensitive to 
the infrastructural features of VMTwG, we developed and tested the following seven design 
principles for digital tasks that are intended to promote productive mathematical discourse by 
encouraging collaboration in such environments:  

• Provide a pre-constructed figure, instructions for constructing a figure, or invitation to 
construct a figure with particular properties. 

• Invite participants to interact with a figure by looking at and dragging objects to notice how 
the objects behave, relations among objects, and relations among relations.  

• Invite participants to reflect on the mathematical meaning of what they notice.  
• Invite participants to wonder or raise questions about their noticings and meanings.  
• Pose suggestions as hints or new challenges that prompt participants to notice particular 

objects, attributes, or relationships. 
• Provide formal mathematical language that corresponds to awarenesses that they are likely to 

have explored and discussed or otherwise realized (Hewitt, 1999, 2001).  
• Respond with feedback based on participants’ work that pose new situations as challenges 

that extend what participants noticed, wondered, or constructed; invite participants to revisit a 
task, to generalize noted relationships and to construct justifications and proofs of 
conjectures; suggest that participants consider the attributes of a situation (theorem, figure, 
actions such as drag) in order to generate a “what if?” question and explore it. 

The hints aim to maintain learners’ engagement with a task and the challenges to encourage them 
to extend what they know. The hints support participants’ discourse by eliciting from them 
statements that reveal what they observe and what mathematical sense or meanings they make of 
their observations. The challenges provide new, related situations to investigate. Hidden initially, the 
hints and challenges can be revealed by learners clicking a check box. 

These design principals guided how we developed tasks in our research project, a collaboration 
among investigators at Rutgers University and Drexel University. VMTwG records users’ chat 
postings and GeoGebra actions. The project participants are middle and high school teachers in New 
Jersey who have little to no experience with dynamic geometry environments and no experience 
collaborating in a virtual environment to discuss and resolve mathematics problems. The teachers 
took part in a semester-long professional development course. They met for 28 two-hour 
synchronous sessions in VMTwG and worked collaboratively on 55 tasks. In the next section, we 
provide examples of two tasks to illustrate the actualization of our task design. 

Task Example and Analysis 
Based on our design principles, we developed dynamic-geometry tasks that encourage 

interlocutors of a team to discuss and collaboratively manipulate and construct dynamic-geometry 
objects, notice dependencies and other relations among the objects, discuss meanings and 
wonderings associated to their noticings. 

During a collaborative session, a team of three teachers worked on identifying the dependencies 
involved in the constructions of different triangles (see Figure 1). The team dragged the triangles 
vigorously to explore dependencies among objects in the task. The vertices of first triangle, ABC, 
were constructed as independent objects, so the team did not belabor discussing it. The second figure 
is an isosceles triangle DEF. The lengths of DE and DF are equal. Point F is constrained to a hidden 
circle with radius DE. Points D and E are independent objects. In the following excerpt, concerning 
the second figure the Team discusses their noticings and the meaning they derive from them: 
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386  ceder:  so in the second one, f is dependent on g 
387  ceder:  I mean d 

 
Figure 1: Dynamically examining dependences among different triangles 

388  ceder:  not g 
389  bhupinder_k:  E on D as well 
390  sunny blaze:  so ED and FD are dependent on angle D? 
391  bhupinder_k: i think F depends on both E and D 
392  ceder: f doesnt look dependent on anything now...am I imissing something? 
393  ceder: ok, what am I missing? F can move independently, but when E is moved, F 

moves, so that makes which one dependent? 
394  bhupinder_k: when you move F, ED stays fixed 
395  ceder: right, so F is free to move anywhere 
396  ceder: but not when E is moved 
397  ceder so F is sometimes dependent? 

The team discusses dependencies among points, segments and angles. In lines 386 to 388, ceder 
states that F is dependent on D then dismisses her assertion in line 392. In line 390, sunny blaze asks 
whether the two line segments are dependent on angle D. Though, week before, the team had already 
seen and constructed dependent objects, they struggled with this new, more complex situation. The 
idea of dependency is key and permits interlocutors to identify and build relationships in dynamic 
constructions. In a latter task, the team uses the concept of dependency to identify relations among 
objects. The task presents two circles constructed using the same radius, AB, where each endpoint is 
a center of a circle. Their points of intersections, C and D, were connected to create a perpendicular 
bisector to radius AB that intersects it at point E. In the session, one teacher states that points C, D, 
and E are dependent on A and B. Another teacher states that the two circles share the same radius 
and that dragging the center of one circle affects the size of the other, which makes the circles 
dependent on the centers. The teachers appropriate the idea of dependency and use it to understand 
components of the task’s constructions.  
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In these two tasks, the teachers attended to the co-active feedback of the environment to their 
actions, which enabled them to appropriate the concept of dependency. For the team of teachers, 
engaging with tasks where dependencies are key relations among geometrical objects was an 
important step. These tasks triggered a discussion about how to use dependency to create valid 
geometric constructions.  

Discussion and Conclusion 
Our focus was to describe how we address task design challenges to promote productive 

mathematical discourse in an online synchronous environment. In the virtual environment, a teacher 
or facilitator is present largely as an artifact of the environment’s digital tools and most specifically 
in the structure and content of tasks. An important feature of our task design are principles 2 to 4 
since when collaborating interlocutors respond to those prompts they generate propositional 
statements that can become the focus of their discussions. Their discussions are mathematically 
productive as their noticings, statements of meaning, and wonderings involve interpretations, 
procedures, patterns, invariants, conjectures, counterexamples, and justifications about objects, 
relations among objects, and dynamics linking relations. 

Our task-design principles aim to engage interlocutors in productive mathematical activity by 
inviting them to explore figures, notice properties, reflect on relations and meanings, and wonder 
about related mathematical ideas. The design provides support through hints and feedback to help 
learners with certain parts of the tasks. The tasks also include challenges that ask the participants to 
investigate certain ideas and extend their knowledge. Further investigation is needed to understand 
how the task-design elements, the affordances of collaborative digital environments, and learners’ 
mathematical discourse interact to shape the development of learners’ mathematical activity and 
understanding. 
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Several mathematicians and researchers in math education have reported on the disconnection 
between post-secondary math education and the practices of professional mathematicians. A recent 
quantitative survey of 302 Canadian mathematicians points to one possible aspect of the gap: while 
43% of the participants reported using computer programming in their research, only 18% indicated 
that they use such technology in their teaching (Buteau et al., 2014). The first statistic highlights the 
potential that programming may have for doing and learning math. The second inspires the need for 
further research: why would such a gap exist?  

In response to this question, we put forth a qualitative study aimed at exploring the place, role, 
potential, and constraints of programming in both mathematics research and undergraduate 
mathematics education. Semi-directed interviews were carried out with 14 mathematicians working 
within various different mathematical subfields at universities across Canada. The participants were 
chosen in such a way that they had all used programming in their research or their teaching (or both). 
They were asked to speak about their own experiences with computer programming, as well as the 
programming experiences (if any) they provide for their students.  

A qualitative analysis of our interviews allowed us to unveil some of the powerful ways in which 
both applied and pure mathematicians employ programming to accomplish a variety of tasks (e.g., 
modelling complex phenomena to solve real-world problems, performing calculations and 
simulations not possible by hand, doing so-called “experimental” mathematics, constructing proofs, 
developing powerful technological tools). Consequently, it also enabled us to describe the extent of 
the qualitative gap between how these mathematicians use programming and how this activity is 
experienced by their students. In the end, the interviewees draw attention to some crucial issues 
regarding the time required to develop and implement enriching programming activities, the 
resources available to professors and students in Canadian universities, and the structure and content 
of undergraduate mathematics programs. Our participants also shared their perceptions of the goals 
of undergraduate mathematics education, the nature and culture of mathematics departments, and the 
traditions in the research, teaching, and learning of mathematics. We suggest that some of these 
visions, traditions, and constraints, which limit the mathematical experience of an undergraduate 
student, could warrant re-examination. 
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An enduring challenge facing teacher educators is creating opportunities to support teacher 
candidates in enacting mathematics teaching practices, while attempting to manage the complexities 
of teaching (Darling-Hammond, Hammerness, Grossman, Rust, & Shulman, 2005).  One response to 
this challenge has been to introduce technology as a tool for incorporating representations of 
classroom instruction.  Teacher candidates can then engage with these representations in meaningful 
ways that serve as approximations of practice (Grossman, Compton, Igra, Ronfeldt, Shahan, & 
Williamson, 2009).   

This research explored 12 teacher candidates’ (TCs’) responses to a representation of student 
work in a LessonSketch experience.  LessonSketch is an online platform that allows users to explore 
cartoon teaching scenarios. The goal of this LessonSketch experience was to provide TCs with an 
opportunity to practice posing purposeful questions that both assess and advance students’ 
mathematical thinking.  Using the LessonSketch environment to represent practice allowed the 
teacher educator to manage some of the complexities of teaching, while still providing the TCs with 
an opportunity to practice responding in the moment (Herbst, Chazan, Chen, Chieu, & Weiss, 2011). 

This poster presents the results from an experience called the Pizza Dough Problem.  TCs were 
first asked to solve the following problem: If pizza dough doubles every five minutes and reaches its 
maximum volume in thirty minutes, how many minutes does it take for the pizza to reach half its 
maximum volume?  After working on this problem individually and then sharing in small groups, 
TCs were asked to anticipate potential student solutions and errors.  TCs then participated in the 
LessonSketch experience, in which they were shown three comics depicting both correct and 
incorrect work from student groups and asked to respond to each group with a question that would 
further assess students’ thinking or develop students’ understanding.  TCs first wrote questions on 
their own, and then discussed with a partner and revised their questions. 

Preliminary findings show that TCs’ questions tended to focus on assessing student thinking in 
response to the first depiction of an incorrect use of proportions and on advancing mathematical 
thinking (e.g., changing parameters) in response to the second depiction where students correctly 
worked backwards.  Further analysis will explore the form, content, and purpose of the questions 
posed.  
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The goal of this study was to investigate seven students’ uses of dragging in GSP as they 
engaged in a sequence of technological activities that utilized a geometric approach to function. 
Students were paired or grouped so that students with similar backgrounds worked together using 
paper and pencil and a shared laptop computer. Data collected from the first activity, “Identify 
Functions,” developed by Steketee and Scher (2011) were analyzed. The ways different types of 
dragging were related to students’ thinking about particular aspects of function such as, domain, 
range, covariation, multiple representations, function notation, invariances, and families of functions, 
were examined (e.g., Carlson, 1998). 

Analysis of students’ work revealed two new dragging modalities: dragging a non-draggable 
point and variable speed dragging. Dragging a non-draggable point is specific to the way in which 
the activity was created. The instructor made a choice to design the activity with the non-selectable 
feature to emphasize and connect the action of not being able to select with the idea of independent 
and dependent variables. It was clear from the work of the students that their use of trying to drag a 
non-draggable point assisted them in making the association between this dragging type and 
independent/dependent variables.  

Students also used other types of dragging to focus on particular aspects of function. For 
example, a new type of dragging, variable speed dragging, was used by students to focus on rates of 
change and co-variation. It was also used, often in conjunction with other representations, when 
students wanted to provide a more detailed explanation of the relationship between two points. The 
drag test was also used by some of the students to describe relationship between two points and when 
students wanted to investigate invariants. 

The mathematical backgrounds of the students influenced how students discussed function 
behavior. In particular a pair of Algebra I students focused on different behaviors, but did not draw 
on their knowledge of function families or geometric transformations to describe those behaviors. 
Honors Geometry and Algebra 2 students used the language of geometric transformations and linear 
functions to describe the behaviors they noticed. Honors Pre-Calculus students drew upon a large 
repertoire of functions families and function language to notice and describe the behaviors they 
noticed. These understandings likely influenced the methods of dragging students used and the 
aspects of function to which they attended. Understanding how students use features of dynamic 
geometry activities and relationships of these uses to their understandings and aspects of mathematics 
to which they attend can be useful to designers of instructional materials.  
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Mastering basic algebraic concepts is extremely challenging, and many students never achieve 
adequate levels of proficiency. Although math instruction often emphasizes memorization of abstract 
rules, being able to fluently construct, interpret, and manipulate algebraic symbols involves the use of 
appropriate perceptual processes to see expressions and equations as structured objects (Kirshner, 
1989; Goldstone, Landy, & Son, 2010). Learning technologies that focus on perceptual-motor 
training have shown substantial promise (Ottmar, Landy, & Goldstone, 2012), but are underexplored 
relative to other math interventions.  

In this study, we present preliminary findings from a classroom study using From Here to There 
(FH2T), a dynamic computer-based visualization method designed to enhance students’ 
understanding of algebraic notation through building appropriate perceptual strategies. FH2T uses 
discovery-based puzzles to learn mathematical patterns and think more flexibly about numbers and 
operations. The students’ goal is to transform an expression from the starting form (here) to the 
ending form (there). Students perform a series of dynamic interactions, including decomposing 
numbers, combining terms, applying operations to both sides of an equation, and rearranging terms 
through commutative, associative, and distributive properties.  

85 7th grade students participated in a 3-hour study over 6 class periods. This study compares 
learning gains from 2 dynamic versions of FH2T (fluid verses retrieval practice) compared to a 
control group and explores plausible mechanisms of this learning. Students in the fluid visualizations 
condition performed 0.20 SD higher than students in both the retrieval practice and control 
conditions. Next, a significant main effect was found for exposure: for every additional world 
completed, posttest accuracy scores increased by 0.76 problems (effect size=0.48). Third, a 
significant interaction between exposure and pre-test scores was found.  

Only students who used the more fluid version of FH2T demonstrated strong learning gains. 
These gains seem to be primarily due to practice; however, we cannot tease apart whether this is due 
to a difference between retrieving explicit rules and perceptual training afforded by the fluid 
instantiation, or the increased exposure to content that the fluid group received. Future studies should 
be designed to address these concerns. Overall, these results suggest promise for tablet-based 
technologies for teaching algebraic content and support that algebra literacy encompasses strong 
visual-motor routines. Interventions involving the movement of symbolic forms for algebra learning 
have been receiving widespread attention in recent years; however, this work represents some of the 
first published outcomes from such perceptual interventions. 
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Based on the constructionist principles of Seymour Papert (1980) and the largely unexplored 
universe of lattice geometry (Sally & Sally, 2011), Lattice Land was designed to be a 
“restructuration” of the geometry curriculum (Wilensky & Papert, 2010). Lattice Land is a colorful, 
interactive, and mathematically rigorous computer environment for students to discover advanced 
mathematical thinking through play, conjecture, and experimentation. Unlike most mathematics 
software, there are no built-in solutions to any set of problems, or any linear pathways a student must 
take. Together with an inquiry-based curriculum, students at any level of fluency with mathematics 
will uncover many interesting and mathematically profound results. 

This poster introduces some potential explorations in Lattice Land: “taxicab” geometry, area 
optimization, dissection and triangulation, Pick’s Theorem, and extensions such as polyomino 
packing. It is a low threshold, high ceiling exploratory software, a “microworld” (Edwards, 1995) 
that encourages mathematical discovery and developing powerful ideas (Papert, 1980). Even 
seemingly trivial exercises quickly gain complexity. 

For children, Lattice Land provides an escape from procedural mathematics. The software 
backgrounds much of the calculation requirements that often prolong the discovery of more powerful 
ideas. For more experienced students, the study of lattice geometry shows how familiar mathematic 
concepts can be constructed and derived in unexpected ways. While users will find that polygon 
constructions and their properties—distance, perimeter, area—are the same, the derivation of these 
formulas is tangential to the greater learning goal of being able to reconceptualize mathematics. 
Additionally, because lattice geometry is unfamiliar to both young mathematicians-to-be and adults 
trained in traditional school mathematics, Lattice Land is an interesting microworld for families to 
visit together.  

Coded in NetLogo (Wilensky, 1999), each model within the Lattice Land software suite 
emphasizes a facet of lattice mathematics. The virtual environment is particularly conducive to 
exploring abstract mathematics, as it is easy to manipulate and change on the fly. Lattice Land is 
purposely unlike canonical mathematics. As “restructurations” go, Lattice Land maintains the 
cognitive properties of Euclidean geometries, but uses a more approachable platform, backgrounds 
procedural calculations, and provides a low threshold and playful environment (Wilensky & Papert, 
2010). Citizens of Lattice Land should also traverse microworlds, and learn how each is deeply 
connected with the others. I hope this leads the citizens of Lattice Land to recognize that mathematics 
is imbedded in other worlds, as well.  Perhaps, even in our own. 
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As technology is an essential tool for learning mathematics in the 21st century (NCTM, 2014) 
and is becoming more ubiquitous in the classroom, mathematics teachers need to be able to select 
quality technological tools to use with their students. The question that guided our study: What 
criteria do secondary prospective and in-service teachers use and value most when evaluating 
technological tools to teach geometry, specifically the triangle inequality theorem?  

Our participants were 15 prospective and in-service teachers enrolled in a mathematics education 
course focused on technology. We placed our participants in 5 groups based on the amount and level 
of teaching experience and their technology background. During one class meeting, each trio 
developed a list of criteria, analyzed and evaluated four online applets designed to help students learn 
the triangle inequality theorem. Then, we conducted a stimulated-recall interview during which each 
group was asked to rank their list of criteria in order of importance. We video-recorded each group’s 
working during the class activity and interview. After we created transcripts, we coded each group’s 
criteria according to Dick’s (2008) descriptions of Pedagogical, Mathematical, and Cognitive 
fidelities. Some of the groups’ criteria did not fit Dick’s descriptions and we created two additional 
codes: Scaffolding and Assistance.  

All groups developed criteria coded as Mathematical fidelity, how the technology represents 
mathematics, and Pedagogical fidelity, how the students interact with the technology. But, none of 
their criteria was coded as Cognitive fidelity. That is, they do not seem to consider how students will 
think using the technology or how the technology will reflect how students are thinking about the 
mathematics. We did notice some difference between the criteria created by teachers with and 
without teaching experience. The groups of participants with no teaching experience created criteria 
coded as Assistance, whether the tool provides instructions on how to use it. The groups with 
teaching experience did not create Assistance criteria. Rather, they focused on whether technology 
could help students develop an understanding of the content. They created Scaffolding criteria and 
ranked it as the most important criteria. The groups with no teaching experience ranked criteria 
coded as Mathematical fidelity very high, whereas the groups with teaching experience ranked other 
types of criteria higher (i.e. Scaffolding) because they thought that mathematical ideas were innate in 
the higher ranked criteria.  

Even though all groups considered whether mathematics is accurately represented and how 
students will interact with technology, they did not seem to consider how students think when using 
technology. By not taking this into account, teachers may not select the best tools for their students. 
Thus, mathematics teacher educators need to help teachers develop their abilities to examine 
technologies based on student thinking. 
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Mathematics education researchers have explored ways in which teachers construct or 
supplement their mathematics curriculum (Darling-Hammond, 2006; Remillard, 1999; M. G. Sherin 
& Drake, 2009). As teachers construct or supplement their mathematics curricula they must find, 
choose, and decide how to use instructional resources. One available strategy is searching online 
(Ruthven, 2013) to find digital resources and digital tools. Access to digital tools and resources can 
be a powerful tool for K-12 teachers. In order to use digital tools and resources effectively, teachers 
must make decisions in choosing which to use and how to use them as they supplement or construct 
their curriculum. Decisions depend on the general, pedagogical, and mathematical features that 
teachers notice. In order to make sense of the features teachers notice and how to support teachers’ 
professional development of their abilities to find, choose, and decide how to use digital tools and 
resources, this poster presentation presents preliminary frameworks and qualitative analysis results. 

Brown (2009) discussed the differences in teachers’ skills in “perceiving the affordance of the 
materials and making decisions about how to use them to craft instructional episodes that achieve her 
goals” (p. 29). Dietiker, Males, Amador, Earnest, and Stohlmann (2014) defined curricular noticing 
as “how teachers make sense of the complexity of content and pedagogical opportunities of written 
curriculum materials” (p. 4), which included attention to analyzing the materials for mathematical 
content and practices as well as pedagogical practices. To sum up, this type of noticing focuses on 
what aspects teachers think are important and what aspects teachers perceive in instructional 
resources. 

In this poster presentation, I narrow the focus of these previous ideas on teachers’ noticing of 
features of digital tools and resources designed for use in mathematics teaching and learning. That is, 
I explore the characteristics of digital tools and resources that teachers decide are important, whether 
the characteristics are general, pedagogical, or mathematical in nature. I also look to whether the 
characteristics are superficial or profound in nature. 
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The impact of technology on education has increased; however, technology itself is not 
guaranteed to support students’ mathematical thinking (Heid, 2005). The development of teachers’ 
TPACK (technological pedagogical content knowledge) is critical. In order to help pre-service 
teachers (PSTs) to gain an understanding and experience about technology integration, case analysis 
has been adopted in many technology courses, which allows PSTs to enact and examine authentic, 
content and context specific scenarios. 

Dick and Hollebrands (2011) categorized technologies as conveyance or mathematical action 
tools, based on their purposes within mathematics instruction. Conveyance technologies are used to 
convey information, whereas mathematical action tools enable students to interact and receive 
feedback during the performance of mathematical tasks. Many researchers consider mathematical 
action tools as “cognitive technologies” which Pea (1987) defined as those which help users 
“transcend the limitations of the mind…in thinking, learning, and problem-solving activities" (p. 91). 
Pea (1987) articulated cognitive technologies as amplifiers (accelerate processes) and as reorganizers 
(engage cognitive processes). While amplifiers enhance students’ ability to solve problems in an 
efficient way, but does not change their thinking, reorganizers “modif[y] cognitive processes…which 
affect our modes of approaching the acquisition of knowledge” (Barrera-Mora & Ryes-Rodriguez, 
2013, p. 112). 

The purpose of this study is to explore PSTs’ TPACK through case analysis completed in an 
introductory technology integration course in a large Midwest state university. In content specific 
case analysis, PSTs select technologies, provide descriptions and justifications for their selections 
and create a lesson plan. The research questions of the study are: What technologies do PSTs select 
in doing mathematic case analysis with technology integration focus? How do they justify that their 
technology selections address the case? In what ways do they integrate technology in the content 
specific case? How do the outcomes of their case analyses provide an understanding about their 
TPACK? 

The data sources of this multi-case study are eight PSTs’ case analysis documents. By using 
qualitative data analysis methods, the researcher identified what kinds of technologies PSTs used and 
in which purpose these technologies were used. The preliminary findings of the study suggest these 
PSTs use both kinds of technologies but they choose to integrate technologies as amplifier more than 
reorganizer. The findings of this study would help future researchers to understand PST’s TPACK 
development at an early stage of their program through case analysis. 
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In response to the changes in what and how teachers should be teaching mathematics within K-12 
schools, various organizations within the mathematics and mathematics education communities have 
proposed recommendations and guidelines for teacher education programs and for the mathematical 
preparation of teachers. The MET II report was the first report which explicitly underlined that 
prospective middle school teachers need to take mathematics content courses with an emphasis on 
deep understanding. Considering new insights about the theoretical structure of the mathematical 
knowledge, these courses were expected to support prospective teachers’ subject-matter knowledge 
development special to their profession, which is called specialized content knowledge by Ball, 
Thames and Phelps (2008). One possible way to accelerate teachers’ development of specialized 
content knowledge is the use of electronic technologies. In this paper, we present three PSTs’ 
responses to a “square construction” and “inscribed circle of a triangle” tasks, in order to answer the 
following research question: “How does GSP influence middle grade mathematics PSTs’ 
development of SCK?” 

We employed a single case study research methodology with embedded units, as described by 
Yin (2008). PSTs enrolled in a graduate geometry course at a Southeastern research university in 
Fall/2013. The geometry course was the case of analysis, while three PSTs served as the embedded 
units who participated two clinical interviews outside the class. The clinical interviews each involved 
an open-ended task allowing the participants opportunity to demonstrate their SCK. During the first 
interview, the three PSTs were asked to complete a square construction task a middle school student 
started on GSP, and predict what the student was thinking with his/her procedure. During the second 
interview, two months after the first one, three participants were asked to find the relationship 
between the area and perimeter of a triangle, and the radius a circle inscribed in the triangle by 
watching animations built using GSP.  

Data from two interviews underlined the necessity of CCK in SCK development. Three focal 
participants managed to demonstrate SCK as long as they had the required CCK for the event. 
Simultaneous development of CCK enabled PSTs to demonstrate SCK during interviews. Their ideas 
on the given tasks with or without the GSP initiated an opportunity for them to develop their SCK. 
One of the reason for this finding could come from the definition of SCK and its differentiation from 
CCK. Data also indicated that views about GSP seemed to determine whether GSP would be 
conducive for a PST’s SCK development. If a PST views GSP as a tool for precise measurements 
and demonstration rather than a learning partner, then the role of GSP in SCK development might be 
limited. These initial findings provide a starting point for helping teacher educators understand in 
greater detail how technology should be used for SCK development.  
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Whereas Natural User Interface technological devices, such as tablets, are bringing physical 
interaction back into mathematics learning activities, existing educational theory is not geared to 
inform or interpret such learning. In particular, educational researchers investigating instructional 
interactions still need intellectual and methodological frameworks for conceptualizing, designing, 
facilitating, and analyzing how students’ immersive hands-on dynamical experiences become 
formulated within semiotic registers typical of mathematical discourse. We present paradigmatic 
empirical examples of tutor–student behaviors in an embodied-interaction learning environment, the 
Mathematical Imagery Trainer for Proportion. Drawing on ecological dynamics—a blend of 
dynamical-systems theory and ecological psychology—we describe the emergence of mathematical 
concepts from the guided discovery of sensorimotor schemes. 

Keywords: Cognition; Instructional Activities and Practices; Design Experiments; Technology 

Introduction: In Search of Action-Oriented Theory of Mathematical Ontogenesis 
Whereas commercial production of interactive math apps is booming, extant theory of learning is 

still a theory-of-learning-with-paper(Papert, 2004). In the short term, scarcity of bold research on 
interactive mathematics learning impedes the formulation of informed policies concerning the 
integration of technological environments into educational institutions. In the long term, this scarcity 
is accelerating misalignment between extant theory of learning and emerging practices to which it 
should apply. As children are learning to move in new ways, so, too, should theory of learning. 

A motivation of this paper is that the pedagogical quality and institutional acceptance of action-
based learning environments is largely pending on developing informed scholarly and public 
discourse concerning what it means to learn a mathematical concept and what an instructor’s role 
might be in this process. As such, we are echoing Seymour Papert’s consistent call to leverage the 
technological revolution as an opportunity for deep discussion of the potentially radical changes the 
educational system should undergo. Similar to Papert, we are optimistic that technological advances 
in educational media bear the potential of fostering students’ deep understanding of mathematical 
concepts. Complementarily, we submit, these technological advances bear the potential of fostering 
researchers’ deep understanding of learning processes. 

A pedagogical rationale to ground mathematics learning in physical interaction echoes centuries 
of educational scholarship. We now sketch its recent history. From his cultural–historical psychology 
perspective, Vygotsky believed that meanings are established through physical interaction. 
Moreover, he asserted that mature mathematical reasoning tacitly retains and evokes its originary 
enactive quality (Vygotsky, 1926/1997, pp. 161-163). From a cognitive-developmental psychological 
perspective, Piaget (1971, p. 6), too, viewed thought as truncated action, emphasizing that 
“mathematics uses operations and transformations…. which are still actions although they are carried 
out mentally.” Piaget (1968, p. 18)later introduced the notion of action coordination as the root of 
reasoning (see also Nemirovsky et al., 2013).From a philosophy perspective, a resonant view of 
thought as truncated action has been elaborated by Melser (2004), who puts forth aphylogenetic 
embodied model of language and reasoning. From an educational-research perspective, Skemp 
(1976) critiqued math instruction as fostering disjointed “instrumental” knowledge. He promoted an 
alternative educational program that instead would foster deep “relational” knowledge that resides in 
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non-symbolical dynamical interactions. Similar, Pirie and Kieren (1994) advanced an Enactivist view 
of knowledge to implicate mathematical reasoning as drawing on dynamical imagery (see Reid, 
2014). Decades later, Nathan (2012) denounced mainstream educational practice as still implicitly 
subscribing to a “formalisms first” epistemology and called to ground mathematical meaning instead 
in “our direct physical and perceptual experiences” (p. 139). Thompson (2013), too, points to the 
fundamental problem of mathematics education as the absence of meaning, that is, webs of 
multimodal imagery actions. These inspirational fiats leave us with a set of questions: How do naïve 
goal-oriented actions give rise to reasoning about immaterial entities? How do students first accept 
cultural signs? In particular, how might this transpire in discovery-based instruction? 

Granted, a number of theoretical frameworks from the learning sciences have been formative in 
modeling artifact-mediated guided learning of STEM content, such as instrumental genesis (Vérillon 
& Rabardel, 1995), professional perception (Stevens & Hall, 1998), cultural anthropology (Hutchins, 
2014), and semiotic approaches (Radford, 2014). However, these frameworks are not optimally 
geared to treat the new forms of pedagogical, technological, epistemological, and interactional 
opportunities created by NUI embodied-interaction learning environments. In particular, extant 
theoretical frameworks lack analytical specificity for treating sensorimotor schemes—how they 
emerge, how they are steered, and how they give rise to conceptual knowledge—as the phenomenal 
core of mathematics learning. And so we present a call to action as our Critical Response to 
Enduring Challenges in Mathematics Education (PME-NA 37). 

We hasten to note up front that our focus in this paper on fostering motor-action coordinations 
should not for a moment suggest that we are disregarding or mitigating the formative role of symbols 
in the development of mathematical knowledge or disavowing the rich theoretical and practical 
challenges that the symbolic register introduces (Duval, 2006). Rather, we believe that there has not 
been sufficient focus in the literature on the initial development of action schemes via direct or 
vicarious interaction with instructional media (but see de Freitas & Sinclair, 2012). And we view 
NUI technologies as powerful yet under-researched means of fostering those action schemes. 
Accordingly, this article treats the initial guided construction of mathematically oriented operatory 
schemes more so than the subsequent signification of these schemes in disciplinary semiotic systems. 

Empirical Context: Design-Based Research of the Mathematical Imagery Trainer 
The Kinemathics project (Reinholz et al., 2011) took on the design problem of students’ enduring 

challenges with proportional relations. We assumed that students have scarce sense of what 
proportional equivalence is, feels, or looks like. We began by choreographing a bimanual motor-
action scheme that enacts proportional equivalence, and then we envisioned, designed, and 
engineered conditions in which students could learn to move in a new way that emulates this scheme. 
Our two-step activity plan was for students to: (1) develop a target motor-action scheme as a 
dynamical solution to a situated problem bearing no mathematical symbolism; and (2) describe these 
schemes mathematically, using semiotic means we then interpolate into the action problem space. 

 

a. 
  b.   c.   d. 

Figure 1. The Mathematical Imagery Trainer for Proportion (MIT-P)  

Figure 1 shows the MIT-P set at a 1:2 ratio, so that the favorable sensory feedback (a green 
background) is activated only when the right hand is twice as high along the monitor as the left hand. 
This figure sketches out our Grade 4 – 6 study participants’ paradigmatic interaction sequence 
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toward discovering an effective operatory scheme: (a) while exploring, the student first positions the 
hands incorrectly (red feedback); (b) stumbles upon a correct position (green); (c) raises hands 
maintaining a fixed interval between them (red); and (d) corrects position (green). Compare 1b and 
1d to note the different vertical intervals between the virtual objects. 

Our design solution was the Mathematical Imagery Trainer for Proportion (MIT-P, Fig. 1). We 
seat a student at a desk in front of a large, red-colored screen and ask the student to “make the screen 
green.” The screen will be green only if the cursors’ heights along the screen relate by the correct 
ratio (e.g., 1:2). Participants are tasked first to make the screen green and then to maintain a green 
screen while they move their hands. 

The activity advances along a sequence of stages, each launched when the instructor introduces a 
new display overlay immediately after the student has satisfied a protocol criterion (Fig. 2). The full 
design includes a ratio table for students to control the cursors indirectly via inserting numbers. (For 
an iPad version, seewww.tinyurl.com/FreeMITP). 
 

 
a. 

 
b. 

 
c. 

 
d. 

Figure 2. MIT-P display schematics, beginning with (a) a blank screen, and then featuring the 
virtual objects (symbolic artifacts) that the facilitator incrementally overlays onto the display: 
(b) cursors; (c) a grid; and (d) numerals along the y-axis of the grid. For the purposes of this 

figure, the schematics are simplified and not drawn to scale.  

We implemented the MIT-P design in the form of a tutorial task-based clinical interview with 22 
Grade 4 – 6 students, who participated either individually or in pairs, and these sessions were audio–
video recorded for subsequent analysis (Reinholz et al., 2011). Our primary methodological approach 
is for the laboratory’s researchers to engage in collaborative ethnographic micro-analysis of selected 
brief episodes from the entire data corpus (Siegler, 2006), where we focus on the study participants’ 
range of physical actions and multimodal utterance around the available media (Ferrara, 2014). The 
process is iterative and in dialogue with the learning-sciences literature, leading to the progressive 
identification, labeling, and refinement of emergent categories (Strauss & Corbin, 1990). New 
constructs might constitute ontological innovations extending beyond the study context (diSessa & 
Cobb, 2004). Here we re-analyze our empirical data via a new lens. 

Ecological Dynamics 
Constructivist pedagogy champions the principle of fostering opportunities for individuals to re-

invent cultural–historical knowledge (Kamii & DeClark, 1985). Yet how does this principle play out 
in learning environments where students are first to re-invent sensorimotor schemes prior to 
signifying the schemes in a discipline’s semiotic register? We sought a theory of learning focused 
explicitly on the development of physical skill. 

Ecological dynamics (Vilar et al., 2012) is a theoretical approach used in sports sciences to study 
skill acquisition in representative designs of real-game conditions. The framework blends dynamical 
systems theory (Thelen & Smith, 1994)and ecological psychology theory of affordances(Gibson, 
1977).Applying dynamical systems theory to ecological psychology enables sports scientists to 



Theory!and!Research!Methods:!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

1264!

explain the learning of physical skills as the complex and adaptive self-organizing of subject–
environment dynamical systems. 

Dynamical systems theory is a branch of physics that provides a formal representation of any 
system evolving over time. The behavior of any living system can be plotted as a trajectory into a 
state space. In a dynamical systems approach, decision-making and learning processes are modeled 
not as generating a sequence of disembodied symbolical propositions, such as abstracted inferences 
and decisions, but as emerging from the agent’s goal-oriented, situated, adaptive interactions in the 
environment (Araújo et al., 2009). The emergent quality of self-organizing complex adaptive systems 
implies also that learning processes are not linear but stochastic, and the non-linear dynamics of 
systemic behavior increases with the number of agents, variables, and interactions. 

The self-organizing behavior of dynamical systems consisting of human agents (e.g., students) 
engaged in goal-oriented activity can be affected or “channeled” (Araújo & Davids, 2004, p. 50) by 
different types of constraints. Newell(1996) identified three sources of constraints affecting the 
behavior of the system either on a short time scale (i.e., decision making while performing a skill) or 
a longer time scale (i.e., the process of learning a skill): organism, environment, and task. 

In terms of methodology, ecological dynamics may offer STEM educational research interpretive 
analytical schemes for modeling the role of instructors’ multimodal utterance and actions in shaping 
students’ construction of dynamical enactments. From its systemic view, ecological dynamics 
regards all forms of intervention, such as physical guidance or metaphoric framing, as productive 
constraints on the solution of motor-action problems. 

The Ecological Dynamics of the Mathematical Imagery Trainer 
We now present three ecological-dynamics accounts of children’s guided work with an 

embodied-interaction design for mathematics content, the MIT-P. These concise narratives were 
selected as appropriate exemplars for showcasing numerous analyses of manipulation, discovery, and 
coaching in the context of math learning. For continuity, we will treat aspects of student behavior 
only around the numerical item of a 1:2 ratio. 

The Emergence of an Attentional Anchor Mediating System Dynamics 
Students typically begin the activity by lifting the controls and, in an attempt to make the screen 

green, waving them up and down in several different patterns. Eventually, the students discover that 
their hands “have to be a certain distance” from each other, and yet they attempt to keep this distance 
fixed. But as they further explore the screen regions, they figure out that “the higher you go, the 
bigger the distance” (Fig. 3a)Students thus discover, articulate, and empirically validate a systemic 
interaction principle governing a phenomenon under inquiry: a proposed correlation between two  

 

   
a. b. 

Figure 3. (a) A child discovers the vertical interval between the markers as an attentional 
anchor for making green while moving the hands: the higher it is, the bigger it should be (and 

vice versa). (b) Once the grid is overlaid, she shifts spontaneously to a new routine. 
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qualitative properties of a new object—the height and size of a linear interval subtended between 
their hands. 

We have been intrigued by students’ initial discovery of the interval between their hands as a 
means of controlling the screen color as well as by the subsequent smooth shift from keeping this 
interval fixed as they elevate their hands along the screen to varying the interval size in proportion 
with its elevation. Crafted spontaneously out of thin air, the interval articulates into being, 
foregrounded from negative space as a new auxiliary stimulus wedged between agent and artifact. 
The interval coalesces as a ready-to-hand tool for engaging latent correlations in the perceptual field, 
thus mediating the situated implementation of motor intentionality. It served the students as a 
spontaneous self-constraint—an order parameter, “steering wheel” (Kelso & Engstrøm, 2006; Newell 
et al., 2010), or attentional anchor facilitating enactment (Hutto & Sánchez-García, 2014). 

Decomposing and Recomposing an Attentional Anchor in a Reference Field 
Once a student discovers the “the higher, the bigger” control strategy oriented on the interval 

between their hands as a new attentional anchor, the interview protocol proceeds to the next item, the 
introduction of the grid onto the screen (Fig. 3b). The appearance of the virtual horizontal gridlines 
materialized the imaginary attentional anchor. The grid’s figural qualities immediately relieved 
students from having to hold the interval between their hands: The attentional anchor was thus 
electronically reified in the public domain in the form of a perceptually stable, externally present, 
deictically referable, bounded entity. Yet this frame of reference shifted students abruptly into a new 
interaction routine: raise the left hand 1 unit, then raise the right hand 2 units, iteratively, to make 
green. Now the old attentional anchor no longer mediated a goal, so it receded back into negative 
space.  

The theory of ecological dynamics thus offers a view of conceptual development as spontaneous, 
situated adoption of symbolic artifacts as action tools. Symbolic artifacts bear hybrid ontology, in the 
sense that they are both perceptual and semiotic entities (Uttal, Scudder, & DeLoache, 1997). They 
are “transitional objects” (Papert, 1980)—both sensory and abstract. We might grab a symbol for its 
perceptuomotor affordance for action yet only subsequently—as personal and interpersonal situations 
evolve—leverage its semiotic potential for planning and communicating prospective actions, 
elaborating reasoning, and supporting argumentation. We kindle then obey new constraints. 

Instructor’s Multimodal Intervention as Environmental Constraints on Action 
Learning is the education of perceptuomotor attention, and teachers can play pivotal roles in this 

educational process. One expert–novice co-enactment method is to distribute the operation of the  
 

  
a. b. 

Figure 4. Hands-on learning may need hands-on teaching:(a) co-manipulating virtual objects 
as distributed co-enactment; and (b) molding as joint co-enactment. 



Theory!and!Research!Methods:!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

1266!

control devices, one person per device. Another method is to co-operate both of the control devices, 
that is, with both people each handling both devices. 

Similar to a pair of athletes in a two-person sport, such as rowing or luge, the tutor and student 
optimize for effective joint production by continuously and dynamically adjusting each to the other’s 
spatiotemporal actions (Fig. 4). They reach an intimate level of intersubjective sensorimotor 
coordination by anticipating and closely tracking their mutual actions. Yet as in the martial-arts 
practice of push-hands, these two participants silently negotiate leadership. The tutor progressively 
hands over agency to the student, who eventually solo-enacts the new strategy. The tutor-as-
dynamical-scaffold fades out. 

  
a. b. 

Figure 5.Spontaneous evolution of an attentional anchor. The eye gaze (orange spot) hovers 
over a location on the screen that contains no information in-and-of-itself but only with respect 

to the dynamical motor-action coordination. A grid then offers a frame of reference for 
bringing forth the attentional anchor into mathematical consciousness. 

Recent results from eye-tracking studies (Fig. 5) confirm our qualitative analyses of the interview 
data: Just before students articulate a new manipulation strategy, their visual attention tears away 
from figural constituents on the screen to anchor onto a new location, a higher-order invented 
“handle” on a structural constellation, that facilitates operable interaction with a dynamical yet 
invariant conservation (Shayan et al., 2015). 

Conclusion 
We have introduced an ecological-dynamics view on mathematics teaching and learning. We 

further presented and interpreted empirical data from implementations of embodied-interaction 
activities so as to contextualize the ecological-dynamics view and argue for its purchase on enduring 
research problems germane to the learning sciences in general and to scholarship and application of 
mathematics education in particular. Based on our findings, we contend that the theory of ecological 
dynamics offers a useful framework for designing, implementing, and analyzing pedagogical 
interactions in which students develop fundamental understandings of mathematical notions via 
solving and reflecting on motor-action inquiry problems. We also explained how an ecological-
dynamics view of mathematics learning coheres with, integrates, and extends seminal constructivist 
and socio-cultural historical perspectives on human learning. From this view, mathematical meanings 
are cultural constructs that individual agents build by developing and then signifying appropriate 
motor-action coordinations oriented on discovered attentional anchors. These dynamical 
coordinations are embodied solutions to physical problems that students encounter when engaging in 
carefully designed activities. 

We wish to position this article as attempting to rekindle essential themes of situated cognition 
(Greeno, 1998). To our reading, ecological dynamics should offer an effective and comprehensive 
framework for analyzing socially guided ontogenesis of intelligent participation in cultural practices. 
In particular, ecological dynamics, with its view of learning as coordinating motor actions in 
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perceptual fields, may replace the cognitive semantics theory of conceptual metaphor (Lakoff & 
Núñez, 2000) as a more viable means of tracking the subjective and intersubjective emergence of 
mathematical concepts from situated solving of sensorimotor interaction problems (Gibbs, 2014). 
Ecological dynamics offers new tools for minding the epistemic gap between action and symbol and 
thus stands to fill a critical, enduring lacuna in mathematics-education research literature. 

Given appropriate cultural mediation, children can learn quite rapidly to move and therefore 
think in new ways that become signified, elaborated, refined, and reformulated as disciplinary 
discourse. This thesis suggests all children’s universal capacity to deeply understand mathematical 
concepts, regardless of prior academic accomplishment, because it shifts the site of critical 
mathematical learning away from the symbolic semiotic register toward situated sensorimotor 
engagement with manipulation problems.  

Embodied-interaction activities offer solutions for researchers and teachers alike who wish both 
to observe mathematical thinking as it is occurring and offer students opportunities to reflect on their 
actions. Technology-enabled embodied-interaction learning environments transform the practice of 
mathematical teaching, rendering it similar to coaching in disciplines more readily associated with 
physical action, such as music, dance, or carpentry. Yet for these instructional devices and 
methodologies to enter educational institutions, we would all have to rethink multiple aspects of 
mathematics teachers’ professional practice, beginning from epistemology and through to 
assessment. 
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EXPLORING ROLES OF COGNITIVE STUDIES IN EQUITY: A CASE FOR 
KNOWLEDGE IN PIECES 

Aditya P. Adiredja 
Oregon State University 

adiredja@math.oregonstate.edu 

Underrepresentation of people of color in mathematics at the postsecondary level warrants more 
focus on equity issues. The prevalence of cognitive studies at the undergraduate level is met with the 
call for critical analysis about the kinds of knowledge that get privileged in mathematics education. 
Connecting to the Funds of Knowledge work, this paper discusses the utility of diSessa’s Knowledge 
in Pieces cognitive framework to uncover productive informal knowledge in learning formal 
mathematics. Seeing the valorization of knowledge as related to issues of power, a case of a Chicana 
student’s productive sense making about the formal definition of a limit illustrates the way diSessa’s 
framework can help challenge what counts as productive mathematical knowledge and reasoning. 

Keywords: Learning Theory; Advanced Mathematical Thinking; Equity and Diversity; Cognition  

Whether parents, teachers, students, or researchers, we all bring valorization of knowledge to our 
views of what counts as “proper” or “better” approaches to doing mathematics.  

–Marta Civil (2014, p. 12)  

The President’s Council of Advisors on Science and Technology (PCAST) called for 1 million 
additional college graduates in science, technology, engineering, and mathematics (STEM) fields 
based on economic forecasts (Executive Office of the President, PCAST, 2012). Within STEM, the 
number of mathematics degrees being conferred continues to be generally low. People of color, in 
particular, continue to be severely underrepresented in mathematics. A recent National Science 
Foundation report shows that historically marginalized population accounts for 20% of the 
mathematics degrees conferred (NSB, 2014).  

Gutiérrez (2002) characterizes equity research as one that explicitly focuses on efforts to 
understand and mitigate systematic differences in how people experience educational opportunities, 
particularly differences that privilege one group over another. In the broader area of undergraduate 
STEM education, some studies have begun to explore issues of marginalization of women and 
students of color and ways that students manage it in their everyday lives (e.g., McGee & Martin, 
2011). However, there has not been a sustained and concerted effort to focus on equity considerations 
in undergraduate mathematics education research (Adiredja, Alexander & Andrews-Larson, 2015), 
like there has been in K-12 mathematics education research in recent years (Gutiérrez, 2013).  

The need to understand how students make sense of challenging topics in undergraduate 
mathematics contributed to the prevalence of studies about students’ and teachers’ individual 
cognition and practices (Adiredja et al., 2015). Several scholars have argued for critical analysis of 
the kinds of knowledge and practices that we privilege in teaching and learning of mathematics 
(Civil, 2014; Gutiérrez, 2013). Considering the socio-political nature of education, Gutiérrez (2013) 
emphasized the interconnectedness of knowledge and power:    

Knowledge and power are inextricably linked. That is, because the production of knowledge 
reflects the society in which it is created, it brings with it the power relations that are part of 
society. What counts as knowledge, how we come to “know” things, and who is privileged in the 
process are all part and parcel of issues of power.  

For example, children of immigrant parents at times would discount their parents’ mathematical 
knowledge as a result of the way things are taught in US schools (Civil and Planas, 2010). This 
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example illustrates one explicit implication of power vis-à-vis the kinds of knowledge students learn 
to be valued in the classroom. The question then becomes how can we begin to unpack issues of 
power behind our valorization of mathematical knowledge and approaches, particularly at the 
undergraduate level?  

At the K-12 level, some researchers have responded to this question by trying to leverage and 
build on cultural aspects of the students’ communities in designing curriculum (Moll, Amanti, Neff 
& Gonzalez, 1992). The goal with the Funds of Knowledge project (Moll et al., 1992) is to help 
teachers explore and document the often invisible but productive knowledge of non-dominant 
students. While it is tempting to assert that the nature of mathematics at the undergraduate level is 
different from that of K-12 mathematics, I posit that the spirit of the Funds of Knowledge work can 
also be productive at the post-secondary level.  

The kind of mathematics that is being learned at the postsecondary level does become 
increasingly abstract and are often built on prior formal mathematical knowledge. Moreover, the 
Euro-centricity of mathematics (Joseph, 2010) becomes even more privileged at the post-secondary 
level. As such one might argue that these realities of mathematics at the post-secondary level limit 
opportunities for teachers to connect to students’ informal knowledge and experiences. For example, 
in the context of limit in calculus, some researchers have argued that students’ intuitive knowledge is 
an obstacle in learning (Davis & Vinner, 1986), despite the prevalence of such knowledge student 
thinking about the concept (Monaghan, 1991).  

While the Euro-centricity of advance mathematics is a reality, students’ intuitive knowledge 
about mathematics, and more importantly ways that such knowledge might be productive in learning 
formal mathematics, are largely underexplored in undergraduate mathematics education. Wawro et 
al. (2012) have shown a case where incorporating students’ intuition about using different modes of 
transportation in traveling is productive to explore concepts in linear algebra. This study suggests that 
there is room for intuitive knowledge in learning mathematics at the undergraduate level. 
Recognizing the potential utility of students’ informal knowledge, and its potential in disturbing 
power distribution in the classroom, where can we find such knowledge? What might be able to 
assist us in uncovering many of the invisible productive knowledge students bring with them to learn 
formal mathematics?  

This paper attempts to offer a response to those questions, particularly in the context of 
undergraduate mathematics education. This paper argues that the theoretical perspective on 
epistemology and learning in cognitive studies plays an important role in uncovering knowledge 
resources students bring into learning formal mathematics. In particular, this paper argues for the 
utility of the Knowledge in Pieces cognitive framework (diSessa, 1993) to recognize productive 
knowledge resources students might use in learning formal mathematics, particularly in the face of 
non-normative language. The analysis shows how this framework has a potential of challenging the 
existing distribution of power vis-à-vis what counts as productive knowledge.  

Theoretical Framework for Cognition 
The Knowledge in Pieces (KiP) theoretical framework (diSessa, 1993; Smith, diSessa and 

Roschelle, 1993) models knowledge as a system of diverse elements and complex connections. The 
nature of the elements, their diversity, and connections are typical interests for studies using this 
framework. Characterizing knowledge using generic ideas like “concept” or the commonly used idea 
of “misconceptions” is viewed as uninformative and unproductive (Smith et al., 1993). Instead, KiP 
focuses on the context specificity of knowledge to maintain the productivity of the particular piece of 
knowledge. KiP also pays particular attention to the continuity of knowledge, i.e., ways that 
knowledge gets used or built upon in new contexts. It is common for studies using this framework to 
uncover productive sense making behind students’ use of non-normative language to describe their 
reasoning (e.g., Campbell, 2011; diSessa, 2014).  
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One of the main principles of KiP is that knowledge is context specific (Smith et al., 1993). This 
means that the productivity of a piece of knowledge is highly dependent on the context in which it is 
used. Context variation can happen as a result of change in the literal problem context, the passage of 
time, or simply as knowledge is assessed more or less carefully. For example, the knowledge that 
“multiplication makes a number bigger” is productive in the context of multiplication with numbers 
larger than one. The knowledge is not productive in the context of multiplication with all real 
numbers. In contrast to studies that focus on identifying students’ misconceptions, KiP focuses on 
building new knowledge on students’ prior knowledge, instead of focusing on efforts to “replace” 
students’ misconceptions (Smith et al., 1993). Adopting this theoretical framework implies that the 
analysis in this paper will focus on ways that students build on their prior ideas while suspending 
judgment about their correctness. KiP also posits that students have a lot of intuitive ideas that can be 
leveraged in instruction. KiP was developed in the context of physics where students have a diversity 
of intuitive ideas about physics originating from their everyday experience. Some studies have shown 
that intuitive ideas can also be found in mathematical reasoning as well (e.g., Campbell, 2011). 

Mathematical Context and Literature 
The formal definition of a limit of a function at a point, also known as the epsilon-delta (ε-δ) 

definition, is an essential topic in mathematics majors’ development that is introduced in calculus. 
The limit of a function f (x) as x approaches a is L and is written as lim

x→a
f (x) = L if and only if, for 

every positive number ε, there exists a positive number δ, such that all numbers x that are within δof 
a (but not equal to a)yield f (x) values that are within εof the limit L. This defining property is often 
written as “for every number ε> 0, there exists a number δ> 0 such that if 0 <|x–a |<δthen |f (x)–
L|<ε”.Informally, one might say, “If L is the limit, then for however close one wants f (x) to be to L, 
one can constrain the x-values so that f (x) would satisfy the given constraint.” We return to this 
intuitive idea shortly. 

The formal definition provides the technical tools for demonstrating how a limit works and 
introduces students to the rigor of calculus. Yet even thoughtful efforts at instruction leave students, 
including intending and continuing mathematics majors, confused or with at most a procedural 
understanding about the formal definition (Cottrill, Dubinksy, Nichols, Schwingendorf, and 
Vidakovic, 1996; Oehrtman, 2008). Many studies assert that students’ dynamic conception (the limit 
is the number that f (x) approaches as x approaches a) is an obstacle in learning the formal definition 
(Parameswaran, 2006; Williams, 2001). These studies largely focused on the unproductivity of 
students’ prior conception and their sense making.  

In the meantime, a small number of studies that focuses on students’ sense making of the formal 
definition (Knapp & Oehrtman, 2005; Roh, 2009; Swinyard, 2011) suggest that students’ 
understanding of a crucial relationship between two quantities featured in the formal definition, 
epsilon (ε) and delta (δ), warrants further investigation. Davis and Vinner (1986) used the term 
temporal order to describe their relationship. While studies have shown the existence and prevalence 
of this particular difficulty, its nature is largely underexplored. 

The relationship between the quantities δand ε in the definition can be described using the idea of 
quality control in manufacturing an item. The conceptual structure at issue can be described as 
follows: given a permissible error in the measurement of the output (ε), one determines a way to 
control the input to achieve that result. One does so by determining the permissible error in the 
measurement of the input (δ) based on the given parameter for the output (ε). In this way, the error 
bounds follow the following sequential order, error bound for the output, then the error bound for the 
input. This is because the error bound for the output is given. In some ways, the error bound for the 
input could be seen as being dependent on the given error bound for the output. Epsilon can be seen 
as the error bound of the output whereas delta is the error bound for the input. Therefore, δand 
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εfollow the order of ε first, and then δ, or δdepends on ε. In this paper, the student discussed this idea 
of quality control in the context of working at a pancake house that is known to make 5-inch 
diameter pancakes. Students are given a permissible error for the size of the pancakes, and they were 
responsible to control the error in the amount of batter. 

Data Collection and Analysis Methods 
The data presented in this report is a case study from a larger interview study investigating the 

role of prior (and intuitive) knowledge in student understanding of the temporal order of epsilon and 
delta within the formal definition (Adiredja, 2014). Participants of the study were calculus students at 
a large Western public research university. Students were interviewed about their understanding 
about the temporal order. They were asked a series of questions about the temporal order before and 
after engaging with the instructional intervention. The instructional intervention, the Pancake Story 
uses the context of working at a pancake house to leverage the idea of quality control in discussing 
the formal definition, as explained in the previous section. A video recording of the interview was 
transcribed following Ochs’ (1979) guidelines. Transcripts were organized by turns, marked changes 
in the speaker. They included non-verbal behaviors, including relevant gazes, laughter and gestures. 
Turns that discus one mathematical argument make up an episode. The transcript was modified to 
facilitate reading. Many hedges, and uh-huh’s and um-hm’s from the interviewer were removed. 

Adriana, the focus of the analysis of this paper, was a mathematics and Chicano studies major. 
She ethnically identified as Chicana. Adriana received an A in her first semester calculus course in 
high school and in college. She was selected because despite her strong academic background, even 
after engaging with the Pancake Story, she still initially (and incorrectly) argued that ε depended on 
δ. Ultimately, Adriana adopted many of the productive resources from the story and used them to 
reorganize her knowledge and modify her claim. The analysis was interested in understanding how 
and why she did so. The analysis did not explore ways that Adriana’s identity as a Chicana 
influenced her reasoning about the topic. Her ethnicity and gender were included to better represent 
her as a student and challenge the common unintended assumption with cognitive studies that the 
student is a White male student (Nasir, 2013).  

The analysis focused on identifying a knowledge entity called knowledge resources (Adiredja, 
2014), which is defined as a single or a collection of knowledge elements that might be involved in 
making a single claim from larger ideas that the student used to make her claim. Knowledge 
resources were assumed to be neutral; they are not correct or incorrect. This theoretical assumption 
distinguished knowledge resources from larger ideas that were combinations of several knowledge 
resources. To identify knowledge resources, the analysis exploit any relevant data (e.g., gestures, 
other parts of transcripts) that might inform the aim to optimally understand the activation of 
knowledge resources in various contexts. The analysis then generated multiple models 
(interpretations) of the student’s argument in each episode. The analysis then put these models of 
student thinking in competition with one another. This process of competitive argumentation 
(VanLehn, Brown, & Greeno, 1984) was used to refine interpretations of student thinking. In this 
paper I only present the final model of each episode that was the result of the process of competitive 
argumentation.  

Results 
This paper only presents two of the four episodes of Adriana’s sense making: the first and final 

episode. These episodes illustrate the changes in Adriana’s thinking and salient ideas from the 
Pancake Story. They also show the initial conflict that Adriana faced in aligning the ideas from the 
story with her prior knowledge. The four episodes occurred on the span of 14 minutes.  

The first episode started with the interviewer’s asking Adriana about the dependence 
betweenδand ε after they discussed the Pancake Story. Adriana responded with the same [incorrect] 
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claim she made before she engaged with the story. She argued thatε depended on δ because epsilon 
was with f (x)and delta was with x and f (x) depended on x. The bolded texts marked the ideas that 
from which knowledge resources were identified. 

Adriana: [They kinda depend on each other], yeah in a sense because, but more whatever you're 
getting, like f (x) is always gonna depend on what x you're inputting it. But then, if you want 
to get something that's within delta [marks a small interval on the x axis with two fingers] 
you need to see if /.../ for example here [points to the pancake story] our epsilon here was 
already set, then that [points back and forth between 4.5 and 5.5 in the inequality 4.5<f (x)–
L<5.5] kind of depended on what we were putting in for x [points at the same interval 
around x on the graph] but..but mostly whatever you’re putting in to your x is gonna 
determine what you get for f (x) [pause]. So I’m still saying the same thing like delta depends 
on epsilon but= 

Interviewer: =Delta depends on epsilon? Or epsilon depends.. 
Adriana: No, yeah, epsilon depends on delta. But, /…/ if epsilon's already set then you'll 

manipulate your /…/ delta so it's within an error bound and /…/ then continue to manipu- 
wait [long pause] wait, so you're… hm. 

Final model of episode 1: Adriana focuses on her prior claim that epsilon depends on delta. She 
justifies the claim using functional dependence and function slots resources. She simultaneously 
brings up many of the productive resources from the story: domain constraint for a limit, the 
givenness of epsilon and quality control. However, these resources are in conflict with her prior 
conception. Adriana’s use of the knowledge resource of functional dependence can be seen in her 
statement, “whatever you’re putting in to your x is gonna determine what you get for f (x).” Analysis 
of the final episode revealed that in this episode, Adriana thought about epsilon and delta as a range 
of errors, i.e., x and y values, instead of error bounds for those values. This suggests that along with 
functional dependence, Adriana uses the knowledge resource function slots, i.e., the assumption that 
when two quantities share a functional relationship, one quantity is the x and the other is the f (x) or 
the y.  

Separate from her previous argument, Adriana also mentioned the idea that the epsilon (the error 
bound for the pancake) was given (givenness knowledge resource) in the story, and that she wanted 
to get “something” that was within delta. That statement reveals Adriana’s preference of only 
considering x values that are close to a in discussing limit problems. She would control that closeness 
by choosing x values that were within a small delta. This suggests her use of the knowledge resource 
domain constraint for a limit. The last line of the episode suggests that Adriana might have also 
taken up the idea of quality control: for a given specification on the output, one would manipulate the 
input so the output would be within the specified error bound. The sentence also reveals her use of 
the dynamic conception of a limit when she talked about continuing to manipulate the delta to get x 
closer and closer to a. She also erroneously talked about wanting delta to be within an error bound, 
which is consistent with the interpretation that delta in this episode as a range of x values.   

In the final episode, Adriana repurposed the functional dependence resource to describe the 
relationship between the errors but not the error bounds. This productive move helped Adriana to 
align productive resources from the story with Adriana’s prior knowledge. She then prioritized the 
idea of givenness of epsilon and quality control, which she already knew since episode 1,to conclude 
that delta depended on epsilon. She also adopted the story’s language. 

Interviewer: So, do they depend on each other, is it just one way now? 
Adriana: Um, see cus I was looking at it like /…/ the f of x [f (x)] depends on the x and that's 

how I was like saying that epsilon depends on delta because epsilon is related to the f of x 
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[f(x)]/…/. But that's just saying the error of the L and the f of x [f (x)] depends on the a 
and x but that's not to say that epsilon depends on delta. 

Interviewer: Ok, so? 
Adriana: So, I think that delta depends on epsilon now [laughs]. Just cus if it's given like this 

[reference unclear] and you're trying to aim at getting /…/ within a certain error bound, 
then you're gonna try to manipulate your entries /…/ to be within a certain error bound 
[gestures a small horizontal interval with her palms] 

Interviewer: Ok. Alright, so and so you changed your mind it seems? Um, so how did that 
happen? Why did you change your mind? 

Adriana: Because I was given an epsilon [points at the inequality 4.5<f (x)–L<5.5] and that's 
kinda like the main goal. The main goal is to get the pancake, /…/ and they gave me a 
constraint /…/ and /…/ they didn't give me an error bound for the batter or for like the a 
or x, they didn't give me an error bound. But I know I want to make it small so that it's 
within the error bound, the epsilon. So then I would kinda base my delta on what was 
epsilon.  

Final model of episode 4: Adriana uses functional dependence to describe the relationship 
between the errors (“But that's just saying the error of the L and the f (x) depends on the a and x, but 
that's not to say that ε depends on δ.”). To determine the dependence relationship between ε and δ, 
she prioritizes the resource givenness of epsilon and quality control, as seen in her statement, “you’re 
trying to aim at getting within a certain error bound, then you’re gonna try to manipulate your entries 
to be within a certain error bound.” Adriana also made the productive observation that delta was not 
given, showing her use of the givenness resource with delta as well. More importantly, not only did 
Adriana treat delta as an error bound, she also stated that she wanted delta to be small. By making 
delta small, Adriana was no longer using the idea of smaller and smaller or “continuing to 
manipulate” the input errors that suggests the use of dynamic conception of a limit in the first 
episode.  

Discussion 
In summary, the analysis revealed that Adriana took up many of the productive resources from 

the story despite its initially looking as if her understanding seemed unchanged. It took effort for 
Adriana to align the new productive resources from the story with her prior knowledge. After she 
repurposed the functional dependence resource to describe a relationship between the errors, she 
prioritized the productive resources from the story. Adriana also used the story to make a novel 
observation about the temporal order (delta was not given). That move and the adoption of the 
language of the Pancake Story suggest that the story was a rich learning context for Adriana. The 
story was able to leverage Adriana’s prior knowledge about functional dependence and quality 
control while reasoning about the temporal order. 

The Knowledge in Pieces framework guided the analysis in revealing knowledge resources from 
the story that were salient to Adriana, as well as those that existed as part of her prior knowledge. 
Adriana’s language in describing her conception in the first episode was not clear. However, analysis 
of the structure of her knowledge revealed these productive resources. The analysis was also able to 
recognize the productivity of Adriana’s moves because KiP takes seriously the process of 
reorganization of knowledge. The theoretical assumptions about epistemology and learning make 
KiP particularly sensitivity to subtle changes in sense making and potential productive roles that 
students’ prior knowledge can play in learning. It challenges the deficit perspective of student 
thinking and challenges what counts as productive mathematical knowledge and reasoning. More 
broadly, researchers studying student thinking wield a great deal of power in deciding what kind of 
knowledge is valuable, and particularly in suggesting implications to practice from the findings of the 
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analysis. For example, cognitive studies that focus on pathologizing students’ thinking might have 
simply characterized Adriana’s return to her prior argument about the temporal order as a result of a 
persistent misconception. Moreover, a lot of the subtle changes and her adoption of many of the 
productive resources might have been easily overlooked. Thus, not only would it position her and her 
thinking in a deficit way, it would also fail to recognize her contribution. 

The findings also show the utility of intuitive knowledge in building a conceptual understanding 
of formal mathematics. The spirit of the Funds of Knowledge work can be seen in the way that the 
Pancake Story leveraged the intuitive notion of quality control to learn about the temporal order 
within formal definition of a limit. At the same time, the story was designed with the KiP 
framework’s assumptions about the potential productivity of prior knowledge and ways that 
knowledge is reorganized. In addition to Wawro and colleagues’ (2012) work, we see another case 
where intuitive knowledge can be productive in learning formal mathematics.   

In sum, I argue that cognitive studies can contribute to equity issues more directly by addressing 
issues of power vis-à-vis valorization of knowledge. In this paper, I made a case for the KiP 
framework, and recognize that there might be other frameworks that can help uncover non-normative 
but potentially productive ways of thinking with formal mathematics. This type of work would 
benefit all students, but would particularly benefit non-dominant students whose knowledge are often 
devalued or unrecognized at the post-secondary level. In the face of underrepresentation and 
marginalization of non-dominant students more broadly, cognitive research can play an important 
role in challenging issues of power in mathematics education.  
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  In this paper we offer a review of sorts of the studies conducted around issues of problem posing in 
mathematics education research. We first ground the work on problem posing in the seminal work of 
Polya and of Brown and Walter, which influenced most studies on this subject. We then propose two 
perspectives taken on problem posing: the implicit and the explicit. These illustrate the varying 
emphasis concerning the conception of what is meant by problem posing, one being about actual 
requests for creating a problem and the other about defining the nature of problem solving 
processes. We conclude by discussing the significance of this categorization for making theoretical 
advances in problem posing research. 

Keywords: Cognition; Problem Solving 

Context 
Issues about problem posing have been around for a number of years in mathematics education 

research. This being so, recently there has been a resurgence of studies on the topic, illustrated 
through Working Groups (e.g. PME 2009, 2011), Special Issues (e.g. ESM, 83(1)), and books (e.g. 
Singer, Ellerton, & Cai, 2015). Through this spread of studies on problem posing, however, 
numerous orientations have been developed, and often one is at a loss in making differences or even 
finding similarities between the perspectives taken. Far from being a negative aspect of the field, as it 
shows its richness and enlargement, there is however a need to distinguish and categorize the kind of 
work being conducted in order to develop clearer views on what problem posing means and how to 
study it. Other researchers have also attempted classifications in the past (e.g. Voica et al., 2013; 
Christou et al., 2005). We re-use and deepen these classifications, combining them with the work of 
Polya (e.g. 1957) and of Brown and Walter (e.g. 2005), who are seen as pioneers on the theme. In 
addition, we outline another line of studies to which little attention has been paid to, that is, studies 
focusing on the activity of problem solving defined as an activity of problem posing. Thus, in this 
paper we extend the current categorization of studies on problem posing, leading us to varied views 
of what is meant by problem posing in the community of mathematics education researchers. 

To do this, we first situate the field on problem posing through an overview of the work of Polya 
and of Brown and Walter. We then offer a first category of studies, termed the explicit perspective, 
which focuses on explicit requests to students to participate in an activity of composing problems. 
We then offer a second category of studies called the implicit perspective, which focuses on studies 
that define the activity of problem solving as one of problem posing.  

This being said, as expected, we do not claim to offer an exhaustive list of all work ever 
conducted on problem posing. In this sense, we do not offer a review, but mainly a review of sorts. 
The intention with this review of sorts is to offer fruitful distinctions related to the underpinnings of 
what is considered an activity of problem posing. Through these distinctions, we aim to take a step 
forward in the direction of Silver’s (2013) suggestion for more developed theoretical frameworks to 
support studies in problem posing. 

Pioneers of Problem Posing: The Work of Polya and of Brown and Walter 
Numerous researchers have mentioned being influenced, directly or indirectly, by the work of 

Polya or Brown and Walter, making them important sources in the problem posing literature. We 
thus refer to their work as a way of grounding and contextualizing this review of sorts.  
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George Polya’s Problem Posing 
Polya’s (e.g. 1957) work on problem solving focuses on helping and pushing students to analyse 

the problems they solve and to think of other interesting problems in relation to them. In so doing, for 
Polya, teachers help students to consolidate their knowledge, develop their ability to solve problems 
and improve their solution or their understanding of it. Polya did not used the expression problem 
posing in his work, referring mostly to what he called the Looking back technique, which enables 
students to generate new ideas and investigate possible connections between mathematical problems. 
Having solved a problem, students are asked to look at what they have done and then to formulate 
new problems out of it. Polya argues that through this activity, students gain a better understanding 
of their solutions and increase their solving abilities. To formulate new problems, Polya suggests 
various heuristics of Looking back, four of which are discussed here. For example, consider this 
problem for students to solve (Figure 1): 

 

 
Figure 1: Polya’s parallepiped problem (Polya, 1957, p. 7) 

A first heuristic consists, once one knows the solution to this problem, of generating analogous 
problems, i.e. similar problems to this one. Polya gives examples of possible formulations: “a) Given 
the three dimensions of a parallelepiped, find the radius of the circumscribed sphere; b) The base of a 
pyramid is a rectangle of which the center is the foot of altitude and the sides of its base, find the 
lateral edges; c) Given the rectangular coordinates (x1, y2, z3), (x1, y2, z3) of two points in space, find 
the distance of these points.” (1957, p. 66) These problems allow students to go back to the initial 
solution, but for other contexts, which requires them to rethink the solution and not only apply the 
formula. A second heuristic consists of applying the formula found by modifying the problem and its 
data. For example, the initial problem requires looking for the diagonal of the parallelepiped in 
relation to its width, length, and height. Another problem can be formulated by asking to find the 
height of the parallelepiped depending on the diagonal, the length, and the width. This heuristic 
requires interchanging the role of the various givens of the problem. Polya’s third heuristic is 
generalizing/specifying. Generalizing consists in solving the same problem, but for an entire category 
of numbers or givens. For the above problem, one possible generalization could be: “Find the 
diagonal of a parallelepiped, being given the three edges issued from an end-point of the diagonal, 
and the three angles between these three edges.” (1957, p. 67), which requires e.g. aiming for 
algebraic letters to represent the needed values of the problem. Also, a way of specializing the 
problem would be to look for specific cases, like finding the diagonal of a cube knowing one of its 
edges. A fourth heuristic is studying variations, that is, studying the effect of varying some of the 
data in the problem. For example, in the analogous problem of the circumscribed sphere, one can 
vary the radius of the sphere and study its effect on the problem and solution, leading to three 
possible cases: the sphere is entirely contained in the cube, the sphere is circumscribed in the cube; 
and finally the sphere encompasses the cube. Polya’s heuristics are illustrations of his Looking back 
approach. For him, binding problem posing to problem solving allows students to see the possible 
mathematical connexions between various problems. By looking back at their solution, by 
reconsidering and examining the solution and the path they have followed, he argues that students 
consolidate their knowledge and develop their problem solving skills.  
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Brown and Walter’s Problem Posing  
The main goal of Brown and Walter’s (e.g. 2005) problem posing is to study mathematics by 

working on students’ questions and reflections on a given topic. For Brown and Walter, questions 
that arise in the classroom must not only be instrumental (i.e. posed to ensure understanding and 
performance of what the teacher asks students to do), but rather should help student to develop their 
mathematical skills, understanding and autonomy. In The Art of Problem Posing, Brown and Walter 
present two perspectives of problem posing: Accepting and What-if-not? (WIN). These perspectives 
are to help teachers to develop strategies for using problem posing in class with their students. The 
Accepting perspective refers to students accepting a concept suggested by the teacher (e.g. the 
concept of prime numbers defined as natural numbers that have exactly two natural divisors), and 
then finding interesting problems/questions about it. In the case of prime numbers, it could be 
questions like: How many prime numbers are there? How to find the next prime number? They argue 
that this leads students to explore and work mathematically on a concept, in order to develop an 
understanding of it. 

The WIN perspective consists, on the other hand, in seeing what happens when instead of 
“accepting” the concept, one contests its characteristics. Brown and Walter suggest various levels of 
WIN, which they illustrate with the example of the Pythagorean theorem. A first level is for students 
to list the attributes of the Pythagorean theorem. For example, it may be noted that all number are 
squared or that the variables are connected by an equal sign. A second level consists of asking a WIN 
question for each of the attributes listed. For example, What-if the variables were not connected by an 
equal sign, but by an inequality? This question opens and becomes a new route to be explored for 
both students and teacher. A third level, called the What-if-Not-ing level, requires combining the 
negation of two of the attributes listed. In this case, it could be by looking at what happens when the 
variables are not linked by an equal symbol and all numbers are not squared. This also opens a new 
route to explore. For Brown and Walter, these mathematical explorations allow students to 
understand the Pythagorean theorem through the importance of its mathematical attributes, as well as 
developing their ability to formulate questions, explore mathematics, and solve problems. In this 
sense, the authors argue that after solving a problem, a person does not fully understand the meaning 
of what he/she has done unless new interconnected problems are formulated and analyzed, which 
affords a better grasp of the concept worked on. Thus Brown and Walter’s problem posing is related 
to an inquiry process that leads to the exploration of concepts for understanding them better, arguing 
also for openness toward mathematical questions and thoughts that occur in classrooms.  

Conceptualizing Problem Posing: Explicit and Implicit Perspectives 
Grounded or not in Polya or in Brown and Walter’s ideas, various meanings about problem 

posing are found in the literature. We distinguish these meanings by suggesting two perspectives. 
The explicit perspective refers to an explicit request for students to compose problems, whereas the 
implicit perspective refers to something that occurs implicitly in the activity of problem solving, i.e. 
every act of problem solving is seen as an activity of problem posing in itself.  

The Explicit Perspective: A Pragmatic View of Problem Posing 
In the explicit perspective, we distinguish three categories of studies being conducted, 

highlighting their diverse but complementary nature. We discuss these and give examples for each of 
them. In our description, we use the word learners to refer whether to students or (prospective) 
teachers who are doing the various kinds of problem posing. 

Category 1: To compose a problem without any context or constraint. This first category 
refers to asking learners to compose a problem without imposing any context or constraints. In short, 
they need to compose from scratch. This category of problem posing can be linked to what 
Stoyanova and Ellerton (1996) call a free problem posing situation where students have to formulate 
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new problems in an open situation. For their part, Christou et al. (2005) refer to this kind of problem 
posing as tasks that require students to pose a problem in general, in free situations. In this category, 
we find, for example, the work of Ellerton (1986) and of Crespo (2003). In her work, Ellerton asks 
students to compose a problem that would be difficult, a challenge, for a friend to solve. The students 
then have a blank card to compose mathematical problems of any kind related to the concepts that 
they wish. In Crespo’s study, elementary students are paired with prospective teachers and 
correspond one-on-one by sending each other letters. Through this, Crespo aims at placing 
prospective teachers in an authentic experience of generating problems by asking them to write 
mathematical problems in their letters for their elementary student. The prospective teachers have no 
constraints on the type of problem to compose or the mathematical concepts to use. 

Category 2: To generate problems from specific constraints. Another category refers to 
asking learners to generate problems on the basis of specific constraints. Many, if not most, studies 
conducted on problem posing can be placed in this category. In fact, this category can even be 
subdivided into three subcategories covering the constraints given to learners for generating 
problems: (a) generate from a general context; (b) generate from specific constraints; (c) generate 
from a previously solved problem.  

The generate from a general context subcategory contains studies that ask learners to generate a 
problem in a general context. Brown and Walter’s (e.g. 2005) Accepting perspective of problem 
posing is an example of this. In the example given above about Accepting, the context is the prime 
numbers, which are introduced to students who then have to generate problems about this 
mathematical concept without other indications. Work conducted by English (1998) is also of this 
type, where students have to compose problems in an informal mathematical context free of symbolic 
representation. For example, she asks students to make up a story problem about what they see in a 
large photograph of children playing with a set of brightly coloured items. A general mathematical 
context is then given to learners who have to generate problems from it. The subcategory generate 
from specific constraints refers to studies that ask learners to generate problems within or in relation 
to specific constraints. Silver (1994) refers to this subcategory as problem generation, where the goal 
is the creation of new problems from a situation prior to any problem solving. This subcategory can 
also be linked to what Christou and al. (2005) call a task that requires students to pose a problem 
with a given answer, a problem that contains certain information, a question for a problem situation, 
or a problem that fits a given calculation. Brown and Walter’s (e.g. 2005) WIN perspective, as 
discussed above, takes place in this subcategory as it asks students to generate problems based on a 
initial mathematical situation using the WIN technique. The WIN technique is seen here as a 
constraint because it gives insight into the kind of problem students have to generate. Lavy’s works 
(Lavy and Bershadsky, 2003; Lavy and Shriki, 2007), using the WIN technique in class with 
prospective teachers in a geometry context, is another example of this subcategory. We can also refer 
to studies of Silver and Cai (1996) and Silver, Mamona-Downs, Leung and Kenney (1996), in which 
before solving a mathematical task, students are asked to compose three problems that can be solved 
from the information/data given in an initial problem. When they have composed a new problem 
based on this one, students are asked to solve eight related problems. The researchers then studied the 
nature of the composed problems and the relationship between their ability to compose and to solve 
problems. This kind of problem posing contrasts with the other subcategories because the specific 
constraints (the technique or the problem) guide the kind of problem that learners would be more 
likely to compose. The last subcategory, generate from a previously solved problem, contains studies 
asking learners, after having solved a specific problem, to create other problems based on this solved 
problem. The problems then created are modifications of the goals or the conditions of the previously 
solved problem. Silver et al. (1996) above mentioned study is also in this subcategory, where in 
another part of their study students have to generate a problem from previously solved ones. Polya’s 
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(e.g. 1957) heuristics of the Looking back technique (analogies, modifying, generalizing-specifying 
and studying variations) are also examples of this.  

Category 3: To transform an initial problem. The third category of problem posing is 
intricately linked to problem solving strategies, as it contains studies that ask learners to transform an 
initial problem in order to solve it. This kind of problem posing occurs during the problem solving 
process, when students are invited, as an efficient solving strategy, to reformulate for themselves the 
given problem. For example, strategies given to students are to decompose the problem into sub-
problems, to simplify or modify the original problem or to solve a related problem. Students use 
these strategies to achieve one goal: to be able to solve the original problem. The problem posing is 
then seen as a means of solving the given problem. Silver (1994) refers to this category of problem 
posing as occurring during the process of solving when students must ask themselves “How can I 
formulate this problem so that it can be solved?” (p. 20). Kilpatrick (1987) mentions that problem 
posing consists of reformulating an existing problem in order to make it one’s own; seeing problem 
posing (what he calls problem formulating) as an important companion to problem solving. Mason, 
Burton and Stacey’s (1982) Thinking Mathematically book explains this approach in detail to help 
learners solve a problem. In a similar vein, Polya’s (1966) video on Guessing amply illustrates this 
category of problem posing. In the video, Polya tells his students that if a problem is too difficult to 
solve, they should pose easier sub-problems, which could prepare them to solve the bigger problem; 
examples explored are to consider the problem in 2D instead of 3D, reducing the number of 
constraints/givens in the problem, and so forth. The aim is that, as they solve these sub-problems, 
learners gain a better sense of the original problem and prepare themselves for solving it.  

The Implicit Perspective: An Epistemological View of Problem Posing 
Studies under what we term the implicit perspective are less frequently, if ever, accounted for in 

reviews on problem posing. In this perspective, we integrate studies that conceptualize the problem 
solving process as events of problem posing. Thus whereas in the first perspective the notion of 
problem posing was related to explicit requests for creating problems through varied contexts, in this 
second perspective the notion of problem posing happens implicitly, without any request, as it defines 
the activity of problem solving itself. In various ways, work conducted under this lens makes the 
argument that when students solve problems, they are in fact posing their own problems, as we show 
below.  

Category 1: Problem posing that influences the problem solving path. This category 
comprises studies that focus on the link between problem posing and problem solving, emphasizing 
the influence of the posed problems on the solving process. The work of Sevim and Cifarelli (2013) 
illustrates this. They argue that when solving a problem, a solver creates his/her own goals and 
purposes. These change as the solver progresses in the solution and also indicate the path of solving 
that the solver chooses. Armstrong’s (2013) work is another example of this, as she records and 
studies students’ questions that arise while they are solving a problem, and which influences the 
course of the solving. In her work, she looks at the questions that a group of students working 
together ask themselves when solving a task. For example, students would ask questions like “What 
is meant by an interval?” “Is it a square root?” or “What if there are x people?” (p. 67), in order to 
think about the task and arrive at a solution. Each group of students asks different or similar 
questions, and some groups also ask questions more than once during the same problem solving 
process. Armstrong made a “tapestry” schema out of this that shows the problem posing path 
followed by each group when solving their problem. She illustrates that the process used by learners 
directly influences their problem solving process. Stoyanova and Ellerton (1996) definition of 
problem posing, “the process by which, on the basis of mathematical experience, students construct 
personal interpretations of concrete situations and formulate them as meaningful mathematical 
problems” (p. 518), can be linked to this implicit problem posing. In order to solve a problem, 
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learners formulate for themselves meaningful problems on the basis of their mathematical 
experience; this is not done as a request or as a strategy for solving, but mainly reflects what they do, 
their solving processes.  

Category 2: Gaps between teachers’ and students’ task. Researchers like Perrin-Glorian, 
Robert and Rogalski (see e.g. Perrin-Glorian & Robert, 2005; Robert & Rogalski, 2002; Rogalski, 
2003) have also worked along those lines to develop meaning about students’ problem solving 
processes. Like Polya, they have not used the expression problem posing, but have focused on 
students’ interpretations of the problems given to them, where they formulate for themselves, they 
pose, what the problem to be solved is. Rogalski (2003) identified various natures that tasks can 
assume when presented by teachers in the classroom, all of this happening implicitly during the 
activity of problem solving. First, the teacher prescribes a task to students, which consists essentially 
in the formulation of the problem. This prescribed task may be directly observed, as it consists of the 
instructions presented by the teacher to the students. The teacher has expectations about the task that 
the students have to work on: this is the expected task. On the other hand, students do not necessarily 
work on the teachers’ prescribed task, but on one that has been redefined from that prescribed task. 
The redefined task, therefore, represents the student's personal representation of the task; somehow 
his/her implicit posing of the task in his/her own terms. Finally, the effective task is the actual one to 
which the student responds, which is not necessarily identical to the one he/she thinks he/she is 
responding to; this leads to a dynamical interrelation between the redefined and effective task. These 
redefined and effective tasks illustrate the problem that the student actually asks/poses him/herself 
and intends to solve (again, all of this happening implicitly in the solving process). The studies 
conducted within this framework focus on the gaps between teachers’ expectations and students’ 
mathematical activity in solving problems, their problem posing process. 

Category 3: Problem posing versus problem solving. Work in this third category is related to 
Varela’s (1996) epistemological definition of problem posing, which he contrasts with problem 
solving. For Varela, problem solving implies that problems are already in the world, independent of 
us, waiting to be solved. Varela explains, on the contrary, that we specify the problems that we 
encounter through the meanings we make of the world in which we live, leading us to recognize 
things in specific ways. We do not choose problems that are out there in the world independent of our 
actions. Rather, we bring problems forth, we pose them: “The most important ability of all living 
cognition is precisely, to a large extent, to pose the relevant questions that emerge at each moment of 
our life. They are not predefined but enacted, we bring them forth against a background.” (p. 91). 
The problems that we encounter, the questions that we ask, are thus as much a part of us as they are a 
part of our environment: they emerge from our interaction with/in it. The problems that we solve are 
relevant for us as we allow them to be problems. Working in this perspective, René de Cotret (1999) 
notes that one cannot assert that instructional properties are present in the tasks presented and that 
these causally determine solvers’ reactions. As Simmt (2000) explains, it is not tasks that are given to 
students, but mainly prompts that are taken up by students who themselves create tasks with. Prompts 
become tasks when students engage with them, when, as Varela would say, they pose them as 
problems. This posing, as we show in Proulx (2013) about mental mathematics contexts, determines 
the task solved, hence the strategy developed for it. Students make the “wording” or the “prompt” a 
multiplication task, a ratio task, a function task, an algebra task, and so forth, and solve accordingly, 
which leads to varied strategies and answers because they often start from “different” posed 
problems. 

In this implicit perspective, students play an important role in what the problem to solve is: not 
because they have created it, but because a student is always solving his/her own problem, from a 
given prompt. In this sense it is implicit, that is, it is not an explicitly requested task by someone 
external to the student (as in the first explicit perspective), but something implicit in the solving 
process when students engage with the(ir) problem to be solved. In sum, they implicitly create a 
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problem in the action of solving the problem; whereas in the first explicit perspective they were 
explicitly asked to create a problem from various context and data given. Both perspectives and their 
categories are summarized in Table 1. 

Table 1. Summary of Implicit and Explicit Perspectives 
 

Explicit perspective on problem posing  
(as an explicit request to learners) 

Implicit perspective on problem posing  
(as defining the problem solving process) 

To compose a problem without any context or 
constraint 

Problem posing that influences the problem 
solving path 

To generate problems from specific constraints Gaps between teachers’ and students’ tasks 
To transform an initial problem in order to solve it Problem posing versus problem solving 

Final Remarks on these Categorizations of Problem Posing 
What do we learn from this? This categorization of work conducted on problem posing is more 

than a review: it is an extension of the field. By integrating the work under the implicit perspective, 
which we have seldom encountered in reviews and activities about problem posing (Working 
Groups, books, Special Issues), we extend what are normally considered as studies in problem posing 
by opening the way to epistemological considerations about students’ mathematical activities. 
Whereas problem posing as a field is widely known in terms of an activity to plunge students into, as 
a teaching device or as a strategy for solving problems (see e.g. Voica et al, 2013; Christou et al., 
2005), what we have grouped under the implicit perspective is much less known and tackles 
epistemological issues related to students mathematical activity in itself. Epistemological 
questions/issues are not new in problem posing work, as some of them can be seen and felt through 
the work of Stoyanova and Ellerton (1996) and of Kilpatrick (1987), however they oscillate between 
a view of problem posing as a request on students and as representing students’ mathematical 
activity. The distinction offered here between explicit requests for problem posing and the implicit 
problem posing activity happening in students’ mathematical activity appears fruitful for developing 
a sharper understanding of what is meant by problem posing and clarifying where one’s focus is. As 
mentioned, this can be felt as a step forward in the direction of Silver’s (2013) suggestion for 
developing finer theoretical frameworks to support studies in problem posing. 
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Although equity-oriented discourse is working to move the mathematics education community from 
achievement-gap rhetoric toward a focus on opportunity gaps, it does not currently recognize the 
role of space and the politics of space in creating and maintaining opportunity gaps as it relates to 
mathematics education in urban settings. The purpose of this paper is to engage the task of re-
conceptualizing urban mathematics education by proposing a framework for scholarship, policy, and 
practice. The authors engage scholarship in mathematics education, urban education, critical 
geography, and urban sociology to substantiate a socio-spatial framework for urban mathematics 
education, which features a visual schematic that locates mathematics teaching and learning—vis-à-
vis a mathematics-instructional triad—within a system of socio-spatial considerations relevant to 
U.S. urban contexts. 

Keywords: Equity and Diversity; Research Methods 

An enduring challenge within mathematics education (and in education more broadly) has been 
to recognize the role that mathematics plays in societal stratification and to address systemic 
inequities that marginalize populations. “Equity” has been positioned as the key principle for 
responding to this challenge (National Council of Teachers of Mathematics [NCTM], 2000), and 
over the last few decades, equity-oriented discourse in mathematics education has developed 
alongside the emergence of urban mathematics education scholarship. The boundaries between the 
two domains are difficult to distinguish, thus the two are often conflated or interchanged based on 
common components related to issues of race, class, power, and status. We argue, however, that 
contemporary equity discourse has not adequately responded to the particular relationship between 
the “urban” as a socio-spatial construct and mathematics education. Until these discourses are more 
clearly framed, neither can fulfill its potential to contribute to the enduring challenge above. 

Although we argue that equity and urban mathematics education are separable discourses, we 
acknowledge that the two are related. Particularly, equity discourse is helping the mathematics 
education community to move from an achievement gap orientation toward an opportunity gap 
orientation (Flores, 2007). Considering gaps in opportunity makes room for new analyses of 
mathematics education related to the ways in which opportunity is constructed within education 
discourses. In the inaugural issue of the Journal of Urban Mathematics Education (JUME), Tate 
(2008) issued a challenge related to conceptualizing urban mathematics education in relation to 
opportunity: 

The challenge is to build theories and models that realistically reflect how geography and 
opportunity in mathematics education interact. If this challenge is addressed, the field will be one 
step closer to making scholarship in urban mathematics education visible. (p. 7) 

In a later JUME commentary, Rousseau Anderson (2014) returned to the need to consider space 
in urban mathematics education as “‘place matters’ in the study of urban mathematics education (p. 
10). Our aim in this paper is to move further toward recognizing the role of space and the politics of 
space in creating and maintaining opportunity gaps. 
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Background 
The roots of urban mathematics education as a subdomain of mathematics education extend back 

at least to efforts during the 1980s (see Tate, 1996), concurrent with the development and publication 
of the NCTM standards for mathematics curriculum and evaluation (1989) and for mathematics 
teaching (1991). These developments also coincided with commensurable shifts in research as 
mathematics education scholarship around the world entered its much-discussed social turn (e.g., 
Meyer & Secada, 1989; also see Lerman, 2000; Martin & Larnell, 2013; Stinson & Bullock, 2012). 
For researchers, teachers, policymakers, and education-interested foundations in the United States 
(e.g., Ford Foundation, National Science Foundation), a crucial new question emerged: How would 
the then-new vision for school mathematics reform extend to and take shape in urban districts and 
classrooms (Tate, 2008)? This question remains central in the latest shift to the Common Core State 
Standards for School Mathematics. 

Our aim in this paper is to broaden the discourse in urban mathematics education in ways 
indicated by Tate’s (2008) challenge in the inaugural issue of JUME. According to Lou Matthews 
(2008), JUME founding editor-in-chief, the journal was founded “to open up a space in mathematics 
education that would honor and enrich the work in this domain [i.e., urban mathematics education]” 
(p. 1). The young journal’s growing popularity signals that urban mathematics education has 
advanced to the point at which we may now begin to evaluate the production of knowledge in this 
subdomain—and, particularly, the building of “theories and models that realistically reflect how 
geography and opportunity in mathematics education interact“ (p. 7). What has the study of urban 
mathematics education entailed? What can it become? The purpose of this paper is to take “one step 
closer” toward addressing these questions and toward new directions for urban mathematics 
education scholarship and practice. 

Overview of the Socio-spatial Framework for Urban Mathematics Education 
In the spirit of addressing Tate’s challenge (also see Rousseau Anderson, 2014), our objective is 

to posit a new theoretical framing for scholarship in urban mathematics education—the first of its 
kind (Figure 1). In this section, we detail the theoretical concepts undergirding the framework. We  

 
 

 
 
 
 
 
 
 
 
 

 

 

 

 

 
Figure 1. Socio-Spatial Framework for Urban Mathematics Education Scholarship 

Societies

Learner/s

Teacher/s Mathematics

Spatial Logic of Urban

Significations of Urban

Moments of !
Mathematics Education

Communities

Schooling systems!
!

School



Theory!and!Research!Methods:!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

1287!

situate this framing squarely (but not entirely) in mathematics education—using as our central unit of 
analysis the mathematics-instructional triad of teacher(s), learner(s), and mathematics (Cohen, 
Raudenbush, & Ball, 2003; NCTM, 1991; Stein, Smith, Henningsen, & Silver, 2009). We also 
incorporate the various theoretical orientations—e.g., cognitivism/behaviorism, constructivism, 
sociocultural perspectives—that have emerged amid “moments” of mathematics education during the 
past century (Stinson & Bullock, 2012). We represent these theory-driven moments of mathematics 
education scholarship as a dimensional axis that intersects with the socio-spatial elements of the 
framework. 

The NCTM Research Committee (Gutstein et al., 2005) argued that, in order for researchers to 
advance equity in mathematics education, we must “break with tradition, expand boundaries, and 
cross into fields outside of mathematics education and outside education” (p. 96; emphasis original). 
In this spirit, we extend beyond mathematics education, looking toward the interdisciplinary areas of 
urban sociology, critical geography, and urban education scholarship to consider the various forces 
that influence mathematics teaching and learning in urban spaces as well as the social significations 
that shape interactions in urban settings. We recognize, however, that the task of defining urban has 
been an overwhelming challenge across disciplines, and our attempt here is to incorporate what is 
known inasmuch as we can given what is available to us contemporarily (Milner & Lomotey, 2013).  

In recent decades, there has been considerable momentum in the humanities and the social 
sciences to consider space as a social construction that is integral to social analysis (Arias, 2010). 
This spatial turn renders geographic considerations equal to—and mutually constructed with—
temporal and social considerations in the analysis of social phenomena (Warf & Arias, 2009). In 
many ways, this framework represents a spatial turn within mathematics education research in which 
temporal (i.e., the Moment of Mathematics Education axis), social (i.e., the Significations of Urban 
axis), and geographic (i.e., the Spatial Logic of Urban axis) elements are taken together as mutually 
constitutive of urban mathematics education. 

To inform the framework with respect to the social meanings that shape urban mathematics 
education, we draw on Leonardo and Hunter’s (2007) typology of significations that circumscribe 
urban education (also see Martin & Larnell, 2013). We represent that typology as an axis of the 
framework that intersects with spatial considerations of urban, drawn from scholarship in critical 
geography (e.g., Soja, 1980; Thrift, 2003). The coordinate representation is intended to signal a 
socio-spatial dialectic regarding the urban—that is, that social significations and spatial 
considerations necessarily intersect “to realistically reflect how [spatial] geography and [social] 
opportunity in mathematics education interact” (Tate, 2008, p. 7). We then add a third axis to situate 
the socio-spatial elements in relation to the evolution of mathematics education and the theoretical 
orientations association with these evolutionary “moments” (Stinson & Bullock, 2012). 

Mathematics-instructional triad as the central element of the framework 
At the center of our framework are interactions among learners, teachers, and mathematics 

curriculum (see Figure 2). Not only does this center the processes of formal and informal 
mathematics teaching and learning, but in terms of the diagrammatic representation of the 
framework, the triad represents a kind of coordinate point with respect to the social, spatial, and 
mathematics-education “theory-moment” axes. As such, the framing allows for questions that relate 
mathematics teaching and learning, social contexts, spatial logic, and the evolution of the 
mathematics education enterprise (also see Weissglass, 2002). 

Spatial logic axis of the framework 
Most often, discussions of urban space are connected to population density and physical 

geography (see Milner, 2012). While these elements contribute to our understanding of urban as a 
means of geographical classification, they are insufficient in that they do not allow for a nuanced  
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4

He points to the rectangle and says , “This?”  The teacher nods and tells him, “A rectangle is
a shape that has four sides and four square corners.
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students
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environments

environments

environments

FIGURE 1.  INSTRUCTION AS INTERACTION OF TEACHERS, STUDENTS, AND
CONTENT, IN ENVIRONMENTS5

Are there others here?”  They continue to work for a couple of minutes.  Near the end, she
draws a square and asks Rami whether this was a rectangle.  The girl sitting next to him
looks over and says, “No, that is a square.”  “But it has four sides and four square corners,”
objects Rami. “You are right, Rami,” says the teacher.  “A square is a special kind of
rectangle.  What is special about it is that all the sides are the same length.  But it is still a
rectangle, and some people get fooled by that.  Very good!”

The teacher walks away, and Rami begins to work on the problem.  After about 15 minutes,
she calls the class back together.  She asks whether someone would like to share a solution.
Several children want to, and the next few minutes are spent with children offering solutions.
With each one, the teacher asks the child to show the rectangle and to explain how it is a
solution to the problem.  The children, some with help, are able to say why their shape is a
rectangle, with reference to the definition, and to show its dimensions.  “Mine is a rectangle
because it has four square corners, and it also has four sides.  One side is 8 and one is 4.
There are 32 tiles altogether in it.”

The discussion continues.  The teacher begins a table to record the solutions.  She decides to
ask for solutions beginning with the smallest rectangle.  She asks them what would be the
smallest rectangle they could make.  One child proposes 2.  Another says, “What about 1?”

                                           
5 This depiction of instructional relationships is familiar: Dewey relies on the idea, as did Jerome Bruner and his
associates in creating MACOS, David Hawkins, Milbrey McLaughlin and Joan Talbert, Theodore Sizer, and others.  But
it also is strange, for many researchers and practitioners refer to teaching as though it was something done to learners.

 
Figure 2. Mathematics-instructional Triad, with Cohen & Ball’s (2000) focus on interaction 

understanding of space and the non-geographic (i.e., affective) meanings associated therein. To 
substantiate the spatial aspect of this framing, we draw primarily on human geography and Thrift’s 
(2003) four conceptions of space: (a) empirical-constructing space, or the ways in which space is 
rendered measurable or objective; (b) interactive-connective space, or the pathways and networks 
that constitute space; (c) image space, the visual artifacts that we readily associate with space; and (d) 
place space, or our everyday notion of spaces in which human beings reside (p. 102). These 
conceptions of space form a spatial logic that is not limited to a geographical sense of urban space 
and that takes into account meanings associated with space. The strength of articulating four 
distinctive conceptions of urban allows one to look across their various permutations in ways that 
provide a nuanced perspective on space. 

Social-signification axis of the framework 
“Urban” is not simply a geospatial concept; it also carries social and political meanings. 

Accordingly, urban mathematics education scholarship must engage its social and political 
dimensions—i.e., relating mathematics teaching and learning to the many ways in which urban can 
be experienced, influenced, shaped, and contested. Toward offering some conceptual framings, the 
social-signification axis of our framework includes Leonardo and Hunter’s (2007) three 
significations of urban: urban-as-sophistication (or cosmopolitan space), urban-as-pathological (or 
urban as “dirty, criminal, and dangerous;” p. 789), and urban-as-authenticity (or the politics of 
authenticity). This view of urban as more than just physical space also challenges the prevalent use of 
urban as a proxy descriptor for poor, Black, and Brown populations who inhabit these spaces and 
disproportionately fall victim to the segregation and concentrated poverty (Darling-Hammond, 
2013). Such employment of “urban” ignores the heterogeneity of urban space, its politics, its people, 
and their experiences (Fischer, 2013). 

Theory-Moment Axis of the Framework 
Stinson and Bullock (2012) outlined four moments of mathematics education research since its 

emergence as a research domain. These moments—the process-product moment, interpretivist-
constructivist moment, social-turn moment, and socio-political-turn moment—are characterized by 
particular theoretical orientations—cognitivism, interpretivism/constructivism, sociocultural theories, 
and theories of power, respectively. These moments are overlapping categorical periods of research, 
practice, and policy (also see Gutierrez, 2013). These periods have often been indexed by a crisis 
metaphor (Washington, Torres, Gholson & Martin, 2012).The third axis incorporates these moments 
and the associated theoretical orientations. 
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With a third axis in the framing, we attempt to construct what could be called a mathematical-
socio-spatial dialectic. That is, we situate the mathematics-instructional triad within the dimensional 
space of not only the socio-spatial dialectic but also with respect to the ongoing “moments” of 
mathematics education theory and practice (Stinson & Bullock, 2012; also see Martin & Larnell, 
2013). Put differently, the axes represent the intersectionality of geography (or spatiality), social 
opportunity, and the development of mathematics education, which is what Tate (2008) originally 
outlined.  

Implications: Urban Mathematics Education and Equity 
Central to this framework is the understanding that urban mathematics education is a complex 

domain in its own right. It is more than just mathematics education performed with—or on—people 
who are labeled “urban” based on race and/or class signifiers. Additionally, it is more than just a 
descriptor for situating traditional or reform-oriented mathematics teaching and learning in certain 
locales (i.e., the “inner city”). Thus, it is important that we address explicitly the need for a 
consideration of urban mathematics education that is separate from—yet connected to—prevailing 
equity discourse in mathematics education. Examining mathematics education in urban spaces 
through an equity-oriented lens appropriately centers conversations on children of color and their 
mathematical identities and experiences. However, engagement with the urban in such work is often 
limited either to contextual descriptors connected to racial demographic and free-and-reduced-lunch 
data or to situated applications of mathematics curricula or pedagogies in spaces inhabited by people 
who are largely Black and/or Brown and poor. 

As a descriptor in research, “urban” functions as a sort of veil. This veiling allows the researcher 
to acknowledge race and class in superficial ways that obscure weightier systemic issues related to 
race and class. This urban-as-veil perspective also frames our collective understanding of urban 
populations in ways that—perhaps ironically—obscure populations that do not align with notions of 
urban educational contexts as Black, Brown, and/or poor. The challenge with this veiling is that it 
allows equity discourse to disengage from the substantive issues in urban education, racism, and 
classism that inhabit mathematics classrooms and other aspects of the “network of mathematics 
education practices” (Valero, 2012, p. 374). We propose that this framework for urban mathematics 
education encourages a more complex understanding of “urban” that attends to the role of place in 
mathematics education and, additionally, unveils race and class as distinct categories that each 
warrant significant analysis in their own right. 

These examples represent common ways in which equity discourse interacts with the urban in 
mathematics education. However, these approaches miss possibilities for understanding the 
implications of place on mathematics teaching-and-learning environments. We propose that engaging 
the elements of this framework allows equity-oriented mathematics education researchers to remove 
the urban veil in a way that acknowledges the roles of place, race, and class as distinct and mutually 
constitutive. Specifically, it aims to position urban mathematics education as a system of connections 
among mathematics, race, class, power, and the politics of space. This positioning allows 
mathematics education researchers to explore the interactions between geography and opportunity 
within a multidimensional framework that acknowledges the political underpinnings of opportunity 
gaps that equity discourses reveal.  
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We present findings from an analysis of the Calculus Concept Inventory. Analysis of data from over 
1500 students across four institutions indicates that there are deficiencies in the instrument. The 
analysis showed the data is consistent with a unidimensional model and does not have strong enough 
reliability for its intended use. This finding emphasizes the need for creating and validating a 
criterion-referenced concept inventory on differential calculus. We conclude with ideas for such an 
instrument and its uses. 

Keywords: Post-Secondary Education; Assessment and Evaluation; Research Methods; Instructional 
Activities and Practices 

Introduction and Literature Review 
As educators and educational researchers, we seek to develop calculus courses effective in 

building conceptual understanding in addition to procedural fluency, and continually investigate 
promising new pedagogical strategies. The Mathematical Association of America recommends that 
all math courses should build conceptual understanding, “mental connections among mathematical 
facts, procedures, and ideas” (Hiebert & Grouws, 2007, p. 380) by helping “all students progress in 
developing analytical, critical reasoning, problem-solving, and communication skills and acquiring 
mathematical habits of mind” (Barker et al., 2004, p. 13). 

Concept inventories have emerged over the past two decades as one way to measure conceptual 
understanding in STEM education. These inventories intend to assess student understanding of 
concepts before entering a course addressing those concepts. Thus, students are required to use 
common sense and prior knowledge to respond to assessment items. After completing a course, the 
concept inventory can measure gains in conceptual understanding. Therefore, items should avoid 
using terminology taught in the course to which students have no prior exposure. 

The first concept inventory to make a significant impact in the undergraduate education 
community was the Force Concept Inventory (FCI), written by Hestenes, Wells, & Swackhamer 
(1992). Despite the fact that most physics professors considered the Inventory questions “too trivial 
to be informative” (Hestenes et al., 1992, p. 2) at first glance, students did poorly on the test, and 
comparisons of high-school students with university students showed modest gains between the two. 
Of the 1,500 high-school students and over 500 university students who took the test, high school 
students were learning 20%-23% of the previously unknown concepts, and college students at most 
32% (Hestenes et al., 1992, p. 6). Through a well-documented process of development and 
refinement, the test has become an accepted and widely used tool in the physics community, and has 
led to changes in the methods of instruction for introductory physics. 

The FCI paved the way for the broad application of analyzing student conceptual understanding 
of the basic ideas in a STEM subject area (Hake, 1998, 2007; Hestenes et al., 1992). Concept 
inventories exist in a variety of scientific disciplines; including physics, chemistry, astronomy, 
biology, and geoscience (Libarkin, 2008). 
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More recently, Epstein (2007, 2013) developed the Calculus Concept Inventory (CCI) for 
introductory calculus. However, there is a lack of peer-reviewed literature on its development or 
psychometric analysis. Additionally, several recent analyses call into question the ability of the CCI 
to measure conceptual understanding. One study showed that the current CCI measured no difference 
in conceptual understanding between students in a conceptually focused class with frequent student 
group work and those in a traditional lecture based class, even though other measures indicated that a 
difference existed (Bagley, 2014). While this result may reflect shortcomings of the conceptually 
focused class, it may also suggest the inadequacy of the CCI.  

The concerns with the CCI motivated us to take a deeper look at how it performs for its original 
purpose. Specifically, we wanted to determine if the CCI measured gains in conceptual knowledge 
and to investigate its reliability. In this study, we analyze the results on the CCI from over 1500 
students at four institutions to determine whether there is evidence that the CCI, in its current form, 
exhibits the psychometric properties originally suggested by the author, and to suggest appropriate 
potential modifications or revisions. 

Calculus Concept Inventory 

Content Validity 
The Calculus Concept Inventory (CCI) was developed by a group of seven individuals to 

measure topics from differential calculus that they believed were basic constructs (Epstein, 2013). 
The main purpose of the instrument is to measure classroom normalized gains (change in the class 
average divided by the possible change in the class average) for the purpose of evaluating the impact 
of teaching techniques on conceptual learning. The developers of the instrument intended the 
instrument to measure above random chance at the pre-test setting and to avoid “confusing wording” 
(Epstein, 2013, p. 7). However, a released CCI item uses terminology, including “derivative” and 
“f’(x)” (Epstein, n.d.), which is not part of the vocabulary of a first-time calculus student. Such items 
would be confusing to the student and generate responses around random chance for those items. We 
seek to determine the extent of the use of such terminology to verify that vocabulary issues do not 
confound results from the CCI. 

Internal Structure Validity 
The dimensionality of the CCI is unknown. Epstein (2013) states that the instrument has two 

primary components, related to functions and derivatives, with a third dimension related to limits, 
ratios, and the continuum. However, the use of a total percent correct to determine normalized gains 
implies that the instrument measures a single construct evenly distributed over the 22 items. These 
two proposed structures of the instrument are contradictory and no details regarding the analysis 
conducted to support the three-component structure exist. A comprehensive analysis of the internal 
structure of the instrument is thus necessary to determine whether a unidimensional model is 
appropriate. 

Reliability 
Epstein (2013) reports that the CCI has an internal consistency reliability 0.7 for Cronbach’s 

alpha. This level of internal consistency is at the low end of an acceptable range for an instrument 
designed to measure differences in means between groups of at least 25-50 individuals. However, 
there is no such standard for internal consistency necessary for comparing the normalized gains of 
two different groups. In fact, the use of the normalized gain as a measurement parameter is 
questionable (Wallace & Bailey, 2010). Instead, the similar types of gains can be measured using 
ability estimates obtained through item response theory models. Therefore, there is a need to use such 
models to determine the internal consistency reliability of the CCI. 
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Methods 

Content Validity 
Since the CCI was designed to measure normalized gains in conceptual knowledge of calculus, it 

is given as both a pre-test and a post-test. As such, at both of the sittings, the test should measure 
conceptual understanding, and not include items requiring vocabulary and notation specific to 
calculus. Otherwise, students who are repeating calculus would likely have higher pretest scores, 
regardless of their conceptual understanding of calculus, and would thus likely have lower 
normalized gains, as seen in previous studies (Epstein, 2013). Therefore, we conducted an analysis of 
the items to determine which items may contain vocabulary and/or notation not included in any of 
the Common Core State Standards for Mathematics (NGACBP & CCSSO, 2010) that have become 
accepted as preparation for calculus throughout most of the United States. 

Internal Structure Validity 
We collected data from approximately 2000 students at four universities at the beginning and the 

end of a first semester calculus class. We cleaned the data by eliminating subjects with missing data 
and randomly selecting either a pre-test or post-test for all remaining subjects to avoid dependent 
samples. This left a sample size of 1792 students with an even distribution of pre-tests and post-tests. 

We then used the eigenvalues of the inter-item correlation matrix to determine the expected 
number of factors related to the instrument, followed by a confirmatory factor analysis based on the 
predicted number of factors, with a bent toward a unidimensional model. In the eigenvalue analysis, 
we compared the results from the actual data to results from randomly generated data with the same 
sample size and with a 20% probability of correct answers, as nearly all of the items on the CCI had 
five choices. 

Reliability 
Using the results of the factor analysis, we used an appropriate unidimensional or 

multidimensional item response theory model to analyze the internal reliability of the instrument and 
to measure the test information and standard errors for the instrument. 

Results 

Content Validity 
Out of the 22 items on the CCI, nine contained language or notation not included in any 

standards for courses that are considered prerequisite for calculus. These included the words 
derivative and concavity, and notation such as f’(x), f’’(x), and dy/dx. An additional two items 
contained language closely related to some precalculus topics; for instance, some students may have 
exposure to the relationship between velocity and acceleration and the concept of linear 
approximations. However, these topics are not necessarily included in the courses prior to calculus.  

Therefore, the CCI does not satisfy the conditions necessary to measure conceptual 
understanding for students as they enter a calculus course. However, since all of these language and 
notation conventions are part of the normal language during the first semester of calculus, including 
such language on a test at the end of a semester of calculus may measure conceptual understanding. 
This issue needs to justification by anyone using the standard normalized gains when researching or 
evaluating first semester calculus courses. 

Internal Structure Validity 
From the analysis of the eigenvalues from the factor analysis, the CCI has at most two 

components. Both the first and the second eigenvalue are above the 95% confidence interval for the 
randomly generated data. However, since the second eigenvalue (1.24) is extremely close to the 95% 
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confidence interval of the eigenvalue generated by random data 1.1765 +/- 0.04, this second 
component may or may not actually be present (since a large first eigenvalue will pull up the second 
eigenvalue). 

 

 
Figure 1: Scree Plot for Calculus Concept Inventory 

Table 1: Item CFA Estimates for CCI 

 Full CCI Abbreviated CCI 

Item Estimate Standard Error Estimate Standard Error 

Question 1 1.000    

Question 2 5.776 1.313 1.000  

Question 3 5.537 1.264 0.961 0.065 

Question 4 5.649 1.288 0.978 0.065 

Question 5 4.574 1.058 0.802 0.062 

Question 6 3.243 0.769 0.560 0.053 

Question 7 3.497 0.825 0.604 0.055 

Question 8 5.055 1.158 0.877 0.062 

Question 9 4.792 1.103 0.830 0.062 

Question 10 4.693 1.084 0.803 0.062 

Question 11 0.816 0.349   
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Question 12 2.380 0.610 0.414 0.056 

Question 13 4.228 0.985 0.735 0.060 

Question 14 3.386 0.803 0.587 0.055 

Question 15 3.735 0.880 0.650 0.058 

Question 16 2.928 0.704 0.504 0.052 

Question 17 5.619 1.282 0.975 0.065 

Question 18 1.535 0.412   

Question 19 3.322 0.790 0.570 0.055 

Question 20 3.575 0.849 0.617 0.058 

Question 21 3.857 0.917 0.661 0.064 

Question 22 3.885 0.913 0.678 0.059 

Since the scree plot and eigenvalue analysis favors a unidimensional structure, and since the 
intended use of the instrument is as a one-dimensional inventory, a one-dimensional confirmatory 
factor analysis model was used to determine model-data fit. The model had 231 degrees of freedom, 
p<0.001, with the item estimates given below. The fit indices were excellent with a Comparative Fit 
Index (CFI) of 0.936 and a Root Mean Square Error of Approximation (RMSEA) of 0.024 (Hu & 
Bentler, 1999). Therefore, a unidimensional model is assumed to fit the data well. One notices that 
three of the items (1, 11, and 18) have significantly lower estimates that the remaining items. If one 
removes these items, we maintain the unidimensionality of the instrument (CFI: 0.939 and RMSEA: 
0.028) and all estimates are approximately equal values. This enables a more appropriate use of 
number correct to estimate an individual’s ability without having to scale the values of certain items. 

Reliability 
Since the instrument satisfies the unidimensionality assumption, one, two, or three-parameter 

models can be used to analyze the data. Since the different items are believed to have different 
discrimination, only the two and three parameter models were used. The three-parameter model did 
not have good model-data fit on several of the items loading heavily on the construct with the c 
parameters for the majority of the items significantly below random chance. Therefore, a two-
parameter model was determined to be the best fit of the data and the theoretical construct of the 
inventory. In the analysis of the two-parameter model, three items demonstrated a weak fit, items 1, 
11, and 18. These three items also had low loadings in the factor analysis and so were removed from 
the analysis to determine if the remaining items have an improved fit. The remaining 19 items had a 
good fit (-2LL of 37258, p<0.0001) with the two parameter model. The standard error for the ability 
estimate of individuals is extremely high with the lowest value of 0.4128 logits and an average error 
of 0.7307 logits (see Figure 2). For example, if an individual is at the mean in terms of actual 
conceptual understanding of calculus, as measured by the CCI, the measured score of the person by 
the inventory has a 68% chance of being within 0.42 logits of the mean. Therefore, the inventory 
would only be able to differentiate between samples of means if there is a substantial difference 
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between the samples or the sample size approaches 100 students each. Furthermore, in order to use 
the logit scores one must first transform the percent correct score into logit scores using the results in 
Table 2. 

 

 
Figure 2: Test Information Function and Standard Error 

 
Table 2: Transformation of Scores to Logits 

Number 

Correct 

Ability 

Estimate 

 Number 

Correct 

Ability 

Estimate 

 Number 

Correct 

Ability 

Estimate 

0 -3.05  7 -0.13  14 1.47 
1 -2.52  8 0.10  15 1.77 
2 -1.75  9 0.31  16 2.13 
3 -1.28  10 0.53  17 2.60 
4 -0.93  11 0.74  18 3.36 
5 -0.63  12 0.97  19 4.00 
6 -0.37  13 1.21    

 

Discussion and Conclusion 
The purpose of this study was to assess the degree to which the CCI conforms to certain 

standards for psychometric properties, including content validity, internal structure validity, and 
reliability. We conclude that the existing CCI does not conform to accepted standards for educational 
testing (American Educational Research Association, 2014; DeVellis, 2012). We thus argue that 
there is a need to create and validate a criterion-referenced concept inventory on differential calculus. 
Such a concept inventory would significantly impact teaching and learning during the first two years 
of undergraduate STEM students by providing a resource to measure students’ conceptual 
understanding of differential calculus. The work of Carlson, Madison, and West (2010) in developing 



Theory!and!Research!Methods:!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

1297!

the Calculus Concept Readiness instrument could serve as a model and foundation for a differential 
calculus concept inventory. Such an instrument would be useful for instructors for formative and 
summative assessment during their calculus courses to improve student learning. Researchers and 
evaluators to measure growth of student conceptual understanding could also use such an instrument 
during a first semester calculus course to compare gains of students in classrooms implementing 
differing instructional techniques. 
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In this paper, we present an analytical framework for attending to reflexivity in the context of 
conducting teaching experiments and rationalize its components by appealing to the constructivist 
foundations on which the methodology is based. To illustrate the importance and utility of this 
framework, we discuss our analysis of recent mathematics education literature that has employed the 
teaching experiment methodology. In so doing, we reveal the extent to which researchers’ 
presentations of their models of students’ mathematical thinking and learning reflect these 
researchers’ attention to reflexivity. We conclude by reflecting on the implications of researchers 
attending to reflexivity in the context of conducting teaching experiments. 

Keywords: Research Methods; Design Experiments; Learning Theory; Cognition 

Steffe and Thompson’s (2000) elaboration of the teaching experiment methodology has gained 
traction in recent years as a scientific methodology for constructing models of students’ mathematical 
thinking and learning. The teaching experiment methodology is grounded in radical constructivist 
epistemology, and the methods and procedures that comprise it reveal its constructivist roots. 
However, the constructivist foundations of both the experimental and analytical aspects of the 
methodology are often overlooked or, at a minimum, are not explicitly addressed in reports of studies 
that employ teaching experiments. We have especially noticed that while researchers may strictly 
adhere to the experimental practices of teaching experiments, the analytical practices essential to the 
methodology are less rigorously observed. We conjecture that researchers’ inattention to particular 
analytical procedures of teaching experiments derive, at least in part, from their lack of attention to, 
or understanding of, the constructivist foundation on which these analytical procedures are based. A 
particularly common analytical practice of teaching experiments that researchers often overlook is 
the necessity of attending to reflexivity, a critical discernment and communication of the researcher’s 
role in the constitution of his or her model of students’ mathematical thinking and learning. 
Accordingly, the aim of the present paper is to present a framework for what it means to attend to 
reflexivity in the context of conducting teaching experiments. We take the position that justifying the 
need for attending to reflexivity, and conceptualizing what is involved in doing so, results from an 
understanding of specific constructivist premises that underlie the teaching experiment methodology. 

Teaching Experiment Methodology 
The principal aim of a teaching experiment is to construct a model of another’s mathematical 

thinking and learning. It is important to note that such a model is not a direct representation of 
another’s mathematics, but is rather a characterization of plausible conceptual operations from which 
his or her observable actions may have derived. It is thus the goal of a teaching experiment for a 
researcher to construct a model of another’s mathematics that is viable with the researcher’s 
interpretation of his or her observable behaviors. To achieve this goal, Steffe and Thompson (2000) 
designed the teaching experiment methodology to provide researchers with opportunities to 
experience and make sense of students’ mathematical learning and reasoning, both in real time and 
retrospectively.  

A teaching experiment, Steffe and Thompson explain, is “primarily an exploratory tool, derived 
from Piaget’s clinical interview and aimed at exploring students’ mathematics” (2000, p. 273). While 
the intent of a clinical interview is to understand students’ current knowledge, teaching experiments, 
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in contrast, are aimed at investigating students’ progress over multiple teaching episodes. Teaching 
experiments, therefore, allow researchers to investigate student learning, which involves the 
modification of students’ current cognitive schemes, as they engage in mathematical activity. In the 
context of a teaching experiment, the schemes that students construct through spontaneous 
development are brought forth through exploratory teaching, and the interest of the researcher is to 
discern how students modify their cognitive schemes as they encounter specific teaching actions. 

In a teaching experiment, the researcher generates a major hypothesis at its outset and returns to 
this major hypothesis retrospectively at the conclusion of the teaching episodes. In addition to testing 
a main research hypothesis, the researcher continually generates and tests sub-hypotheses within and 
among teaching episodes. These sub-hypotheses are tentative models of students’ mathematical 
realities that seek to explain the specific actions or utterances the researcher observes. Accordingly, 
the researcher develops these sub-hypotheses by attending to students’ language and actions, and 
abductively postulating meanings that may lie behind them.  

 “Teaching” in the context of the teaching experiment methodology is a dynamic interaction 
informed by an evolving model of students’ mathematics. Accordingly, learning how to productively 
interact with the participant is an instrumental component of conducting a teaching experiment. 
There are two complimentary types of interaction between the teacher-researcher and the student in a 
teaching experiment: (1) responsive and intuitive interaction, and (2) analytical interaction.  

In responsive and intuitive interactions, the teacher-researcher is usually not explicitly aware of 
how or why she acts as she does and the action appears without forethought; the researcher acts 
without planning the action in advance of the action (Steffe & Thompson, 2000, p. 278).Steffe and 
Thompson define analytical interaction as “an interaction with students initiated for the purpose of 
comparing their actions in specific contexts with actions consonant with the hypothesis” (2000, p. 
281). Between teaching episodes, the teacher-researcher develops a hypothetical model of student 
thinking and defines initial goals. The teacher-researcher interacts responsively and intuitively prior 
to constructing this hypothetical model of student thinking. In the teaching episode that follows the 
teacher-researcher’s development of the hypothetical model of student thinking and the initial goals, 
he or she interacts in an analytical manner, extending and articulating the initial goals and revising 
the hypothetical model of student thinking. This process repeats itself until a mature living model of 
students’ mathematics emerges. 

Framework for Attending to Reflexivity 
Constructing models of students’ mathematical thinking and learning in the context of 

conducting a teaching experiment requires the researcher to construct a model of the mathematical 
knowledge students bring to the instructional context and to design and/or select mathematical tasks 
that will allow students to construct the understandings the researcher envisions. Both of these 
aspects of constructing models of students’ mathematical thinking and learning are fashioned by the 
researcher’s theory of learning as well as his or her mathematical knowledge. It is therefore 
important that the researcher explicate these two aspects of his or her cognition. While conducting a 
teaching experiment, the researcher engages in responsive and intuitive interaction with students as 
they engage in the mathematical experiences in order to elicit observable products of their reasoning. 
Effectively eliciting observable products of students’ reasoning requires that the researcher’s actions 
be informed by a model of students’ emerging ways of understanding and ways of thinking. The 
researcher constructs this provisional model through analytical interaction. The researcher’s 
interaction with students plays a significant role in students’ behaviors from which the researcher 
constructs his or her model of the students’ mathematical thinking and learning. Explicating the 
demands of the researcher on constructing models of students’ thinking and learning reveals the 
various ways that attention to reflexivity is warranted in the context of conducting teaching 
experiments. We illustrate these four areas of attending to reflexivity in Figure 1 and offer concrete 
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recommendations for how a researcher may attend to reflexivity in each of these areas. These 
recommendations derive principally from the constructivist assertion that researchers do not explain 
phenomena, rather researchers explain their interpretation of phenomena. 

 
Figure 1. Four Areas of Attending to Reflexivity 

Explicating One’s Theoretical Perspective 
von Glasersfeld (1995) developed the psychological learning theory of radical constructivism as 

an elaboration of Piaget’s genetic epistemology (1971, 1977). The “radical” qualifier emphasizes von 
Glasersfeld’s position that cognitive processing is the foundation of the only reality an organism may 
come to know. Accordingly, researchers do not have unfettered access to the phenomena they 
observe and thus must make sense of such phenomena through a variety of interpretative lenses. The 
purpose of defining and adhering to a theoretical perspective is to attempt to view the world in a 
systematic and disciplined way that can be communicated. It is important to note that researchers 
who do not conduct their work by adhering to a particular theoretical orientation have no more direct 
access to the phenomena they observe than those who do. Not adhering to a particular 
epistemological stance does not liberate one from perceiving phenomena through a number of 
subjective interpretative lenses; these lenses are simply not explicit and are thus unavailable to the 
researcher’s conscious awareness. The utility of adhering to an explicit theoretical orientation, then, 
is that it allows one to become aware of at least some of the interpretative lenses through which he or 
she views the phenomenon under investigation, thereby giving one agency over these interpretative 
lenses.  

Generally speaking, the role of theory in educational research is to orient and constrain the 
researcher’s attention to those causal variables assumed to be most fundamental to explaining a 
particular phenomenon, thereby making the complex phenomenon under investigation accessible to 
empirical study. The theoretical perspective one assumes serves as a lens through which one is able 
to “control” specific aspects of the phenomenon he or she investigates so as to permit the 
construction of a viable characterization of a system in a particular state, or of a system undergoing 
transformation. In other words, researchers adopt theoretical perspectives in an effort to isolate what 
their theoretical perspective prescribes as the causal variables with the most explanatory power. In 
this way, our theoretical perspectives impose a set of assumptions and expectations about the 
phenomena we study that serve “to constrain the types of explanations we give, to frame our 
conceptions of what needs explaining, and to filter what may be taken as a legitimate problem” 
(Thompson, 2002, p. 192).  

In order for others to ascertain the conceptual origins of a researcher’s model of students’ 
mathematical thinking and learning, the researcher must explicate the theoretical suppositions on 
which her or his work is based. Doing so allows others to discern the interpretive lenses through 
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which the researcher views the phenomenon she studies and to evaluate the researcher’s theoretical 
justification for what she is studying and how she studies it.  

Our proposal is for researchers to make explicit their understanding of the background theoretical 
orientations (e.g., constructivism, sociocultural theory, situated cognition, cognitive information 
processing theory, embodied cognition) that orients them to framing their work in particular ways, 
and which conditions how researchers interpret the phenomena they study. It seems to us that, at a 
minimum, researchers constructing models of students’ thinking and learning should address 
questions like, “What is knowledge? What is learning? What is the process by which one learns? 
What constitutes evidence of learning? How can one engender learning?” Making explicit one’s 
answers to questions like these allows others to infer aspects of the researcher’s role in the 
constitution of his or her model of students’ mathematical thinking and learning. 

Explicating Mathematical Meanings 
As previously emphasized, a core consideration of conducting a teaching experiment is 

constructing models of students’ initial and emerging mathematical knowledge. In a teaching 
experiment the researcher interprets what students say and do through the lens of his or her 
mathematical understandings and creates inferences about students’ knowledge through those 
interpretations. It is in this way that one’s own mathematical knowledge very much constitutes an 
interpretative framework. It is therefore important that a researcher specify what it means to 
understand the mathematical concept for which he or she is attempting to model students’ 
understandings and to anticipate a multiplicity of ways of understanding this idea. Doing so allows 
the researcher to expand his or her mathematical interpretative lens so as to accommodate for a 
variety of students’ observable actions in order to construct a viable model of students’ mathematical 
thinking and learning. 

Steffe and Thompson (2000) note that the goal of teaching experiments is not that students will 
come to see an idea as the researcher or teacher does. Instead, it is important that a researcher’s 
model of students’ learning represent a reasonable development of a student’s thinking given his or 
her initial mathematical knowledge. At this stage, the researcher might consider a number of 
questions to explore these issues:  

• What is my understanding of the idea that is the focus of the teaching experiment? 
• In what way do I intend students understand this idea?  
• What understandings do I assume students have at the onset of the teaching experiment? In 

what ways do I expect these initial understandings to support or inhibit the students’ learning 
the idea that is the focus of the teaching experiment?  

• What are the principles on which my design of the activities within the teaching experiment 
is based? 

• How do I anticipate the activities I have developed will support students in constructing the 
meanings I intend? 

 Consideration of these questions allows the researcher to expand the interpretative lens through 
which he or she views the students’ mathematics as well as recognize important mathematical 
understandings that might be surprising or different from his or her own. Addressing these questions 
also pushes the researcher to articulate the understandings he or she assumes students have at the 
beginning of the teaching experiment. By documenting these issues during the design of a teaching 
experiment (often prior to working with students) the researcher creates a record of his or her initial 
hypotheses. These hypotheses later serve as a means to consider how the researcher’s ways of 
thinking changed in tandem throughout the teaching experiment with the students’ mathematical 
thinking. 
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Critical Examination of Social Interaction 
To suggest that researchers’ examination of the social interaction between themselves and the 

students is an important aspect of attending to reflexivity in the context of conducting a teaching 
experiment is to suppose that developments in students’ knowledge, and thus the models of students’ 
learning that researchers construct to account for such developments, are conditioned by social 
interaction. We must therefore explain how a researcher’s construction of a model of students’ 
mathematical thinking and learning is fashioned by the social interaction that occurs between a 
researcher and students during the teaching experiment episodes. 

From a constructivist perspective, an individual’s enacted knowledge is fashioned by his or her 
understanding of the stimuli inherent to a particular environmental context—stimuli that are often 
mediated by social interaction. Accordingly, the model of students’ mathematical thinking and 
learning a researcher constructs in the context of a teaching experiment is very much influenced by 
the social interaction that conditions the evocation of students’ mathematical knowledge. Consistent 
with our recommendation for researchers to explicate their theoretical orientation, we now turn to 
providing a justification, grounded in constructivist epistemology, for the claim that students’ 
knowledge, and thus the model a researcher constructs to account for its development, is fashioned 
by the social interaction that occurs in the context of a teaching experiment.  

The evocation of specific knowledge is contingent upon an individual interpreting stimuli that 
activate particular cognitive schemes. In other words, certain knowledge is not made manifest until 
an individual interprets a certain stimulus in such a way that his or her construction of the stimulus 
serves as a cue for the enactment of a particular cognitive scheme or a network of related schemes. 
Therefore, while many believe knowledge is invariantly accessible across time and space, we 
consider knowledge to be the set of one’s cognitive schemes that may become operational in the 
space of stimuli in which the individual is situated that may enact these schemes. Accordingly, one’s 
ways of perceiving his or her environmental context constitutes a space of stimuli that maintain the 
potential to make a subset of one’s knowledge operational. An individual’s knowledge, then, can be 
thought of as the set of cognitive schemes that may become enacted as a consequence of the 
individual’s interpretation of the stimuli inherent to a given environmental context. It is therefore 
appropriate to say that enacted knowledge is conditioned by the individual’s interpretation of his or 
her environmental context. This is not to suggest that knowledge resides external to the knower since 
individuals interpret and appraise their environmental context—interpretations and appraisals that 
inform the knowledge one employs. To speak of enacted knowledge, then, is to speak of the 
cognitive schemes that become operational upon one’s interpretation of stimuli in a given 
environmental context that serve to activate such cognitive schemes. 

Given our view that knowledge is conditioned by an individual’s interpretation of his or her 
environmental context, we contend that the observable actions students demonstrate in the context of 
a teaching experiment derive from enacted knowledge that is influenced by their interpretation of 
their interaction with the researcher. What students make of the researcher’s language and actions 
constitute environmental stimuli that may support or inhibit specific cognitive schemes from being 
activated. For example, if a student interprets a researcher’s questioning as suggesting that the 
researcher simply wants the student to recite the correct answer, the student may be disinclined to 
engage in sustained reasoning and sense making. We have ourselves observed students 
demonstrating very different mathematical knowledge after simply switching the interviewer in a 
teaching experiment session or task-based clinical interview (cf. Thompson & Thompson 1994). For 
this reason, it is important for a researcher to discern how students perceive his or her language and 
actions.  

To this end, there are a couple of specific practices to consider. Regularly asking students to 
verbalize their interpretation of the researcher’s questions and statements allows one to obtain 
artifacts of students’ image of their social interaction with the researcher. For instance, asking 
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students questions such as, “What is your understanding of what I just said?” and “Can you tell me in 
your own words what am I asking you to do?” allows the researcher to gain insight into how students 
are interpreting their interaction with the researcher. Discerning how a researcher’s instructional 
actions support students in attaining the understandings that the researcher seeks to promote is an 
essential to constructing viable models of students’ mathematical thinking and learning. It is 
important at this point to reiterate that a researcher’s instructional actions do not influence students’ 
thinking. Rather, students’ interpretation of a researcher’s instructional actions influence students’ 
thinking. It is for this reason that, in addition to attempting to elicit observable products of students’ 
reasoning, researchers should consistently attempt to provide occasions for the students to convey 
their interpretation of the researcher’s language and actions. 

Critical Examination of Data Analysis 
While conducting a teaching experiment, the model a researcher constructs of students’ emerging 

mathematical knowledge is fashioned by his or her ways of perceiving and conceiving students’ 
observable behaviors. Mason’s (2002) observation eloquently summarizes this point: “what we learn 
from an observation is something about the researcher, as well as, perhaps, something about the 
phenomenon” (p. 181). It is therefore imperative for researchers to document and explicate the 
decisions and interpretations they make throughout their construction of a model of student’s 
mathematical thinking and learning, and to detail the evolution of this model throughout the research 
process.  

While conducting a teaching experiment, data analysis proceeds in a cyclic fashion whereby the 
researcher continually generates and refines hypotheses until a stable and viable inductively-derived 
theory regarding the process by which students construct a desirable understanding of some 
mathematical idea emerges. Refining provisional hypotheses requires purposeful data collection 
informed by ongoing analysis. Thus, a hallmark of the teaching experiment methodology is the 
reciprocal relationship between data collection and analysis; that is, while constructing models of 
students’ mathematical thinking and learning, the data a researcher collects influences the hypotheses 
he or she constructs, and the hypotheses a researcher constructs informs subsequent data collection. 
Hence, the boundary between data collection and analysis is necessarily blurred when one conducts a 
teaching experiment. For this reason it is important for researchers to critically examine how they 
interpret data during ongoing analysis so that they may ascertain their role on subsequent data 
collection and, ultimately, on the model of students’ mathematical thinking and learning they 
construct.  

Researchers’ attention to the role of their interpretation of data on the construction of their model 
of the process by which students may understand a particular mathematics concept not only clarifies 
the phenomenon under investigation but also details researchers interaction with the phenomenon. 
Researchers’ documenting their decisions and interpretations during ongoing analysis is important 
because it produces a form of data about their interaction with students that they can then use in 
subsequent analyses to bring into conscious awareness the ways in which their interaction with the 
subject informed their interpretation of students’ language and actions. 

To discern the role of one’s interpretation of data on the model one constructs to account for 
students’ mathematical thinking and learning, a researcher may consider creating artifacts of his or 
her thinking during ongoing analysis in the form of audio recordings or written memos that focus on 
the following:  

1. Explicating hypothetical conceptual operations that may explain the researcher’s 
interpretation of the students’ language and actions throughout testing the viability of an 
emerging model of students’ thinking and learning; 
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2. Identifying students’ specific utterances and actions that contributed to the researcher’s 
construction of these hypothetical conceptual operations; 

3. Explaining how the researcher interpreted these utterances and actions so as to make their 
contribution to his or her model of the students’ conceptual operations explicit; 

4. Justifying the researcher’s instructional actions throughout implementing the instructional 
sequence and describing his or her interpretation of students’ responses to these 
instructional actions. 

It is clear that a researcher’s responses to foci (2), (3), and (4) constitute a data set that he or she 
may retrospectively analyze for purpose of providing insight into the conceptual origins of his or her 
model of students’ mathematical thinking and learning. This data set comprises a record of a 
researcher’s interpretation of the primary data, and the inferences the researcher drew from this data, 
throughout ongoing and post analysis. One’s retrospective analysis of these analytical artifacts is in 
the service of elaborating a chronology, presented in narrative form, of the development of his or her 
model of students’ thinking and learning by explicating the interactional, institutional, emotional, 
discursive, theoretical, epistemological, and ontological influences that contributed to its construction 
(Mauthner & Doucet, 2003). This chronology allows a researcher to present his or her model of 
student’s thinking and learning not just as a product but also as a process, and not by an impersonal 
machine but by a researcher abounding with subjective interpretative lenses. 

Teaching Experiment Literature Analysis 
To examine the utility of the analytical framework presented earlier, we examined nineteen of the 

most highly cited studies in mathematics education that employed a teaching experiment 
methodology, beginning two years after Steffe & Thompson’s (2000) work was published. These 
articles came from all of the top journals in mathematics education, and covered a wide variety of 
mathematical topics. We constructed a coding scheme, the components of which corresponded to the 
four domains of our framework for attending to reflexivity. In our initial coding, we found that less 
than half (8/19) of these studies met the “explicating mathematical meanings” criterion; just over half 
(11/19) clearly identified a theoretical perspective; most (18/19) examined social interaction in some 
way; and roughly half critically examined the data analysis procedures (11/19). While this analysis is 
in its initial stages, it clearly illustrates important role these components of our framework play in the 
highest quality studies in our field, yet suggests that there are ways in which the analytical practices 
of the teaching experiment studies could be expanded. We also recognize that in some cases, the 
limitations of a journal space and the review process shape the focus of each paper. Yet we think it is 
important that the field begin to critically appraise what elements must be present in the presentation 
of results based on a teaching experiment and to include the four components we have presented in 
this paper.  

Conclusion 
In this paper, we have proposed four ways in which researchers may attend to reflexivity in the 

process of conducting teaching experiments in mathematics education. A reviewer of a previous 
version of this manuscript suggested that each of the four domains of reflexivity we discuss appear as 
analytical recommendations elsewhere. We respond by noting that such recommendations have not 
been rationalized with an appeal to the foundational theoretical premises on which specific 
qualitative methodologies are based. Such rationalizations are essential to supporting researchers in 
observing the analytical practices that comprise attention to reflexivity in non-superficial ways. It is 
for this reason that we consider the present paper a contribution, and encourage other researchers to 
explicate what it means to attend to reflexivity in the context of other qualitative methodologies 
informed by other theoretical orientations. 



Theory!and!Research!Methods:!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

1305!

Attending to reflexivity is an essential component of the teaching experiment methodology and 
involves researchers in a systematic and disciplined investigation of how their interpretations and 
actions influence the models and theories they construct to explain students’ mathematical thinking 
and learning. The recommendations we outlined in this paper assist researchers in becoming 
consciously aware of at least some of the subjective interpretative lenses through which they perceive 
the phenomena they study, thereby affording researchers agency over these interpretative lenses. 
When researchers bring into conscious awareness the lenses through which they make sense of data, 
they are positioned to communicate the products of their research in way that reveals that their results 
and conclusions are not about a particular phenomenon, but are instead about their interpretation of 
the phenomenon. Communicating the products of one’s research in this way lends a transparency to 
the research process, thereby inviting others to scrutinize the origins of the models and theories 
presented in the literature, thereby fulfilling one of the necessary conditions for a scientific 
enterprise. 
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Although lecture is the traditional method of university mathematics instruction, there has been little 
empirical research that describes the structure of lectures. In this paper, we apply ideas from 
narrative analysis to an upper-level mathematics lecture. We develop a framework that enables us to 
conceptualize the lecture as consisting of collections of narratives, to identify connections between 
the narratives, and to use the narrative structure to identify key features of the lecture. By looking at 
repetitions of the mathematical concepts across the narratives, graph theory tools provide a means of 
examining the structure of the lecture. The analysis highlights the demands that students may face to 
understand the connections between the various mathematical ideas that the instructor introduces. 

Keywords: Post-Secondary Education; Research Methods 

Lecture is the traditional method of university mathematics instruction. Although there have been 
a few attempts to describe these lectures (e.g., Dreyfus, 1991), Speer, Smith, and Horvath (2010) 
noted that, due to the dearth of empirical studies, most of our beliefs about the structure of lectures 
are based on popular opinion or personal experience.  

In general, we view mathematics lectures as consisting of instantiations of mathematical entities 
(i.e., objects, concepts, and symbols) in service of enacting and modeling broader mathematical 
processes (such as conjecturing, representing, and justifying) and habits of mind (e.g., looking for 
patterns). The goal of the current study is to create and use a framework based on narrative analysis 
to analyze a lecture, identify and describe the various processes and habits of mind that are modeled 
by the instructor, illustrate the ways the mathematical entities evolve and transform over the course 
of the lecture, and describe the ways in which the entities and processes are connected to each other. 

Theoretical Framework 
Narrative analysis, a common analytical technique in literary theory (e.g., Bal, 2009; Holley & 

Coylar, 2012), considers the sequencing of the elements of the text and how initial elements 
influence and shape later events (Holley & Coylar, 2012) and focuses on the evolving relationship 
between characters. Several researchers have described the close relationship between mathematics 
texts and narratives (e.g., Netz, 2005), and others have directly applied concepts from narrative 
analysis to analyze aspects of mathematical texts (e.g., de Freitas, 2012; Dietiker, 2012; Andrà, 
2013).  

Although there are numerous definitions of what a narrative is, they commonly attend to the 
temporal ordering of events, the way in which these events are connected, and the meaning that is 
ascribed to the sequence of events by a particular audience(see, e.g., Czarniawska, 2004; Reissman, 
2005). We adopt the perspective of Holley and Colyar (2009), who identify narratives as texts in 
which a reader or observer can identify events, characters, and a plot—and sees connections between 
the events of the narrative. 

Event structure 
Bal (2009) describes the interrelated ideas of event, story, and fabula: The narrative text conveys 

events—“transition[s] from one state to another state” (p. 6); the sequence of events in the text make 
up the story; and the fabula is the “series of logically and chronologically related events that are 
caused or experienced by actors” (p. 5). Dietiker (2012) adapted these ideas to apply to mathematical 
texts:  
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• A mathematical event is “a transition from one mathematical state to another” (p. 15), such as 
instantiating a mathematical object, creating a representation, or making a conjecture. 

• A mathematical story is “the [temporal] sequence of events encountered and experienced by 
a reader throughout a mathematics text” (p. 15). 

• The mathematical fabula is “a reader’s reorganization of the logic around how certain 
mathematical ideas support or connect the meaning of other mathematical ideas” (p. 16). 

Dietiker (2013) thus conceptualizes a mathematical text as a narrative through the lens of 
comparing the mathematical story and fabula. While the former describes the chronological sequence 
in which an instructor presents mathematical concepts, the latter describes the logical relationships 
between the concepts. 

Mathematical Characters 
In the previous research on mathematical narratives, there has not been a consensus on what 

constitutes a character (e.g., Dietiker, 2013; Andrà, 2013; de Freitas, 2012). We describe characters 
in a mathematics lecture as including (but not limited to) the mathematical objects and concepts that 
the instructor instantiates that play a role in the story; these objects can be either general (e.g., the 
concept of an equivalence class) or specific (e.g., “the equivalence class of 3”). A character is 
identified by both the underlying concept and its representation (e.g., “the integer a” and “the integer 
b” are different characters).  

Mathematical plot  
The plot of a narrative consists of the meaningful connections between the events and informs the 

construction of a fabula (Polkinghorne, 1988). We define the plot of a mathematics narrative to be a 
description of the way a mathematical process or habit of mind is applied to a collection of 
mathematical objects or concepts. For example, in the lecture described here, the instructor used 
integers to illustrate a property of a specific equivalence relation, and then used this example to 
explain properties of equivalence relations in general. We can describe this process using the habit of 
mind “articulating a generalization using mathematical language” (Mark, Cuoco, Goldenberg & 
Sword, 2010). 

Identifying Narratives in Mathematics Lectures 
Boundaries of narratives. According to Labov (1972), a narrative includes, at a minimum, a 

sequence of two temporally ordered clauses. The process of identifying the “boundaries” of 
narratives—where the story begins and ends—can be nontrivial. To address this for the case of 
mathematics lectures, we identify the initiation and conclusion of a narrative by a shift in the 
presented content or mode of operation of the class, the use of board space, or natural language 
speech cues (e.g., the instructor saying “Now…” or “Let’s consider…”).  

Identifying plot and characters. The plot and characters are not found “neatly packaged as such 
by the narrator” (Emden, 1998, p. 35). Rather, plots and characters are identified through a “tacking 
procedure” (Polkinghorne, 1988, p. 19) or a process of abduction (Czarniawska, 2004). This begins 
with the proposal of a potential plot and characters, and then these are compared with the events of 
the story to see how well they provide a coherent theme.  

Framing and embedded narratives. In some cases, narratives are contained within other 
narratives and function as events within the containing narrative. This can be described by the ideas 
of framing narratives and embedded narratives, which describe a hierarchical relationship between 
two narratives. Following Ryan (1991) and Palmer (2004), we describe the role of a framing 
narrative as providing a context for its embedded narratives. The plot of the framing narrative 
provides coherence and focus for the plots of the embedded narratives; thus, the framing narrative 
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influences the way we might read (or observe) an embedded narrative. Conversely, an embedded 
narrative typically serves as an event in a framing narrative. 

Logical connections between events. Although a fabula must be consistent with the plot of a 
narrative, as Dietiker (2012) notes, “there are many deductive lines of reasoning that can lead to the 
same conclusion” (p. 16). From a broad perspective, we view two narratives or events as connected 
when one mathematically builds upon the other. Typical plots of a mathematical narrative include 
defining and redefining, constructing patterns, and forming and verifying conjectures; such plots may 
intuitively establish mathematical connections with other narratives by applying these mathematical 
processes to characters shared between two narratives. Thus, we attempt to capture the idea of 
mathematical building from one narrative to another by saying that narrative A connects to narrative 
B if a character in narrative B is first formally defined or instantiated in narrative A. Using this 
definition, the two narratives are connected if the plot of B involves mathematical processes that are 
applied to the same mathematical objects and concepts that are introduced in the plot of A. These 
logical connections form the basis for identifying a fabula for a narrative. 

Methods 

Data Collection 
The lectures were taken from a standard junior-level abstract algebra course at a large university 

in the northeastern United States. The instructor was a tenured professor with a research focus in 
algebra; he had previously taught the course numerous times. We selected four lectures from the 
beginning, middle, and near the end of the semester and included instances of presenting definitions, 
examples, theorems and proofs. 

A member of the research team attended each of the lectures and took notes on the instructor’s 
speech and writing. Each lecture was video-recorded; we transcribed the instructor’s speech verbatim 
from the recorded video and used the video to check the accuracy of the researchers’ notes. For the 
analysis presented here, we selected a 45-minute excerpt from one of the lectures; this portion of the 
lecture included instances of definitions, examples, theorems, and proofs, and the instructor’s 
presentation style was similar to the other lectures. Thus, we view this portion of the lecture as 
representative of the entire corpus of data. 

Identifying Narratives and Plots 
To identify characters in the lecture, we began by looking for instances where the instructor 

instantiated a mathematical object or concept, using the instructor’s gestures, speech, and writing to 
inform this identification. 

In order to identify potential framing narratives, we employed a “top-down” approach by 
identifying a coherent, meaningful plot and its constituent characters. We read the transcript of the 
lecture holistically and identified broad themes along with the mathematical objects, characters, and 
representations that were the primary focus of these themes. To identify potential embedded 
narratives, we employed a “bottom-up” approach by identifying sequential clauses that, when taken 
together, appeared to describe or apply a mathematical process to a set of characters.  

To identify potential plots from these themes and characters, we looked for mathematical 
processes and habits of mind that the instructor employed, as well as definitions, theorems, and 
processes that typically play an important role in an abstract algebra class and might serve as a focal 
point for processes and habits of mind. Then, we worked abductively by identifying the characters 
and events and then revising the proposed plots so that they provided coherence to the 
chronologically related elements. 



Theory!and!Research!Methods:!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

1309!

Results and Analysis 

Embedded Narratives 
The primary focus of our analysis is the collection of framing narratives in the lecture. 

Consequently, we present here only a summary of the plots of the embedded narratives and other 
events of the framing narratives, as shown in Table 1. 

 
Table 1: Embedded Narratives 

Narrative Number Description of Plot or Events 

Framing Event 0 The instructor identifies the “goals” for the lecture and provides motivation for 
each goal: examining equivalence relations and introducing the idea of equivalence 
classes. 

1 The instructor recalls and summarizes a narrative from a previous class: “R4” (i.e. 
for a,b ∈ Ζ , a~b if |a|=|b|) is an equivalence relation 

2 The instructor starts to construct an alternative method for representing an 
equivalence relation and applies it to the R4 equivalence relation: The set of 
integers is represented by a large circle; each integer is represented by a labeled dot 
inside the circle; and a line is drawn between two dots when the corresponding 
integers are equivalent under ~. 

3 The instructor poses the question: Can there be a triangle (i.e. three distinct dots 
that are all connected to each other) in the dot-and-line diagram? 

4 The instructor poses and answers the question: Can there be line segments (i.e. 
three distinct dots where one dot is connected to the other two) in the dot-and-line 
diagram? 

Framing Event1 The instructor describes R4 as relating pairs of numbers 

Framing Event2 The instructor describes motivation for introducing the idea of an equivalence 
class. 

5 The instructor elaborates the dot-and-line diagram by introducing “loops” 

6 The instructor poses and answers the question: Does introducing “loops” violate 
the “no line segments” condition? 

Framing Event3 The instructor describes additional motivation for introducing the idea of an 
equivalence class 

7 The instructor generalizes from a “concrete” equivalence relation to an abstract one 
by translating the dot-and-line diagram for R4 into a dot-and-line diagram for an 
“abstract” equivalence relation 
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Framing Event4 The instructor presents a general, formal definition of equivalence class 

8 The instructor generalizes from the previous examples to create a precise 
mathematical description of equivalence classes for R4 

9 The instructor challenges his previous work and works to make more precise his 
definition of equivalence classes. He poses and answers the question: Are 
equivalence classes well defined? 

10 The instructor poses and answers the question: Are there any equivalence classes 
under R4 with a single element? 

11 The instructor conjectures that [3]=[-3] under R4 (this example is subsequently 
generalized to all integers). He then tests this conjecture, setting up a proof by 
contradiction by asking whether [3]≠[-3]. 

12 The instructor conjectures and proves that [a]=[-a] for any integer a under the 
equivalence relation R4 

13 The instructor conjectures and then sets up a proof that, for integers a and b, if a~b 
then [a]=[b] under the equivalence relation R4 

 

Framing Narratives 
At the beginning of the class, the instructor described the “goals” he had for the day and wrote 

them on the board: Identifying general properties of equivalence relations, introducing the idea of an 
equivalence class, and identifying general properties of equivalence classes. Based on this, as well as 
a holistic reading of the transcript, we identified the three framing narratives as shown in Table 2. 

 
Table 2: Framing Narratives 

Framing 
Narrative 

Plot 

A Creating and refining an alternative representation: The instructor develops a diagram 
for representing a particular equivalence relation 

B The instructor generalizes from a “concrete” example to develop the concept of an 
equivalence class and construct a precise, abstract definition. 

C The instructor conjectures and then proves that two equivalence classes that share an 
element are equal 

Connections Between Narratives 
Figure 1 shows the connections between the various embedded narratives and other events in the 

lecture; the shape of each vertex indicates the framing narrative of which it was a part, as shown in 
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Figure 2. In the graph drawing, each vertex corresponds to an embedded narrative or a non-narrative 
event, labeled with the corresponding number from Table 1. The edges between the vertices  

 
Figure 1: Diagram of Connections Between Embedded Narratives and Events 

 

 
Figure 2: Legend For the Diagram of Connections 

represent the connections, and the connection X ! Y indicates Y includes characters that were 
introduced in X. 

Structure of the Graph 
There are numerous methods for analyzing the graph to identify structural aspects of the lecture. 

One such method is to identify the community structure of the graph; this partitions the graph so that 
the collection of narratives in each subgraph is relatively densely connected but the connections 
between the subgraphs are relatively sparse. Using a modularity maximization algorithm, the graph 
in Figure 1 can be split into the three communities, which are indicated by the shading of the vertices 
as indicated in Figure 2. There is a close alignment between the communities and framing narratives, 
which suggests that each framing narrative has relatively dense internal connections and, 
consequently, relatively strong internal coherence 

The graph also displays how “closely related” various pairs of embedded narratives are—i.e., 
how directly the characters introduced in one narrative are included in a subsequent narrative. This 
can by identified by analyzing the various paths between vertices. For example, fully understanding 
the plot of EN10 indirectly required an understanding the characters in embedded narratives 8, 5, 4, 
and 3 and the relationship between these characters.  This “chaining” is reflected in the length of the 
directed path between embedded narratives 3 and 10.  

Another aspect of the lecture highlighted by the graph-theoretic structure is the “centrality” of 
various embedded narratives, which reveals their narrative significance. There are numerous types of 
graph-theoretic centrality measures that can be used. For example, the pagerank centrality of a vertex 



Theory!and!Research!Methods:!Research!Reports! !

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

1312!

measures the number of connections from other vertices and gives a higher weight to connections 
from other highly connected vertices (Brin & Page, 1998). A narrative with high pagerank centrality 
has numerous direct and indirect connections to previous narratives; it integrates characters from 
numerous other narratives and is likely to be culmination of many paths through the graph of 
embedded narratives. Embedded narratives 6 and 13 had the largest page rank centrality. Both of 
these narratives integrated the characters from numerous other narratives: EN6 combined R4, the 
dot-and-line diagram, and the idea of follow-on lines to refine the diagram; EN13 drew upon most of 
the mathematical objects in the lecture to prove a conjecture about the equality of equivalence 
classes.  

Discussion 
In contrast to the common notion of lectures as consisting of formal sequences of definitions, 

theorems, proofs, and applications (Dreyfus, 1991), the results described here suggest that 
mathematics lectures may have a significantly more complex structure.  

We hypothesize that thinking about parts of a lecture in terms of plots and characters is useful for 
researchers to assist in identifying the main mathematical ideas of the lecture and the different ways 
that those ideas may be connected and built upon by the various mathematical objects and concepts. 
Identifying elements of embedded and framing narratives—including the characters, plots, 
complications, and resolutions—enables us to describe the temporal development of the important 
mathematical ideas in the lecture. 

In addition to being useful for researchers, identifying the plots and connections between the 
narratives can help us better understand the challenges that might arise in learning from a lecture. In 
particular, the complexity of the narrative structure and the numerous habits of mind that are used in 
the plots suggest reasons why students—who might not possess these habits of mind or be able to 
quickly identify the structure—might struggle to make sense of a lecture.  

Constructing meaning from a text by viewing it as a narrative is a different process than 
employing a logico-scientific mode of knowing. From a narrative perspective, events are given 
meaning through abduction; the only way to identify the plot or structural elements of a narrative is 
by “negotiating and renegotiating meanings by the mediation of narrative interpretation” (Bruner, 
1990, p. 67). Consequently apprehending the plot of a framing narrative can involve a complex 
process in which students must identify the multiple roles that can be played by each embedded 
narrative, identify potential orderings of these roles, and understand how they fit together.   

The analysis of the connections between the embedded narratives revealed several important 
aspects of the lecture. First, the community structure analysis showed that each framing narrative 
contained relatively dense connections. If these connections are not made explicit, it may be 
challenging for students to identify the ways in which the embedded narratives are related to each 
other. Conversely, these connections may also support sense-making: If students can understand 
aspects of one narrative, then they can use its connections to develop an understanding of the 
connected narratives or to identify the plot of a framing narrative. In addition to this structure 
analysis, the centrality analysis can reveal the ways narratives synthesize ideas, serve as key focal 
points, and incorporate characters that play significant roles in the narratives. 

As long as lecture remains a common form of mathematics instruction, more research is needed 
to describe lectures themselves as well as the ways students interpret and learn from lectures. The 
data reported here come from a case study and may not necessarily be representative of all 
mathematics classes—or even all abstract algebra classes. In order to more completely describe 
mathematics lectures, it will be essential to gather a larger corpus of data—both more classes from a 
single instructor, and lectures from other instructors. It will also be essential to collect data on 
students’ interpretations of lectures and to determine what students learn from each lecture and how 
the narrative structure—and their interpretation of the structure—relates to this learning. 
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This paper describes a tool developed by the researchers and used to evaluate preservice teachers’ 
professional noticing responses to prompts posed after viewing a video interview of a child solving 
an arithmetic task.  The tool, a series of flowcharts, was designed to increase scoring efficiency and 
reliability across a team of six raters. Inter-rater reliability increased from 60% to 83% after 
implementation of the flowchart-scoring tool.  This measurement tool and process has the potential 
to inform assessment strategies in the context of professional noticing frameworks.  Streamlining the 
tool and challenges to generalizability will be addressed.  

Keywords: Teacher Education-Preservice; Teacher Knowledge; Assessment and Evaluation 

Introduction 
Preparing teachers to practice responsive teaching is an enduring challenge of teacher educators.  

Identifying, measuring, and evaluating responsive teaching practices add to the challenge. 
Professional noticing has been identified in the literature as a promising practice to provide a 
foundation for teachers to become responsive practitioners (Goldsmith & Seago, 2011; Santagata, 
2011; van Es & Sherin, 2002).  This paper describes an innovative tool developed by the researchers 
and used to evaluate preservice elementary teachers’ (PSETs’) responses to prompts posed after 
viewing a video-based measure of professional noticing.  

The assessment measured PSETs’ responses pre- and post- to a researcher developed 
instructional module based on professional noticing (Jacobs, Lamb, & Philipp, 2010) within the 
context of the Stages of Early Arithmetic Learning (SEAL) trajectory (Steffe, Cobb, & von 
Glasersfeld, 1988). The module decomposes professional noticing into its three interrelated skills, 
attending, interpreting, and deciding, that allows for the skills to be progressively nested and 
intentionally developed (Boerst, Sleep, Ball, & Bass, 2011). Our results indicate that preservice 
elementary teachers (PSETs) can grow significantly in the three skills of professional noticing 
(Schack, Fisher, Thomas, Eisenhardt, Tassell, & Yoder, 2013). 

Theoretical Framework 

Teacher Professional Noticing 
Following Jacobs, Lamb, and Philipp’s 2010 study, and the publication of Sherin, Jacobs, and 

Philipp’s (2011) seminal book, Mathematics Teacher Noticing, the construct of teacher professional 
noticing has garnered the attention of researchers and practitioners alike. In earlier work, Carpenter, 
Fennema, Levi, and Empson (1999) provided evidence that teachers’ attention to children’s 
mathematical thinking can affect student learning.  Jacobs et al. (2010) built upon the foundation of 
attending to children’s thinking by offering a definition that includes three interrelated components, 
attending, interpreting, and deciding.  Kaiser, Busse, Hoth, König, and Blömeke (2015) report on the 
challenges of creating valid and reliable instruments for feasibly measuring professional noticing.  
Determining what teacher competencies to measure and maintaining scoring quality on instruments 
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that do not demand too much time from participants and scorers present the challenge.  Kaiser et al. 
(2015) suggest that beginning with a well-defined theoretical framework is key.  

Trajectory-based Mathematics Teaching 
Multiple researchers have explored learning trajectory based mathematics teaching (Clements & 

Sarama, 2009; Sztajn, Confrey, Wilson, & Edgington, 2012) resulting in trajectories of various 
mathematics concepts.  We situated PSET professional noticing development specifically in one such 
trajectory, SEAL, developed by Steffe and his colleagues (Steffe et al., 1988). SEAL is an early 
numeracy progression exemplary of “learning trajectories built upon natural developmental 
progressions identified in empirically based models of children’s thinking and learning” (Clements, 
2007, p. 45).  Video cases illustrating the nuanced behaviors of children’s mathematical thinking 
along the early numeracy progression of SEAL provided a contextualized reflective setting for 
PSETs to develop the three component skills of professional noticing.  

Methodology and Data Sources 
To examine PSET growth across the interrelated skills of professional noticing, the authors 

developed a measure consisting of a brief video clip in which an interviewer poses a comparison, 
difference unknown task (Carpenter et al., 1999). This clip, while brief, is rich in details of the 
child’s thinking that can be easily attended to, but also includes nuanced details that might be missed 
by novices thus allowing for a range of scores. The three prompts were drawn from the work of 
Jacobs et al. (2010) and each focused on one of the three interrelated components, attending, 
interpreting, and deciding. The prompts were: 1) Please describe in detail what this child did in 
response to this problem, 2) Please explain what you learned about this child’s understanding of 
mathematics, and 3) Pretend that you are the teacher of this child. What problems or questions might 
you pose next? Provide a rationale for your answer. 

We examined samples of PSET data for each of the professional noticing components for 
emergent themes (Glaser & Strauss, 1967). The emergent themes were assimilated with researcher-
identified key features for each of the components. The themes and key features resulted in 
benchmarks that defined several ranked response types. The PSETs’ professional noticing responses 
from all implementation and comparison sites were compiled into a spreadsheet and blinded. Scorers 
did not know if responses were from an implementation or comparison site, nor were they aware if it 
was pre- or post-assessment data. All data were randomly assigned to deter any biases that may 
possibly occur when scoring the response.     

Initially, three teams of two scorers each rated data sets using the benchmarks determined 
through the emergent themes.  Average inter-rater reliability using this process was 60%. This 
process was cumbersome, as it required a third scorer when the original scorers’ ratings did not 
agree.  Ultimately, more efficient and reliable processes were needed to evaluate the complex 
professional noticing responses.  We drew upon the literature of flow processes (AMSE, 1947) to 
develop a series of flowcharts to guide the scoring process of each interrelated skill.  

Results and Conclusion  
The benchmarks developed from the emergent themes of PSETs’ responses provided the 

foundation for the yes/no questions of the flowchart used to guide the raters’ scorings. Figure 1 
illustrates the flowchart for the interpreting component. The resulting inter-rater reliability averaged 
83% for all components across six scorers, a marked improvement from the inter-rater reliability of 
60% reached prior to the use of the flowchart scoring tools. 
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Figure 1: Interpreting Scoring Flowchart 

To illustrate the use of the scoring flowchart, one PSET’s response to the interpretation prompt is 
examined.  

“I learned that this student is still using manipulatives or his fingers to count items, but he can 
also use a counting on strategy to solve problems. I feel that if I was to place this student in one 
of the SEAL stages, I would have to say he is somewhere between stage 2 and 3. He is still using 
his senses such as touching (perceptual counting) to count the bears. However, he also counted 
up from seven to get to eleven.” 

The criteria for “yes” in response to the first rater question of the scoring flowchart in Figure 1, is 
satisfied because at least one of the three benchmarks is met. The PSET referenced the child’s use of 
fingers.  Following the “yes” route of the flowchart, the PSET response does not include any of the 
three limitations in the second question, resulting in a “no” response by the rater. The third question, 
“Does the response fit any of the following [four criteria listed]?” also rates a “no,” resulting in a 
score of 3 for this response. 

The scoring flowcharts proved valuable to the scoring process not only for ensuring inter-rater 
reliability, but also raters could track their responses through the chart with codes such as, “y1nn 
score 3” for the response above. If questions or discrepancies arose, the subsequent discussion could 
be focused quickly on the aspect of the response in dissension.  

Qualitative data can provide insights on participants’ understanding. However, qualitative data is 
often rich in text, which can pose a challenge to researchers to make meaning from the data 
(Creswell, 2013). While the open-ended professional noticing responses were concise, our sample 
included 224 PSETs, which meant 448 responses (due to the pre-post research design) required 
scoring. It was critical for our research team to establish a systematic process of scoring to make the 
data analysis process manageable and comprehensible across six scorers. The flowcharts allowed for 
such systematic processes and increased our inter-rater reliability to 83%. Kaplan and Maxwell 
(2005) argue that flowcharts can serve multiple purposes including: making data visible, reducing 
data, and presenting analysis in a holistic form. 

The measurement processes developed in this research have the potential to refine the strategies 
for measurement of responsive teaching practices with respect to noticing frameworks and beyond. 
Thus, researchers and teacher educators may design or adopt tools to better ascertain individuals’ 
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development of key skills.  There are limitations with this example, most notably the case specific 
nature of this assessment. Situational assessments such as this, however, do address the validity 
question in that what competencies were being measured were definable.  Creating an assessment 
protocol beyond the case level is a challenge, but we argue that this flowchart process can inform 
similar processes to interpret and analyze future studies of this nature.  Used in balance with other 
measures, this process might further contribute to understanding the complexities of teacher 
competencies that result in effective responsive teaching practices. 
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OBSERVING MATHEMATICS IN COLLECTIVE LEARNING SYSTEMS 
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In the past decade there is growing interest in mathematics education research that has emerged 
from complexity sensibilities that focuses on the collective (group) as a learning system. With this 
growing emphasis there is a need for methodological tools to study those systems. I am concerned 
with ways in which we can observe for the emergence of mathematics and mathematical thinking in 
the collective (rather than the individual). The purpose of this paper is to explore means and methods 
that can be used to anticipate, describe and account for the mathematics that emerges in collective 
activity in its own right. What are the markers of collective learning and understanding? How can we 
observe those markers of collective learning and understanding? 

Keywords: Cognition; Learning Theory; Research Methods 

I have been struggling with a tension that has emerged for me since first thinking about the class 
as a complex learning system. How do I observe and account for the mathematics of the collective 
(the group) rather than the individual? Fifteen years ago I conducted a research study to explore the 
impact of high activity mathematics within a grade 7 mathematics class. In that class a number of 
norms were established: working cooperatively with peers; sharing and critiquing solutions with the 
class; an understanding that the knowledge needed for a task or problem is within the group; and the 
justification for an answer is in the mathematics rather than with the teacher. One day while the 
students were writing a quiz (which they were expected to complete independently) one boy got up 
from his desk, paper in hand and approached a very competent peer to ask a question. I immediately 
interrupted him to ask what he was doing out of his desk and talking during a test. He replied he was 
asking Todd what a hexagon was (a fact he needed to proceed with the problem posed in the quiz). 
When I asked why he would do that during a test, he responded very matter-of-factly, “Well he 
knows.” Upon reflection it became clear to me that the student was simply acting within the well 
established class practice of using all the resources within the group to find out what you need to 
know in order to proceed with a task or work on a problem.  

Reflecting on this event and many others as I worked with the class, my colleagues and I began 
to theorize the class as a collective learning system. This led me to wonder about the enduring 
challenges we face as mathematics educators in regards to assessment practices. Why do we have 
students work in groups on mathematics but then assess each individual’s understanding with little or 
no recognition that their understanding is not only a product of highly interactive group processes but 
is supported and potentially contingent on the group processes and the knowing of others? Why is it 
that in spite of using the social group to facilitate understanding we continue to insist students display 
their understanding isolated from the support of others? Why is it that we do not assess the group’s 
mathematics?  

In this paper then, I am not focused on how knowledge is developed by the individual in groups 
or collectively; rather, I am trying to identify different forms of activity within a group that signal 
collective learning and understanding. If we can identify markers of the class acting as a single unit 
(collective activity), we can use those markers to observe that unit’s (collective) understanding. As a 
result we will be better positioned to ask not only how might we assess mathematics learning in 
school settings differently but what is it that we should be assessing in school mathematics. The 
purpose my work is to explore the means and methods that can be used to anticipate, describe and 
account for the mathematics that emerges in collective activity in its own right. What are the markers 
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of collective learning and understanding? How can we observe those markers of collective learning 
and understanding? 

Theoretical Perspective 

Learning and Cognition 
Maturana and Varela (1992) assert that “knowing is effective action, that is, operating effectively 

in the domain of existence of living beings” (p. 29). Varela et al. (1991) take this one step further 
when they claim cognition is perceptually guided action that brings forth a world of significance. 
These two claims are not discussed in this short proposal but they have been explored by various 
authors (e.g. February 2015 issue of ZDM). With these definitions I seek to illustrate how a class of 
mathematics learners with their teacher constitute a cognitive system, which I will henceforth label as 
a learning system. Of particular relevance here is that the learning system brings forth a world of 
significance. Hence I am not speaking of the transmission of pre-established knowledge from an 
expert to the group (teacher to learners). Rather the focus is on the knowing in action of the learners 
and teacher as a learning system (or smaller groups with the class). For the purpose of this paper, 
learning is defined as any transformation that enables the system to maintain its coherence moment 
by moment in the circumstances in which it finds itself. 

Group Learning 
There has been a great deal of interest on the learning that emerges through the interaction of 

students in groups (citations go back at least 30 years). Such research focuses on (for example) the 
learning of individuals as it arises in mathematical discourse (Sfard, 2001), how it is scaffolded 
(Goos, et al., 2002) and how it demonstrates the development of socio-mathematical norms (Yackel 
and Cobb, 1996). More recently, that work is beginning to be theorized in terms of collective 
learning systems (Rasmussen and Stephan, 2008; Towers, et al., 2009; Stahl, 2009; Hershkovicks et 
al., 2014; Conner et al., 2014). With this work there is a deliberate shift to investigate the emergent 
understandings, patterns of interaction, and other phenomena that are not (can not be) attributed to 
the individual or the sum of the individuals.  

Markers of Collective Learning  
I would like to propose that there are (at least) two kinds of collective activity we might observe: 

cumulative and transformative. The former is a result of the combined effort of the group all 
contributing the same thing. Take for example the lifting of something very heavy like a beam. The 
capacity to lift is with each individual. However, a beam is far to heavy for a single person to lift. 
The way to lift the beam is to get enough people to participate in its lifting. Each individual’s 
capacity to lift is added to the cumulative strength of the group to lift the beam. Notice that if an 
individual is strong enough to lift on her own then additional persons are not needed. The second 
kind of collective activity is different in that it happens only with a group (at least two people). This 
kind of activity involves a number of people whose contributions are transformed as they interact 
with the contributions of others. It is an activity that is not additive or cumulative but transformative. 
A new form or process emerges from the intersection of the contributions. It is this second kind of 
collective activity that I am interested in because I believe it is this kind of activity that defines a 
collective learning system. I ask, what in the mathematics class can only happen when more than one 
person is present? This suggests a different way to think about collective understanding.  

A sports team analogy might be useful to point us in the direction of what to observe for since I 
am not interested in what the individual learns but rather how the group functions when working on 
mathematics that enables further activity (maintenance of coherence) the group. Take for example a 
pass in hockey. One individual sends the puck and another receives the puck. This group activity 
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involves the interaction of individual contributions to create something new. It is not more sending or 
more receiving, the “send” and the “receive” are transformed into a “pass.” Note how without the 
receiver the “send” might be a shot on goal or it might be a clearing the puck from the zone but it is 
not a pass. The same act “sending the puck” is only understood as a pass with the interaction between 
the sender and the receiver. This example has led me to ask what are those individual actions that are 
transformed to create something new. 

What are other examples of collective activity that emerge from the transformation of individual 
contributions? Rasmussen and Stephan (2008) offer the example of a “fun couple” where neither 
person would be considered fun on their own. Imagine an act like that of vaudeville comedians, 
Gracie Allen and George Burns. Their humor emerges from the interaction of Grace who delivers 
silly lines and George who delivers straight lines. The combination of the silly and straight are 
transformed into humorous jokes. Neither Grace’s lines nor George’s are funny on their own; only in 
the interaction of the lines is the joke created.  

The pass in hockey and the joke in the comedy act are two exemplars that have led me to look for 
the interaction between the contributions of individuals from which something new emerges. I have 
identified a couple of examples of such transformations observed in clinical interviews. To illustrate, 
I offer an example from a parent-child dyad working together to understand how to predict the 
number of possibilities in a geometrical patterning activity. The child was arranging the materials, 
calling out and counting the patterns. The father was keeping records but at the same time watching 
his daughter making the tilings and checking for himself that all of the patterns were accounted for. 
As he recorded he would use words to denote each of his pencil strokes that was replicating the 
pattern (noted to the right of the transcript).  

Kerry:  Okay, you could do this one.            | = | |  
Dan:  Okay, What is that one? Okay, one— 
Kerry:  One, going, going. 
Dan:  One going, going, going, going. Okay.         | = =  

Okay, you got your going, going. Yeah, that’s the same as your other one, just turned 
around. Okay, so what do you have? 

Kerry: One, one, one [gestures with her finger three times top to bottom over the vertical tiles, 
then gestures left to right over the two horizontal tiles]  

Dan:  [repeats as he sketches] One, one, one.        | | | = 
Kerry:  Two sideways. 
Dan:  [As he draws the two horizontal tiles he utters] Blip blip. 
Dan:  Okay, what do you call the one sideways or something else? 
Kerry: Blip blip. 
Dan: Okay the blip-blips. 
Kerry: [Calling out the next arrangement] Blip, blip, one, one, one. 
Dan: Blip-blip, one, one, one.            =| | | 

In this case, “blip-blip” emerged from the interaction between the father and child. From their 
joint action of arranging, calling out the pattern, recording the pattern and calling it back again 
emerged the utterance “blip-blip.” This transformation of their actions and utterances created a new 
object, the pair of horizontal parallel tiles that must be treated as a unit. From this point forward in 
the session the blip-blip was integrated with their knowing actions. The emergence and use of a new 
word out of their collective activity was quite different than the use of language for another pair in 
the room. At one point in the session the daughter in the other dyad overheard Dan and Kerry talk 
about looking for mirror images. She almost immediately said, “Oh, I know. Look for mirror 
images.” I observe and interpret the first example (blip-blip) as a transformation of the individual 
contributions as collective knowing (and object). Whereas in the second example, I see the 
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mimicking of “look for mirror images” as an accumulation within the group of more members doing 
the same thing.  

A “pass” between team players or the creation of a new idea between people working on a 
mathematical task is but one form of a marker of collective learning. Rasmussen and Stephan (2008) 
have suggested that in collective activity the content of that activity is not as important as the 
practices that allow the group to function (p. 203). Hence, I speculate that a second form of marker is 
a practice within the group. In the vignette shared at the beginning of this paper, we might identify 
the student going to a classmate to seek information as a practice within that class. The pattern of a 
question posed to another student, the offering of a response and the listening for the response also 
may be a marker of collective activity.  

The goal of my work in this project is to propose other markers. Once a set of such markers have 
been proposed, I will then ask what forms of data could be collected that will enable researchers to 
observe differences in collective learning systems. Is videotape adequate? Are transcripts necessary? 
Can we remove attributions to individuals (Towers, Martin and Heater, 2013)? What might we learn 
about the group processes by fast forwarding video-tape and not listening to voices? What value 
might there be in studying the sound intensity over the period of a class? These questions are the 
beginning of the second part of this work of trying to identify new methods for studying the 
collective learning systems known as math classes. 
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Background & Theoretical Perspective. This poster presents a theoretical literature review and 
describes an ongoing study being conducted with these theories. I focus on the text of Foucault (1977) 
and apply his notion of normalization as a meta-lens on mathematics pedagogy. 

Previous research shows that normalizing occurs in a variety of educational settings (Gore, 1995; 
Hardy, 2004), and recent studies demonstrate that normalizing—among other techniques of power—
can stymie the implementation of reform-oriented regimes in math and science education (e.g., 
Donnelly, McGarr, & O’Reilly, 2014). These studies highlight that the normalizing exercise of power 
impacts learning outcomes by mediating students’ opportunities to engage the content. I conjecture 
that normalizing also affects the quality of this engagement, by implicitly reproducing non-agentive 
dispositions toward mathematics content and practices. Furthermore, I maintain that, through 
discourse, normalization is unfortunately liable to be recreated, and yet it also stands to be 
renegotiated, reconfigured, and thus ameliorated. 

I conceptualize mathematics education as indeed part of a broader form of “disciplinary power” 
(Foucault, 1977). As such, the practice of mathematics pedagogy cognitively normalizes students 
when it: (a) evaluates student action in relation to a cognitive/conceptual norm; (b) differentiates 
among students according to their apparent progress toward this norm; (c) hierarchizes students in 
terms of their “level” of understanding/achievement in relation to this norm; (d) homogenizes students 
when it asserts or demands a group norm; and (e) excludes students whose behaviors fall below a 
minimum threshold and are therefore deemed “abnormal.” 

Drawing on data from a year-long ethnography of a diverse high-school classroom, this poster 
presents detailed examples of cognitive normalizing at work in a particular math lesson. 

Ongoing Research. My methodology involves using the tools of the learning sciences such as 
microgenetic analysis of video data (Schoenfeld, Smith, & Arcavi, 1993) with an explicit focus on the 
classroom availability and individual appropriation of semiotic artifacts (Abrahamson, 2009), to 
examine the effects of normalizing on the quality of students’ engagement and conceptual develop-
ment. The data corpus consists of 60+ hours of classroom footage, fieldnotes, and student interviews 
gathered during the 2013-2014 school year. I am currently analyzing two aspects of the entire corpus: 
(a) teacher-facilitated class discussions; and (b) teacher interventions in group tasks. I am identifying 
and coding categories representing distinct forms of participation and learning surrounding students’ 
encounters with normalizing power across these two settings. Early findings suggest that in this 
particular classroom community normalization differentially impacts mathematics learning for 
women, racial minority students, and students who are non-native English speakers. Findings also 
reveal teaching tactics that potentially minimize students’ inter- and intrapersonal mathematical strife. 
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Research suggests that teachers are creating their own curricula using web-based resources in 
order to address the Common Core State Standards for Mathematics (CCSS-M) (Davis, Choppin, 
Roth McDuffie, & Drake, 2013.) The challenge is that this blend of resources often lacks curricular 
coherence, does not meet the needs of a diverse student body and lacks an assessment method that is 
well aligned to instruction and curriculum content. Moreover, research on teachers’ choices of digital 
materials states that when under time constraints, teachers can be influenced by superficial 
affordances rather than deep content concerns (Webel, Krupa, & McManus, in press).  

Coherence can be improved by providing teachers with a digital learning map, which affords a 
visualization of the middle grades content, is aligned to the CCSS-M and linked to high quality 
materials. This is a critical response to the challenge of aligning curriculum and assessment to CCSS-
M in a coherent manner. The map comprises of four fields, nine regions (big ideas), 24 related 
learning clusters (RLCs) and 65 constructs. It introduces the idea of a RLC (Confrey, Maloney, & 
Corley, 2014), which shows how closely related constructs can be grouped to create a coherent 
learning experience. For teachers, the map gives a description of the common expected student 
behaviors at the construct level and is a guide for them to promote active student exchange. 
Additionally the map links to free web-based resources aligned to the RLCs. The map also aims to 
promote personalization as described by Confrey (2014) that does not devolve into individualization.  

The poster uses data from a recent design study covering middle school statistics. Teaching 
activities employed were informed by research on the learning trajectory for statistics. Data was 
collected over a week using lesson observation videos, pre and posttests, student artifacts and 
interviews. The data collected was used to elicit information about how students interpreted the 
concepts of natural and measurement variability, how students coped with the idea of uncertainty and 
their use of data displays to further their understanding of key ideas in statistics. The results describe 
observable behaviors of students participating in the study and thus confirm the structure at the 
construct and stack levels of the learning map. The design study has implications for the teaching of 
statistics at the middle school level.  
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As the title suggests, this Working Group has a dual focus on issues of mathematics teaching and 
learning and issues of equity and diversity. Following on the topics discussed at the Working Group 
in 2009, 2010, 2011, 2012 and 2013, this year we are going to focus on identity in relation to 
mathematics education, and the ways in which power, agency, and authority play out in classrooms. 
Session 1 will consist of a panel discussion with scholars around these issues. They will share their 
perspectives on the state of the field and elaborate next steps in attending to these and other equity 
issues in the learning of mathematics, particularly for historically marginalized student groups. 
During sessions 2 and 3 there will be round table discussions to provide attendees with the 
opportunity to network, plan potential collaborative work, and/or discuss issues raised by the panel. 

Keywords: Equity and Diversity; Affect and Beliefs (and Emotion and Attitudes); Teacher 
Knowledge; Teacher Education-Inservice (Professional Development) 

Brief History 
This Working Group builds on and extends the work of the Diversity in Mathematics Education 

(DiME) Group, one of the Centers for Learning and Teaching (CLT) funded by the National Science 
Foundation (NSF). DiME scholars graduated from one of three major universities (University of 
Wisconsin-Madison, University of California-Berkeley, and UCLA) that comprised the DiME 
Center. The Center was dedicated to creating a community of scholars poised to address some critical 
problems facing mathematics education, specifically with respect to issues of equity (or, more 
accurately, issues of inequity). 

 The DiME Group (as well as subsets of that group) has already engaged in important scholarly 
activities, including the publication of a chapter in the Handbook of Research on Mathematics 
Teaching and Learning which examined issues of culture, race, and power in mathematics education 
(DiME Group, 2007), a one-day AERA Professional Development session examining equity and 
diversity issues in mathematics education (2008), a book on research of professional development 
that attends to both equity and mathematics issues with chapters by many DiME members and other 
scholars (Foote, 2010), and a book on teaching mathematics for social justice (Wager & Stinson, 
2012) that also included contributions from several DiME members. In addition, several DiME 
members have published manuscripts in a myriad of leading mathematics education journals on 
equity in mathematics education. This working group provides a space for continued collaboration 
among DiME members and other colleagues. 

We continue DiME’s tradition of discussing current work, hearing from leading scholars in the 
emerging field of equity and diversity in mathematics education, and opening up this space beyond 
DiME members in this Working Group. Specifically, the Center historically held DiME conferences 
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each summer. These conferences provided a place for fellows and faculty to discuss their current 
work as well as to hear from leaders in the emerging field of equity and diversity issues in 
mathematics education. Beginning in the summer of 2008, the DiME Conference opened to non-
DiME graduate students and new faculty with similar research interests from other CLTs such as the 
Center for the Mathematics Education of Latinos/as (CEMELA), as well as some not affiliated with 
an NSF CLT. This was initially an attempt to bring together a larger group of emerging scholars 
whose research focuses on issues of equity and diversity in mathematics education. In addition, 
DiME graduates, as they have moved to other universities, have begun to work with scholars and 
graduate students including those with connections to other NSF CLTs such as MetroMath and the 
Urban Case Studies Project in MAC-MTL whose projects also incorporate issues of equity and 
diversity in mathematics education. Funding for the DiME project has ceased and the PMENA 
Working Group has become a major way in which to keep the conversation going.   

It is important to acknowledge some of the people whose work in the field of diversity and equity 
in mathematics education has been important to our work. Theoretically we have been building on 
the work of such scholars as Marta Civil (Civil, 2007; Civil & Bernier, 2006; González, Andrade, 
Civil, & Moll, 2001), Eric Gutstein (Gutstein, 2003, 2006; Gutstein & Peterson, 2013), Jacqueline 
Leonard (Leonard, 2007; Leonard & Martin, 2013), Danny Martin (Martin, 2000, 2009, 2013), Judit 
Moschkovitch (Moschkovich, 2002), Rochelle Gutierrez (2002, 2003, 2008, 2013a, 2013b) and 
Na'ilah Nasir (Nasir, 2002, 2011, 2013; Nasir, Hand & Taylor, 2008; Nasir & Shah, 2011). We have 
as well been building on the work of our advisors, Tom Carpenter (Carpenter, Fennema, & Franke, 
1996), Geoff Saxe (Saxe, 2002), Alan Schoenfeld (Schoenfeld, 2002), and Megan Franke (Kazemi& 
Franke, 2004), as well as many others outside of the field of mathematics education.  

We were pleased for the opportunity offered by the first five years of being a Working Group at 
PMENA 2009 – 2013 to continue working together as well as to expand the group to include other 
interested scholars with similar research interests. We have learned through experience that 
collaboration is a critical component to our work. We were encouraged that our efforts were well 
received; more than 40 scholars from a wide variety of universities and other educational 
organizations took part in the Working Group each of the past five years. 

Focal Issues 
Under the umbrella of attending to equity and diversity issues in mathematics education, 

researchers are currently focusing on such issues as teaching and classroom interactions, professional 
development, prospective teacher education (primarily in mathematics methods classes), factors 
impacting student learning (including the learning of particular sub-groups of students such as 
African American students or English learners), and parent perspectives. Much of the work attempts 
to contextualize the teaching and learning of mathematics within the local contexts in which it 
happens, as well as to examine the structures within which this teaching and learning occurs (e.g. 
large urban, suburban, or rural districts; under-resourced or well-resourced schools; and high-stakes 
testing environments). How the greater contexts and policies at the national, state, and district level 
impact the teaching and learning of mathematics at specific local sites is an important issue, as is 
how issues of culture, race, and power intersect with issues of student achievement and learning in 
mathematics. 

There is much existing research that either focuses on professional development in mathematics 
(e.g., Carpenter, Fennema, Peterson, Chiang, & Loef, 1989; Kazemi& Franke, 2004; Koellner, 
Jacobs & Borko, 2011; Lewis, 2000; Saxe, Gearhart, & Nasir, 2001; Schifter, 1998; Schifter & 
Fosnot, 1993; Sherin & van Es, 2003), or professional development for equity (e.g., Grant & Sleeter, 
2011; Lawrence & Tatum, 1997; Payne & Smith, 2011; Sleeter, 1992, 1997;). Less research exists, 
however, which examines professional development or mathematics methods courses that integrate 
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both (Aguirre et al, 2013; Battey & Franke, 2013; Turner et al., 2012). The effects of these separate 
bodies of work, one based on mathematics and one based on equity, limits both the impact that 
teachers can have in actual classrooms and students’ opportunities to learn mathematics. The former 
can help us uncover the complexities of children’s mathematical thinking as well as the ways in 
which curriculum can support mathematical understanding in a number of domains. The latter has 
produced a body of literature that has helped to reveal educational inequities as well as demonstrated 
ways in which inequities in the educational enterprise could be overcome.  

To bridge these separate bodies of work, the Working Group has begun and will continue to 
focus on analyzing what counts as mathematics learning, in whose eyes, and how these culturally 
bound distinctions afford and constrain opportunities for traditionally marginalized students to have 
access to mathematical trajectories in school and beyond. Further, asking questions about systematic 
inequities leads to methodologies that allow the researcher to look at multiple levels simultaneously. 
This research begins to take a multifaceted approach, aimed at multiple levels from the classroom to 
broader social structures, within a variety of contexts both in and out of school, and at a broad span 
of relationships including researcher to study participants, teachers to schools, schools to districts, 
and districts to national policy.  

Some of the research questions that the Working Group will continue to consider are: 

• What are the characteristics, dispositions, etc. of successful mathematics teachers for all 
students across a variety of local contexts and schools? How do they convey a sense of 
purpose for learning mathematical content through their instruction? 

• How do beginning mathematics teachers perceive and negotiate the multiple challenges of 
the school context?  How do they talk about the challenges and supports for their work in 
achieving equitable mathematics pedagogy? 

• What impediments do teachers face in teaching mathematics for understanding? 
• How can mathematics teachers learn to teach mathematics with a culturally relevant 

approach? 
• What does teaching mathematics for social justice look like in a variety of local contexts? 
• What are the complexities inherent in teacher learning about equity pedagogy when students 

come from a variety of cultural and/or linguistic backgrounds all of which may differ from 
the teacher’s background? 

• What are dominant discourses of mathematics teachers? 
• What ways do we have (or can we develop) of measuring equitable mathematics instruction? 
• How do students’ out-of-school experiences influence their learning of school mathematics? 
• What is the role of perceived/historical opportunity on student participation in mathematics?  

Specific to this year’s Working Group focus, we will also consider these research questions: 

• What is the role of both teachers’ and students’ academic and mathematics identity in 
achievement? 

• What is the role of teachers’ and students’ ethnic and cultural identities in mathematics 
classrooms? 

• How do teachers support students’ agency in mathematics classrooms? 
• How does agency influence students learning of mathematics? 
• How do power and status play out in the mathematics classroom? 
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Plan for Working Group 
The overarching goal of the group continues to be to facilitate collaboration within the growing 

community of scholars and practitioners concerned with understanding and addressing the challenges 
of attending to issues of equity and diversity in mathematics education. The PMENA Working Group 
provides an important forum for these scholars to come together with other interested researchers 
who identify their work as attending to equity and diversity issues within mathematics education in 
order to develop plans for future research. Some areas we have identified and intend to continue to 
examine include: incorporating out of school practices, explicitly examining race (including educator 
identity around race and teaching about race), analyzing broader social structures (teaching math for 
social justice; the role of privilege), integrating an equity focus into mathematics education reform 
efforts (equity and the Common Core) and, for this year, understanding identity, power, and agency. 
Our main goal for this year, then, is to continue a sustained discussion (theoretical and 
methodological) around these key issues related to research design and analysis in studies attending 
to issues of equity and diversity in mathematics education. We will do this by bringing together 
scholars to share their perspectives on the field, and then provide space and time for smaller groups 
to discuss, reflect on, and amplify ideas from the presentation. 

Our plans for PMENA 2015 will proceed as follows.  

SESSION 1:  
• Review and discussion of goals of Working Group 
• Introduction of participants  
• Panel discussion on identity, power, and agency  

SESSION 2: 
• Round table discussions, networking, and collaboration    

SESSION 3: 
• Continued round table discussions, networking, and collaboration 

Previous Work of the Group  
The Working Group met for five productive sessions at PMENA 2009, PMENA 2010, PMENA 

2011, PMENA 2012 and PMENA 2013. In 2009, we identified areas of interest to the participants 
within the broad area of equity and diversity issues in mathematics education. Much fruitful 
discussion was had as areas were identified and examined. Over the past five years subgroups met to 
consider potential collaborative efforts and provide support. Within these sub-groups, rich 
conversations ensued regarding theoretical and practical considerations of the topics. In addition, 
graduate students had the opportunity to share research plans and get feedback. The following were 
topics covered in the subgroups: 

• Teacher Education that Frames Mathematics Education as a Social and Political Activity 
• Culturally Relevant and Responsive Mathematics Education 
• Creating Observation Protocols around Instructional Practices 
• Language and Discourse Group: Issues around Supporting Mathematical Discourse in 

Linguistically Diverse Classrooms 
• A Critical Examination of Student Experiences 

As part of the work of these subgroups, scholars have been able to develop networks of 
colleagues with whom they have been able to collaborate on research, manuscripts and conference 
presentations.  
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As a result of our growing understanding of the interests of participants (with regard both to the 
time spent in the working group and to intersections with their research), we began to include focus 
topics for whole group discussion and consideration and we continued to provide space for people to 
share their own questions, concerns, and struggles. With respect to the latter, participants have 
continually expressed their need for a space to talk about these issues with others facing similar 
dilemmas, often because they do not have colleagues at their institutions doing such work or, worse 
yet, because they are oppressed or marginalized for the work they are doing. These concerns, in part, 
informed the focus topics for whole group discussion and consideration. For example, in 2009 
research protocols (e.g., protocols for classroom observation, video analysis and interviewing) were 
shared to foster discussions of possible cross-site collaboration. In 2012, the Working Group 
explicitly took up marginalization in the field of mathematics education with a discussion about the 
negotiation of equity language often necessary for getting published; this was done in the context of 
the ‘Where’s the mathematics in mathematics education’ debate (see Heid, 2010; Martin, Gholson, & 
Leonard, 2010). Dr. Amy Parks was invited to join Working Group organizers to share reflections on 
their experiences. Last year we offered our first panel in which scholars (Dr. Beatriz D’Ambrosio, 
Dr. Corey Drake, Dr. Danny Martin) shared their perspectives on the state of and new directions for 
mathematics education research with an equity focus. The success of the panel discussion and 
feedback from attendees led us to plan to continue this structure again this year, using the working 
group as a sight for discussion and planning of collaborative work as well as reflection on ideas of 
senior scholars. Given the focus on new directions for mathematics education research, one of the 
subgroups of the 2013 Working Group focused on equity and the Common Core. A commentary for 
the Journal of Research in Mathematics Education is currently under review (Bartell, et al., 2015). 

Anticipated Follow-up Activities 
As has happened following previous years of this working group, we anticipate that scholars who 

make connections at the working group sessions will maintain contact and at least in some cases, this 
will lead to collaboration on research questions, conference presentations, manuscripts or research 
projects.  
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The purpose of this working group is to open discussion and foster collaboration amongst 
researchers and educators on the theoretical and methodological concerns as well as practical 
implications related to collective learning. The two themes for the working group include: In what 
ways can we conceptualize classrooms as collective learning systems? And, in what ways can we 
analyze how the collective, as a coherent entity, learns? Through our work we intend to engage in 
discussion to further the concept of collective learning in relationship to mathematics teaching and 
learning, and to explore research methodologies that offer potential insight into classrooms as 
collectives. Shaping the discussion throughout the three sessions of the working group will be 
leading scholars in this field who share their current thinking as fodder for smaller groups to 
discuss, debate, and extend.  

Keywords: Cognition; Research Methods 

History of the Working Group 
Over the past two decades, the working group leaders have individually and in subgroups, been 

theorizing about, as well as collecting, analyzing, and reporting on data relating to collective action 
in mathematics classrooms (e.g., Davis & Simmt, 2006; Martin, McGarvey & Towers, 2011; Martin 
& Towers, 2011; McGarvey & Thom, 2010; Proulx, Simmt & Towers, 2009). Recognizing our 
overlapping interests and similar theoretical framework in complexity science (e.g., Mitchell, 2009; 
Waldrop, 1992) and enactivism (e.g., Maturana & Varela, 1992; Varela, Thompson & Rosch, 1991), 
we came together several times in the past five years to establish points of intersection in our 
individual programs of research. A major impetus for the work is to more fully understand the ways 
in which mathematics learning occurs in classrooms viewed as collective systems. That is, how 
mathematics classrooms can be seen as complex systems in which agents spontaneously interact and 
adapt to each other, organizing and sustaining learning processes in collaborative ways. Through this 
working group we would like to expand our discussion to interested PME-NA members to open new 
opportunities for collaboration and avenues of research. In this working group, our general themes 
are to conceptualize collective learning and address methodological issues when the ‘learning body’ 
consists of a group or classroom as a whole. 

Focus Issues  
Within mathematics education research, there is an extensive body of literature pointing to group 

dynamics and discourse (see Francisco, 2013). Indeed, the 1990s and the following two decades were 
ripe with visions of cooperative learning, collaborative inquiry and communities of practice 
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(Balacheff, 1991; Bauersfeld, 1995; Cobb, Wood, & Yackel, 1993; Lampert & Cobb, 2003; Lampert, 
Rittenhouse & Crumbaugh, 1998; McCrone, 2005; Staples, 2007; Yackel & Cobb, 1996). This 
research helped transform mathematics classrooms: rows of desks where students worked in isolated 
silence were rearranged into groups where students interacted cooperatively together. Further, this 
research led to an emergence of efforts to understand, describe and define collective learning systems 
within the field of education generally, and was taken up specifically in mathematics education (e.g., 
Bowers & Nickerson, 2001; Cobb, 1999; Cobb, Boufi, McClain & Whitenack, 1997; Crawford, 
1999; Goos, 2004; Lave, 1997; Rogoff, 1995; Roth, 2001; Roth & Lee, 2002; Saxe, 2002; Sfard & 
Kieran, 2001; Stahl, 2006). From this work came a growing realization that acts of cognition often 
arose from the classroom as a whole and could not be traced back to any one individual. While we do 
not discount the value of research that explores individual understanding, we recognize that teacher 
actions and decision making within classroom contexts are often not based on the multitude of 
individual actions, but on the teacher’s sense of the class as a whole of which they are a part (Burton, 
1999; Towers, Martin & Heater, 2013).  

In order to have a shared framework for discussing collective learning systems, we situate this 
work within the view that classrooms are complex systems. Complex systems are a particular class of 
phenomena that include, for example, weather systems, world economies, human interaction, 
nervous systems and many others. Each complex system arises from the inextricable layering and 
entanglement of biological, social, societal and environmental sub-systems (Davis & Simmt, 2003; 
Davis & Sumara, 2006). Events within the systems may be unpredictable in foresight, but are 
potentially understandable in hindsight. Further, complex systems present possibilities that neither 
arise from nor are representative of individual agents (Davis & Simmt, 2003). These collective 
possibilities are established through a self-initiating, self-organizing and self-sustaining process. 
Another key aspect of complex systems is the dialectical entanglement of the system and its 
environment. Drawing on Maturana and Varela’s (1992) view of an entity’s cognition, the system 
both shapes and is shaped by its surroundings. In this sense, a collective learning system can be 
defined as a complex system in which agents spontaneously interact and adapt to each other, 
organizing and sustaining the group’s dynamical processes in a collaborative and collective way. 
This description is how we view mathematics classrooms as collective learning systems and it 
provides the theoretical orientation to situate our discussion on conceptualizing collective learning. In 
this working group we offer some of our work on complex systems as starting points for discussion 
(described below), but we make space for alternative perspectives as well as extensions of the work. 
The first theme we address is: In what ways can we conceptualize classrooms as collective learning 
systems? 

We recognize that even if we agree on the importance of viewing classrooms as collective 
learning systems, researchers describing and analyzing group interaction often report findings based 
on individual achievement results. Even when group work is considered as a whole, a lack of 
methodological tools leads to analyses that offer connected, but still individual actions, utterances 
and understandings. Hence, a second theme of our working group is to address the methodological 
considerations for viewing groups and classrooms as collectives. In what ways can we analyze how 
the collective, as a coherent entity, learns? 

Research methodology for collective systems outside of school contexts is a burgeoning 
scientific field of study. To begin discussions, we offer studies that provide insight into the adaptive 
learning and self-organization of complex and collective systems such as insect colonies (e.g., 
Gordon, 2011; Johnson, 2002), underground webs of fungi and roots in forests (Simard, Martin, Vyse 
& Larson, 2013), small-world communication networks (Watts & Strogatz, 1998), workplace 
learning (Garavan & McCarthy, 2008), social movements (Kilgore, 1999), and stock market 
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fluctuations (Ralph, n.d.). These studies and many others, make use of computer models of complex 
phenomena to create visual expressions and explanations of large volumes of data. 

Within mathematics education some approaches to analyzing collective learning have been 
offered:  

• preparing transcripts where all individual identifiers have been removed and the transcripts 
are analyzed as though there is only one voice (Glanfield, Martin, Murphy & Towers, 2009; 
Martin, Towers & Pirie, 2006);  

• tracing the development of a mathematical idea through a group by attending not to 
individuals, but to collective utterances and discussion, drawings, working papers and 
whiteboard markings (Davis & Simmt, 2003; Gordon Calvert, 2001; Namukasa & Simmt, 
2003; Proulx, 2003; Simmt, 2011; Thom & Roth, 2009);  

• modelling classroom interactions using a dynamic visual network by electronically streaming 
the observations of conversations turns (Bender-deMoll& McFarland, 2006); and 

• analyzing video to track the patterns of physical movement within a class and sound by 
measuring the overall intensity of amplitude over the period of the lesson. 

While these techniques show promise, we seek new and different avenues to explore. 
Through this working group we hope to extend the initial forays into conceptualizing, collecting, 

analyzing and interpreting data from collective learning systems. We seek to enlarge researchers’ and 
educators’ understandings of what counts as a ‘learner’ to include a group as a learning system. We 
also examine the potential for observational and assessment tools where a group stands as the unit of 
analysis.  

This work has the potential to transform research and teaching practices that address the 
collective, rather than individualistic learning in schools, and challenge institutional norms that 
privilege a focus on the individual.  

Plan for Engagement 
The purpose of this working group is to open discussion and foster collaboration amongst 

researchers and educators on the theoretical and methodological concerns as well as practical 
implications related to collective learning. The two themes for the working group include: 

In what ways can we conceptualize classrooms as collective learning systems? 
In what ways can we analyze how the collective, as a coherent entity, learns? 

Through our work we intend to engage in discussion to further the concept of collective learning in 
relationship to mathematics teaching and learning, and to explore research methodologies that offer 
potential insight into classrooms as collectives. Shaping the discussion throughout the three sessions 
of the working group will be leading scholars in this field who will share their current thinking as 
fodder for smaller groups to discuss, debate, and extend.  

Session 1. Theoretical considerations for collective learning  
Presentation A. Collective behaviours. What does a collective learning system mean? What 

might collective learning be? One of the ways to address these questions might be through 
studying/understanding similar collective phenomena exhibited by insect colonies, vertebrate 
schools, flocks or plants. Despite the differences, research shows that these systems appear to exhibit 
similar collective behaviours suggesting the possibility of common underlying mechanisms or 
patterns. The potential of common mechanisms underlying insect, animal, plant and human collective 
phenomena might help to conceptualize behaviour along with methodological tools for observing 
collective learning in mathematics classrooms. For example, studies on ants’ foraging behaviour 
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show that ants exhibit collective behaviours by obeying very simple rules: The ants pick up grains at 
a constant rate, approximately two grains per minute; they prefer to drop them near other grains, 
forming a pillar; and they tend to choose grains previously handled by other ants, probably because 
of marking by a chemical pheromone. This example is one of many that will be shared to help 
conceptualize collective learning in a mathematics classroom.  

Focusing questions for small group discussion: 

• What interactions might we observe in a mathematics classroom that characterize collective 
learning phenomenon (e.g., decentralized control)?  

• In what ways can foraging, flocking or other simple rules be observed in mathematics 
classrooms? 

• What aspects of interaction signify collective behaviour: students’ mathematics productions, 
mathematical ideas, emergent use of words or expressions, and/or other markers?   

Presentation B. Ideas as species. It is not uncommon to encounter suggestions that mathematics 
“is a living, breathing, changing organism …” (Burger & Starbird, 2005, p. xi) or that it “emerges as 
an autopoietic [i.e., self-creating and self-maintaining] system” (Sfard, 2008, p. 129). More 
pointedly, Foote (2007) has argued that mathematics is an adaptive, complex system that is 
approaching the limits of human verifiability. 

Picking up on such notions, this presentation develops the suggestion that ideas are species – 
and, more fundamentally, that thinking and evolution are self-similar processes. It begins with the 
observation that the words idea (> Greek idein, “to see”) and species (> Latin specere “to see”) are, 
in a sense, synonymous, and offers a brief historical trace of how the notions were historically 
connected.  

From there the discussion draws on the following literatures: 

• memetics (e.g., Dawkins, 1989; Blackmore, 1999) 
• complexity science (e.g., Mitchell, 2009) 
• embodiment/biological cognition (e.g., Maturana & Varela, 1979; Varela, Thompson & 

Rosch, 1991) 

This literature serves to support the development of the dynamical similarities of cognition on the 
level of the knower, knowledge production on the level of society, and evolution on the level of a 
species. These elements are knitted together in the assertion that mathematical concepts are complex 
coherences that arise in but transcend the co-entangled activities of a collective of mathematical 
knowers – that is, an account of the emergence and evolution of mathematical ideas/species is 
offered. 

Focusing questions for small group discussion: 

• What mathematics ideas/species might we observe in a school mathematics classroom? 
• What are the conditions for a collective learning system from which mathematics transcend? 
• What implications arise when mathematical ideas are theorized as species? 
• What new possibilities, theoretical and pedagogical, are occasioned when mathematical ideas 

are conceived as species? 

Session 2. Classrooms as Collectives 
Presentation C. Mathematical meme ecosystem. In this discussion we bring together 

Collective Behaviours from Presentation A and Ideas as Species from Presentation B to bridge our 
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understanding of and consideration for the potential utility for the construct of a mathematical meme 
ecosystem (MME) in the classroom. Memes as introduced by Dawkins (1989) are ideas (and 
behaviours) that persist in a social group as individual agents mimic the ideas (and behaviours) of 
others. We acknowledge the individual and social literature on understanding, and we want to go 
beyond to focus on the memes, the threads and traces of ideas.  

The collective behaviours previously discussed, such as the rules for foraging ants and flocking, 
allow us now to consider the ways in which teachers are implicated in the collective system as they 
contribute ideas/species and intentional memes. Moving to the level of an ideational system that rides 
above the agents in the system and in order to develop the idea of a meme ecosystem, we explore 
how ideas are picked up and have currency in a classroom setting.  

Focusing questions for small group discussion: 

• What are some of the memes we can identify in a mathematics classroom? 
• How do we observe the emergence of the memes in a mathematic classroom? 
• What are the dynamics of the movement and persistence of memes? 
• What insights into student learning are gained through conceptualizing mathematics 

classrooms as mathematical meme ecosystems? 
• In what practical ways do memes offer a different sensibility for what it means to teach and 

learn mathematics in the classroom? 

Presentation D. Improvisational coaction. In this presentation we begin by offering the 
beginnings of a theoretical framework focusing on the collective mathematical activity of learners 
collaborating in small groups (Martin, Towers, & Pirie, 2006; Martin & Towers, 2009). Influenced 
by the literature that focuses on improvisational action in the fields of jazz and theatre (e.g., Sawyer, 
2003), we demonstrated that it was possible to observe, explain, and account for acts of mathematical 
understanding that could not simply be located in the minds or actions of any one individual, but 
instead emerged from the interplay of the ideas of individuals, as these became woven together in 
shared action. This early theorizing prompted us to develop the theoretical construct of 
“improvisational coaction” in mathematics learning (Martin & Towers, 2009). Improvisational 
coaction is a process through which mathematical ideas and actions, initially stemming from an 
individual learner, become taken up, built upon, developed, reworked, and elaborated by others, and 
thus emerge as shared understandings for and across the group, rather than remaining located within 
any one individual. We have applied these ideas to a breadth of educational contexts from elementary 
school to workplace learning and in small group and whole-class settings (e.g., Martin & Towers, 
2011, 2012; Towers & Martin, 2009, 2014) and most recently have turned our attention to 
developing methodological advances for studying such mathematical collectivity (Towers & Martin, 
2015). In this presentation, we position the structures of improvisational coaction as one potential 
organizing mechanism that might underlie a mathematical meme ecosystem. 

Focusing questions for small group discussion: 

• Can improvisational coactions provide a conceptual structure for understanding the 
organizing mechanisms underlying mathematical meme ecosystems? 

• What insights into mathematical meme ecosystems might be gained by analyzing students’ 
improvisational coactions? 

• What are some of the indicators/markers of coaction? 
• What are the dynamics of mathematical meaning making of a group of agents and how can 

we observe them?   
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Session 3. Methodological considerations for studying collective learning in mathematics 
classrooms 

Presentation E. Observing processes of collective learning. In the past two decades the use of 
group work in schools has become pervasive. Justification for this move range from “that’s how 
people learn” to “that is how people get on in the real world.” Yet, when it comes to assessment 
(accountability) the emphasis is always placed on the individual. What does the individual know 
(stripped of any opportunity to know with others in a group)? We are troubled by educational 
systems that emphasize group work and students’ ability to work together on shared projects, but 
continue to point back to the individual in accountability and assessment. In spite of decades of 
research done with pairs, small groups and class-sized groups of students/learners, we as educational 
researchers have made little progress on understanding learning as anything beyond what an 
individual does. Regardless of our beliefs about the purpose of education, we (collectively) live with 
the unexamined assumption that at the end of the day we must assess what the individual learned 
from his or her time in school. As educational researchers we are aware that we have not 
examined/researched observational practices that could focus on the group as a learning system; 
hence, our (collective) underlying assumptions face few challenges.  

Gharajedaghi (2011) writing about systems in a business context states: 

The obstructions that prevent a system from facing its current reality are self-imposed. Hidden 
and out of reach, they reside at the core of our perceptions and find expression in mental models, 
assumptions and images. These obstructions essentially set us up, shape our world and chart our 
future. They are responsible for preserving the system as it is and frustrate its efforts to become 
what it can be. (p.159) 

With the growing understanding of complexity thinking and the awareness that it offers us a way to 
consider learning systems at many levels of organization, we are at a point where the methodological 
obstructions we have faced may be excavated and examined. It is important to study the methods by 
which we can observe the group as a learning system. From there we can propose methods by which 
teachers can assess the group’s, as well as the individual’s learning.  

In this work we reflect on identifying some of the processes involved in the collective learning 
and ask how they might be observed. Initial processes are likely related to the presence of feedback 
loops and binding processes, the emergence of ideas and practices, the collection/selection of new 
information, as well as the transformation of the contributions of individuals. So, how do we observe 
these phenomena when we do not and likely cannot know exactly what they are or what they look 
like?  

Focus questions for small group discussion: 

• How might thinking about ecosystems and the means by which these are studied enable 
deeper examination and critique of methods used in mathematics education to observe 
collective learning? 

• In what ways does such examination and critique present the possibility for the generation of 
radically different methods of observations to study collective mathematics learning in the 
classroom?  

• What are some of the obstructions that have prevented educators from recognizing the 
paradox of students learning with a group and being assessed individually? 

• What methodological tools do we have or might we imagine for assessing the learning and 
understanding of a group? 

• How might we imagine, develop and study alternative assessments, attending to group 
learning and knowledge creation? 
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Final Forum. In this final forum of open discussion we return to each of the previous 
presentations and insights arising from the small/large group discussions to consider moving the 
theoretical and methodological issues of collective learning forward. We also return to the two 
themes posed: In what ways can we conceptualize classrooms as collective learning systems? And, 
In what ways can we analyze how the collective, as a coherent entity, learns? 

We offer a cycle of inquiry to help frame our discussion that allows us to consider existing/new 
tools for analysis as well as existing/new data collection (see Figure 1).  
 

 
 
Figure 5: Cycle of inquiry for developing, assessing and refining data collection techniques and 

data analysis tools. 

Anticipated Follow-Up/Future Work 
We anticipate that this initial working group discussion at a PME-NA will bring together 

interested researchers who have wondered about collective learning within a mathematics classroom, 
what it might look like, and how it might be observed and described. Our hope is to extend this work 
from the conceptual and methodological to the pedagogical. That is, how might we use insights 
gained through research to consider how teachers might ‘notice’ or ‘observe’ collective learning in 
their practice. 

Acknowledgment 
This research is supported by the Social Sciences and Humanities Research Council of Canada 

under the title: Advancing research methodology for collective learning in mathematics education. 

References 
Balacheff, N. (1991). Benefits and limits of social interaction: The case of mathematical proof. In A. Bishop, S. 

Mellin-Olsen, & J. van Dormolen (Eds.), Mathematical knowledge: Its growth through teaching (pp. 175–192). 
Dordrecht: Kluwer. 

Bauersfeld, H. (1995). The structuring of structures: Development and function of mathematizing as a social 
practice. In L. P. Steffe& J. Galle (Eds.), Constructivism in education (pp. 137–158). Hillsdale: Lawrence 
Erlbaum Associates. 



Working!Groups!

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

1340!

Bender-deMoll, S., & McFarland, D. A. (2006).The art and science of dynamic network visualization. Journal of 
Social Structure, 7(2), 1-38. 

Blackmore, S.J. (1999). The meme machine. Oxford, UK: Oxford University Press. 
Bowers, J. S., & Nickerson, S. (2001). Identifying cyclic patterns of interaction to study individual and collective 

learning. Mathematical Thinking and Learning, 3, 1–28. 
Burger, E.B., & Starbird, M. (2005). The heart of mathematics: An invitation to effective thinking (2nd ed.). 

Emeryville, CA: Key College Publishing. 
Burton, L. (Ed.) (1999). Learning mathematics: From hierarchies to networks. London: Falmer Press. 
Cobb, P. (1999). Individual and collective mathematical development: The case of statistical data analysis. 

Mathematical Thinking and Learning, 1, 5–43. 
Cobb, P., Boufi, A., McClain, K., & Whitenack, J. (1997). Reflective discourse and collective reflection. Journal for 

Research in Mathematics Education, 28(3), 258–277. 
Cobb, R., Wood, T., & Yackel, E. (1993).Discourse, mathematical thinking, and classroom practice. In E.A. 

Forman, N. Minick, & C. A. Stone (Eds.), Contexts for learning: Sociocultural dynamics in children’s 
development (pp. 91-119). New York, NY: Oxford University Press. 

Crawford, K. (1999). Hierarchies, networks and learning. In L. Burton (Ed.), Learning mathematics: From 
hierarchies to networks (pp. 108–118). London: Falmer. 

Davis, B., & Simmt, E. (2003). Understanding learning systems: Mathematics education and complexity science. 
Journal for Research in Mathematics Education, 34, 137–167. 

Davis, B., & Simmt, E. (2006). Mathematics-for-teaching: an ongoing investigation of the mathematics that teachers 
(need to) know. Educational Studies in Mathematics, 61(3), 293–319.  

Davis, B., & Sumara, D. (2006). Complexity and education: Inquiries into learning, teaching, and research. 
Mahwah, NJ: Lawrence Erlbaum Associates. 

Dawkins, R. (1989).The selfish gene (2nd ed.), Oxford, UK: Oxford University Press. 
Foote, R. (2007). Mathematics and complex systems. Science, 318, 410–412. 
Francisco, J.M. (2013). Learning in collaborative settings: Students building on each other’s ideas to promote their 

mathematical understanding. Educational Studies in Mathematics, 82(3), 417–438. 
Garavan, T.N. & McCarthy, A. (2008). Collective learning processes and human resource development. Advances in 

Developing Human Resources, 10(4), 451-471. 
Gharajedaghi, J. (2011). Systems thinking: Managing chaos and complexity. A platform for designing business 

architecture (3rd ed.). Burlington, MA: Elsevier, Inc. 
Glanfield, F., Martin, L. C., Murphy, S., & Towers, J. (2009). Co-emergence and collective mathematical knowing. 

In M. Tzekaki, M. Kaldrimidou, & H. Sakonidis (Eds.), Proceedings of the 33rd annual meeting of the 
International Group for the Psychology of Mathematics Education, vol. 1 (pp. 257–261). Greece: PME, 
Thessaloniki.  

Goos, M. (2004). Learning mathematics in a classroom community of inquiry. Journal for Research in Mathematics 
Education, 35(4), 258–291. 

Gordon Calvert, L. M. (2001).Mathematical conversations within the practice of mathematics. Mathematical 
conversations within the practice of mathematics. Counter Point Series. New York: Peter Lang.  

Gordon, D. M. (2011).The fusion of behavioral ecology and ecology. Behavioral Ecology, 22(2), 225-230. 
Johnson, S. (2002). Emergence: The connected lives of ants, brains, cities and software. New York: Scribner. 
Kilgore, D. (1999) Understanding learning in social movements: A theory of collective learning. International 

Journal of Lifelong Education, 18(3), 191-202. DOI: 10.1080/026013799293784. 
Lampert, M., & Cobb, P. (2003).Communication and language. In J. Kilpatrick, G. Martin, & D. Schifter (Eds.), A 

research companion to principles and standards for school mathematics (pp. 237–248). Reston: National 
Council of Teachers of Mathematics. 

Lampert, M., Rittenhouse, P., & Crumbaugh, C. (1998). Agreeing to disagree: Developing sociable mathematical 
discourse. In D. R. Olson & N. Torrance (Eds.), Handbook of education and human development. Oxford: 
Blackwell. 

Lave, J. (1997). The culture of acquisition and the practice of understanding. In D. Kirshner& J. Whitson (Eds.), 
Situated cognition: Social, semiotic, and psychological perspectives (pp. 17–35). Mahwah: Lawrence Erlbaum 
Associates. 

Martin, L. C., & Towers, J. (2009).Improvisational coactions and the growth of collective mathematical 
understanding. Research in Mathematics Education, 11(1), 1-19. 



Working!Groups!

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

1341!

Martin, L. C., & Towers, J. (2011).Improvisational understanding in the mathematics classroom. In R. Keith Sawyer 
(Ed.), Structure and improvisation in creative teaching (pp. 252-278). New York: Cambridge University Press. 

Martin, L. C., & Towers, J. (2012). “Some guys wouldn’t use three-eighths on anything…”: Improvisational 
coaction in an apprenticeship training classroom. Adults Learning Mathematics: An International Journal, 7(1), 
8-19. 

Martin, L., McGarvey, L. & Towers, J. (2011). Enacting enactivism: Exploring the potential for a theory of 
mathematical cognition to enhance classroom practice. Report on workshop sponsored by the Banff 
International Research Station for Mathematical Innovation and Discovery (BIRS). Retrieved from 
http://www.birs.ca/events/2011/2-day-workshops/11w2177. 

Martin, L., Towers, J., & Pirie, S. (2006). Collective mathematical understanding as improvisation. Mathematical 
Thinking and Learning, 8(2), 149–183. 

Maturana, H., & Varela, F. (1979). Autopoiesis and cognition: The realization of the living. Boston: Reidel. 
Maturana, H., & Varela, F. (1992). The tree of knowledge: The biological roots of human understanding (revised 

edition). Boston: Shambhala. 
McCrone, S. S. (2005). The development of mathematical discussion: An investigation in a fifth-grade classroom. 

Mathematical Thinking and Learning, 7(2), 111–133. 
McGarvey, L. M., & Thom, J S (2010). Spatial structuring through an embodied lens. In P. Brosnan, D. B. Erchick 

& L Flevares (Eds.), Proceedings of the 32nd annual meeting of the North American Chapter of the 
International Group for the Psychology of Mathematics Education. (pp. 629-635). Columbus, Ohio: Ohio State 
University.  

Mitchell, M. (2009) Complexity: a guided tour. Oxford, UK: Oxford University Press. 
Namukasa, I., & E. Simmt. (2003). Collective learning structures: Complexity science metaphors for teaching. In N. 

Pateman, B. Dougherty & J. Zilliox (Eds.), Proceedings of the 2003 Joint Meeting of PME and PMENA (pp. 
357-364). Honolulu, HI: Centre for Research and Development Group, University of Hawaii. 

Proulx, J. (2003). Pratiques des futursenseignants de mathématiques au secondaire sous l’angle des 
explicationsorales: Intentions sous-jacenteset influences. Unpublished master’s thesis, Université du Québec à 
Montréal. 

Proulx, J., Simmt, E. & Towers, J. (2009). The theory of enactivist cognition and mathematics education research: 
Issues of the past, current issues and future directions. In M. Tzekaki, M. Kaldrimidou& H. Sakonidis (Eds.), 
Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education 
(Vol. 1, pp. 249-278). Thessaloniki, Greece.  

Ralph, B. (n.d.). Portfolio balancing with PortMath. A technical summary. Paper retrieved from 
http://www.portfoliomath.com/PDF/Technical.pdf. 

Rogoff, B. (1995). Observing sociocultural activity on three planes: Participatory appropriation, guided 
participation, and apprenticeship. In J. V. Wertsch, P. del Rio, & A. Alvarez (Eds.), Sociocultural studies of 
mind (pp. 139–164). New York: Cambridge University Press. 

Roth, W.-M. (2001). Gestures: Their role in teaching and learning. Review of Educational Research, 71, 365–392. 
Roth, W.-M. & Lee, Y.-J. (2002). Contradictions in theorizing and implementing communities in education. 

Educational Research Review, 1(1), 27-40. 
Sawyer, R. K. (2003).Group creativity: Music, theatre, collaboration. Mahwah, NJ: Lawrence Erlbaum Associates. 
Saxe, G. (2002). Children’s developing mathematics in collective practices: A framework for analysis. The Journal 

of the Learning Sciences, 11, 275–300. 
Sfard, A. (2008) Thinking as communicating: Human development, the growth of discourses, and mathematizing. 

New York: Cambridge University Press. 
Sfard, A., & Kieran, C. (2001). Cognition as communication: Rethinking learning-by-talking through multi-faceted 

analysis of students’ mathematical interactions. Mind, Culture, and Activity, 8, 42–76. 
Simard, S., Martin, K., Vyse, A., & Larson, B. (2013).Meta-networks of fungi, fauna and flora as agents of complex 

adaptive systems. C. Messier, KJ Puettmann, & KD Coates (eds.). Managing forests as complex adaptive 
systems: Building resilience to the challenge of global change (pp. 113-164).New York: Routledge. 

Simmt, E. (2011). Teacher expertise explored as mathematics for teaching. In Y. Li & G. Kaiser (Eds.), Expertise in 
mathematics instruction: An international perspective (pp. 151-164). New York: Springer. 

Stahl, G. (2006). Group cognition: Computer support for building collaborative knowledge. Cambridge, MA: MIT 
Press. 

Staples, M. (2007). Supporting whole-class collaborative inquiry in a secondary mathematics classroom. Cognition 
and Instruction, 25(2), 161-217. 



Working!Groups!

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

1342!

Thom, J. S. & Roth, W.-M. (2009). The absence and emergence of collectivity in the mathematics classroom. A 
paper presented at the American Educational Research Association Conference, San Diego, CA, United States, 
April 2009.  

Towers, J., & Martin, L. C. (2009). The emergence of a ‘better’ idea: Preservice teachers’ growing understanding of 
mathematics for teaching. For the Learning of Mathematics, 29(3), 44-48. 

Towers, J., & Martin, L. C. (2014). Building mathematical understanding through collective property noticing. 
Canadian Journal of Science, Mathematics and Technology Education, 14(1), 58-75. 

Towers, J., & Martin, L. C. (2015).Enactivism and the study of collectivity. ZDM: The International Journal on 
Mathematics Education, 47(2). DOI: 10.1007/s11858-014-0643-6. Published in Online First. 

Towers, J., Martin, L. C., & Heater, B. (2013).Teaching and learning mathematics in the collective. Journal of 
Mathematical Behavior, 32(3), 424-433. 

Watts, D.J. & Strogatz, S.H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440-442. 
Waldrop, M. M. (1992).Complexity: The emerging science at the edge of order and chaos. New York: Simon and 

Schuster. 
Varela, F., Thompson, E. & Rosch, E. (1991).The embodied mind: Cognitive science and human experience. 

Cambridge, MA: MIT Press. 
Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal 

for Research in Mathematics Education, 27, 458–477. 



Working!Groups!

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

1343!

CONCEPTIONS AND CONSEQUENCES OF WHAT WE CALL ARGUMENTATION, 
JUSTIFICATION, AND PROOF 

Michelle Cirillo 
University of Delaware 

mcirillo@udel.edu 

Karl W. Kosko 
Kent State University 
kkosko1@kent.edu 

Jill Newton 
Purdue University 

janewton@purdue.edu 

Megan Staples 
University of Connecticut 
megan.staples@uconn.edu 

Keith Weber 
Rutgers University 

keith.weber@gse.rutgers.edu 

Argumentation, justification, and proof are conceptualized in many ways in extant mathematics 
education literature. At times, the descriptions of these objects and processes are compatible or 
complementary; at other times, they are inconsistent and even contradictory. The inconsistencies in 
definitions and use of the terms argumentation, justification, and proof highlight the need for 
scholarly conversations addressing these (and other related) constructs. Collaboration is needed to 
move toward, not one-size-fits-all definitions, but rather a framework that highlights connections 
among them and exploits ways in which they may be used in tandem to address overarching research 
questions. Working group leaders aim to facilitate discussions and collaborations among 
researchers and to advance our collective understanding of argumentation, justification and proof, 
particularly the relationships among these important mathematical constructs. Working group 
sessions will provide opportunities to engage with a panel of researchers and other participants who 
approach these aspects of reasoning from different perspectives, as well as to: hear findings from a 
recent analysis of these constructs in research; reflect on one’s own work and position it with respect 
to the field; and contribute to moving the field forward in this area.  

Keywords: Reasoning and Proof; Advanced Mathematical Thinking 

Brief History of the Working Group 
This is a new working group intended to advance the field’s collective understanding of the 

interrelated objects and processes of argumentation, justification, and proof. We reviewed the prior 
20 years of PME-NA proceedings (1995 – 2014) and prior 10 years of PME proceedings (2005 – 
2014) to determine whether any previous working groups have focused on these topics. We found 
one related working group and two related discussion groups; however no group focused on the 
connections among these three constructs.  

A working group on “Learning and Teaching with Proof” was facilitated by Stylianou and 
Blanton (2004) at PME-NA 26. That working group focused specifically on the development of 
proof across K-16, whereas the proposed working group focuses on the field’s understanding and 
study of not only proof, but also argumentation and justification, as well as the interrelationships 
among them. A discussion group on argumentation in mathematics education convened at PME 30 
that focused partly on defining and discussing the role of argumentation in mathematics education 
and research (Schwarz & Boero, 2006). While informative to the current efforts, the focus of that 
discussion group was distinct from the present working group. Most recently, a discussion group at 
PME 33 focused on the value of “generic proofs,” a particular type of proof presentation (Leron & 
Zaslavsky, 2009), a topic which is much more specific than this proposed working group. Thus, we 
classify the present working group as new, while recognizing the contributions of earlier efforts in 
prior PME-NA and PME meetings. Additionally, none of the leaders of the proposed working group 
have participated in the aforementioned working groups, providing a further distinction between 
prior work and the present group. The leaders of this working group are researchers working in 
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different areas of argumentation, justification and proof. Recent collaborations and conversations 
have led us to consider a need for the field at-large to converse about these interrelated objects and 
processes, which subsequently led to this newly proposed working group. 

Focal Issues 
There is a large and growing body of research in mathematics education focused on 

argumentation, justification, and proof. The research on proof, for example, includes studies on: the 
role of proof in the discipline; proof in school mathematics and at the undergraduate level; what 
counts as a proof; proof schemes and categories; teachers’ conceptions of proof; students’ abilities to 
write valid proofs; and what teaching proof looks like in classrooms at various levels (e.g., Boero, 
2007; Harel & Sowder, 2007; Reid & Knipping, 2010; Stylianou, Blanton, & Knuth, 2009). At the 
same time, researchers and policy documents have issued calls to engage school children with 
disciplinary practices such as constructing viable arguments, justifying conclusions, critiquing the 
reasoning of others, and constructing proof for mathematical assertions (National Council of 
Teachers of Mathematics [NCTM], 2000; National Governors Association Center for Best Practices 
[NGA] & Council of Chief State School Officers [CCSSO], 2010).   

Yet, as the field moves forward to strive for maximizing students’ learning opportunities for 
engaging in these disciplinary practices, mathematics educators need to refine their notions of these 
terms in scholarly activities and in policy documents (Cai & Cirillo, 2014). How, when, and why 
decisions related to word choices are made (e.g., ‘argument’ versus ‘proof’) in curriculum materials, 
policy documents, and research is an open question. In fact, some researchers have hinted that these 
choices are not always purposeful. For example, Lynn Steen, a member of the 1989 NCTM 
Standards Committee, claimed that uncertainty about the role of proof in school mathematics caused 
NCTM in its first Standards (1989) document to resort to, what he called, “euphemisms” such as 
“‘justify,’ ‘validate,’ ‘test conjectures,’ [and] ‘follow logical arguments’” (Steen, 1999, p. 274). 
Rarely, he stated, did the document use the term ‘proof.’ Although Steen’s comments were published 
over 15 years ago, we would argue that his proposition, that the role of proof (as well as 
argumentation and justification) in school mathematics is uncertain, continues to be true today.  

Building on NCTM’s (2000) document, which recommended that students’ experiences with 
reasoning and proof include making and testing conjectures, judging the validity of arguments, and 
constructing proofs, the Common Core State Standards for Mathematics (CCSSM; NGA & CCSSO, 
2010) continued this emphasis. Although proof is no longer included as an explicit standard, the 
authors added attention to argumentation through the third Standard for Mathematical Practice. Proof 
and justification (or proving, justifying, etc.) are also included, with proof appearing most often in 
the high school standards. As the field continues to grapple with the meanings and interconnections 
of argumentation, justification, and proof, the usage of these varying terms could point to potential 
challenges of implementing and studying this aspect of CCSSM.  

One challenge of reading extant research or developing a research agenda related to these 
disciplinary practices is that the classifications offered differ according to the perspective of the 
researcher, the focus of the research, and the particular data being analyzed (Reid & Knipping, 2010). 
Only recently have we begun to see mathematics educators offering explicit definitions of these 
constructs in their work. This is ironic given the importance of definitions in the field of mathematics 
itself. A review of the literature reveals much more specific attention to proof than to justification 
and argumentation in mathematics. Table 1 provides some definitions of the three constructs. 

When considering the definitions provided in Table 1, one might notice various things. For 
example, two of the authors describe proof as an argument. This is interesting given that Cabassut 
and colleagues (2012) claimed that opposing views exist in the field: On the one hand, it has become 
customary in mathematics education to use the term ‘argumentation’ for reasoning which is not yet a 



Working!Groups!

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

1345!

Table 1. Definitions of Proof/Proving, Argumentation, and Justification. 
Proof/Proving Argumentation Justification/Justify 

“the process employed by an 
individual to remove or create doubts 
about the truth of an observation” 
(Harel & Sowder, 1998, p. 241) 

“mathematical explanation 
intended to convince oneself or 
others about the truth of a 
mathematical idea” (Mueller, 
Yankelewitz, & Maher, 2012, 
p. 376) 

 

“to provide sufficient 
reason for” (National 
Research Council, 2001, p. 
130) 

“arguments consisting of logically 
rigorous deductions of conclusions 
from hypotheses” 

(NCTM, 2000, p. 55) 

“discursive exchange 
among participants for the 
purpose of convincing others 
through the use of certain 
modes of thought” (Wood, 
1999, p. 172) 

“an argument that 
demonstrates (or refutes) 
the truth of a claim that uses 
accepted statements and 
mathematical forms of 
reasoning” (Staples, Bartlo, 
& Thanheiser, 2012, p. 448) 

“a mathematical argument, a 
connected sequence of assertions for 
or against a mathematical claim, with 
the following characteristics: 

 (1) It uses statements accepted by 
the classroom community (set of 
accepted statements) that are true and 
available without further justification;  

(2) It employs forms of reasoning 
(modes of argumentation) that are 
valid and known to, or within the 
conceptual reach of, the classroom 
community; and  

(3) It is communicated with forms 
of expression (modes of argument 
representation) that are appropriate 
and known to, or within the conceptual 
reach of, the classroom community.” 
(Stylianides, 2007, p. 291) 

“the process of making an 
argument, that is, drawing 
conclusions based on a chain of 
reasoning” (Umland & 
Sriraman, 2014, p. 44) 

 

 
proof, on the other hand, other researchers, such as Balacheff (1988) and Duval (2007), believe that 
argumentation and proof are fundamentally different.   

Reid and Knipping argued that while ignoring multiple uses of ‘proof’ can lead to 
communicative challenges, the answer is not to insist on one “correct” usage (Reid & Knipping, 
2010; Herbst & Balacheff, 2009). In particular, Herbst and Balacheff (2009) stated:  

If the field is in a deadlock as regards to what we mean by “proof,” we contend this is so partly 
because of the insistence on a comprehensive notion of proof that can serve as referent for every 
use of the word…. We have argued that to make it operational for understanding and appraising 
the mathematics of classrooms we need at least three meanings of the word. (p. 62) 

Awareness of the different uses of proof is an important step in deciphering and making progress 
in mathematics education research (Reid & Knipping, 2010). In fact, Balacheff (2002) claimed that 
“research speaks in a very confusing way about the topic” (p. 39).   
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Conflicting Constructs, Methodologies, and Findings from the Research Literature 
In a forthcoming review of the literature, Stylianides, Stylianides, and Weber (forthcoming) 

asserted that the field has made substantial progress in tackling these issues. Researchers have 
developed powerful conceptual constructs and methodologies, and our collective understanding of 
how students perceive proof and how justification, argumentation, and proof are taught in K-12 and 
university classrooms has very much improved. Nonetheless, there are several places where different 
researchers have generated conclusions that conflict with one another. Here, we present a few such 
contradictions.  

First, in the debate on how proof should be introduced to students, Marty (1991) proposed 
teaching students the rules of logic and standard proof techniques while deliberately keeping the 
content shallow, suggesting that the notion of proof as a justification to prove mathematically 
meaningful statements should come later. Alibert and Thomas (1991) suggested the opposite; 
students should initially be engaged in argumentation about the veracity of interesting mathematical 
statements. In socially negotiating what counts as an acceptable argument, the instructor can lead 
students to produce the standard norms of proof. Both researchers presented research results that 
supported their point of view. 

Second, as mentioned above, there is a debate as to whether argumentation and proof are 
activities that are deeply intertwined or fundamentally separate. For instance, numerous authors have 
proposed that students will be more successful at proof writing if they base their proofs on informal 
arguments, often involving the inspection of examples and graphical reasoning (e.g., Garuti, Boero, 
& Lemut, 1998; Raman, 2003; Sandefur, Mason, Stylianides & Watson, 2013; Weber & Alcock, 
2004). However, Duval (2007) contended that argumentation and proof occur in different semiotic 
registers. Due to the different goals and demands of each activity, they must occur separately. 

Third, several researchers have presented classroom studies that demonstrate that even young 
children are capable of writing proofs (e.g., Maher & Martino, 1996). Yet there are numerous studies 
that suggest that high school geometry students and even advanced mathematics majors struggle to 
write relatively simple proofs (e.g., Moore, 1994; Senk, 1989). Is it possible that young children have 
greater competency at proving than most geometry students or mathematics majors? Or are their 
proofs being evaluated according to different standards? 

Fourth, a number of researchers have defined proof to be a convincing justification (cf., 
Balacheff, 2008). Yet there are other mathematics educators who emphasize that some proofs do not 
always provide full justification to mathematicians, and mathematicians sometimes are convinced by 
justifications that they would not call proofs (e.g., de Villiers, 1990; Tall, 1989; Rodd, 2002; Weber, 
Inglis, & Mejía-Ramos, 2014). 

What we contend is that these, and other, inconsistent claims are based on researchers holding 
different conceptions of argumentation, justification, and proof. What we hope to accomplish in this 
working group is to develop a better understanding of these differences, an appreciation for what 
different perspectives of proof can accomplish, and a framework that describes how different 
perspectives can complement each other, rather than oppose each other and lead to inconsistent 
findings. 

Frameworks for conducting research: The case of proof 
In the forthcoming review, Stylianides et al. (forthcoming) described three broad research 

traditions with respect to proof. One theoretical frame is to view proving as problem solving. In these 
studies, little emphasis is given to the issues of what constitutes a proof, why students engage in this 
activity, and how they interpret the proofs that they produce. Issues of argumentation and 
justification are typically ignored. Instead, these studies focus on what competencies are needed to 
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successfully write a proof and design instruction that helps students develop these competencies 
(e.g., Selden & Selden, 2013; Weber, 2001).  

Another school of thought views proving as convincing (e.g., Harel & Sowder, 1998). 
Researchers in this perspective seek to determine what types of justifications students find 
convincing and attempt to develop instruction that leads students to transform their standards of 
conviction to those held by mathematicians (e.g., Harel, 2002; Recio & Godino, 2001). Careful 
attention is paid between arguments that are complete convincing justifications and those that merely 
increase one’s belief in the likelihood of a statement. 

A third framework treats proof as socially embedded activity. In this perspective, researchers 
focus on what it is students, from their perspective, are actually doing when they engage in proving 
(e.g., Herbst & Brach, 2006) and how students’ and teachers’ activities are shaped by social and 
institutional constraints (e.g., Herbst & Chazan, 2003). Researchers often focus on the cognitive, 
social, and pedagogical goals that proof can and should play in the classroom beyond being a skill to 
acquire or a means of conviction (Staples, Bartlo, & Thanheiser, 2012).  

In the review, Stylianides and colleagues found that each perspective (a) used different 
conceptions of argumentation, justification, and/or proof, (b) addressed different questions, 
(b) developed different theoretical constructs to understand and investigate these questions, and 
(d) measured the success of instructional interventions in different ways. They also found that 
considerable progress has been made within each of these perspectives that has enhanced the field’s 
understanding of proof and related constructs. As one can see, many varying conceptions of 
argumentation, justification, and proof exist in our field. It would be an unrealistic and inappropriate 
goal of the working group to try to reach a consensus on what argumentation, justification, and proof 
are. Indeed, in mathematical practice, mathematicians adopt different standards and perspectives on 
these objects and corresponding processes depending upon their aims and context (Weber, 2014). 
Rather what we seek to explore is the different ways that researchers conceptualize these constructs 
(including, but not necessarily limited to, the perspectives above), the consequences of such 
conceptualizations, and how they might work in tandem to address overarching research questions. 

Balacheff (2002) put forth a set of recommendations to help address what he called a research 
“deadlock” (p. 1). Heeding his recommendations, we will consider the following during the working 
group: (a) looking for a common lexicon to improve available definitions; (b) engaging with different 
research programs and their possible contrasts and relationships; (c) considering the theoretical 
commonalities and divergences, and possibly turning them into research questions; (d) discussing 
different methodologies, their benefits, and possibly limitations; and (e) acknowledging accepted 
results or turning objections and differences into research problems. 

Plan for the Working Group 
The overarching goal of the working group is to facilitate discussion and collaboration among 

researchers in the field doing work in this area – at various stages of their careers – and to advance 
our collective understanding of argumentation, justification and proof, and relationships among these 
important mathematical constructs. Aligned with these goals to advance our collective understanding, 
we anticipate organizing our time together in the following manner.  

Session 1: Where are we now? Where is the field? Where are you? 
In Session 1, we begin with introductions and discerning interests in the working group, and then 

provide an overview of the goals for group. We then engage participants in two activities in order to 
establish some common ground for our collective work and to provide a reflective opportunity for 
participants to position their own thinking and work with respect to the field. The key activities in 
Session 1 are as follows:  



Working!Groups!

 
Bartell,!T.!G.,!Bieda,!K.!N.,!Putnam,!R.!T.,!Bradfield,!K.,!&!Dominguez,!H.!(Eds.).!(2015).!Proceedings+of+the+37th+

annual+meeting+of+the+North+American+Chapter+of+the+International+Group+for+the+Psychology+of+Mathematics+
Education.!East!Lansing,!MI:!Michigan!State!University.!

1348!

• We will facilitate Introductions, Define the Problem, and outline Working Group Goals. 
• Keith Weber, a co-author of the proof chapter in the forthcoming NCTM handbook, will 

offer an historical view of the use of these constructs in mathematics and educational 
research. The talk will highlight convergence in the literature as well as contradictions in 
definitions and research results. The purpose of the talk will not be to call for convergence, 
but rather to highlight different traditions and where points of disagreement may lie, and to 
propose ways in which different traditions may inform each other to advance the field 
collectively. 

• All working group participants produce a diagram or concept map with the terms 
argumentation, justification, and proof to elicit personal conceptions and uses of these terms 
and how they are interrelated. Small groups will then compare and discuss these 
representations.  

Session 2: How have individual researchers used these constructs to support their work? What 
choices have they made?  

Session 2 features an interactive panel discussion by three invited math educators who focus on 
one or more notions of argumentation, justification and proof in their research. The panel of 
experienced researchers will share their expertise through a facilitated format, beginning with set 
questions and then evolving into a question-and-answer period and group discussion. Potential 
guiding questions include the following: 

• What process(es) and object(s) (justifying-justification, argumentation-arguments, and 
proving-proof) are central to your work? Why did you choose these? How have you 
conceptualized or defined them for your work? 

• How do you see these conceptualizations mattering for the work you (we) do with teachers, 
with students, and/or as researchers as members of the mathematics and/or mathematics 
education community? 

• From your perspective, where is the field now with its understanding of these processes and 
objects, how to foster them in classrooms, and how to support teacher learning of 
pedagogies to organize student participation in these critical processes? 

Three researchers, whose work is prominent in this area, will serve on the panel: 

• Kristen Bieda, Michigan State University, has investigated the interaction between 
opportunities in curriculum to engage in justification and proof and how teachers enact those 
opportunities with students in middle school classrooms. Bieda is particularly interested in 
teachers' goals for justification in their classroom and how they modify and deploy curricular 
tasks to achieve those goals. 

• Anna Conner, University of Georgia, studies the role of the teacher in collective 
argumentation, specifically how teachers learn to support their students in making 
mathematical arguments. Within this, Conner also studies teachers' beliefs about proof and 
how this may influence the argumentation in their classes. 

• Pablo Mejía-Ramos, Rutgers University, focuses on the reasoning processes involved in the 
three main argumentative activities related to the notion of proof in university mathematics: 
constructing a new proof, reading a given proof, and presenting a known proof. Two of the 
main goals of Mejía-Ramos’s research are (1) to better understand the ways in which 
different types of students and mathematicians engage in these argumentative activities, and 
(2) to identify effective strategies for performing such activities.  
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Samuel Otten, University of Missouri, will moderate the panel discussion.  

Session 3: Where are you now? What are next steps?  
We anticipate pursuing three general goals in Session 3 and recognize that the particulars of this 

session will be in response to the first two days. The three goals are: 

• Gaining clarity in situating oneself and one’s own work within the broader field. Toward this 
end, we revisit the set of individual diagrams generated in Session 1. Participants will have 
opportunities to revise their diagrams. We anticipate discussing two or three representations 
that emerge regarding the relationships among argumentation, justification and proof as 
“prototypical” views. We will discuss their similarities and differences, consequences for the 
field, and whether they are complementary or contradictory.  

• Generating key questions or suggestions for the field to better leverage the work it is doing. 
First in small group discussion, and then with the full group, we will develop a handful of 
key questions that the collective identifies as important to furthering individuals’ and the 
field’s work with respect to argumentation, justification and proof. Subgroups may organize 
around these questions.  

• Organizing work on a white paper and identifying next steps. We will share an outline for a 
white paper, and elicit input for the focus of Year 2 work at the next PME-NA conference. 
Given the group’s interest and the key questions they develop, subgroups can contribute 
specific sections to the white paper. Subgroups may also organize around a focal process. 
Finally, a subgroup may plan to take up particular key questions or activities during the year. 

Anticipated Follow-up Activities 
We anticipate two follow-up activities and products for the first iteration of this working group. 

First, we have inquired with editors of some of the leading mathematics education journals in the 
field regarding the potential for publishing a summary of a panel discussion (similar to Sfard, Nesher, 
Streefland, Cobb, & Mason, 1998), or, alternatively, a research commentary. The commentary might 
provide recommendations for how mathematics education researchers report what they mean by 
argumentation, justification and/or proof in their work. Such a commentary may also document key 
questions for the field as well as share core ideas from discussions and differences in perspectives 
from organizers, panel members, as well as working group participants.  

We also anticipate the development of a white paper from participants of the working group. The 
paper will have multiple sections documenting ideas from our generative work together, as well as 
solidifying and extending some of those ideas. A white paper format affords flexibility in how the 
document is organized and how authorship is assigned (e.g., authorship of sub-sections within the 
larger white paper). While not suggesting a definitive structure a priori, one potential format would 
include perspectives from developing sub-groups within the working group based on participants’ 
diagrams and particular conceptions of argumentation, justification and proof. This activity will 
allow for further engagement within and beyond this meeting of the working group. The white paper 
would be developed over the months following PME-NA 37 with the goal of sharing the document 
widely (e.g., through our institutions’ open-access digital repositories). Thus, such products fulfill 
our purpose of creating a working group at PME-NA: to engage colleagues in discussion of the 
different understandings and operations of argumentation, justification and proof. While consensus 
on these points is not anticipated, and not necessarily a goal, efforts towards consensus regarding 
how mathematics educators convey their conceptions of these objects and processes is.  
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Embodied cognition is growing in theoretical importance and as a driving set of design principles for 
curriculum activities and technology innovations for mathematics education. The central aim of the 
EMIC (Embodied Mathematical Imagination and Cognition) Working Group is to attract engaged 
and inspired colleagues into a growing community of discourse around theoretical, technological, 
and methodological developments for advancing the study of embodied cognition for mathematics 
education .A thriving, informed, and interconnected community of scholars organized around 
embodied mathematical cognition will broaden the range of activities, practices, and emerging 
technologies that count as mathematical. EMIC builds upon earlier investigations in professional 
workplaces, formal K-12 math and science classrooms, mathematics centers, museums, marching 
bands, bike paths and city streets.  

Keywords: Classroom Discourse; Cognition; Informal Education; Learning Theory 

Motivations for a New Working Group 
Recent empirical, theoretical and methodological developments in embodied cognition and 

gesture studies provide a solid and generative foundation for the establishment of an Embodied 
Mathematical Imagination and Cognition (EMIC) Working Group for PME-NA 2015 and future 
meetings. The central aim of EMIC is to attract engaged and inspired colleagues into a growing 
community of discourse around theoretical, technological, and methodological developments for 
advancing the study of embodied cognition for mathematics education, including, but not limited to 
studies of mathematical reasoning, instruction, the design and use of technological innovations, and 
learning in and outside of formal educational settings and across the lifespan.  

The interplay of multiple perspectives and intellectual trajectories is vital for the flourishing of 
embodied mathematical cognition. Partial confluences and differences have to be kept throughout the 
conversations; this is because instead of being oriented towards a single and unified theory of 
mathematical cognition, we are aiming towards a philosophical/educational “playground” in which 
entrenched dualisms, such as mind/body, language/materiality, or signifier/signified are subject to an 
ongoing and stirring criticism. A thriving, informed, and interconnected community of scholars 
organized around embodied mathematical cognition will broaden the range of activities and 
emerging technologies that count as mathematical and to envision alternative forms of engagement 
with mathematical ideas and practices (e.g., De Freitas & Sinclair, 2014). This broadening is 
particularly important at a time when schools and communities in North America face persistent 
achievement gaps between groups of students from many ethnic backgrounds, geographic regions, 
and socioeconomic circumstances (Ladson-Billings, 1995; Moses & Cobb, 2001; Rosebery, Warren, 
Ballenger & Ogonowski, 2005). There is also need to articulate evidence based findings and 
principles of embodied cognition to the research and development communities that are starting to 
generate and disseminate programs for promoting mathematics learning through movement (e.g., 
Petrick Smith, King, & Hoyte, 2014). Generating, evaluating, and curating empirically validated 
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methods for promoting mathematical development through embodied activities that have engaging 
social bearing and curricular relevance is an urgent societal objective. 

 A Brief History 
The submitters are proposing a new working group to PME-NA. They draw, however, on earlier 

interest in this topic from the International PME community (ESM, 2009), and several years of 
collaboration and intellectual exchange exploring the nature of EMIC from multiple methodological 
perspectives.  

As early as 2003, several of the submitters proposed the idea of a Science of Learning Center to 
NSF organized around the nascent research on embodied cognition for mathematics education, and 
worked on a funded NSF “catalyst” grant to begin to curate and publicly share the scholarship 
distributed across multiple disciplines, such as linguistics, psychology, anthropology, philosophy, 
and neuroscience. This early work led to, among other things, a 2007 AERA symposium on 
mathematics learning and embodied cognition entitled, “Mathematics Learning and Embodied 
Cognition.” This early experience led to a 6-year NSF-REESE grant, “Tangibility for the Teaching, 
Learning, and Communicating of Mathematics,” starting in 2008, in which collaboration across three 
campuses (San Diego State University, University of Wisconsin-Madison, and Vanderbilt) instituted 
a multidisciplinary approach to the empirical investigation of embodied mathematical thinking, 
drawing equally on ethnomethodology, phenomenology, and experimental psychology. The three 
campus-based research teams ran a coordinated series of empirical and design studies that focused on 
learning the mathematics of space, scale, modality, and motion. The investigations took place in 
professional workplaces such as medical response teams, formal K-12 math and engineering 
classrooms, mathematics professors’ offices, museums, football fields, bike paths and city streets -- 
places and contexts where people were learning, communicating, and doing mathematics.  

Some of the research findings have been reported in a special issue of The Journal of the 
Learning Sciences (2012), “Modalities of Body Engagement in Mathematical Activity and 
Learning,” and an NCTM 2013 research pre-session keynote panel, “Embodied cognition: What it 
means to know and do mathematics,” as well as a series of academic presentations, book chapters, 
and journal articles, as well as several masters’ theses and doctoral dissertations.  

Along with this group, numerous other research efforts formed to investigate the embodied 
nature of mathematics (e.g., Abrahamson 2014; Arzarello et al., 2009; De Freitas & Sinclair, 2014; 
Edwards, Ferrara, & Moore-Russo, 2014; Lakoff & Núñez, 2000; Radford 2009). There is good 
reason at this point in time, to proclaim that there is a “critical mass” of projects, senior and junior 
investigators, research findings, and conceptual frameworks to support an on-going community of 
likeminded scholars within the mathematics education research community.  

Focal Issues in the Psychology of Mathematics Education 
Emerging, yet still influential, views of thinking and learning as embodied experiences have 

grown from several major intellectual developments in philosophy, psychology, anthropology, 
education, and the learning sciences that frame human communication as multi-modal interaction, 
and human thinking as multi-modal simulation of sensory-motor activity (Clark, 2008; Hostetter & 
Alibali, 2008; Lave, 1988; Nathan, 2014; Varela et al., 1992; Wilson, 2002). These views 
acknowledge the centrality of both unconscious and conscious motor and perceptual processes for 
influencing conscious awareness, and of embodied experience as following/producing pathways 
through social and cultural space. As Stevens (2012, p. 346) argues in his introduction to the JLS 
special issue on embodiment of mathematical reasoning,  
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it will be hard to consign the body to the sidelines of mathematical cognition ever again if our 
goal is to make sense of how people make sense and take action with mathematical ideas, tools, 
and forms. 

Three major ideas mesh with embodied cognition and serve as useful examples of the ways that 
embodied cognition perspectives are relevant for the study of mathematical understanding: (1) 
Grounding of abstraction in perceptuo-motor activity. This conception shifts the locus of “thinking” 
from a central processor to a distributed web of perceptuo-motor activity situated within a physical 
and social setting. It suggests that to make meaning people ground seemingly abstract concepts in 
modality-specific, sensory-motor systems, as an alternative to representing concepts as purely 
amodal, abstract, arbitrary, and self-referential symbol systems. (2) Cognition is for action. This tenet 
proposes that things, including mathematical symbols and representations, are understood by the 
actions and practices we can perform with them, and by mentally simulating the actions and practices 
that underlie or constitute them. (3) Mathematics learning is always affective: there are no purely 
procedural or “neutral” forms of reasoning to be learned in a manner detached from the circulation of 
bodily-based feelings and interpretations surrounding our encounters with them.   

Alongside these theoretical developments have been technical advances in multi-modal and 
spatial analysis, which allow scholars to collect new sources of evidence and subject them to 
powerful analytic procedures, from which they may propose new theories of embodied mathematical 
cognition and learning. Just as the “linguistic turn” in the social sciences was largely made possible 
by the innovation that enabled scholars to collect audio recordings of human speech and conversation 
in situ, growth of interest in multi-modal aspects of communication have been enabled by high 
quality video recording of human activity (e.g., Alibali et al., 2014; Levine & Scollon, 2004), motion 
capture technology (Hall, Ma, & Nemirovsky, 2014; Sinclair, 2014), and developments in brain 
imaging (e.g., Barsalou, in press; Gallese & Lakoff, 2005). New and still largely under-explored 
advances in location-aware technologies and spatial analysis, such as wearable GPS devices that 
capture personal space-time paths, expand our opportunities to study human activity and learning in 
natural settings and at an increasing broader set of spatial and temporal scales (Christensen, 2003; 
Miller, 2007). A growing suite of geographic information system (GIS) software tools is now 
available and can be employed to analyze path structures in relation to other spatially anchored data 
(e.g., the accessibility of cultural resources that provide children with learning opportunities; Ma, 
Hall, & Leander, 2010). 

Plan for Active Engagement of Participants  
The formation of this new scholarly group requires some initial structure and the cultivation of 

distributed leadership. EMIC scholars will meet for 90 minutes each of three days during the PME-
NA 2015 conference. We propose commencing the first gathering on Day 1 of the EMIC working 
group by engaging participants one or more embodied activities for promoting mathematical 
reasoning (a sample of the activities we propose is presented in Figure 1). Each of the activities has 
been used in formal and informal learning settings. The implementation and points of discussion and 
reflection for each activity will be informed by our prior experiences. One activity (Figure 1a) fosters 
deeper understanding of the Cartesian coordinate system through physically pushing and pulling 
handles that control coordinate displays by perceptuomotor integration of the physical and the 
semiotic. This has been used in interactive museum exhibits. A second activity (Figure 1b) engages 
participants in a projection activity using Alberti’s Window. Participants look through the eyehole to 
draw projected images on the vertical drawing pane. A third activity uses a walking scale geometry 
activity (Figure 1c) to facilitate geometric reasoning in new ways by placing participants within the 
inscriptions (e.g., an isosceles triangle) rather than looking over them on paper from a bird’s-eye-
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view, using everyday objects (string), and participating in large scale imagery that is necessarily 
collaborative. Finally, an activity engages one’s body to experience spatial relations of geometric 
forms through body mechanics in order to influence their proof practices (e.g., for the Triangle 
Inequality Theorem). 

Day 2 of the working group would invite participants to provide brief (5 to 10 mins) synopses of 
their research interests and goals for the group. The balance of Day 2 and a portion of Day 3 would 
be devoted to generating and discussing topics of interest. A partial list of seed topics is presented 
below. The final time on Day 3 would focus on practicalities, including assigning action items and 
roles for specific participants.  

 
Sample Seed Topics 

• Conceptual blending (Tunner & Fauconnier, 1995) & metaphor (Lakoff & Núñez, 2000)  
• Development of spatial reasoning (Uttal et al., 2009) 
• Gesture & multimodal instruction (Alibali & Nathan 2012; Alibali et al., 2014Cook et al.; 

Edwards, 2009) 
• Gesture in mathematical imagination (Nemirovsky, Kelton, & Rhodehamel, 2012) 
• Perceptuo-motor grounding of abstractions (Barsalou, 2008; Glenberg, 1997) 
• Mathematical cognition through action. (Abrahamson, 2014; Nathan et al., 2014) 
• Modal engagements (Hall & Nemirovsky, 2012; Nathan et al., 2013) 
• Perceptual boundedness (Bieda & Nathan, 2009) 
• Perceptuomotor integration (Nemirovsky, Kelton, & Rhodehamel, 2013). 
• Progressive formalization (Nathan, 2012;Romberg, 2001) & concreteness fading (Fyfe, 

McNeil, Son, & Goldstone, 2014) 
• Sensuous cognition (Radford, 2009) 
• Simulation of sensory-motor activity (Hostetter & Alibali, 2008; Nemirovsky & Ferrara, 

2009).  
• Use of manipulatives (Martin & Schwartz, 2005) 
• Bodily activity among professional mathematicians (Nemirovsky & Smith, 2013) 
• Ways spaces are be mathematized by architects and urban designers 
• Ways bodies are deployed (or suppressed) in the diversity of conceptual practices we call 

mathematics 

Follow-up Activities 
We envision an emergent process for the specific follow-up activities based on participant 

input. At a minimum, we will develop a list of interested participants and grant them all access to 
a common, closed discussion forum. We also offer these proposed activities as outcomes for 
extending the intellectual work of the group beyond the PME-NA meeting. The proposed 
activities include:  

• Develop a multicampus course or MOOC 
• Compile/curate literature, activities demonstrating principles of embodied cognition for 

promoting mathematical thinking, learning, and communicating 
• Propose a sharable corpus of video data focused on gesture and action during math learning 

and instruction (e.g., hosted on Databrary.org) 
• Exchange resources/interventions for embodied mathematical cognition for students or 

teachers, potentially conducting cross-institutional research studies on their use. 
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• Propose and edit a journal special issue. 
• Sponsor the participation of colleagues from outside the community of research in 

mathematics education (e.g. philosophers, technologists)  
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Figure 1. Sample EMIC activities (developed and used by the organizers) to experience embodied 
mathematics in action. (a) Pushing/pulling handles and mapping images in the Cartesian coordinate 
system at a museum exhibit. (b) Alberti’s Window. (c) Constructing an isosceles triangle at walking 
scale. (d) Actions to foster geometry proof practices.  
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This is the initial formation of a working group with the purpose of addressing research questions 
that surfaced during the 38th International Group for the Psychology of Mathematics Education 
conference in Vancouver, Canada concerning the need to increase the mathematics education 
community’s understanding of secondary teachers’ knowledge of mathematical modeling content and 
pedagogy. In an attempt to develop this knowledge base, this working group will be driven by the 
following research question: What kinds of knowledge are required for secondary mathematics 
teachers to facilitate effective and meaningful mathematical modeling instruction? While this 
question can be dichotomized into subject matter and pedagogical knowledge, the working group 
will focus explicitly on identifying, distinguishing, and developing secondary teachers’ content 
knowledge. Participants of working group sessions will propose a framework for identifying 1) 
mathematical modeling knowledge, 2) mathematical content knowledge required/important for 
modeling 3) modeling knowledge for implementation of mathematical modeling instruction in the 
secondary mathematics classroom. Efforts will be continued through digital meetings and discussion 
forums. Findings of the working group and subsequent discussions will be summarized and reported. 

Keywords:  Modeling; Mathematical Knowledge for Teaching; Teacher Knowledge; Teacher 
education-Inservice 

The Common Core State Standards for Mathematics (CCSSM) regards mathematical modeling 
as both a content standard and a Mathematical Practice (National Governors Association Center for 
Best Practices & Council of Chief State School Officers, 2010). Mathematical modeling describes a 
problem-solving process associated with ill-posed, less structured tasks often set in real-world 
contexts (Lesh, Galbraith, Haines, & Hurford, 2013). The modeling process requires the modeler to 
interpret the task’s situation, make assumptions, identify variables, build a mathematical model, 
manipulate and solve the model, and interpret the solution in the problem’s context (Jensen, 2007). 
Modeling problems have multiple solution paths which are dependent upon the modeler’s 
experiences (Confrey& Maloney, 2007). Teachers’ limited experiences with mathematical modeling 
as learners of mathematics make implementation of this important standard and practice problematic 
(Goos, 2014).   

Mathematics teacher educators are challenged with preparing teachers to understand the 
intricacies of mathematical modeling and to define effective strategies for classroom 
implementation. This challenge is greater at the secondary level because past research has focused on 
implementing mathematical modeling in elementary education (English & Sriraman, 2010) or on 
undergraduate modeling courses with a pure mathematics lens (Lesh et al., 2013). In addition, 
literature addressing secondary teachers’ modeling cognition or ways to increase their pedagogical 
knowledge regarding modeling is scarce. The proposed working group will be devoted to describing 
the mathematical modeling content knowledge secondary mathematics teachers need to facilitate rich 
opportunities for students. 

Formation of the Mathematical Modeling Working Group at PME-NA 
We wish to assemble a working group comprised of mathematicians, mathematics educators, 

mathematics teacher educators, researchers, and psychologists. We encourage participation from 
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scholars and graduate students who are interested in exploring the content knowledge secondary 
mathematics teachers need to enhance their own mathematical modeling knowledge and how this 
knowledge is used to develop, implement, and facilitate mathematical modeling as a standard and a 
practice in the classroom. We propose that members of the working group will divide into smaller 
groups to provide an intellectual support system, offer critique, and discuss scholarship focused 
around common research aims. The working group will be committed to the goals of PME-NA with 
an emphasis on collective reflection, collaborative inquiry, and addressing challenges.  

To advance the question driving the working group “what types of knowledge do secondary 
teachers need in order to implement mathematical modeling in their secondary classrooms?”, three 
research areas need to be reviewed: 1) definitions of teachers’ knowledge, mathematical modeling, 
and types of mathematical modeling tasks form the foundation, 2) types of knowledge required for 
working on mathematical modeling tasks indicate mathematical understanding, and 3) levels of 
sophistication and mathematical modeling competencies suggest a path for noting progression. 

Mathematical knowledge for teaching 
Identifying what mathematics teachers need to know to be effective in the classroom has been the 

source of much debate. Shulman (1986)’s forms of teacher knowledge has provided a comprehensive 
consideration of the factors that influence teaching performance. Following the work of Shulman 
(1986), other researchers had examined the nature of teacher knowledge (Chazan& Ball, 1999; Ball, 
2000). Ball, Thames, and Phelps (2008) outlined a domain-specific understanding of mathematical 
knowledge for teaching (MKT) distinguishing teachers’ mathematical content knowledge from their 
pedagogical knowledge. Teachers’ knowledge of content (CK) has three subcategories of interest: 
common content knowledge (CCK) and specialized content knowledge (SCK), and horizon content 
knowledge (HCK). CCK refers to the mathematic knowledge that educated adults use in their daily 
lives. SCK refers to the mathematical knowledge teachers employ “in particular teaching tasks, 
including how to accurately represent mathematical ideas, provide mathematical explanations for 
common rules and procedures, and examine and understand unusual solution methods for problems” 
(Hill, Ball, & Schilling, 2008, pp.377-378). HCK refers to teachers’ understanding of how 
mathematics is connected both internally and externally to other subjects, disciplines, and academic 
grade levels; and it the use of mathematics in everyday life and in the world of work.  

What is mathematical modeling? 
Mathematical models are mathematical constructs, often equations, intended to explain or predict 

real-world events or systems going beyond superficial physical attributes to explore structural 
features, e.g. patterns and relationships (English, 2007;Dossey et al., 2001). Applying mathematics to 
real world systems is a complex modeling process “of encountering an indeterminate situation, 
problematizing it, and bringing inquiry, reasoning, and mathematical structures to bear to transform 
the situation” (Confrey& Maloney, 2007, p. 60).  
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Figure 1: A visual representation of the mathematical modeling cycle (Blum, 2011) 

There are many representations of the modeling process leading to the mathematical modeling 
product needed to solve problems in everyday life. Blum’s (2002) description of the modeling 
process focuses on stages, as shown in Figure 1. In the first stage, the solver interprets the problem’s 
context and Constructs a situation model, demonstrating understanding of the problem statement. 
Variables, assumptions, and relationships are detailed in the second stage, Simplifying and 
Structuring, moving the work from the real world to the mathematical world and leading to the third 
step, Mathematization, where the mathematical model is formed. Mathematizing demands that 
modelers select relevant information and translate it into an appropriate mathematical statement 
making it the most difficult step (Voskoglou, 1995).  In stage 4, Working Mathematically, technical 
skills are needed to perform calculations and produce mathematical results to be Interpreted in the 
real world context in step 5. Validating the model, in stage 6, identifies model limitations, which may 
suggest the need for revisions and restarts the modeling cycle. When the modeler accepts the solution 
as reasonable, the last step publishes the results, Exposing the findings for others to consider.  

Types of mathematical models 
Mathematical models, as well as being a powerful tool in the field of applied mathematics, can be 

categorized by their general characteristics. Some researchers create two general groups: (1) 
normative models, which use mathematics to establish norms or optimized results such as interest 
problems, and (2) descriptive models, which use mathematics that describe data about business and 
physical phenomena (Blum & Niss, 1991). Other classification systems categorize models according 
to degrees of randomness distinguishing those that ignore random variation from those built upon 
probabilistic equations and according to levels of theoretical information distinguishing models that 
are deeply rooted in theoretical principles from those models that are empirically driven (Edwards & 
Hamson, 2001). The Common Core State Standards for Mathematics (CCSSM, 2010) add 
probabilistic and statistic models to predict outcomes of events.  
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Knowledge needed for mathematical modeling  
Because mathematical modeling tasks often describe messy real-world situations found in 

science, engineering, business, art, and literature, modelers need both a broad knowledge of the 
world and extensive mathematical knowledge to successfully generate a model (Jensen, 2007).  
During the mathematical modeling process, modelers use organizational and communication skills to 
collect and make sense of information. Modelers also engage in discussions about the reality of the 
task situation and the assumptions they make about the situation (Verschaeffel, Greer, & De Corte, 
2000; Galbraith & Stillman, 2001).  

Understanding the problem context is essential for modelers to link mathematical knowledge to 
their real world knowledge (Imm & Lorber, 2013). When modelers are unfamiliar with the context of 
the task, they usually only make general statements about the situation but cannot mathematize the 
problem because the assumptions made and the variables defined are limited by their lack of 
knowledge about the problem context (McNair, 2000). Since it is important for the modeler to be 
familiar with the real world context referred to in the mathematical modeling task, more research is 
needed to understand how modeling students make connections between reality and mathematics as 
well as the degree of familiarity needed with the task context in order to mathematize the situation. 
Mathematical modeling tasks used in secondary mathematics classrooms vary widely in their degree 
of authenticity as close simulations of real life. More research is needed to determine the relationship 
between the task’s authenticity and modeling performance. 

Many types of mathematical knowledge are accessed in solving mathematical problems, and this 
knowledge can be increased through exposure to different types of modeling activities (Doerr, 2007). 
Tirosh (1999) detailed a list of mathematical knowledge areas that includes instrumental, formal, 
relational, conceptual, procedural, algorithmic, visual, intuitive, implicit versus explicit, and 
elementary versus advanced; suggested considerable overlap between these categories; and 
recommended that more research is needed. When looking at the mathematical modeling content 
knowledge needed to successfully generate a modeling solution, research should seek to answer the 
basic questions of what mathematical knowledge is demanded, why a particular type of mathematical 
knowledge is required, and how the mathematical knowledge may be applied when working with 
mathematical modeling situations.  

Modeling sophistication and competency 
Once a mathematical model is generated, the level of sophistication of the modeler can be 

examined by analyzing the model’s degree of complexity, generalizability, effectiveness, and 
efficiency (Blum, 2002). The level of sophistication depends upon the breadth and depth of 
mathematics employed by the model as well as the use of constraints which expose deeper 
understanding of the modeling situation (Zawojewski, 2010). Along the thread of research 
monitoring modeling progress, mathematical modeling competence is defined as an “insightful 
readiness to carry through all parts of a mathematical modeling process in a given situation” and 
should be viewed from a holistic perspective, examining progress in the entire modeling process, as 
well as a piecemeal perspective, tracking progress through specific individual modeling stages 
(Blomhoj & Jensen, 2007).  

Jensen (2007) defined three dimensions of mathematical modeling competence: the Degree of 
Coverage dimension, which indicates the ability to work independently and monitors the 
interpretation of the situation; the Radius of Action dimension, which tracks the real world and 
mathematical domains where modelers are able to work; and the Technical Level dimension, which 
monitors the scope and quality of mathematics used in modeling as well as the flexibility in revising 
models. 
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Mathematical Modeling Working Group at PME-NA 
The framework for the working group is adapted from Jensen’s (2007) expanding box, which 

represents growth in competencies while solving mathematical modeling tasks, to a three-
dimensional depiction of the three areas of mathematical modeling knowledge for teaching (MMKT), 
shown in Figure 2. With the three dimensions of MMKT identified, the representation encourages 
research identifying, tracking, and analyzing mathematical modeling thinking including knowledge, 
skills, and competencies. It is important to note that difficulties in one dimension can impact 
performance in other dimensions.  

 
Figure 2: Framework for mathematical modeling knowledge for teaching (Authors, 2015) 

Both the Mathematical Knowledge and Modeling Knowledge dimensions are features of 
mathematics teachers’ content knowledge of mathematical modeling. The first dimension, 
Mathematical Knowledge, tracks growth in modelers’ mathematical knowledge and skills as they 
work with a variety of mathematical modeling tasks. “This dimension represents the size and content 
of the ‘mathematical toolbox.’” (Jensen, 2007) For example, some teachers may exhibit proficiency 
in algebraic situations but may struggle with probabilistic contexts. Working with real world 
questions is difficult for less sophisticated modelers who find mathematizing the situation to be 
challenging, and they often do not incorporate advanced mathematics into their models even though 
they have completed advanced mathematics coursework (Blomhoj & Jensen, 2007). Jensen’s (2007) 
dimension of radius of action maps directly to horizon content knowledge while his technical 
dimension maps directly to mathematical content knowledge. This dimension provokes many 
possible discussion questions including the following: 

1. What mathematical content knowledge is required for secondary mathematics teachers’ 
mathematical modeling instruction? 

2. How can progress in teachers’ mathematical content knowledge for modeling instruction be 
monitored? 

3. How does general domain-mathematical content knowledge influence mathematical 
modeling knowledge for teaching? 

The second dimension, Modeling Knowledge, examines both a teacher’s ability to work 
independently through the modeling process and the teacher’s proficiency with different types of 
modeling problems and contexts. Teachers with a low level of modeling sophistication may struggle 
stating assumptions, defining variables, and identifying and incorporating key relationships when 
beginning new modeling tasks; and those with a high level of modeling sophistication may progress 
more efficiently from translating the real world situation to interpreting the solution. Jensen’s (2007) 
dimension of the degree of coverage maps directly to modeling skills. This dimension provokes 
many possible discussion questions including the following: 
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1. What modeling knowledge do teachers need to possess to teach mathematical 
modeling? 
a. What knowledge is needed for working with different types of mathematical 

modeling tasks? 
b. What knowledge is needed to pose mathematical modeling tasks? 
c. What knowledge is needed to critique a mathematical model? 

2. How can progression in modeling knowledge be followed? 

The third dimension is Pedagogical Knowledge, which monitors teachers’ classroom interactions 
and lesson planning for an increase in teachers’ knowledge of students and curriculum with 
mathematical modeling. Due to the complexity of the main research question, the Pedagogical Skills 
dimension is not a primary focus for the initial working group sessions, but the participants may 
decide to expand their discussions to include this category.  

Plan for Active Engagement of Participants 
Members of the working group will actively participate in defining this research arena. The 

working group will meet three times during the conference and virtually during the course of one 
year. 

Session 1: Foundation 
The first session will outline the structure of the working session and lay the foundation for 

mathematical modeling knowledge for teaching by establishing common definitions and presenting 
the digital environment as an archive of forum discussions and research ideas that can be shared 
publicly or privately to promote involvement and collaboration. Sample mathematical modeling tasks 
will be provided as a vehicle to elicit discussion, establish definitions, and note points of distinction. 
Members are invited to bring mathematical modeling tasks to share with the group and suggest and 
generate research questions. The final part of the session will be allocated to introducing the 
framework that will guide the research focus of the working group and forming research groups 
based on the interests of the participants. 

Session 2: Content Knowledge 
The second session will focus on clearly defining mathematical content knowledge needed for 

mathematical modeling and outlining research goals and objectives to monitor progression in this 
area. Due to the interdisciplinary nature of mathematical modeling, as well as the various 
mathematical approaches taken by modelers, the meaning and implications of horizon content 
knowledge with regards to mathematical modeling will be included in group discussions. Sample 
tasks and student work samples will be shared to facilitate group discussions regarding mathematical 
modeling thinking in terms of mathematical knowledge and sophistication in the scope of each 
groups’ research interests and discussion questions. 

Session 3: Modeling Knowledge 
Using discussion questions, the third session will focus on clearly defining modeling knowledge 

needed for mathematical modeling and outlining research goals and objectives to monitor 
progression in this area. Discussions will be focused on how to improve teachers’ modeling 
knowledge holistically and individually.  
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Post-conference 
To sustain the working group’s efforts, results of all sessions and meetings will be documented 

and disseminated to all members. Following the conference, participants will be invited to continue 
discussing research interests in this area through a web-based discussion forum created, hosted, and 
monitored by the leaders of the working group and supported by The Ohio State University. The 
discussion forum will offer an environment for suggesting and reviewing research, posing and 
critiquing mathematical modeling tasks, posting and discussing teacher and student solutions, and 
developing an archive of useful and productive mathematical modeling tasks. Working group 
members will participate in digital meetings throughout the year to review progress on scholarship. 
Findings of the working group and subsequent discussions will be summarized and reported.  

Conclusion 
With the lack of literature on developing mathematical modeling content and pedagogy in 

secondary teachers and the ambiguity of the mathematical modeling strand and mathematical 
practice as defined by the Common Core State Standards for Mathematics, the mathematics 
education community is in need of a dedicated group of individuals who will investigate this field. 
Working group participants will be committed to increasing knowledge on mathematical modeling 
and sustaining the educational and research goals of PME-NA. A working group at PME-NA 
devoted to investigating mathematical modeling knowledge for teaching will provoke interesting and 
productive research questions and studies to expand the field. 
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The debate in understanding what content knowledge secondary teachers should have in order to 
provide effective instruction is the main theme of this new Working Group. Our goal is to explore 
connections between advanced and secondary mathematics as an entry point into this debate. In 
particular, we will gather interested individuals in an effort to deepen our understanding of existing 
connections between abstract algebra and secondary mathematics and which of these connections 
are important for secondary teachers to know and understand. Moreover, we aim to further research 
in this area by considering possible links between knowledge and understanding of connections and 
secondary instruction as well as how we might be able to assess teachers’ knowledge about 
connections between advanced and secondary content. We hope to accomplish these goals by 
discussing important connections between abstract algebra and secondary mathematics, providing 
opportunities for participants to share their experiences with connections, and engaging in 
conversations about the impact and assessment of connections in secondary teaching. 

Keywords: Advanced Mathematical Thinking; Teacher Education-Preservice; Teacher Education-
Inservice; Teacher Knowledge 

There has been a longstanding debate in the mathematics and mathematics education 
communities concerning the knowledge secondary mathematics teachers need to provide effective 
instruction. Central to this debate is what content knowledge secondary teachers should have in order 
to communicate mathematics to their students, assess student thinking, and make curricular and 
instructional decisions. This debate has already led to many fruitful projects (e.g., Connecting Middle 
School and College Mathematics [(CM)2] (Papick, n.d.); Mathematics Education for Teachers I 
(2001) and II (2012); Mathematical Understanding for Secondary Teaching: A Framework and 
Classroom-Based Situations (Heid, Wilson, & Blume, in press)). A common thread in these projects 
is the belief that mathematics teachers should have a strong mathematical foundation along with the 
knowledge of how advanced mathematics is connected to secondary mathematics (Papick, 2011). 
But questions remain about what secondary content stems from advanced connections, which 
connections are important, and how might knowledge of such connections impact classroom practice. 
This new working group is being created to further explore these and other related questions. 

More mathematics preparation does not necessarily improve instruction (Darling-Hammond, 
2000; Monk, 1994). In fact, some research has shown that more mathematics preparation may hinder 
a person’s ability to predict student difficulties with mathematics (Nathan & Petrosino, 2003; Nathan 
& Koedinger, 2000). Nevertheless, the requirements for traditional certification to teach secondary 
mathematics across the country continue to include an undergraduate major in the subject. Moreover, 
questions regarding mathematics teachers’ content knowledge and preparation continue to be the 
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topic of concern as evidence from the current conversations around national and international test 
result of student achievement in mathematics. Therefore, it is important that, as a field, we 
investigate the nature of the present mathematics content courses offered (and required) of 
prospective secondary mathematics teachers to gain a better understanding of which concepts and 
topics positively impact teachers’ instructional practice. We hypothesize a valuable starting point 
would be to develop a better understanding of the nature of the mathematical connections between 
advanced content taken in undergraduate programs and secondary content taught in schools. Explicit 
attention to these connections could play a pivotal role in making the mathematics major more 
meaningful to prospective teachers and could positively impact future teachers’ instructional 
practice. 

Research focused on connections between advanced and secondary mathematics has begun to 
gain traction in the mathematics education community. Such research addresses (a) the connections 
that exist between particular advanced content courses (e.g., abstract algebra) and secondary 
mathematics (e.g., Baldinger, 2014; Cofer & Findell, 2007; Usiskin, 2001; Wasserman, 2014) and (b) 
the impact learning connections between advanced and secondary content has on teachers and their 
instruction (Baldinger, 2013; Wasserman, 2014).  

This new working group will continue and expand on this research in order to explore the 
following questions: 

1. What are the connections between advanced and secondary content? 
a) What connections between advanced and secondary content are important for 

teachers to know and understand? 
2. What is the link to classroom practice? 

a) How does knowledge of connections between advanced and secondary content 
impact instruction in secondary classrooms? 

b) How can we better support teachers to understand connections between advanced and 
secondary content and to use pedagogy that employs these connections? 

2. How do we assess teachers’ knowledge about connections between advanced and secondary 
content? 

a) How do we determine the depth of teacher knowledge of advanced content and 
connections to secondary content? 

b) What are indicators that teachers have gained particular understandings?  
c) What do we want teachers to be able to do with this knowledge? 

Background 
We take the view that connections between advanced mathematics and secondary mathematics 

encompass both mathematical content and ways of thinking about and engaging with that content. 
We draw on research around mathematical knowledge for teaching (e.g., Ball, Thames, & Phelps, 
2008), key developmental understandings (Simon, 2006), mathematical practices (e.g., Council of 
Chief State School Officers [CCSSO], 2010; RAND, 2003) and habits of mind (e.g., Cuoco, 
Goldenberg, & Mark, 1996) to define these connections. 

Mathematical knowledge for teaching (MKT) (Ball et al., 2008) describes different domains for 
the mathematical knowledge teachers draw on in the practice of teaching. Broadly, it encompasses 
subject-matter knowledge and pedagogical content knowledge. More specifically, subject-matter 
knowledge entails three domains of mathematical knowledge used in teaching: common content 
knowledge, specialized content knowledge, and horizon content knowledge. Pedagogical content 
knowledge includes knowledge of how the content is related to students, to teaching, and to 
curriculum. These categories were developed based on the mathematical work of teaching at the 
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elementary level, and many scholars have utilized them at the secondary level (e.g., Baumert et al., 
2010; Tatto & Senk, 2011), although others have problematized this direct translation to secondary 
mathematics (e.g., Speer, King, & Howell, 2014). Although these categories may not perfectly 
capture all that secondary teachers need to learn, they represent a potentially useful framework for 
thinking about the scope of mathematical knowledge needed for teaching. In the context of 
connections between advanced mathematics and secondary mathematics, the MKT framework 
invites the following questions: What knowledge of mathematics does a secondary teacher need that 
goes beyond the mathematics of the school curriculum? How might advanced mathematics enable a 
teacher to unpack a secondary mathematics topic? How might an understanding of advanced 
mathematics influence instructional choices in presenting a secondary mathematics topic? 

One useful strategy for exploring teacher learning of connections between advanced mathematics 
and secondary mathematics is through the construct of “key developmental understandings (KDUs)” 
(Simon, 2006). A KDU is a "conceptual advance that is important to the development of a concept" 
(Simon, 2006, p. 365). Silverman and Thompson (2008) use this construct in their framing of 
teachers’ mathematical knowledge, by proposing that teachers develop MKT of a topic if: (a) they 
have achieved a KDU that encompasses mathematical understanding of the topic; and (b) they have 
an understanding of how the topic may evolve instructionally in support of students' reasoning in the 
K-12 classroom. This highlights questions such as, what are the key developmental understandings 
around advanced mathematics that have connections to secondary mathematics? How might these 
particular KDUs support the development of MKT? 

It is useful to expand our consideration of what secondary teachers need to know beyond content 
and concepts to encompass mathematical habits of mind (e.g., Cuoco et al., 1996) and engagement in 
mathematical practices (e.g., CCSS, 2010). Mathematical habits of mind include looking for patterns, 
giving precise descriptions, and utilizing visualizations. Mathematical practices include making 
conjectures, attending to precision, and connecting representations. These are habits and practices 
that cut across content areas and levels of mathematical study. Engagement in mathematical practices 
is an explicit feature of school mathematics through their inclusion in the Common Core State 
Standards. Attending explicitly to mathematical practices in our context invites asking: How is 
engagement in mathematical practices around advanced mathematics content similar to and different 
from engaging in those same practices around secondary content? 

We draw on these ideas to develop a description of connections between advanced mathematics 
and secondary mathematics. Connections might be purely mathematical in nature; that is, they might 
relate directly to subject-matter knowledge. Connections might highlight a relationship between 
content and students or content and teaching; that is, they might relate to pedagogical content 
knowledge. Connections might be part of the key developmental understandings that support the 
development of mathematical knowledge for teaching. Further, connections might go beyond 
knowledge of mathematics and encompass engagement in mathematics through the lens of 
mathematical practices. 

History and Goals for Working Group 
The purpose of this new working group is to strengthen our collective understanding of 

connections between advanced and secondary content and their role in secondary mathematics 
teaching and learning. The members of this working group came into the idea of investigating 
connections and teacher preparation through various disparate individual and group pursuits. 
Recently, we began having informal conversations about these ideas based on our experiences. We 
realized we had common interests and that there were others pursuing similar research. As a result, 
we saw the opportunity to advance our collective ideas as well as the field’s understanding of 
connections. For example, one common interest for the working group is the experience of 
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prospective or practicing secondary mathematics teachers as they take advanced mathematics 
courses, such as abstract algebra. In general, prospective teachers, similar to some math majors, 
struggle with understanding the material and applying their knowledge (Clark, Hemenway, St. John, 
Tolias, & Vakilet, 1999; Zazkis & Leikin, 2010). Additionally, many do not understand the purpose 
of taking advanced mathematics courses (e.g., Cuoco, 2001), especially the relevance to teaching 
secondary mathematics (e.g., Cuoco & Rotman, 2013a). For example, Broderick (2013) interviewed 
prospective secondary teachers about the usefulness of their college math courses. He found their 
comments were consistent with the literature (e.g., G. Hill, 2003), with one caveat. One participant 
had not passed abstract algebra the first time and went through it again. She found more relevance 
the second time through and was more satisfied with taking the course. Such findings have led to 
several efforts to make abstract algebra more accessible and applicable. 

Abstract Algebra Textbooks 
Based on the need to connect with prospective secondary mathematics teachers, mathematicians 

have written textbooks in abstract algebra for this specific audience (e.g., Cuoco & Rotman, 2013b; 
J. Hill, Thron, & Weathers, 2012; Nicodemi, Sutherland, & Towsley, 2007). The preface to Cuoco 
and Rotman (2013b) states that the textbook is designed for college students who want to teach 
mathematics in high school. The textbook authors also state that it can serve as a text for standard 
courses in abstract algebra as well. What distinguishes this text is the authors’ assertion that they 
“have found that the first encounter with groups is not only inadequate for future teachers of high 
school mathematics, it is also unsatisfying for other mathematics students” (p. xiii). They also 
specifically “include sections in every chapter, called Connections, in which we explicitly show how 
the material up to that point can help the reader understand and implement the mathematics that high 
school teachers use in their professions” (p. xiv, emphasis in original). 

Similarly, Nicodemi et al. (2007)’s abstract algebra textbook is written for an audience of both 
preservice secondary teachers and mathematics majors. They also take the approach to introduce 
rings and polynomial rings before groups because of the “natural parallel of facts about integers to 
facts about polynomials” (p. ix), which connects to secondary mathematics. They acknowledge that 

All students appreciate links that connect the abstract mathematics encountered in upper-level 
courses to familiar, more concrete mathematics of their earlier experiences. Such links are crucial 
to the future teacher as a bridge between the mathematics they are learning and the mathematics 
they will teach. (p. ix) 

Thus, in most of the sections the authors finish them with a short note to the teacher. 
Other textbooks are designed specifically for secondary teachers (e.g., J. Hill et al., 2012). Hill’s 

text focuses on group theory and homomorphisms, but does not consider rings and fields. It also adds 
references to school mathematics and discusses topics such as cryptography and algebraic coding 
theory. Thus, while there exists research-based textbook support for courses in connecting abstract 
algebra to secondary mathematics, J. Hill et al. (2012) show that some textbooks can make choices 
for which typical abstract algebra topics they cover and do not cover. These choices are also reflected 
in the research that exists chronicling various implementations of modified abstract algebra courses. 

Modified Abstract Algebra Courses 
In efforts to make abstract algebra more accessible to secondary teachers, and other majors, 

certain modifications have been made to the traditional lecture-based format. Courses have been 
developed with a focus on cooperative learning environments (Barbut, 1987; Cnop & Grandsard, 
1998) and including a component of technology (Leron & Dubinsky, 1995; Clark, et al., 1999). For 
example, Freedman (1983) conducted an abstract algebra course where students were responsible for 
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presentations of the material based on their work with original sources. In another example, Grassl 
and Mingus (2007) used a new pedagogical model where they conducted an abstract algebra course 
using team teaching and cooperative learning. They found that this approach provided deeper 
learning for students as a community of scholars. 

Other courses in abstract algebra have been created specifically for prospective and practicing 
secondary mathematics teachers. These courses focused on connections to high school mathematics 
(Baldinger, 2013; Cuoco & Rotman, 2013a). The course in Baldinger’s study was motivated by 
studying the concepts necessary to understand a certain proof of the fundamental theorem of algebra. 
Each concept they studied allowed for opportunities to make connections to secondary 
mathematics. These topics were studied from an advanced perspective and in non-standard settings. 
Examples included the natural numbers, polynomials, proofs by induction, and prime factorization. 
Other connections to the secondary curriculum involved drawing parallels between the integers and 
polynomial rings. 

The tension of content coverage was highlighted in the studies of the implementation of abstract 
algebra courses as in textbooks. For example, Baldinger (2013) mentioned that the course in her 
study did not cover groups or rings and gave only a minimal treatment of field extensions. The 
course in Freedman (1983) took three years to complete. Cnop and Grandsard (1998) also stated they 
needed to take the class at a slower pace with their modifications. Cuoco and Rotman (2013a) 
affirmed that their modifications did not “dumb down” the course, which can be an issue when 
working with prospective teachers. With the potential for issues regarding content coverage, we are 
brought to the question of what connections can be made to secondary mathematics, while covering 
the content necessary for teachers and non-teachers alike. 

Such research in undergraduate mathematics education has led to the types of questions this 
working group is interested in exploring, such as what content can best help prospective teachers see 
relevance to their future teaching and not wonder why they had to take a particular advanced course? 
If this content can be the focus of an advanced course, could this help people become more effective 
teachers and foster the development of higher order skills in their secondary students? 

Abstract Algebra and Secondary Instruction 
Beyond considering abstract algebra courses themselves, it is critical to consider how teachers’ 

knowledge of advanced mathematics influences their teaching practices. G. Hill (2003) describes 
how a secondary teacher was able to build on the axiomatic approach to abstract algebra in a unit on 
complex numbers for her secondary students. Wasserman (2014) described some of the ways that 
prospective and in-service teachers were introduced to ideas of abstract algebra, which drew upon 
solving simple equations. Wasserman and Stockton (2013) used vignettes to capture some of the 
potential implications on teaching secondary mathematics in relation to their planned practices. 

Wasserman (in press) looked at teachers’ practices for teaching some specific elementary, 
middle, and secondary topics, before and after being learning about introductory concepts in abstract 
algebra. In identifying the specific topics, he developed a framework that considered the K-12 
content areas for which teaching might be influenced by teachers’ knowledge of abstract algebra. 
This provides a different perspective than the traditional listing of connections between abstract 
algebra and secondary mathematics (e.g., (Z, +) is a group).  

Because work with prospective teachers’ understanding and practice of the connections between 
abstract algebra and secondary mathematics is in the emerging stages (e.g., G. Hill, 2003; 
Wasserman, 2014; Wasserman, in press; Wasserman & Stockton, 2013), additional research is 
required to evolve and validate this area. A natural next step would also be to assess the prospective 
teachers’ knowledge and practice. 
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Therefore, this new working group seeks to continue and extend the research described above 
and to consider the following questions: (a) What are connections between advanced and secondary 
content? (b) How are these connections linked to instructional practice in secondary classrooms? (c) 
How do we assess prospective teachers’ knowledge about connections between advanced and 
secondary content? 

Rationale and Relevance for PMENA 
Drawing meaningful connections between secondary and advanced mathematics has been an 

enduring challenge for secondary mathematics teachers (e.g., CBMS, 2012). This new working group 
aims to capitalize on cooperation among mathematicians and mathematics educators to investigate 
critical issues in the mathematical preparation of prospective secondary mathematics teachers. The 
working group will promote the exchange of ideas around (a) identifying important connections 
between abstract algebra and secondary mathematics; (b) exploring the impact of such connections 
on secondary instruction; and (c) thinking about how teacher educators might be able to assess 
knowledge and understanding of such connections. For example, in exploring connections between 
abstract algebra and secondary mathematics, the group will identify key developmental 
understandings (KDUs) that can be targeted by and connected to specific tasks for prospective 
teachers. 

The exploration of these topics connects directly to the conference theme of developing critical 
responses to enduring challenges by opening a dialogue around the nature of abstract algebra for 
secondary teachers and how connections to secondary mathematics can be used to enhance the 
learning of both prospective teachers and other majors. The work will be relevant to the PME-NA 
audience through the exploration of conceptual ideas such as extending notions of mathematical 
knowledge for teaching to this advanced level and through practical ideas such as strategies teacher 
educators might use to assess teacher understanding of connections between advanced mathematics 
and secondary mathematics. 

Organization and Plan for Active Engagement 
The overall goal for this new working group is to strengthen our collective understanding of 

connections between advanced and secondary content and their role in secondary mathematics 
teaching and learning. We focus on abstract algebra as an entry into this domain, particularly for its 
rich connection to secondary mathematics topics such as algebra and functions, while also 
anticipating that the impact of these conversations will prompt research into other content areas (e.g., 
calculus, linear algebra, and analysis). 

Across the three sessions, participants will engage with facilitators about the current state of the 
research through brief presentations and guided discussions. 

Session 1: Exploring connections between abstract algebra and secondary mathematics 
In the first session, we will introduce the working group by sharing our definition of connections 

along with the background and goals of the working group. After this brief presentation, group 
members will share some of their own work about important connections between abstract algebra 
and secondary mathematics to allow participants to share and learn about different connections. The 
discussion will be among the entire group and will focus on the following question: What are the 
important connections between abstract algebra and secondary mathematics? At the end of this 
session, the facilitators will create a summary of important connections discussed to help organize 
and motivate the following sessions. 
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Session 2: Exploring the impact of connections on secondary instruction 
In the second session, we will begin by sharing our summary of the previous session. We will 

then have a whole group discussion focused on the question: What do we mean by and how do we 
measure impact on instruction? The second part of this session will use the group’s working 
definition and the important connections from Session 1 to address the following questions:  

1. How does knowledge of connections between advanced and secondary content impact 
instruction in secondary classrooms? 

2. How can we better support teachers to understand connections between advanced and 
secondary content and to use pedagogy that employs these connections?  

Participants will be expected to think about important connections they have seen for the 
teaching of secondary mathematics and how these connections might be applied to secondary 
mathematics teaching. At the end of the session, the facilitators will create a summary of how 
important connections might influence teachers’ practice to help organize and motivate the final 
session. 

Session 3: Assessing teacher understanding of connections 
In the final session, we will begin by sharing our summaries of the previous session. We will 

engage in a whole group discussion of how group members have assessed or might assess whether 
teachers have indeed acquired knowledge and understanding of the important connections between 
abstract algebra and secondary mathematics discussed. Through this conversation, we will collect 
ideas for assessment and focus on the following questions: (1) How do we determine the depth of 
teacher knowledge of the connections between abstract algebra and secondary mathematics? (2) 
What are indicators that teachers have gained particular understandings? (3) What do we want 
teachers to be able to do with this knowledge? We will conclude the working group by summarizing 
the ideas shared about important connections, impact on teachers’ practice, and ideas for assessment. 
We will collect contact information from participants to continue the conversation and wrap up by 
establishing a set of next steps.  

Anticipated Follow-up Activities 
As a result of this working group, we anticipate three primary follow-up activities. First, we will 

submit an article to the Notices of the American Mathematical Society. The Notices is the most 
widely-read journal by professional mathematicians. Our article will provide an opportunity for us to 
engage mathematics professors in a conversation about the mathematical preparation of secondary 
teachers. In particular, we will share results from each of the three themes within our working group: 
(1) specifying mathematical connections between abstract algebra and secondary mathematics, as an 
opportunity to draw on such examples in abstract algebra courses; (2) recognition that mathematical 
connections are necessary but insufficient, and sharing ways that, for teachers, abstract algebra may 
have implications for their teaching of secondary mathematics, not just their knowledge of 
mathematics itself; and (3) discussing ideas about how assessments might inform whether teachers 
have acquired such desired understandings.  

Second, we will prepare an entry for the American Mathematical Society’s blog on the Teaching 
and Learning of Mathematics. We have been invited to contribute such an entry by one of the blog 
editors who is an author of this working group proposal. This will allow us to reach a wide online 
audience and provide an overview of connections between abstract algebra and teaching secondary 
mathematics. 

The third anticipated follow-up activity has to do with longer-term work via continued meetings 
at other conferences and establishing a collective research agenda. The discussion group will provide, 
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based on some of our previous work and interests individually, an opportunity for all of us to get a 
sense of a bigger picture about abstract algebra for secondary teachers. In the nearer future, this 
shared perspective will provide opportunities for the group to continue working together, studying 
and researching more rigorously some of the ideas related to abstract algebra and secondary teaching 
that arise from the working group. In the farther future, we anticipate branching off into other areas 
of advanced mathematics (e.g., real analysis). A long-term collective goal is to fundamentally 
reconsider the teaching of more advanced content courses for teachers in ways that are useful both 
generally for the teaching of all mathematics majors and also specifically for the unique 
considerations and professional practices of secondary teachers. With the discussion group as a 
starting point, building into more rigorous research about connections to secondary mathematics and 
its teaching, we imagine collectively developing materials for such courses. 
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This is the third meeting of a working group on student thinking about integers. The main goal of this 
working group includes utilizing different theoretical perspectives and methodologies in small 
groups to design complementary studies, where student thinking about integer addition and 
subtraction will be explored. This working group aims to provide a space for participants to 
capitalize on their differences in theoretical perspectives and methodologies to promote productive 
scholarly discussion about the same research topic, student thinking about integer addition and 
subtraction. Participants will actively engage in work that progresses towards these studies, with the 
intent to develop a monograph that highlights this research. 

Keywords: Number Concepts and Operations; Cognition; Research Methods  

A Brief History of the Working Group 
The first working group on student thinking about integers convened during PME-NA 35 (Lamb 

et al., 2013). During this working group, facilitators shared perspectives of current research in the 
field on student thinking about integers. Discussion with these speakers and participants revolved 
around the presentations and what “Integer Sense” entails. The work initiated at PME-NA 35 
continued at the joint PME 38 and PME-NA 36 meetings (Bofferding, Wessman-Enzinger, Gallardo, 
Salinas, & Peled, 2014). At this meeting, the organizers presented an extensive review of all of the 
integer articles from the PME and PME-NA proceedings. Further, they shared and discussed 
perspectives on integer research stemming from seminal work on integers. The group concluded with 
a discussion on next directions for collaborative research on the teaching and learning of integers. 
Responding to the need for collaborative research, this working group proposes a collaborative 
research project that welcomes all perspectives on student thinking about integer addition and 
subtraction and provides a platform that embraces these collective differences.  

Relevance to Psychology of Mathematics Education  
Compared to research on whole number addition and subtraction, research on student thinking 

about integer addition and subtraction is fairly limited.  Perhaps for this reason, there is increased 
interest in student thinking about integer addition and subtraction in our field (e.g., Bishop et al., 
2014a, 2014b; Author, 2014; Stephan & Akuyz, 2012). However, research on student thinking about 
integer addition and subtraction has been conducted, and even represented at PME and PME-NA, for 
over three decades (e.g., Bell, 1982; Gallardo, 2003; Marthe, 1979; Peled, Mukhodpadhyay, & 
Resnick, 1989). This points to a need for research on student thinking about integer addition and 
subtraction to begin building bridges to connect the research. One way to do this will be to discuss 
similarities and differences when using different theoretical lenses or analyses on similar topics (e.g., 
Lewis, 2008).  

For guidance as a field interested in the growth of research on student thinking about integers, it 
is helpful to turn to well-established agendas, like the research on student thinking about whole 
number operations, and reflect on how these agendas have flourished and have became well-
connected. Research on student thinking about whole number operations grew and became the most 
proliferated and well-connected area of research (Mathematics Learning Study Committee, 2001) 
with researchers taking different perspectives on similar topics. The 1970s involved investigations 
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into how young children counted on or solved different types of word problems (e.g., Jermam, 1970; 
Steffe & Johnson, 1971). Research on student thinking was often focused on “basic skills,” accuracy, 
and speed (Jermam, 1970; Bright, Harvey, & Wheeler, 1979).  

By the 1980s and 1990s, research exploded on student thinking about whole number operations, 
where most of the scholarly discussion revolved around student-invented strategies and different 
problem types (e.g., Carpenter, Ansell, Franke, Fennema, & Weisbeck, 1993; Carpenter, & Moser, 
1984; Fuson et al., 1997). As this influx in research on student thinking about whole numbers 
increased, researchers responded to the multiple perspectives on student thinking. For example, Cobb 
(1985) reacted to three different papers from Baroody (1984), Carpenter & Moser (1984), and Fuson 
(1984) that appeared in The Journal for Research in Mathematics Education. We can now look 
across these agendas and compare and contrast the findings and perspectives, and even categorize 
these perspectives by agenda (e.g., Cognitively Guided Instruction (CGI), Conceptually Based 
Instruction Project (CBI), Problem Centered Mathematics Project (PCMP), Stages of Early 
Arithmetical Learning (SEAL), Supporting Ten Structures (STST)).  

By the 2000s, the similarities and differences of these different theoretical perspectives and 
research methodologies were embraced and projected the field forward, not only in the area of whole 
number arithmetic but in many other areas, such as early algebra (e.g., Carpenter, Franke, Levi, 
2003; Carraher, Schliemann, Brizuela, & Earnest, 2006), understanding of the equal sign (e.g., Jone 
& Pratt, 2011), rational numbers (e.g., Empson & Levi, 2011; Steffe & Olive, 2010), and even 
preservice teacher education (e.g., Vacc & Bright, 1999). 

If we compare the development of research and research agendas on student thinking about 
integers to the field of whole numbers, we can learn that embracing multiple perspectives is 
productive and insightful. Similar to the increased interest in student thinking about whole number 
arithmetic of the 80s and 90s, we are currently positioned to respond to this increased research 
interest on student thinking about integers. Drawing upon these productive comparisons and 
research, this working group aims to establish a space for those interested in researching student 
thinking about integer addition and subtraction.  Based on past participation in the working group, we 
anticipate that participants will represent a variety of theoretical perspectives, which will fuel a set of 
complementary studies and continued discussion about similarities and differences in our 
investigations. 

Theoretical Perspectives & Methodological Approaches 
Across the PME and PME-NA proceedings and recent journal articles, researchers have 

presented work around negative integers from a variety of perspectives and using different 
methodological approaches.  Some or all of these may play a role in the working group discussion, 
studies, and final products.  We present a few examples: 

Integer sense. Both Gallardo (2002) and Bishop et al. (2014a) point to ways that that we can 
think about and use negative integers (see Table 1). Gallardo based her framework for interpreting 
negative integers on historical analyses of the topic and clinical interviews with middle-schoolers. 
Bishop et al. based their interpretations from the literature and mathematical reflections.  

Rather than focusing on the different ways of interpreting integers, Kilhamn (2009) theorized 
about what number sense is in relation to concepts involving integers. These components include 
“intuitions about numbers and arithmetic” (p. 331), the  “ability to make numerical magnitude 
comparisons” (p. 332), the “ability to recognize benchmark numbers and number patterns” (p. 333), 
and  “possessing knowledge of the effects of operations on numbers” (p. 334). 
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Table 1: Comparisons and Interpretations of Gallardo (2002) and Bishop et al. (2014a) 
Gallardo (2002) 

interpretations of negative 
numbers (p. 179) 

 
Bishop et al. (2014a) 

interpretations of -5 (p. 20) 

 
Reflections 

Subtrahend 
“where the notion of number 
is subordinate to the 
magnitude (for example, in a 
– b, a is always greater than b 
where a and b are natural 
numbers” 
 

“An action of removing 5 
from a set” 
 

Removing five from a set 
matches closely to 
interpreting a negative 
number as subtracting a 
positive number.  
 

Relative or Directed Number 
“where the idea or opposite 
quantities in relation to a 
quality arises in the discrete 
domain and the idea of 
symmetry appears in the 
continuous domains” 

“The location on a number 
line (coordinate plane, etc.) 5 
units to the left of, or below, 
0” 

 
“An action of moving 5 units 
left or five units down” 
 
“A debt of $5 is also a 
directed number; it is the 
opposite of a credit of $5.” 
 

Placing a negative number on 
a number line allows one to 
interpret the negative number 
as a relative number or a 
directed number.  

 
 
 

Debt can be interpreted as 
direction. Or, -5 can be a 
relative number that 
represents a loss of five 
dollars.  
 

Isolated Number  
the result “of an operation or 
as the solution to a problem 
or equation” 
 

“The integer between -6 and 
-4” 
 

The negative number may be 
treated as a symbolic number 
that has order.  
 

Formal Negative Number  
“a mathematical notion of 
negative number, within an 
enlarged concept of number 
embracing both positive and 
negative numbers (today’s 
integers)” 

“Describing the equivalence 
class [(0,5)] in which we 
define (a, b) to mean a – b, 
and all other ordered pairs 
(a,b) such that a + 5 = 0 
include (1, 6), (2, 7), (100, 
105), and all other ordered 
pairs (a,b) such at a + 5 = 0 + 
b for a,b that . [More 
formally, we can write (0, 5) 
~ (a, b).]” 

The negative number can be 
thought of in more 
formalized ways. For 
example, -5 is compared to 
an equivalence class. We can 
also talk about the additive 
group of the integers or the 
ring of the integer and how 
integers are not a field 
because the multiplicative 
inverses are not all integers.  

 
Integer number line and conceptual change. Using an experimental design involving pre- and 

post-test task-based interviews as well as instruction around different aspects of integer concepts, 
Bofferding (2014) identified different conceptions children have of integers.  Aligned with a 
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conceptual change paradigm (Vosniadou, 1994), the conceptions fall along a continuum where initial 
ideas about negative numbers arise from students’ conceptions of whole numbers and progress to 
more formal understanding.  Although the categories and concepts explored in the research support 
Kilhamn’s (2009) ideas of number sense, Bofferding’s interpretation of students’ work focuses on 
how their conceptions arise and become differentiated from their whole number understanding and 
when planning for instruction focuses on how to effectively bridge learning of whole number and 
integer concepts.  Further exploration of students’ developing integer conceptions would benefit from 
the use of additional research methods, such as a teaching experiment (Steffe & Thompson, 2000) or 
microgenetic analysis (Siegler, 1996), which could further clarify what portions of the instruction or 
work with integers influenced students to change their thinking in Bofferding’s study. 

Conceptual models. Wessman-Enzinger & Mooney (2014) found that when children posed 
stories for integer addition and subtraction problem types the students’ reasoning could be classified 
into the Conceptual Models for Integer Addition and Subtraction (CMIAS).  The five CMIAS 
described are Bookkeeping, Counterbalance, Translation, Relativity, and Rule. With Bookkeeping, 
the integers are treated as gains and losses, and zero represents neither a gain nor a loss. For example, 
students posed stories that involved gains and losses of candy bars. And, other students used “needs” 
and “wants” of various other items, like baseball cards, to represent the negative integers. With 
Counterbalance, the integers are treated as neutralizing each other, and zero represents a status of 
neutralization. A distinguishing feature of Counterbalance from Bookkeeping is that the quantities 
always remain present with Counterbalance. For example, consider -2 + 3 = 1, which can be 
represented by two electrons and three protons, where there is an electrical charge of 1. Although 
there is an electrical charge of 1, the two electrons and three protons still remain present. With 
Translation, the integers are treated as a vector or with movement. Zero in Translation represents 
either the position or no movement. With Relativity the integers are treated as a comparison to an 
unknown referent. Zero represents the unknown referent. For example, for -5 + -10 = -15 a student 
posed the story, “Say you are down five runs in the first inning of a baseball game. And you end up 
losing by fifteen runs. You would have to have ten runs in the other innings to be down by fifteen 
runs” (Wessman-Enzinger & Mooney, 2014, p. 203). In this story, the actual score of the game is 
unknown. The integers are used as relative numbers to the unknown referent, the score of the tied 
game. Relativity is related to Translation, but both movement and the dual-role of the zero in the 
model distinguish Translation. Although related to Gallardo’s (2002) interpretation of directed 
number and relative number, the CMIAS distinguishes the use of the integers here. With Rule the 
integers are treated with a procedural rule about signs. Wessman-Enzinger and Mooneys’ inter-
pretations of student thinking about integers is that hidden behind the use of contexts are implicit 
mathematical meanings. And, the utilization of these contexts is isomorphic to mathematical uses of 
integers. Further investigation into ways that students respond differently to contextualized problems, 
promoting different CMIAS, could be supported by both task-based interviews (Goldin, 2000) or 
teaching experiments (Steffe & Thompson, 2000). 

Goals of Working Group  
During this working group, one of the goals will be to establish small-groups that will work 

collaboratively together on a research project of their creation. Each of these groups will begin by 
analyzing similar video data provided by the organizers. This will initiate discussion on ways that 
using different theoretical perspectives and analysis highlight similarities and differences in student 
thinking about integer addition and subtraction. However, the main aim of this working group will be 
to begin formulating research questions and begin designing small studies that are each related to 
each other. It is the hope of this working group that each of these small studies would be conducted 
in 2016 and that participants will begin analysis in 2016 as well. Participants could share their initial 
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results at a future meeting so that the group can begin to make comparisons and larger conclusions 
about student thinking.  Additionally, the working group will select a journal to propose a monograph 
to that illustrates and embraces these different perspectives on making sense of student thinking 
about integer addition and subtraction.  

Extending the Previous Work from Past Working Groups 
Both of the previous working groups, PME-NA 35 and PME 38/PME-NA 36, were discussion-

oriented. Drawing on colleagues’ work and literature reviews, the focal point of each of these 
discussions was on student thinking about integers and integer addition and subtraction. Each of 
these working groups concluded with participants eager to work collaboratively on a project. This 
working group extends the work from these previous groups by presenting a collaborative project 
that supports connecting our multiple research agendas, inviting all, whether neophytes or 
experienced researchers, interested in student thinking about integer addition and subtraction to 
participate.  

Plan of Working Group  

Plan for Session 1 
The first session will begin with a brief overview on the history of the working group for any 

new members attending. The facilitators will also give a brief update from the joint PME 38 and 
PME-NA 36 meetings. Then, the session will transition to introductions among participants. The 
participants will briefly share their interests in integer addition and subtraction research and the 
general theoretical perspectives and methods they employ. The facilitators will ask participants to 
break into small groups. The facilitators will show a short video clip of a student solving an integer 
open number sentence. Discussion will begin with the following question: 

1. Using your preferred theoretical perspective on student thinking about integer addition and 
subtraction (e.g., Metaphorical Reasoning, Mental Models (MM), Ways of Reasoning 
(WoR), Conceptual Models for Integer Addition and Subtraction (CMIAS)), how would you 
make sense of or describe the student thinking in this video?  

This question will be discussed extensively in small-groups first, and then we will transition to 
whole-group discussion together. In whole-groups we will discuss the following question:  

2. What similarities and differences are present in our discussion about student thinking?  

Plan for Session 2 
The second session will begin with a brief summary of the previous day’s discussion. The 

facilitators will then describe the proposed collective study where participants will work in small 
groups to design and implement small studies in the domain of integer addition and subtraction. 
Together, the group will brainstorm a central, overarching research question to drive the individual 
studies.  The participants will then spend time in their small-groups deciding a topic and research 
question for their mini-study. At the end of the session the participants will submit their status and 
progress in a Google survey document so that the facilitators are aware of progress or issues within 
the group.  

Plan for Session 3 
The third session will begin with the facilitators engaging the participants in discussion about 

what was reported in the Google survey document. Discussion will also revolve around expectations 
for the studies and ways to keep active as a group throughout the year (e.g., scheduling virtual check-
ins, meeting at other conferences throughout the year). Then, the remainder of the time will be spent 
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in small groups actively working on the planning and the logistics of the implementation of their 
small studies.  

Anticipated Follow-up Activities  
The facilitators will promote active engagement throughout the year in at least two ways. First, 

the facilitators will provide a shared Google spreadsheet listing our groups’ goals to participants. The 
shared Google spreadsheet will have the small-groups listed as the rows and the collectively-decided 
group goals (e.g., topic, research questions, theoretical lens, participants, data collection, data 
analysis) as the columns, which will be modified during the third session. The group will use this 
shared spreadsheet as a place to report dates when they complete a goal and as a way to see the 
progress of the other groups in comparison. Second, the small groups will be encouraged to plan at 
least one Skype session with the facilitators. That way, the facilitators will be aware of each of the 
group’s progress. This will be important for coordinating both the next PME-NA working group 
session, as well as planning the monograph, where each of these studies become chapters.  
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This Working Group will consider multiple aspects of research and practice related to mathematics 
learning and teaching with English Learners. Our goals for the Working Group include: 
(1) developing a shared understanding of the research questions, issues, challenges, and 
contributions that research studies focusing on English learners can make to research in 
mathematics education and (2) developing a plan for supporting further connections among research 
projects in the future. We will examine the mathematics education of English learners from a variety 
of angles, including student, teacher, preservice teacher, school, and community perspectives. 
Further, we will examine current and future avenues of research around a variety of aspects of 
mathematics learning and teaching with English learners such as assessment, curriculum, resources, 
and instructional strategies. By sharing current work and focusing on particular methodologies, we 
hope to describe the current landscape and build structures to catalyze translational work in this 
area.  

Keywords: Equity and Diversity; Teacher Education-Preservice; Teacher Education-Inservice; 
Research Methods 

Brief History 
This group of researchers started working collaboratively as part of the NSF-funded Center for 

the Mathematics Education of Latinas/os (CEMELA). CEMELA brought together researchers from 
across the country to collaborate on research focused specifically on critical issues related to 
Latinos/as in mathematics. Prior to CEMELA, researchers interested in such a focus worked mostly 
in isolation. In considering issues related to Latinos/as in US schools, the issues of language and 
English Learners (ELs) are closely related. While not all Latinos/as are English Learners, and not all 
ELs are Latinos/as, these two groups have significant overlap. For example about 80% of ELs speak 
Spanish as a first language, and Spanish-speaking ELs appear to struggle on measures of academic 
achievement (Goldenberg, 2008). 

CEMELA expanded the field’s knowledge of ELs in mathematics through conducting studies in 
interdisciplinary teams that helped increase the field’s understanding of Latinas/os and mathematics 
education. CEMELA’s research focused on teacher education, research with parents, and research on 
student learning, resulting in well over 50 publications and presentations. Several of these studies 
involved the investigation of questions related to the interplay of language, culture, and mathematics 
education. 
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Following the conclusion of CEMELA’s funding, Zandra de Araujo, Sarah Roberts, Craig 
Willey, and Bill Zahner continued to meet regularly. These meetings focused on examining 
intersections among these early career scholars’ work related to the mathematics education of ELs. 
To date these meetings have resulted in a number of national presentations at the annual meetings of 
the National Council of Teachers of Mathematics, the American Educational Research Association, 
and PME-NA. Currently, this group is working on several manuscripts and follow-up studies related 
to the preparation of teachers to work with ELs. This Working Group will provide a space for these 
scholars to continue their work and further their scholarship. It will also provide a forum to engage 
other scholars interested in this topic and foster meaningful collaborations among all the participants.  

Focal Issues   
ELs are the fastest growing group of U.S. students (Verplaeste & Migliacci, 2008). In fact, U.S. 

schools have seen an increase of 152% in EL students over the past 20 years (National Clearinghouse 
for English Language Acquisition, 2008). The growing number of ELs across the country provides 
the basis for all states, cities, schools, and teachers being prepared to attend to the needs of ELs in 
their mathematics classrooms. No longer is supporting ELs a concern for only those states, like 
Arizona, Texas and California, with traditionally high numbers of EL students. Instead, with all but 
ten states across the country seeing increases in their EL populations between 2002-03 and 2011-12 
(National Center for Educational Statistics (NCES), 2014), there is increasing pressure for support in 
addressing the needs of these students.  

Despite the rise in ELs, teacher preparation has not kept up with this trend. In 2002, the NCES 
reported that out of the 41% of teachers who worked with ELs in their classrooms, only 13% 
received EL-specific professional development. In 2008, Ballantyne, Sanderman, and Levy found 
that it was “likely that a majority of teachers have at least one English language learner in their 
classroom,” although “only 29.5% of teachers with ELLs in their classes have the training to do so 
effectively” (p. 9). This misalignment of the realities of today’s classrooms and teacher preparation 
has necessitated examination into effective means of supporting current teachers and preparing 
prospective teachers to meet the needs of linguistically diverse learners. 

The implementation of the Common Core State Standards for Mathematics (National Governors 
Association Center for Best Practices (NGA Center) and the Council of Chief State School Officers 
(CCSSO), 2010) will put additional pressure on teachers of students who are still gaining proficiency 
in English. Teaching aligned with the CCSSM’s content standards and the standards of mathematical 
practice will increase the language demands required to engage in mathematical discourse, which is 
typically in English. Providing ELs with quality educational experiences is no longer relegated to 
only language specialists; it is a “mainstream” issue for which all mathematics teachers must be 
prepared (Bunch, 2013). 

Our Working Group aims to provide a response to the critical and enduring challenge of 
providing quality educational experience for linguistically diverse students in mathematics. This 
Working Group will bring together researchers from several universities to examine current and past 
research on ELs in mathematics education while also supporting new collaborations to establish 
future, imperative research directions. As part of these discussions, we aim to think through logistical 
and structural arrangements that will facilitate and support these collaborations going forward. 

Aims of the Working Group 
The Working Group will consider multiple aspects of research and practice related to 

mathematics learning and teaching with ELs. The aim of this Working Group is to present and 
discuss several research projects related to mathematics learning and teaching with ELs in order to 
develop new research questions, to refine data analyses, and to move these research agendas forward.  
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The larger Working Group will break into several subgroups: a) Student Learning; b) Preservice 
Teacher Education; c) Inservice Teacher Education; d) Family and Community Resources; e) 
Curriculum; and f) Language Perspectives. In the following sections, we provide a brief overview of 
key issues in each of these areas as well as the key research questions that will guide the work of 
these subgroups. 

Student Learning 
The subgroup focused on student learning will discuss our past and current research connected to 

investigating the mathematics learning of ELs. The goal of this discussion is to connect broader 
research on mathematics learning to our ongoing development of research on ELs, and vice versa. 
Building upon situated and sociocultural perspectives (Moschkovich, 2002), we start from the 
premise that ELs, like all students, learn mathematics through a process of appropriating discourse 
practices, tool use, and perspectives of mathematics. The area of researching student learning in 
classrooms with a high proportion of ELs is open for further development. In particular, we need 
better understanding of how research in mathematics education at large is connected with research on 
the learning of ELs. For example, there is a substantial body of research on student learning of 
particular mathematical concepts such as rate, ratio, and proportional reasoning (Lobato & 
Thanheiser, 2002). However, much of the content-focused work in mathematics education is isolated 
from research on how ELs develop specific mathematical understandings. This has resulted in a gap 
in the literature where we need to develop more linkages between mathematics education research on 
student learning of specific topics, and the mathematics education research on student learning of 
ELs. The following questions will help guide the student learning subgroup’s activities during the 
Working Group’s meetings. 

• How should learning trajectories in specific content areas be adjusted (if at all) for the 
learning of ELs? 

• What do we know from past and current research about how ELs learn particular key 
concepts in mathematics?  

• How do the needs of ELs in mathematics classrooms vary depending on age, grade, English 
proficiency, and past educational experiences? 

• How do students connect learning to read and use vocabulary to doing mathematics? 

Preservice Teacher Education 
Preservice teachers typically have few opportunities to think specifically about how they will 

work with ELs in their mathematics classrooms. Preparation programs often include coursework on 
teaching ELs that is not specific to the content areas in which preservice teachers will work. 
Meanwhile, the content courses that preservice teachers do take are often focused solely on content, 
devoid of exploring how to support ELs in mathematics classrooms. Recently researchers have 
shared strategies for engaging preservice teachers in working with ELs in mathematics classrooms. 
For example, Fernandes (2012) suggested a series of content interviews to engage preservice teachers 
in the process of noticing the linguistic challenges that ELs face and the resources these students 
bring to their mathematical communication. Additionally, the TEACH MATH (Drake et al., 2010) 
research team is using tasks in their content courses to support preservice teachers in drawing on 
students’ funds of knowledge (Turner, Drake, Roth McDuffie, Aguirre, Bartell & Foote, 2012). This 
subgroup will build on this prior work and engage with the following questions during Working 
Group sessions. 
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• How are we preparing preservice teachers to work with ELs in their future mathematics 
classrooms? 

• What kinds of clinical experiences best allow preservice teachers to grapple with issues 
facing ELs and design instructional approaches to support ELs? 

• How can we use mathematical discussions with future teachers to facilitate their 
understanding of ELs?  

Inservice Teacher Education  
Despite findings that suggest ELs develop academic language in the content areas over a period 

of about 5-7 years, many ELs are mainstreamed within two years. Thus, it is essential that teachers 
support ELs in learning content in mainstream mathematics classes while also providing support to 
develop their academic language. Most inservice teachers have had few, if any, professional learning 
experiences around working with ELs in mathematics classrooms (Ballantyne et al., 2008). In fact, 
many mathematics teachers struggle to understand their role in supporting ELs’ mathematics 
language development (Willey, 2013). As the number of ELs grows in classrooms across the country, 
it is imperative to create and study such learning experiences, while also developing teacher leaders 
and facilitators to lead these learning experiences.   

Much of the prior work on inservice teacher education related to ELs has focused on more 
general strategies (e.g., sheltered instruction, as in Echevarria & Graves, 1998), such as using visuals, 
modifying texts or assignments, and using slower speech. We argue there is a need for content 
specific support for mathematics teachers of ELs. This subgroup will investigate work related to 
inservice teacher development. The following questions will guide the group’s discussions about 
inservice mathematics teacher education: 

• How are mathematics teacher educators supporting inservice teachers to support ELs in 
mathematics classrooms? 

• What resources do teachers bring to professional learning experiences about how to support 
ELs in their mathematics classrooms? 

• How do teachers develop or select mathematics specific supports for ELs? 
• How do we develop professional development facilitators to lead professional learning 

experiences around supporting ELs in mathematics? 
• How do facilitators position mathematics teachers to support ELs in their classrooms and 

instruction? 

Family and Community Resources 
Families and communities can serve as resources for ELs in their mathematics learning in myriad 

ways. Families can advocate for their children and provide and support learning experiences both in 
and out of the classroom. Communities can also provide a wealth of support mechanisms and 
learning possibilities. For example, teachers can activate student and community resources and can 
draw on the funds of knowledge of the community by using parents’ and students’ experiences 
(Moll, Amanti, Neff, & Gonzalez, 1992). Moll et al. described how students studied candy making 
and selling within their neighborhood to explore mathematics within this context, such as discussing 
and analyzing production and consumption. In doing so, the teachers and students acknowledged the 
value of these community experiences. Additionally, Civil and Bernier (2006) explored the 
challenges and possibilities of involving parents in facilitating workshops for other parents around 
key math topics. These studies and others like them illustrate the promising impact of family and 
community resources in fostering ELs’ mathematics learning. The Working Group will explore prior 
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studies on family and community resources as related to ELs in mathematics using the following 
questions: 

• What are the implications of different language policies on parental engagement in 
mathematics, particularly for ELs? 

• How can teachers / teacher education programs build on family and community resources 
towards the mathematics education of ELs? 

Curriculum 
Curriculum plays a key role in the teaching and learning of mathematics and teachers play a 

pivotal role in selecting and enacting curriculum materials for students. The choice of curriculum 
materials impacts students’ opportunities for learning in the mathematics classroom (Kloosterman & 
Walcott, 2010). Early work on curriculum and English learners focused specifically on the challenges 
ELs encounter when completing or interpreting word problems (Téllez, Moschkovich, & Civil, 
2011). More recent work that centers on both ELs and curriculum has focused on culturally relevant 
curricula. A rather recent subset of mathematics education, called ethnomathematics, focuses on this 
area (Barton, 1996; D’Ambrosio, 2006). Other studies have focused on the development of 
curriculum materials for ELs (e.g., Freeman & Crawford, 2008) or the evaluation of a curriculum’s 
appropriateness for ELs (e.g., Khisty & Radosavljevic, 2010; Lipka et al., 2005). More recently, 
work related to ELs and curriculum has begun to look at teachers’ use of curriculum (e.g., de Araujo, 
2012). The Working Group will investigate the intersection of teachers, curriculum, and ELs. The 
following questions will guide the group’s work related to curriculum and ELs.  

• How do mathematics curricula and instruction address the needs of English Learners?  
• How do ELs interact with curriculum materials? How do English learners learn to read 

different mathematical texts (textbooks, word problems, etc.)? 
• How can teachers’ modifications to mathematics curriculum materials support ELs? 
• How can teacher educators support teachers’ understandings of mathematics curriculum use 

with ELs? 

Language Perspectives  
Teachers’ and researchers’ conceptions of language, second language acquisition, and 

bilingualism impact teaching and learning mathematics for ELs. The Working Group will consider 
how perspectives of language, second language acquisition, and bilingualism appear in both theory 
and practice. We will consider, in particular, how work focused on ELs can draw on current work on 
language and communication in mathematics classrooms, classroom discourse, and linguistics. 
Looking for these intersections and connections is crucial; it will ensure that work in mathematics 
education is both theoretically and empirically grounded in relevant research, and it will prevent 
researchers from reinventing wheels. The following questions will guide the group’s work related to 
this theme: 

• Which constructs do we use to describe and examine language(s) in mathematics classrooms? 
Although some studies use the term “Academic English” (Scarcella, 2003), it is not clear 
what this terms means for mathematics, what constitutes “Academic English” in 
mathematics, or whether other constructs might be more useful for research and practice. 

• What constitutes competency in “Academic English” for mathematics in both written and 
oral modes? If it is the case that “Academic English” is different for different mathematical 
domains or genres of mathematical texts, then these differences need to be examined.  
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• How do teachers’ views of second language acquisition impact the practice of teaching 
mathematics for ELs? How can we support teachers in expanding their views of second 
language acquisition in mathematics classrooms? 

• What are students’ experiences learning mathematics in their first, second, and both 
languages? How do different proficiencies in a first language (oral, reading, written, 
academic English) and previous mathematics instruction in a first language impact students’ 
learning mathematics in English? 

• How do students learn to read mathematical texts and use vocabulary to do mathematics? 
How do ELs learn to read different mathematical texts (textbooks, word problems, etc.)? 
How can instruction distinguish between children who are competent readers in a first 
language and those children who are not? 

Working Group Plan 
The overarching goal of the Working Group is to foster the collaboration of mathematics 

educators around scholarship related to the mathematics education of English learners. In particular, 
the following goals will frame the Working Group’s activities:  

1. Develop a shared understanding of the research questions, issues, challenges, and 
contributions that research studies focusing on English Learners can make to research in 
mathematics education 

2. Develop a plan for supporting further connections among research projects in the future. 

In focusing on current research in this area, with an eye towards further study, the Working 
Group will address the enduring challenge of providing quality mathematics education for English 
learners.  

During the three sessions, participants will examine and discuss the design of several research 
studies, analyze sample data collected in at least one of these studies, and discuss future plans for the 
Working Group. These activities are intended to support participants in a) clarifying research 
questions, b) refining research tools, methods, and analyses, c) exploring connections among 
different projects and studies, and d) discussing further collaborations and research on learning and 
teaching mathematics in classroom with English learners. All work and documents will be shared and 
distributed via a Google Community. The use of Google Community will allow members to create an 
institutional memory of activities during the Working Group that members will continue to build 
upon after the conclusion of the conference. 

The planned activities will support these goals in several ways and will be grounded in 
discussions of sample research designs, data sampling, and sample curricula. The anticipated follow-
up activities for this Working Group include planning for a continuation of the Working Group at 
PME-NA in 2016 and organizing one or more collaborative writing projects on this topic. 
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Overview of Proposed Working Group Sessions 
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INTRODUCTION, FRAMING THE ISSUES, & CLARIFYING AIMS 

ACTIVITIES 
1. Introduction and overview of the Working 

Group including introduction to the Google 
Community. 

2. Brief presentations by panel members from 
each of the subgroups providing overviews of 
research projects with specific examples of 
how researchers have designed the studies. 
The purpose is to provide an overview of 
work related to mathematics education of ELs 
and to introduce the six subgroups in a 
structured way. 

3. Participants will break into subgroups and 
will analyze and discuss sample data from at 
least one of the studies presented. This will 
give participants an opportunity to share their 
own experiences in designing research 
studies, collecting data, and analyzing data. 

4. Distribution of one or two readings for each 
subgroup for the next session. 

GUIDING QUESTIONS 
1. What research is being done in relation 

to each of the subgroups? 
2. Which aspects of studies focusing on 

English learners do you find most 
puzzling? Most useful? Most 
misunderstood? 

3. How have you approached defining the 
research questions for studies? 

 

 
S 
E 
S 
S 
I 
O 
N 
 

2 

PERSPECTIVES, METHODOLOGIES, & INQUIRY 

ACTIVITIES 
1. Using the questions in the adjacent column, 

subgroups will discuss the reading(s). 
2. Brief whole group discussion that highlights 

key ideas brought up in the subgroups. 
3. Participants work in subgroups to frame new 

research questions related to their subgroup’s 
focus and develop goals for the final session. 

4. Whole group discussion of subgroups’ 
progress. 

GUIDING QUESTIONS 
1. What theories and theoretical 

frameworks have informed the design 
of your research project(s)? 

2. How might your work inform theory in 
mathematics learning and teaching?  
How can work on this student 
population expand our theoretical 
lenses? 

3. What issues and challenges have you 
faced in designing studies? 

4. How have you approached data 
analysis for studies?  
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E 
S 
S 
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O 
N 
 

3 

PURSUING FURTHER STUDY  

ACTIVITIES 
1. Work time for the subgroups to discuss 

directions for continued collaboration. 
Subgroups will also develop next steps as 
they plan for continued work. 

2. Whole group discussion in which subgroups 
share goals and next steps developed by the 
subgroups 

3. Establish next steps for continued 
collaboration, including the Google 
Community 

GUIDING QUESTIONS 
1. How might other researchers pursue 

research projects on this topic and 
what can they learn from the work 
done so far? 

2. What aspects of your research do you 
expect will be most useful to informing 
practice (curriculum development, 
teacher professional development, 
work with parents, etc.)? 

3. How might your work inform not only 
instructional practices for this 
population but also instructional 
practices for other populations?  

 
Follow-up Activities 

We anticipate that this Working Group will attract other researchers interested in issues related to 
the mathematics education of ELs. Therefore, an important component of this initial meeting of the 
Working Group will be establishing connections with other interested researchers and building 
opportunities for future collaborations. We will provide space for new researchers to contribute to 
our work, to suggest new directions, and to add to the growing body of research on mathematics and 
ELs.  At the first meeting of our Working Group, we will establish an online community using 
Google applications (Plus, Hangout, Groups, Drive, etc.). Google’s applications are freely available 
and allow for a number of collaborative opportunities, including video conferencing, group 
messaging, collaborative document development, and shared web and social media space. Through 
this collaborative Google Community, we will organize follow up face-to-face meetings at 
conferences such as AMTE and the NCTM Research conference. These meetings, both face-to-face 
and virtual, will allow us to set concrete goals in preparation for the creation of a Working Group 
proposal for PME-NA 2016 to continue our work. 

In addition to these short-term goals, we have several longer-term goals for this Working Group. 
First, we would like to seek funding for a conference where we can share the results of our work with 
other researchers and practitioners. A number of the panelists attended the TODOS: Mathematics for 
All Conference in the summer of 2014, and we expect to have a strong presence at the June 2016 
TODOS conference as well. The TODOS conference brings together both practitioners and 
researchers and provides a venue for the dissemination and discussion of important ideas and issues 
related to the mathematics education of diverse groups of learners. A related conference specifically 
focused on ELs would be of great benefit to a multitude of stakeholders as we continue to examine 
how to best support ELs. In addition to the conference, we will also propose a special edition of a 
journal focused on issues related to mathematics education and ELs. This would allow for the 
broader mathematics educational research audience access to current work being done in this area. 
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Modeling has recently received much attention as the Common Core State Standards have included 
it as one of eight core mathematical practices.  The Models and Modeling Working Group builds on 
a long history of collaboration among researchers studying models and modeling. This year’s 
session will focus on building capacity within the broad community of researchers who are interested 
in theoretical and practical perspectives related to models and modeling. We will begin by engaging 
with a modeling activity and some closely related materials. This experience will serve to ground our 
discussions and provide a concrete common reference for participants. We will also draw the 
group’s attention to a new resource:  a course-sized repository of such materials, intended to support 
studies of learning in the areas of data modeling, statistics, and quantification. Next, we will break 
out into interest groups to discuss research questions and agendas that can make use of available 
resources and foster cross-institutional collaboration. We will close by sharing these questions and 
articulating plans for the coming year. 

Keywords: Modeling; Problem-Solving; Design Experiments; Research Methods 

The Models and Modeling Working Group has been a significant presence at the PME-NA 
Conference since both the Group and the Conference were inaugurated in 1978. Over that time it has 
supported the pursuit of high-quality research projects and programs, and it has acted as a means of 
convening a diverse set researchers to work collaboratively on larger projects and research problems.  
The historical purpose of the Group is to discuss and extend the ways in which models are used both 
to learn mathematics and applied science and to study those learning processes in action. We propose 
convening the Group at PME-NA 37 to build capacity within the Models and Modeling Perspective 
(M&MP) research community and to establish key components of a research agenda for studying 
modeling at longer timescales.  The immediate occasions for this work are the retirement of a 
founding voice in the community and the publication of a course-sized body of materials to support 
M&MP research along a variety of dimensions.  As a capacity-building effort, the three sessions of 
the Working Group will both (a) introduce new researchers to the M&MP approach, community, and 
materials; (b) develop the M&MP research agenda, articulating questions that the community 
recognizes as important; and (c) identify opportunities for collaborative projects and proposals in the 
upcoming year. 

Significance of the Models and Modeling Perspective 
For nearly forty years, M&MP researchers and educators have engaged in design research 

directed at understanding the development of mathematical ideas. A fundamental principle 
underlying this work has been that learners’ ideas develop in coherent conceptual entities, called 
models. In this context, models are defined as conceptual systems, which are expressed using 
external representational media or notation systems, and which are used to construct, describe, or 
explain the behaviors of other systems—often to understand, predict, manipulate, or improve them.  
Models are thus conceptual and representational tools that have the additional advantage of 
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illuminating how students, teachers, and researchers learn, develop, and apply relevant mathematical 
concepts(Lesh & Doerr, 2003; Lesh, Doerr, Carmona, & Hjalmarson, 2003).  

Under appropriate conditions, these models can be evoked and expressed: in such settings, they 
can become objects for reflection by learners and collaborative groups, and they can form the basis 
for rich communication. In particular, when individuals and groups encounter problem situations 
with specifications that demand a model-rich response, their models are observed to grow through 
relatively rapid cycles of development toward solutions that satisfy these specifications. Models are 
thus powerful elements both for creating educational activities and for conducting research into 
learning.  

Originally, the M&MP tradition was focused squarely on investigating the development of ideas 
and knowledge in teachers and students. Thus, the resources and tools produced were first and 
foremost designed to study idea development (as opposed to serving teaching or curricular goals). 
However, by producing materials that fostered the rapid development of ideas, M&MP designers also 
laid the foundation for extremely effective instructional sequences addressing big ideas in important 
mathematical domains. Over time, however, the M&MP community has refined its techniques for 
creating situations that provoke students to express and improve their models. The results of this 
work include a body of Model-Eliciting Activities (MEAs), which have consistently proven to 
support students in the modeling cycles described above. In MEAs, students are presented with 
authentic, real-world situations where they repeatedly express, test, and refine or revise their current 
ways of thinking as they endeavor to generate a structurally significant product—that is, a model, 
comprising conceptual structures for solving the given problem. These activities give students the 
opportunity to create, apply and adapt scientific and mathematical models in interpreting, explaining, 
and predicting the behavior of real-world systems. Extensive research with MEAs has produced 
accounts of learning in these environments (Lesh, Hoover, Hole, Kelly, & Post 2000; Lesh & Doerr, 
2003), design principles to guide MEA development (Hjalmarson & Lesh, 2008; Doerr & English 
2006; Lesh, et. al. 2000; Lesh, Hoover, & Kelly 1992) and accounts and reflections on the design 
process of MEAs (Zawojewski et al., 2008). 

An Example MEA: Volleyball 
Students are usually introduced to the Volleyball Problem by reading a “math rich newspaper 

article” that describes a summer sports camp specializing in girls’ volleyball. The newspaper article 
explains how issues arose in the past because it was difficult for the camp councilors to form fair 
teams that could remain together throughout two weeks of camp. The students’ goal in the volleyball 
problem is to develop a procedure that the camp councilors can use to form teams that are as 
equivalent as possible—based on information that is gathered during try-out activities that occur 
during the first day of the camp. After breaking into groups, students are presented with the problem 
statement: 

 

 
Figure 1. The Volleyball Problem 

The Volleyball Problem. Organizers of the volleyball camp need a way to divide the campers 
into fair teams. They have decided to get information from the girls’ coaches – and to use 
information from try-out activities that will be given on the first day of the camp. The table 
below shows a sample of the kind of information that will be gathered from the try-out 
activities. Your task is to write a letter to the organizers where you: (1) describe a procedure for 
using information like the kind that is given below to divide more that 200 players into teams 
that will be fair, and (2) show how your procedures works by using it to divide these 18 girls 
into three fair teams. 
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Along with the introduction and statement of the problem, student groups are given tryout data 
for a sample of 18 players. This data includes some information that is easily represented in tabular 
form (player’s height, measured vertical leap, 40-meter dash time, etc.), as well as some that is not 
(players’ performance in a spiking trial, and brief summative comments about their strengths and 
weaknesses from the coach of their home team). These data elements are chosen so as to present 
fundamental challenges to students, involving the nature of data (categorical versus numerical); 
scaling (e.g., the vertical leap where “large is good” versus the 40-meter dash where “small is 
good”); units (vertical leap is given in raw inches; height in feet-and-inches); and so on. 

Student groups iteratively develop solutions to this problem in the time allotted—usually 60 
minutes for this MEA. Afterwards, the class gathers together for a structured “poster session” event. 
One member in each 3-person group hosts a poster presentation showing the results of their group. 
The other two students use a Quality Assurance Guide to assess the quality of the results produced by 
other groups in the class. These instruments are submitted to the teacher and contribute to assessment 
in various ways, providing evidence for the achievements of both individuals and groups. 

Multi-Tiered Design Research 
In parallel with student-focused research using MEAs, researchers also have observed that 

teachers’ efforts to understand their students’ thinking involve yet another process of modeling: In 
this case, teachers engage in building models of student understanding. Although these teacher-level 
models are of a different category from student-level models, students’ work while engaged in MEAs 
does provide a particularly rich context for teachers’ modeling processes. Following this line of 
inquiry, the M&MP community has also produced tools and frameworks that can be useful to 
teachers in making full use of MEAs in classroom settings, while also providing researchers with 
insights into teachers’ thinking. 

Finally, at a third level of inquiry, researchers’ own understandings of the actions and 
interactions in curricular activity systems (Roschelle, Knudsen, & Hegedus, 2010) involving 
students, teachers, and other participants in the educational process can also be studied through the 
lens of model development.  Multi-tier design experiments in the M&MP tradition have done 
precisely this, involving researcher teams in self-reflection and iterative development as well (Lesh, 
2002). Therefore, multi-tier design research involves three levels of investigators— students, 
teachers, and researchers—all of whom are engaged in developing models that can be used to 
describe, explain, and evaluate their own situations, including real-life contexts, students’ modeling 
activities, and teachers’ and students’ modeling behaviors, respectively. 

Curricular Materials from the Models and Modeling Perspective 
Over the past 10 years, M&MP researchers have continued this direction of work in their own 

teaching and in partnerships with K-12 classroom teachers. Within the domain of statistical thinking 
in particular, this effort has flourished, producing resources and tools sufficient to support entire 
courses in several versions and including accompanying materials related to learning and assessment 
aimed at both student development and teacher development. These course materials were initially 
focused exclusively on data modeling, engaging with most of the content usually covered in an 
introductory graduate-level course on statistics and probability for education researchers. But as the 
collection evolved, modules were added dealing with closely related “big ideas” in algebra, calculus, 
geometry, and complex systems theory. Furthermore, because the courses supported by these 
materials were designed explicitly to be used as research sites for investigating the interacting 
development of students’ and teachers’ ways of thinking, the materials were modularized so that 
important components could be easily modified or rearranged for a variety of purposes in different 
implementations. In particular, by selecting from and adapting the same basic bank of materials, 
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parallel versions of the course have been developed for: (a) middle- or high-school students, 
(b) college-level elementary or secondary education students, and (c) workshops for in-service 
teachers. When these courses have been taught by M&MP researchers familiar with the underlying 
theory, they have produced astounding “six sigma” gains (Lesh, Carmona, & Moore, 2009). 

In the process of developing curricular materials to focus on modeling, research in the M&MP 
has investigated ways in which MEAs can be integrated within larger instructional sequences or 
Model Development Sequences or MDSs (Lesh et. al., 2003). MDSs offer classroom groups 
opportunities to unpack, analyze, and extend the models they have produced in MEAs, as well as to 
connect their ideas with formal constructs and conventional terminology. This unpacking work helps 
to ensure the lasting retention of concepts at a level of generality required for flexible use and 
application in novel situations. It also sets the stage for the critical connection between conceptual 
development (the centerpiece and focus of MEAs), and procedural knowledge that is also required 
for students to achieve well-rounded competence in any subject area. 

Within an MDS, reflection tools support students in stepping back from their modeling 
processes and reflecting on this work as critical observers of both individual and group modeling 
behavior. We consider these tasks to be core to the learning processes in MEAs: when students 
interpret situations mathematically, M&MP research expects that they don’t simply engage 
interpretation systems that are purely logical or mathematical in nature. Their interpretations also 
involve attitudes, values, beliefs, dispositions, and metacognitive processes. Moreover, the M&MP 
does not treat group roles and functioning as if they were fixed characteristics that determined 
students’ behaviors. Instead, students are expected to develop a suite of problem-solving personae or 
profiles they themselves can learn to apply as the situation demands. Reflection tool activities 
encourage groups of learners to turn their attention to describing individual- and group-level 
processes, functions, roles, conceptions, and beliefs. Tools to support these activities include Ways of 
Thinking Sheets, various surveys and questionnaires, Concept Maps, Observation Sheets, Self-
Reflection Guides, and Quality Assurance Guides for the products created in MEAs. 

In product classification and toolkit inventory activities students continue the work of 
abstraction, characterizing and classifying the thinking they have done and identifying links among 
their solutions to different MEAs and between these solutions and the “big ideas” of the course. 
Model exploration or Model extension activities (MXAs) provide model-rich environments for 
introducing core concepts and skills from the broader curriculum that students need in order to 
formulate sophisticated models and present them to a mathematical community. In addition, these 
activities provide students with a vital opportunity to unpack the work they have done in the MEAs. 
These may use a combination of pointed YouTube videos and interactive simulations in dynamic 
mathematics software. (Approximately 50 of these YouTube videos have been produced, with  
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Figure 2. Example Structure of a Model Development Sequence (MDS). MEAs and other 
activities represent modular, re-orderable blocks of instructional time. 

accompanying simulations. They are currently collected under the ProfRLesh channel.) Finally, 
model adaptation activities (MAAs) allow students to transfer ideas and techniques developed in 
MEAs to situations calling for similar performances. These MAA activities also provide smaller-
timescale modeling scenarios that exercise concepts they have explored in other components of the 
MDS. They may be pursued individually or in small groups, depending on the nature of the task and 
the teacher’s instructional or assessment goals. 

All of these elements of an MDS are designed to be highly modular, to accommodate (as well as 
to reveal) the needs and intentions of the teacher as they appropriate and adapt the materials for their 
own use. An example of how this variety of activity types might be laid out in a given unit is shown 
in Figure 2. 

A Course-Sized Resource Repository for Research in Data Modeling and Quantification 
Early successes in teaching entire courses with MDS units (e.g., Lesh, Carmona, & Moore, 2009) 

also demonstrated that these MDSs were highly reconfigurable and re-orderable. The “big ideas” in 
statistics, data modeling, and quantification could be foregrounded in different orders, leading to a 
variety of possible longer-term modeling experiences for the students and teacher.  In light of these 
findings, the construction of a course-sized repository became a compelling question for design 
research. A first-iteration version of this repository will be going live in the course of the Summer of 
2015, and several of the activities of the proposed Working Group will focus on making innovative 
uses of these materials, to gain new illumination on longer-term modeling. At the same time, it is 
expected that researchers will be involved in the creation of new tools and resources to support 
research at this longer timescale.  

Two important aspects of this effort are (1) a desire to serve the needs of a growing and 
diversifying M&MP community, and (2) a commitment to flexibility-in-use that we describe as 
designing for scale. In particular, our course materials are presented in modularized and easily 
modifiable, reconfigurable, and extendable components. Thus, the objective is for teachers and 
researchers to engage with these materials in a variety of ways, each embodying a unique (teacher- or 
researcher-level) model of the development of knowledge. The data and evidence produced by this 
diversity of models will help to support choices among them, to refine emerging assumptions and 
conjectures, and to iteratively shape the materials of the repository and their presentation. In other 
words, the development and iterative growth of the research repository should itself be a modeling 
process. At the same time, we aim for the introduction of this repository of research materials to 
advance the field by 

• facilitating the development, sharing, and testing of new Research Tools for different facets 
of research into dimensions of learning as they emerge; 

• offering a shared setting for the refinement of the design principles for research tools to 
produce evidence about learning at scales higher than the MEA; 

• fostering the accumulation of knowledge in teacher and researcher communities, exposing 
our process and inviting broad participation in constructing the site; and 

• encouraging the formation of collaborative communities of teachers and researchers, 
allowing participants to identify possible collaborators through shared interests in research 
tools and facets of problems of research or instruction. 
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Focus Areas of the Models & Modeling Perspective 
Here we briefly indicate some of the ways in which M&MP lines of research have contributed in 

fundamental ways to research on learning, assessment, and teaching. We believe that the publication 
of a course-sized repository of research materials can facilitate further advances in each of these 
areas. 

Learning 
In order to study idea development in the context of real-world problem solving settings, M&MP 

researchers first used, and then went beyond Piagetian clinical interviews. This spurred an intense 
period of design research to construct a compelling genre of learning tasks that would (a) stimulate 
mathematical thinking representative of that which occurs in contexts outside of artificial school 
settings (Lesh, Caylor, & Gupta, 2007; Lesh & Caylor, 2007); (b) enable the growth of productive 
solutions through rapid modeling cycles; and (c) leave behind researchable traces of learners’ ways 
of thinking during the process. This line of work produced the notion of Thought-Revealing Artifacts 
and Model-Eliciting Activities (MEAs) (Kelly & Lesh, 2000; English et. al, 2008; Kelly, Lesh & 
Baek, 2008). The success of MEAs as a research tool was both enabled by and illustrated by the 
articulation of a set of six design principles for such activities(Lesh, 2003; Lesh et. al, 2000; 
Hjalmarson & Lesh, 2008); these principles indicate the key structural and dynamical elements in 
MEAs as contexts for problem solving. Table below indicates “touchstone” tests for whether each of 
these six principles has been realized in a given implementation setting. 

Table 5.  Six MEA Design Principles and Touchstones 
Principle Touchstone Test for its Presence 
Reality Principle Students are able to make sense of the task and perceive it as 

meaningful, based on their own real-life experiences. 
Model Construction Principle To solve the problem, students must articulate an explicit and definite 

conceptual system (model). 
Self-Evaluation Principle Students are able to judge the adequacy of their in-process solution on 

their own, without recourse to the teacher or other “authority figure”. 
Model Generalizability 
Principle 

Students’ solutions are applicable to a whole range of problems, 
similar to the particular situation faced by the “client” in the MEA. 

Model-Documentation 
Principle 

Students generate external representations of their thinking during the 
problem-solving process. 

Simplest Prototype Principle The problem serves as a memorable representative of a kind of 
mathematical structure, which can be invoked by groups and by 
individuals in future problem solving.   

Assessment 
Although MEAs were developed as contexts for the study of idea development, they also have 

been shown to be powerful tools to support non-standard approaches to assessment. In part, this 
potential should be obvious from the model-documentation principle and the emphasis on creating 
researchable traces of thinking in the form of thought-revealing artifacts. When groups of students 
produce and negotiate external representations of their emerging thinking on meaningful problems, 
these artifacts can be expected to tell a rich and compelling story of what these students know and 
can do (Katims & Lesh, 1994). Furthermore, a common finding of assessment-oriented M&MP 
research has been that even groups of students whose mathematical abilities are rated low often 
produce impressive solutions that demonstrate an intuitive grasp of rather sophisticated forms of 
mathematical reasoning. Finally, when assessment is conceived of as including formative assessment, 
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such student performances provide a fertile ground for future instructional work that can build upon 
intuitive understandings to enable more formalized learning (Borromeo-Ferri & Lesh, 2013; Lesh, 
Haines, Galbraith, & Hurford, 2010). 

Teaching and Professional Development   
Because MEAs are designed to engage small groups of learners in autonomous problem-solving 

work over extended periods of time, they open up the classroom in new ways as a space of reflection 
for teachers. Freed temporarily from the need to facilitate and manage the learning process as it 
occurs, teachers during MEAs can use the occasion to develop their observational skills and their 
abilities to detect and interpret their own students’ ways of thinking. M&MP researchers have 
developed a range of Ways of Thinking Sheets and other Reflection Tools to capitalize on these 
opportunities, giving teachers (and even students) the perspective of analyzing idea development and 
group functioning.   

For teachers, these analyses are compelling because (a) they are authentic and directly relevant to 
their experience: after all, their own students have developed these ideas and constituted these 
groups; (b) the findings are immediately applicable: analyzing in detail the thinking of one’s students 
in solving a problem instantly suggests instructional strategies that can be enacted as soon as the 
following class period. These features indicate why viewing MEA implementations as in-situ 
professional development opportunities has been so powerful.  

Documentation and Accumulating Shared Knowledge 
In addition to the research work described above, the M&MP tradition has also been notable for 

documenting its progress in design and theory-building, as well as in more conventional, hypothesis-
driven research studies. In particular, the community has produced a variety of edited volumes of 
research over the past four decades, dealing with a range of topics and issues raised in the M&MP 
work.  These include volumes on the design of problem solving tasks, assessment, research design, 
teacher professional development, the changes in mathematics as a foundation for future work 
beyond school, and the application of models and modeling perspectives in engineering.  

Future Work 
Thus, M&MP research has covered an immense amount of ground in the past forty years. 

Nevertheless, there are also a number of important gaps that need to be addressed in order to 
maximize the impact that this tradition can have upon mainstream classroom practice. In particular, 
as described above, in the dimension of student learning much of the M&MP research has framed its 
interests in terms of idea development, where these ideas emerge and interact in the discourse of 
collaborating small groups and classrooms of learners. This frame is extremely powerful for 
supporting conceptual analyses of the nature of powerful ideas and the possible relations among 
them. However, it does not necessarily make claims about student learning or development.  

Larger Timescales   
When M&MP research engages with questions of the design and implementation of modeling 

sequences for classroom use that span weeks, months, and even years, it becomes possible (and 
necessary) to merge the perspective of idea development with that of student learning and cognitive 
development.  Prior work within the M&MP tradition does provide powerful elements of a 
foundation and framework for this work, yet important theory-building work still remains to be done. 
Within a 60-minute MEA, idea development in student discourse can exhibit stages of development 
that Piagetian researchers observe as unfolding in learners’ ways of thinking over a span of years. 
How is this rapid and flexible movement among ideas related to the development of more robust and 
characteristic ways of thinking? 
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Work towards creating a research infrastructure to support research at these scales has included 
an increasing emphasis on a unit of design beyond the MEA: at or beyond the MDS level. While any 
particular classroom realization of an MDS may have the appearance of a fixed curricular 
progression or teaching trajectory, the design intention is not to provide a single, “best” instructional 
path through the mathematical landscape in question. On the contrary, as with MEAs at the activity 
level, the goal is to provide a context in which it is possible to study the range of possible pathways 
that can be taken through this terrain, and to understand the fruits that these different choices yield.   

Teacher Decision-Making  
Though many aspects of design at the MDS level can leverage the history of work at the MEA 

level, the larger scale introduces new factors as well. Importantly, the teacher’s role becomes much 
more varied and complex at this scale. The observation and analysis of student thinking during 
MEAs continues to be a critical feature of the teacher’s work, but now these observations and 
findings can be traced as they inform instructional decision making throughout the MDS. In this 
space, implementations become an extraordinarily rich environment for understanding the values, 
beliefs, and ways of thinking of teachers, on a range of practical, high-consequence matters, such as: 
(a) what relationships exist between the development of conceptual skills and procedural skills? (b) 
what is the relative status of student intuitions and official terms, formulations, and algorithms? (c) 
what documentation or evidence of competence can the activities of an MDS generate at the 
individual and/or small-group levels, which can factor into classroom assessment practices? (d) how 
do supports for decision-making about curricular structure and representations of student 
performance impact teachers’ planning behavior? or (e) how can facilitating MEAs, and becoming 
sensitive and aware of students’ ways of thinking, be integrated into teacher preparation programs 
and communities of teaching practice? 

Networks of Connections among Big Ideas  
While larger-timescale research requires attention to learners’ development and to the curriculum 

and activity systems represented by students, teachers, classrooms, and schools, it also enables a 
continuation of the research on “idea development” that characterized MEA-centered work. Indeed, 
this line of research may only reach satisfying conclusions at this larger timescale. This is because 
the meaning of any particular “big idea” in a subject area derives as much from the relations between 
that idea and the other ideas of the subject as from the internal structure of that idea in isolation. And, 
as René Thom once suggested, “the real problem, which confronts mathematical teaching, is not that 
of rigor, but the problem of the development of ‘meaning’….” (Thom, 1973, p. 202). Thus, research 
at and beyond the level of the MDS, including research at developmental timescales, is alone 
positioned well to document the way that local modeling efforts in MEA settings can aggregate to 
support the construction of networks of connections among ideas, yielding structures that afford 
meaning. 

Modeling and Mathematizing: Creating Links to Mainstream Curricular Structures   
Finally, carrying the M&MP project forward at larger timescales will produce either connections 

or collisions with infrastructural elements of curricular structure such as the Common Core State 
Standards for Mathematics, the approaches of leading textbooks, and high-stakes assessments. For 
teachers it will not be possible to engage in longer-timescale implementations of M&MP materials, 
without an explicit connection between that work and the dominant structures of the curriculum that 
constitute the “law” of the instructional land. Fortunately, at least in the letter of this “law,” modeling 
occupies a central role. It may be the case that the M&MP’s definition of modeling as mathematizing 
reality; that is, “quantifying, dimensionalizing, coordinatizing, or (in general) mathematizing objects, 
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relations, operations, patterns, and regularities which do not occur in pre-mathematized forms” 
(Lesh, Yoon, & Zawojewski, 2007, p. 346). Nevertheless, if the experience of modeling-as-
mathematizing is a powerful one (as we know it is); if logistical and curricular barriers are removed, 
allowing teachers successfully to adopt materials that encourage this experience (as we believe they 
can be); and if the resulting curricular sequences are also efficient ways of gaining rich 
understandings of big ideas (as we believe they are), then it should be possible to make progress in 
introducing a more authentic version of modeling into the experience of mainstream teachers and 
students. 

Workgroup Outline: Capacity Building 
Capacity-building involves establishing both a shared historical sense of interests, theoretical 

commitments, and methodological approaches on one hand; and a shared research and development 
agenda for future work on the other. A challenge along the historical dimension of capacity-building 
in this sense is that the M&MP tradition extends over an extremely long period of time and spans a 
wide range of subject areas, age-levels, and geographical contexts. To address this challenge, and to 
lay the foundation for new collaborations, we propose to spend the first day’s session engaged in 
experiencing one MEA and two related MDS activities from the learner’s perspective. At prior PME 
and PME-NA conferences, similar approaches have been successful in orienting participants to the 
M&MP perspective and grounding discussions in features of student modeling activity.   

Agenda-Development: On Day 2 we will break out into facilitated interest groups, based on 
participants’ intended areas of research focus. Importantly, these discussions will actively involve not 
only the researchers who have played major roles in this development of the M&MP as a field and 
body of knowledge, but also a range of young researchers new to the field. Pairing these new voices 
with established researchers will enable an activation of the history of the M&MP in forging an 
agenda for research and development and identifying concrete possibilities for future work and 
collaborations. 

Planning and Identifying Opportunities for Collaboration: On Day 3, interest groups will finalize 
their discussions on research agendas and report out to the larger group. In this discussion, the group 
will identify opportunities for organizing collaborative research projects and proposals. “Point 
people” for each opportunity will be identified, and we will establish the means for sustaining a 
continued conversation toward acting on these opportunities in the coming year. 
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This working group continues on the theme of prior years, the use of representations of practice in 
teacher education, and pays particular attention to the design of instruments to observe the learning 
of preservice teachers from their participation in interventions that use representations of practice. 

Keywords: Teacher Education-Preservice; Assessment and Evaluation 

Brief History of the Working Group 
This is the fifth meeting at PMENA of this Representations of Mathematics Teaching (RMT) 

working group. The idea of this working group emerged during a series of three-day conferences on 
representations of mathematics teaching held in Ann Arbor, Michigan every year 2009-2012 (and 
earlier workshops in 2007 and 2008) organized by ThEMaT (Thought Experiments in Mathematics 
Teaching), an NSF-funded research and development project directed by Pat Herbst at the University 
of Michigan and Daniel Chazan at the University of Maryland. ThEMaT originally created animated 
representations of teaching with cartoon characters to be used for research, specifically to prompt 
experienced teachers to share the rationality they draw upon while teaching. With the assistance of 
later funding through a second NSF grant (referred to as ThEMaT II), the Michigan and Maryland 
groups developed tools and materials to share those animations online and to create further 
representations of practice, with the purpose of extending the use from its original context of research 
on the rationality of teaching to the wider context of research and development in teaching and 
teacher education. These efforts led to the development of the LessonSketch platform 
(www.lessonsketch.org), which we see as a prototype of a virtual laboratory for the study of teaching 
by practitioners and researchers. The Ann Arbor workshops and conferences conducted between 
2008 and 2012 were conceived to begin creating a community of researchers and teacher educators 
who were interested in the use of representations of teaching and the analysis of data collected in 
response to these representations. These conferences gathered developers and users of all kinds of 
representations of teaching (including video, written cases, dialogues, photographs, comic strips, and 
animations) to present their work and discuss issues that might be common to using these 
representations in teacher education and education research. In 2010 we proposed a working group at 
PMENA in Columbus, again in Reno in 2011, Kalamazoo in 2012, and Chicago in 2013. These 
working groups focused on various issues associated with the elaboration and investigation of a 
pedagogical framework for teacher development that makes use of digital representations of 
teaching.  

In 2013 Chazan and Herbst obtained a new NSF grant (referred as ThEMaT III; Chazan & 
Herbst, 2013) that enabled the creation of fellowships for mathematics teacher education faculty to 
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engage in a process of creation of practice-based multimedia teacher education materials and their 
implementation in online or blended teacher education environments. Several earlier attendees of our 
PME-NA Working Group became fellows, to the point that now there are 12 fellows participating in 
this project, and they in turn have been recruiting colleagues to form inquiry groups around them. At 
this point among our fellows and their associates and our projects, we have a community of nearly 40 
people working in 23 different states. We are all using the LessonSketch platform, developed by 
project ThEMaT II and in operation since 2011 as a prototype of a platform with which to author and 
disseminate online content for teacher education. The meeting of this year’s working group is both an 
opportunity for fellows and inquiry group members to work face to face and for them to share their 
work with other individuals who might possibly be interested. The meetings will showcase the work 
that fellows of the project are doing and engage attendants in discussing how these online 
experiences with representations of practice can create opportunities for research on preservice 
teachers learning.  

Specifically, this year’s work will focus on how these online experiences with digital 
representations of practice can enable research on preservice teacher’s learning of the practices they 
need to be able to do in order to teach mathematics. 

Issues in the Psychology of Mathematics Education that Will Be the Focus of the Work 
The work of this group relates to the third of the four enduring challenges in mathematics 

education identified by conference organizers--the role of assessment in teaching and learning--
particularly as it relates to “innovative programs or interventions designed to address an enduring 
challenge” in the case of preservice teacher preparation.  The use of representations of practice in 
teacher preparation is one of those innovative practices; Herbst, Chazan, Chen, Chieu, and Weiss 
(2011) provided a conceptualization of these representations of practice and argued for how work 
with representations of practice can serve to bring a laboratory-like approach to university-based 
classes for teachers, especially methods classes. This laboratory approach in teacher education, as 
originally conceived by John Dewey, was meant to engage prospective teachers with problems of 
practice in a context where they did not yet have to respond to all the demands of actual settings.  

Teacher educators have constructed interventions into teacher education that use various 
representations of practice including students’ written work, classroom video records, and 
storyboards; they have also made claims that such interventions create opportunities for preservice 
teachers to learn aspects of the work of teaching mathematics--including how to notice students’ 
thinking and how to respond to students. We are interested in ways in which those claims can be 
verified through assessments of the competencies of preservice teachers who have been involved in 
such opportunities. The relationship between this working group and the enduring challenge of 
assessment in teaching and learning concerns therefore the challenge of assessing preservice 
teachers’ learning of the practice of mathematics teaching--specifically, we endeavor to create a 
space for discussion of what kinds of assessments might well capture the kind of learning that 
preservice teachers can experience when they engage with representations of practice. 

As noted above, the ThEMaT III project (Chazan & Herbst, 2013) has recruited a cadre of 
mathematics teacher educators who are designing interventions that use digital representations of 
practice in mathematics teacher education. These activities vary in terms of what they engage 
preservice teachers in and what kinds of opportunities to learn they might afford. In relation to that 
activity, we pose the question: How can we assess those opportunities to learn as well as the actual 
learning that the preservice teachers have done? In the 2010 PMENA discussion paper, Herbst, 
Bieda, Chazan, and González (2010) briefly reviewed the literature on the use of video records and 
written cases in teacher education. They noted that classroom scenarios sketched as cartoon 
animations have begun to be utilized for those purposes and argued that they have affordances that 
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are distinct from those of video and written cases (see also Herbst, Chazan, Chen, Chieu, & Weiss, 
2011). They argued that the increased capabilities of information technologies for creating, 
manipulating, and collaborating over multimedia point to a promising future for teacher development 
assisted by representations of practice. Yet the features of novel media and their use with digital 
technologies, for example in online or blended (face-to-face and online) interactions, may require 
other pedagogical strategies for teacher education that have not been sufficiently identified and 
explored. This year’s gathering of the working group will showcase how four teacher educators 
affiliated with the ThEMaT III project (known as LessonSketch fellows) are using the authoring 
capabilities of the platform to create opportunities to learn for their preservice teachers. The working 
group will examine how those interventions can provide context for research on teacher learning, 
particularly as regards to the assessment of teacher learning. The following paragraphs describe the 
particulars of the instructional modules the four fellows are developing. 

Dr. Joel Amidon, from the University of Mississippi, has designed an intervention that gives 
access to a common space (Azul’s classroom) where mathematics problems and problems of practice 
can be shared, discussed, and analyzed by pre-service teachers (PSTs).  The result is a module that 
can be easily modified to utilize rich mathematical tasks, student work surrounding such tasks, or 
mathematics teaching scenarios that presented a problem of practice to either the PST or the 
mathematics teacher educator.  Users of the module view tasks, student work, and scenarios through 
the analysis tools designed by the Teachers Empowered to Advance Change in Mathematics project 
(see McDuffie, Foote, Drake, Turner, Aguirre, Bartell, & Bolson, 2014). This lens requires users to 
account for the central mathematics of a task, the design of the task, the learning that can be 
observed, the actions of the teacher, the funds of knowledge students bring to the task, and the 
affordances and constraints on power and participation of the students.  The template design of this 
module allows for various questions to be asked such as: (a) What are the features of a teaching 
scenario that PSTs and MTEs design into a representation? (b) What needs do MTEs seek to meet via 
this module?  How do MTs and PSTs take up the TEACH Math analysis tool beyond the 
LessonSketch environment? 

Dr. Orly Buchbinder from the University of New Hampshire has designed an intervention that 
aims at strengthening teachers’ subject matter knowledge and understanding of proof as well as 
pedagogical knowledge for teaching it. The interactive, media-rich module “What can you infer from 
this example?” aims to support prospective teachers in developing and enhancing these types of 
knowledge. The module is grounded in research on secondary students’ understanding of proof 
(Buchbinder & Zaslavsky, 2009) and involves multiple components that engage pre-service teachers 
with proof tasks and representations of classroom interactions around the same task. These 
representations provide pre-service teachers with opportunities to envision how reasoning and proof 
activities might unfold in regular classroom environment; anticipate and analyze student thinking; 
plan and enact possible teacher responses; discuss and evaluate implications of different teacher 
moves on students’ engagement with proving. It is expected that interaction with the module will 
promote prospective teachers’ content and pedagogical knowledge of reasoning and proving. The 
potential growth of content knowledge may include enhanced proficiency in analyzing the logical 
structure of mathematical statements and evaluating the validity of different kinds of reasoning in 
determining whether a certain statement is true or false. The potential growth of pedagogical 
knowledge will be evident in prospective teachers’ proficiency to anticipate students’ responses to 
proof-related tasks, analyze students’ reasoning and evaluate whether it is logically sound, and pose 
follow-up questions that either challenge or support students’ reasoning. The evidence will be 
collected through analysis of prospective teachers’ responses as they progress through different 
module components, analysis of their forum interactions and a questionnaire administered after 
completion of the module.   
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Dr. Janet Walkoe from the University of Maryland has designed an intervention to engage pre-
service teachers in the practices of questioning and listening to student thinking to interpret their 
understanding of proportions.  There is evidence that a sustained focus on students’ thinking has a 
positive impact on teachers’ beliefs and instructional practices (Fennema, Carpenter, Franke, Levi, 
Jacobs, & Empson, 1996).  The centerpiece of this module is a video of a clinical interview with a 
middle school student solving a problem related to proportions.  Before and after watching the 
clinical video, preservice teachers examine a representation of a hypothetical classroom dialogue 
based on the clinical interview.  During and following the clinical interview, the pre-service teachers 
have an opportunity to approximate the practices of listening to students’ thinking and interpreting 
their understanding.  After examining the follow up hypothetical classroom dialogue, pre-service 
teachers approximate the practices of questioning.  The goal of the module is to improve pre-service 
teachers’ practices of questioning middle school students about their mathematical thinking. 

Dr. Rob Wieman, from Rowan University, is using the notion of psychological schema to 
describe the changes he seeks to produce in the preservice teachers under his care. Cognitive 
scientists have developed the idea of schema to help explain how experts make sense of complex 
situations and decide how to act.  Wieman’s intervention is designed to assess and change the 
schemas that teacher candidates use for making sense of and responding to student thinking. He notes 
that many mathematics teachers and teacher candidates have a relatively simplistic schema for 
diagnosing student thinking and formulating a response (Carter, 1990).  In addition, the schema they 
do have is informal and idiosyncratic and that they do not describe it using a language that is widely 
shared in the profession (Carpenter, Fennema, Franke, Levi, & Empson, 2000; Carpenter, Fennema, 
Peterson, & Carey, 1988).  The central activity of the module Wieman has created introduces 
teachers or teacher candidates to an expanded schema in the context of launching a rich mathematical 
task.  After doing the task themselves, and anticipating student responses, participants are presented 
with a variety of student reactions. In a series of multiple-choice questions, participants are asked to 
diagnose student thinking and suggest a response to it. The answer choices represent a set of 
categories and teacher moves, categories that can act as an expanded schema. Pre- and post-tests 
measure whether this experience has expanded participants' schema, and whether it has supported 
groups of participants in developing a common language around student thinking and teacher moves.  
It is hypothesized that situating the introduction of this specific, expanded schema in the context of a 
teaching episode, and forcing participants to think about the categories of the expanded schema while 
making teaching diagnoses and decisions will support participants in expanding their own schema. 

These interventions have in common the goal of helping clients, pre-service teachers and in some 
cases inservice teachers who return for masters degrees, learn to engage in particular practices of 
teaching.  Some of the modules focus on practices that a teacher would typically engage in outside of 
instruction, such as the analysis of mathematical tasks; while others focus on practices that a teacher 
would typically engage within instruction, such as listening and responding to students’ mathematical 
thinking.  In all cases, the clients have the opportunity to approximate such practices by anticipating 
what they could do in particular circumstances.  In Dr. Amidon’s module, pre-service teachers 
collectively analyze a mathematical task using annotation tools within shared documents. In other 
instances, the fellows have used the capabilities within the online multimedia environment to capture 
clients’ approximations.  For example, in Dr. Walkoe’s module, pre-service teachers approximate the 
practice of listening and responding to students’ thinking by answering questions about what they 
noticed about a student’s reasoning in the context of a clinical interview and adding teacher dialogue 
to a pre-existing classroom depiction.  In Dr. Wieman’s module, teachers approximate the practices 
of listening and responding by answering multiple choice questions whose answers represent several 
categories of student thinking and responding moves respectively. In Dr. Buchbinder’s module, 
teachers approximate the practice of responding to student thinking by elaborating on how a teacher 
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could challenge students’ example-based conjectures. While there is a common thread of engaging 
clients in the approximations of practice, there is much variation across the fellows’ project in terms 
of the goals for learning as well as the types of evidence that could be captured to support claims of 
client learning. In the cases discussed, fellows look for evidence of learning in the immediate context 
of PST’s response to the activities presented. But evidence of learning could and should be gathered 
outside of these learning activities as well--in the PST’s simulated practices (in front of their peers), 
as well as in their classroom practice (in their practicum placements).   The working group will 
discuss the ways in which various artifacts collected by the fellows in the context of their clients’ 
navigation of the modules as well as evidence from the work they do outside of the modules could be 
analyzed to gauge what their clients have learned.  

Two sets of resources are planned as potential supports for research on the PST’s learning from 
their participation on the modules. One consists of a set of suggestions for how to code the artifacts 
that PSTs create when they participate in the online modules created by fellows. Within this set we 
encounter ways of examining PSTs entries in forums and discussions using elements of systemic 
functional linguistics to identify instances of reflection and consideration of alternatives, as 
illustrated by Chieu, Kosko, and Herbst (2015). Within that set we also encounter ways of coding the 
changes shown by PST’s in the representations of practice they create, for example when they use the 
Depict software to author a classroom scenario; we bring in some lessons learned from a study by 
Rougee and Herbst (2015) in which storyboard representations of practice were compared with 
representations realized in the form of text dialogues. These sets of resources for research can 
support the way the fellows and other users of LessonSketch are looking at their clients’ work on 
online modules.  

A second set of resources takes into consideration that PSTs learning must extend beyond the 
particular realizations they have in the context of online modules and into their practices with 
students. How can those practices be inspected for evidence of learning? Obviously one such way is 
to conduct observations of the instruction that the PSTs lead, but in the working group session we 
want to give attention to how the authoring and sharing tools of the LessonSketch platform can 
provide resources for PSTs to narrate what they did in their lessons. We plan to include two 
demonstrations in the second meeting of the working group. One of those demonstrations is the use 
of Depict as a resource for eliciting from PSTs a narration of how their lesson went. Depict is an 
authoring tool that permits the representation of lessons in the form of storyboards with cartoon 
characters. We believe that in the event that observations or video recordings of lessons are not 
available, teacher educators can use Depict in the context of interviews with preservice teachers, 
representing with it how the lesson developed. But in that context it is important to understand how 
the activity of jointly depicting a lesson can be described as compatible with an interview--what 
should the interviewer say and do in order to elicit from the interviewee information about a lesson 
they taught? A second set of resources comes from another authoring tool, Plan, with which teacher 
education researchers can create scenario-based questionnaires. Teacher educators can use them to 
create self reporting instruments that PSTs can use to document what they do. The literature on 
classroom research has used self report instruments such as surveys (e.g., Blank, 2002), logs (e.g., 
Rowan, Harrison, & Hayes, 2004), and text based vignettes (e.g., Stecher et al., 2006) to collect 
information on teachers’ practices. For example, in their lesson log, Rowan et al. (2004) asked their 
respondents to focus on one student and check among options for the question “What was the target 
student asked to do during the work on number concepts?” and given options such as “Listen to me 
present the definition for a term or the steps of a procedure” or “explain an answer or a solution 
method for a particular problem” (p. 123). While some of those statements of practice may be 
reliably conveyed through text, others might better be conveyed through a combination of text and 
graphics. Plan is an authoring tool that can be leveraged to author any one of those self report 
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instruments, with the added possibility that the practices that the respondent can be asked to 
comment on can also be rendered graphically. We envision that the second session will include 
discussions of self reporting instruments that could be used to get pre-service teachers to document 
how their classroom teaching performance shows evidence of their learning in the context of the 
interventions designed by the fellows. 

Plan for Engagement 
The working group will meet during PMENA in East Lansing to explore how teacher educators 

can produce evidence of their PSTs learning from their use of representations of practice in practice-
based teacher education. This will begin with a presentation by the organizers of the variety of ways 
that teacher educators have developed materials to carry out practice-based pedagogy within an 
online multimedia environment. In the first session we will start with a brief and broad description of 
modules generated by twelve mathematics teacher educators, highlighting the variety of ways the 
materials provide pre-service teachers opportunities to learn about and engage in instructional 
practice.  Next, the four teacher educators whose work is featured (Amidon, Buchbinder, Walkoe, 
and Wieman) will each provide a 10-minute presentation to describe the goal and contents of their 
modules.  Each presenter will share materials they have developed to target distinct instructional 
practices including analyzing mathematical tasks, listening and responding to students’ thinking in 
the context of a launch, listening to and interpreting students’ mathematical thinking in the context of 
a clinical interview, and developing conjectures from examples. They will also provide artifacts of 
client’s approximations of those practices.  Following these presentations, during the first meeting of 
the working group, the group will discuss what are the learning claims that educators would like to 
make and will engage the attendants in identifying the evidence they would be looking for and in 
brainstorming the kinds of instruments that should be created to document such learning.  

In the second meeting of the working group, members of the LessonSketch team will illustrate 
how the tools in the platform can be used in the context of (1) interviewing a PST about a lesson that 
they taught, (2) creating a lesson log that reports on recurrent practices the PST engages in, and (3) 
creating a scenario based questionnaire that the PST can use to report on the quality of their 
practices. They will then engage the audience in trying out the platform in one of those assessment 
contexts. Attendants will be able to work with a specific module and the fellow who developed the 
module, and in that context they will be able to try their hand at designing an assessment instrument 
or activity that could be deployed in the LessonSketch platform.   

In the third meeting of the working group, fellows and attendants will share the assessment ideas 
they developed. There will be an opportunity to discuss features of the platform that enable (or 
perhaps constrain) the deployment of those assessment instruments. 
 

Anticipated Follow Up Activities 
The ThEMaT III project uses inquiry groups centered around the LessonSketch fellows to 

implement and further develop the modules. Thus, beyond the immediate goal of learning and 
creating community around common activities, the working group has rather practical goals for 
follow up activities. We expect that participants will leave the conference poised to use these 
modules in teacher education and professional development settings or to collect and analyze data 
regarding how well the materials created windows into teacher learning. We also expect that 
participants will be interested in reconvening at future PMENA conferences to share information 
about the effectiveness of interventions that may inform further refinement of these materials for 
future use.  Over time we anticipate this kind of development could converge to have commonly 
available practice-based curriculum materials that could be used for the purposes of teacher 
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preparation and professional development. We expect that the instruments used to collect this 
evidence will be made available in repositories such as shared folders and collections in the 
LessonSketch platform.  

Building on Prior Work 
The proposed work builds on prior work of this group in that it continues to address issues on 

teacher preparation for which representations of practice are usable. It also adds an entirely new 
direction, possibly useful to other PMENA researchers interested in studying learning, of how to 
instrument the documentation of learning gains by preservice teachers.  
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Approximately 7% of children and adolescents have a mathematical learning disability (MLD) and 
another 10% show persistent low achievement in mathematics despite average abilities in most other 
areas. Research on these two groups of students with math difficulties (MD) has traditionally focused 
on procedural skills. This working group is rooted in a twofold premise: (1) students with MD are 
capable of and need to develop conceptual understanding and mathematical reasoning skills, and (2) 
special education instruction and assessment needs to transition toward this focus. Participants will 
(a) continue to develop and refine the research agenda for the group, (b) brainstorm specific 
research questions that will address that agenda, (c) explore research methodologies that can 
answer the potential research questions, (d) discuss collaborations to carry out these studies, and (e) 
set up a plan for publishing and securing funding. 

Keywords: Equity and Diversity; Learning Trajectories; Assessment and Evaluation 

Overview of the Working Group 
The purpose of our working group is to explore issues of research around the intersection of 

mathematics education and special education.  Substantial work exists that focuses on mathematical 
cognition, development, and reasoning of students in general education. However, much less is 
known about the mathematical development of students with disabilities or how to support the 
learning of these students.  The absence of research addressing this subset of students may be due in 
part to the incompatibility of the theoretical perspectives driving research and practice of 
mathematics education versus special education.  Our working group is designed to create 
sustainable opportunities for researchers and practitioners interested in learning disability/difficulties 
and mathematics to move this important dimension of the psychology of mathematics education 
forward. 

Understanding how students with disabilities/difficulties develop mathematics concepts and 
skills has several implications for both research and practice.  First, practitioners in both general and 
special education can gain essential knowledge of how to approach instruction for diverse learners 
who may rely upon alternative pathways of understanding mathematics concepts. Second, 
researchers stand to gain a richer understanding of how cognitive processes involved in learning 
essential mathematical concepts emerge by studying atypical development.  Finally, active study of 
the development of mathematics concepts and skills for students with disabilities provides both 
researchers and practitioners with mechanisms for moving toward a methodological focus on 
pedagogy rooted in assessment of what students with disabilities are capable of learning. 

For the purposes of continuing the conversation around mathematics in special education, this 
group is concerned with students who have significant issues with mathematics, including: 

• students with learning disabilities specific to mathematics 
• students with cognitive differences in how they understand and process number 
• students who are placed in special education and have difficulties with mathematics 
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We refer to these students as having “math difficulties” (MD) in the remainder of this paper. 

History of the Working Group 
Our PMENA/PME working group has met three times; each year our group had good 

participation of both returning and new members.  In 2012, 15 researchers (faculty and graduate 
students) and 2 practitioners met during PME-NA in Kalamazoo, MI.  This first meeting was 
specifically focused on better understanding mathematical learning disabilities (MLD).  The working 
group began with a discussion of the issues around identification and definition of MLD.  In 
particular, the group discussed the unique characteristics of students with MLD (e.g., slow speed of 
processing despite average reasoning; fundamental issues with number sense; over learning of 
procedural knowledge at the expense of mathematical reasoning) and implications for instruction and 
assessment.  We took up a theoretical stance that positioned disability as an issue of diversity and 
considered the origin of the disability as the inaccessibility of instruction rather than a defect within 
the individual.  Members shared videotapes of various students with MLD solving problems in 
assessment and teaching situations and discussed the need for teachers to target and teach toward the 
specific mathematical strengths and weaknesses demonstrated by the student. We further discussed at 
what point(s) the learning paths of students with MLD may differ from what is documented among 
students in general education, how existing developmental trajectories may or may not fit the 
population of students with MLD, and the need to expand or further document current trajectories to 
include students with MLD. Moreover, discussions focused on issues surrounding motivation related 
to the design and use of instruction, mathematical tools, and mathematical tasks.  A rich discussion 
was held concerning the nature and sequencing of mathematical tasks, the use of concrete and 
pictorial representations and the extent to which they are and are not supportive of the abstraction of 
mathematical concepts for this population, and the need for increased research to inform the creation 
of practitioner tools and resources.   

In the first year of our working group our focus was specifically on MLD - those students with a 
biological and cognitively-based difference in how their brain processes numerical information.  
Based on our discussions during the first year of our working group we decided to expand from a 
narrow focus on MLD to a more inclusive focus on students in special education who struggle with 
mathematics.  This not only avoids the definitional issues at the forefront of the field (i.e., the lack of 
assessments to accurately identify students with MLDs and the resulting conflation of low 
achievement and MLDs), but also more accurately reflects the diversity of interests of the members 
of this group.    

In the second year of our working group (2013) fourteen participants focused on a collaboration 
that was a result of the contacts that were made during the first working group.  In this collaboration 
two faculty members worked together on a teaching experiment about fraction knowledge, a 
compliment to a 2012 funded National Science Foundation (NSF) CAREER project (Hunt, 2012). 
Their collaboration resulted in each bringing unique expertise; the mathematics education faculty 
member brought insight into the mathematical thinking of the student, while the special education 
faculty member brought insight into learning differences. The goal of the teaching experiment was to 
document how the foundation scheme of unit fractions (1/n) evolves in the mathematical activity of 
two cases of students with learning disabilities.  The students’ evolving conceptions were supported 
by constructivist-oriented pedagogy. Video data segments (i.e., each girl’s conceptualization of the 
multiplicative nature of and inverse relation (1/m > 1/n if m < n) among unit fractions; the girls’ 
solutions to novel problems) from this project served as starting points for discussions in the 
subsequent PME-NA working group meeting.  Specifically, working group members used the video 
segments and descriptions of the collaboration as a springboard for discussing possible research 
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questions and methods of data analysis to employ in future, collaborative work. It is collaborations 
like these that this working group is designed to foster. 
 In 2014 we met as a working group at the joint PME and PME-NA conference in Vancouver. 
There our working group continued to expand to 25 members, now including international members 
from outside of North America. During the meeting, two working group members (one from math 
education and one from special education) shared a multiplicative reasoning assessment tool 
(Multiplicative Reasoning Assessment Instrument, Purdue Research Foundation, 2011) resulting from 
their NSF-funded research project (Xin, Tzur, and Si, 2008). Upon examining this instrument, the 
group discussed alternative ways for assessing students with MD and implications for intervention 
development.  As a result of our collaboration in Vancouver, we had two main accomplishments. 
First, as a group we identified three research subgroups: (a) cognitive characteristics of students with 
MD, (b) interventions for students with MD, and (c) teacher preparation or professional 
development, that represented the interests of the members.  Each research subgroup identified 
pertinent research questions and an agenda for further collaboration. Second, as a group, we proposed 
an idea for developing a proposal for a special issue to be published in a special education journal to 
address the research around the intersection of math and special education. Later in the year, 
members of the working group have developed a proposal and identified potential contributing works 
from the working group members. In addition, we have invited a well-known scholar to be part of the 
guest editorial board for this special issue. Currently, it is in the process of negotiating with a special 
education journal outlet for potential publication of this special issue 

In this coming year we plan to continue and expand collaborations between members of this 
working group, by focusing discussions around two central themes: (a) math concept development 
and corresponding methodologies for studying its emergence in students with special needs, and (b) 
designing research questions and writing a research plan around this topic.  We invite interested 
researchers and educators to participate.  We anticipate that there will be several new members to this 
working group. Our prior working groups’ members have continued to grow and generate 
momentum around research at the intersection of special education and math education, both in 
North America as well as internationally (PME working group papers 2014, 2015).  We hope that the 
PME-NA working group can provide a synergistic place for an ever-growing number of researchers 
to come together to begin collaborations around these challenging issues.  

Issues Relating to Psychology of Mathematics Education 
Historically, special education researchers and teachers focused almost exclusively on students’ 

mastery of procedural skills, such as basic number combinations and ability to execute mathematical 
algorithms (Jackson & Neel, 2006; Fuchs et al., 2005; Geary, 2010; Swanson, 2007; Kameenui & 
Carnine, 1998). A recent literature review comparing instructional domains for students with 
disabilities found that the majority of research conducted in the field of special education addressed 
basic computation and problem solving, with the primary focus placed on mnemonics, cognitive 
strategy instruction (e.g., general heuristic four-step strategy: read, plan, solve, and check), or 
curriculum-based measurement  (Van Garderen, Scheuermann, Jackson, & Hampton, 2009).  
Instructional practices either focused on task analysis (breaking up skills into decontextualized steps 
that need to be memorized and followed), flash cards, or general heuristics that do not help with 
domain knowledge learning and concept development (Cole & Washburn-Moses, 2010). In 
particular, the focus on primarily procedures-driven instruction and rote memorization of skills seems 
to result in students’ incomplete and inaccurate understanding of fundamental mathematics concepts 
as well as a lack of retention and/or transfer (Baroody, 2011).  
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Importance of Both Conceptual and Procedural Knowledge  
Crucial for rich mathematical understandings that enable retention and transfer of fundamental 

concepts is the iterative development of conceptual understanding along with procedural proficiency 
(Rittle-Johnson, Siegler, & Alibali, 2001; Rittle-Johnson & Koedinger, 2005).  Rittle-Johnson and 
Alibali (1999) noted that conceptual knowledge supports procedural generalization. In particular, 
conceptual knowledge could aid children in mindfully avoiding the use of procedures that fail to 
work in novel situations. Additionally, an ability to understand and manipulate different 
mathematical representations to conceptually navigate a mathematical context contributes to 
conceptual understanding and procedural skill (Ball, 1993; Kaput, 1987; Rittle-Johnson et al., 2001). 
It seems that any investigation into mathematical cognition, whether related to disability or not, must 
fundamentally engage with issues of conceptual understanding (Hunt & Empson, 2014). 

A focus on procedural skills limits students with disabilities’ access to the general education 
curriculum, which is a requirement of the Individuals with Disabilities Educational Improvement Act 
(Maccini & Gagnon, 2002). In mathematics, access to the general education curriculum means 
addressing problem-solving, mathematical modeling, higher order thinking and reasoning, and 
algebra readiness as required by the new Common Core Standards (CCSSI, 2012).   To accomplish 
these Standards, mathematics educators need to actively engage students in making conjectures, 
justifying and questioning each other’s ideas, and operating in ways that lead to deep levels of 
mathematical understanding (Kazemi & Stipek, 2001; Lampert, 1990; Martino & Maher, 1999; 
Yackel, 2002).  

Conceptual Diagnosis Based Pedagogy   
A pedagogical approach to be explored and advanced during this Working Group’s meetings is 

one that focuses on promoting conceptual learning in students with MD. This approach is rooted in a 
constructivist stance (Piaget, 1985; von Glasersfeld, 1995), particularly the notion of assimilation, 
which stresses the need to build instruction on what students already know and are able to think/do. 
That is, teaching needs to be sensitive, relevant, and adaptive to students’ available ways of operating 
mathematically (Steffe, 1990). To this end, teachers must learn how to: (a) diagnose students’ 
available conceptions, and (b) design and use learning situations that both reactivate these 
conceptions and lead to intended transformations in these conceptions.  

Building on Simon (2006)’s core idea of hypothetical learning trajectories, Tzur (2008) has 
articulated such an adaptive pedagogy, which revolves around the Teaching Triad notion: (a) 
students’ current conceptions, (b) goals for students’ learning (intended math), and (c) tasks/activities 
to promote progression from the former to the latter. Key here is that in designing every lesson one 
proceeds from conceptual diagnosis of the mathematics students are capable of thinking/doing. That 
is, assessment methods need to focus on dynamic (formative) inquiry into student understandings, as 
opposed to on testing correct and incorrect answers per se. This day-to-day diagnosis, obtained via 
engaging students in solving tasks and probing for their reasoning processes, gives way to selecting 
goals for students’ intended learning. Building on this diagnosis, a mathematics lesson begins with 
problems that students can successfully solve on their own, which Vygotsky (1978) referred as the 
Zone of Actual Development (see also Tzur & Lambert, 2011). Recent studies of mathematics 
teaching in China (Jin, 2012; Jin & Tzur, 2011) revealed a strategic, targeted method, bridging, 
which is geared specifically toward both: (a) reactivating mathematical conceptions the teacher 
supposes all students know, and (b) directing their thinking to the new, intended ideas. 

Exemplar Research Activities with Students with MD   
Since 2008, two members of this working group (one from math education and one from special 

education) have been working collaboratively on a federal funded grant project (Xin, Tzur, & Si, 
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2008).  This project integrated research-based practices from mathematics education and special 
education and was aimed to promote multiplicative reasoning and problem solving of elementary 
students with MD. As an outcome of this collaborative project, the research team has developed an 
intelligent tutor, PGBM-COMPS. The PGBM-COMPS intelligent tutor draws on three research-
based frameworks: a constructivist view of learning from mathematics education (Steffe & 
D’Ambrosio, 1995), data (or statistical) learning from computer sciences (Sebastiani, 2002), and 
Conceptual Model-based Problem Solving (COMPS) Xin, 2012) that generalizes word-problem 
underlying structures from special education.  

Rooted in a constructivist perspective on learning (Piaget, 1985; von Glasersfeld, 1995), the 
PGBM part of the intelligent tutor focused on how a student-adaptive teaching approach (Steffe, 
1990), which tailors goals and activities for students’ learning to their available conceptions, can 
foster advances in multiplicative reasoning. This approach eschews a deficit view of students with 
learning disabilities. Rather, it focuses on and begins from what they do know and uses task-based 
activities to foster transformation into advanced, more powerful ways of knowing. On the other hand, 
intelligent computer systems can play an important role in students’ learning by effectively modeling 
their thinking and dynamically recommending tasks tailored to their conceptual profiles. Going hand-
in-hand, the COMPS part of the program (Xin, 2012) generalizes students’ understanding of 
multiplicative reasoning to the level of mathematical models. At this stage, students no longer rely on 
concrete or semi-concrete models for problem solving; rather, the mathematical models directly drive 
the solution plan.  

The collaborative research team has conducted several piloting studies to field test the PGBM-
COMPS intelligent tutor with elementary students with MD. The preliminary studies have shown 
promising results—participating students with MD who interacted with this intelligent tutor not only 
enhanced their problem solving skills on a researcher-designed criterion test but also a norm-
reference standardized test (Xin et al., 2013). In addition, the results of these piloting studies have 
shown success in promoting students’ substantial conceptual advances (e.g., concept of number, 
multiplicative reasoning).  

In another project, another working group member is documenting learning trajectories of 
elementary school children with MD as they come to understand fractions as quantities (Hunt, 2012). 
In its first year, the goal of this work is to produce models of children’s key developmental 
understandings, or critical transitions in how children may conceive of a mathematical idea (Simon, 
2006), along a carefully sequenced combination of tasks and varying instructional guidance 
necessary to grow conceptual knowledge not yet well formed (Daro, Mosher, and Corcoran, 2011).  
The researcher will illustrate varying level of a student’s informal notions of fractions, how the 
mathematical ideas can be elicited, the grappling of ideas a student might experience, and how more 
solidified notions of mathematics form through a student’s activity (i.e., external manipulation or 
representation; internal mental activity; actions; strategies for problem solving).  It is the goal of this 
research that the mapped trajectories can assist educators looking to individualize instruction for 
students with MD and improve students’ conceptual understanding of fractions.   

As part of this grant’s Year 1 activities, the research team has documented an initial trajectory 
from semi-structured interviews with 50 second, third, fourth, and fifth graders with MD.  Interviews 
followed a protocol that established a basis for questioning but also allowed for maximum researcher 
flexibility to fully examine student thinking.  Information pertaining to the children’s specific needs 
was also collected to allow for an examination of any trends occurring across similar cognitive 
profiles. The constructed trajectory is also being tested with a smaller subset of four students and an 
expanded group of tasks from which the trajectory is based. Data collected from mini-interventions 
will undergo analysis (Siegler, 2006) to confirm the robustness of the preliminary trajectory. This 
grant’s Year 2 activities will take up teaching experiment methodologies, much like those used in the 
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collaborative pilot that resulted from this working group, to document how children with MD 
construct conceptions of fractions. 

Working group participants will use artifacts from projects described above as possible starting 
points to illuminate and further explore possible applications of student-adaptive pedagogy 
(conceptual diagnosis based) as well as conceptual development trajectories in the design of 
effective/efficient assessment and intervention programs for students with MD. 

We believe such approaches are complimentary and have the potential to become core 
methodological approaches for teaching and studying the conceptual understandings of students with 
MD. In a similar way, this working group provides a venue to give and receive feedback on ongoing 
cutting edge empirical work, which is reshaping how students with MD are researched.  

Plan for Working Group 
The aim of this working group is to facilitate collaboration amongst researchers and educators 

concerned with mathematics education for students with MD. The main goal is to promote basic 
research into how students with special needs think about mathematics and develop mathematical 
concepts. This working group intends to accomplish the following: (a) continue to develop and refine 
a research agenda for the group, (b) brainstorm specific research questions that will address that 
agenda, (c) explore research methodologies that can answer the potential research questions, (d) 
discuss the logistics of collaborations to carrying out these studies, and (e) embark upon 
collaborations leading to additional publication and funding opportunities.  

These goals are further outlined across sessions as follows: 

Session 1: Introductions and Progress-to-date 
GOAL: To identify participant’s affinity for established sub-groups and identify potential new sub-
group possibilities. 

• Prior members will briefly introduce the working group’s history and describe the 
collaborations that have emerged in prior years. 

• Participants will each introduce themselves and their current research and interest in students 
with MD. 

• As a large group we will discuss whether the previously established sub-groups (i.e., 
cognitive characteristics of students with MD, interventions for students with MD, and 
teacher preparation or professional development) are representative of the interests of the 
members.  If not, new sub-groups will be created. 

• Participants will join the sub-group that is most aligned with their research interests and 
begin to discuss the overlap in research agenda and current work and potential research 
agendas the sub-group is interested in exploring. 

Session 2: Methodologies / Sharing Data Artifacts 
GOAL: Engage in discussions around methodological and analytic approaches to studying MD with 
examples from working group member’s research artifacts.  

• Within sub-groups we will: 
o Articulate the overarching research agenda for the sub-group based on the previous 

day’s discussion,  
o Articulate potential research questions that the group would like to address through 

collaborative work. 
o Explore a variety of methodological and analytic approaches that can be leveraged to 

address the research questions.  To accomplish this, subgroups may: 
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! View artifacts (e.g., video, written work, etc.) of work already conducted to 
highlight possible methodologies for future studies. 

! Discuss which methodologies and analytic approaches best align with the 
proposed research agenda. 

• Within a whole group discussion we will: 
o Share out potential research agendas and methodological discussions from small 

group discussions 

Session 3: Planning and Writing 
GOAL: Establish next steps for both the sub-groups and the whole working group.  

• Within sub-groups we will: 
o Work on written product of research agenda  
o Develop a project plan for any cross-institutional collaborative work that has 

developed from the subgroups. 
• Within a whole group discussion we will: 

o Share progress and commitments from small group discussion 
o Finalize a plan for individual groups to continue updating progress to the larger group 

(website). 
o Determine what our next whole group meeting will entail (e.g., PMENA working 

group for the following year.) 

Anticipated Follow-up Activities  
Throughout the year, the members of this working group will continue working on research 

problems of common interest. They will contribute to a common website in which they will update 
other members of the working group about the progress of the various research collaborations.  We 
will continue our effort in disseminating the collaborative work resulting from this working group to 
broaden its impact in the field of mathematics education for students with MD. 
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The practice of teacher noticing has been the subject of considerable attention within the research 
community; however, conceptualizations of noticing appear somewhat variable. Similarly, 
measurements of teachers’ noticing capacities tend to vary as well. This working group proposal is 
organized around continuing the work of past PME teacher noticing working groups (PME-NA, 
2013; PME-IG, 2014) and further expanding and focusing effort to address key challenges 
associated with the measurement of noticing skills.  

Keywords: Assessment and Evaluation; Measurement; Teacher Education-Inservice (Professional 
Development); Teacher Education-Preservice 

Introduction 
High leverage teaching practices which facilitate the development of students’ mathematical 

development have been the subject of considerable attention (Ball, Sleep, Boerst, & Bass, 2009, 
Cobb & Jackson, 2011; Lampert, Beasley, Ghousseini, Kazemi, & Franke, 2010). One such practice, 
professional noticing, involves “instruction that attends closely to children’s ideas” (Ball & Forzani, 
2011, p.19). Sometimes referred to as teacher noticing, professional noticing [of children’s thinking] 
has been the subject of examination for some time (Erikson, 2011); however, over the past several 
years, this area of inquiry has experienced renewed interest among scholars (Fisher, Schack, Thomas, 
Jong, Eisenhardt, Yoder, & Tassell, 2014a; Jacobs, Lamb, & Philipp, 2010; Schack, Fisher, Thomas, 
Eisenhardt, Tassell, & Yoder, 2013; Sherin, Jacobs, & Philipp, 2011; Thomas, Fisher, Eisenhardt, 
Schack, Tassell, & Yoder, 2014/2015).Moreover, professional noticing has been the topic for 
working group sessions at previous meetings of both the North America and International Groups of 
the Psychology of Mathematics Education organization (Jacobs, Sherin, & Philipp, 2013; Fisher, 
Schack, Wilhelm, Thomas, & McNall-Krall, 2014b). The purpose of this proposal is to provide a 
rationale for maintaining the momentum of past PME-NA working groups focused on this topic 
while providing the opportunity to extend the scope of activity into the measurement of professional 
noticing capacities. 

History of Professional Noticing Working Group Activities 
This working group was initiated by Jacobs, Sherin, and Philipp at the 2013 PME-NA conference 

in Chicago (2013). At the closing of this event, the working group had identified two areas upon 
which to focus continued efforts. These areas of focus were: 1) the planning and implementation of a 
conference on teacher noticing, and 2) the development of a strong internet presence regarding the 
topic of teacher noticing.   

At the 2014 PME-IG conference in Vancouver, the working group continued to make progress on 
furthering these efforts as well as adding a third goal of the construction of a monograph on teacher 
noticing (Fisher et al., 2014b). At this conference three teams were formed around the three 
goals.  The need for a fourth team arose during the working session to accommodate those 
participants who were seeking more information about the construct of teacher noticing.   
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The teacher noticing conference team decided to apply for funding to support a conference 
centered around teacher noticing research. This team plans to secure external funding (e.g., AERA 
Conference Grant), and their goal is to hold the conference as a pre-session to an established STEM 
education conference. With this manner of organization, attendees could combine travel efforts and 
attend both conferences in one visit. 

The monograph team focused on discussions to extend mathematical teacher noticing to science 
and include an international context in a monograph.  The facilitators of the working session had the 
good fortune to meet with Jinfa Cai, co-editor, with James Middleton, of the Springer series, 
Research in Mathematics Education.  During this meeting we discussed with Dr. Cai the purpose of 
the monograph as defined by the working group participants.  From this we developed a proposed 
outline of the monograph.  The proposed monograph will build upon the work of Sherin, Jacobs, and 
Philipp’s Mathematics Teacher Noticing: Seeing Through Teachers’ Eyes (2011).  At the suggestion 
of Dr. Cai, we are working to include both seasoned and promising researchers/authors for the 
chapters of the monograph.  Additionally, the chapter authors will include international mathematics 
and science education researchers.  The sections of the book will include a commentary on the 
chapters within that section.  We sent an initial invitation to some of the top researchers in this field, 
receiving a number of positive responses and chapter abstracts. We disseminated a call for chapter 
proposals from the participants in the working sessions at both the 2013 and 2014 conferences as 
well as a broader call for chapters. To date, we have received 31 chapter proposals.  The first round 
of the review process for chapter proposals is underway with each chapter proposal being reviewed 
by three reviewers. We anticipate submitting a monograph proposal, with chapter recommendations, 
to the Springer series, Research in Mathematics Education, by early summer 2015. 

The internet presence team discussed strategies such as a website on teacher noticing, social 
media groups for discussion, blogs or wikis to post information, and email listservs.  At this point, 
the email listserv has been established that combines the 2013 working group attendees with the 2014 
working group attendees and communication has begun with those groups.  Additionally, a Facebook 
page (https://www.facebook.com/groups/182002372007275/) has been created to bolster teacher 
noticing discussions. Thus far it has been used for the monograph proposal and reviewer calls and 
will continue to be advertised and used for communications of the monograph and conference teams. 

It is our intent that these three teams continue to work synergistically as the chapter authors in the 
monograph will be invited to speak at the conference, and presentations at the conference may be 
leveraged to inform monograph materials.  All of these efforts will be advertised using social media 
outlets, email listservs, and websites that will be administered by the technology sub-group. 

Measurement of Professional Noticing Capacities 
In addition to continuing the processes initiated in previous teacher noticing working groups, this 

proposed 2015 working group would intentionally address the challenge of noticing 
measurement.  Schack, Fisher, & Thomas (in press) note the varying manner in which noticing has 
been operationalized in a number of inquiries. For example, some researchers conceive of noticing as 
the interrelated skills of attending, interpreting, and deciding (Jacobs et al., 2010; Jacobs, Lamb, & 
Philipp, & Schappelle, 2011) while others focus solely on a single skill such as attending (Star, 
Lynch, & Perova, 2011).   

Moreover, the temporal situation of teacher noticing also changes depending on the inquiry, with 
noticing positioned as an in-the-moment practice in some studies (Schack et al., 2013; Sherin, Russ, 
& Colestock, 2011; Stockero, 2014) while other research characterizes the practice of noticing in 
more retrospective terms (Goldsmith & Seago, 2011). Leatham, Peterson, Stockero, and Van Zoest 
(2015) characterized instances of student thinking that had significant potential to enhance student 
learning if teachers acted on them in-the-moment, rather than selecting and sequencing (Smith & 
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Stein, 2011) the event for later classroom discussion. From these disparities, it follows that 
measurement of teachers’ noticing capacities also appears quite variable within the extant literature. 
Although the use of video-excerpts seems to be a common element among many measures (Berliner, 
1994; Jacobs et al., 2010; Sherin & van Es, 2009; Star & Strickland, 2008), the manner in which such 
videos are used differs significantly. While some researchers develop inductive scoring rubrics for 
open-ended teacher responses to video excerpts (Schack et al., 2013), others employ automated 
scoring mechanisms for similarly open-ended responses (Kersting, Sherin, & Stigler, 2014).  The 
length and context of the videos used for assessment also contributes to the variation in 
measures.  For example, Schack et al. (2013) employed a brief individual interview video excerpt 
while others have used full class video in terms of both time and context. (Leatham et al., 2015; Star 
et al., 2011; Star & Strickland, 2008). 

Further, some researchers adopt video-based measurement approaches predicated on highly 
specific progressions of learning (Schack et al., 2013) while others employ more generalized systems 
of measurement (Goldsmith & Seago, 2011; Santagata, 2011; van Es, 2011). Leatham et al. have 
focused on mathematically significant events (2015).  

Kaiser, Buth, Hoth, König, and Blömeke (2015) have examined the theoretical complexities of 
video-based measures and identified specific challenges which include the following: 1) Issues 
related to video perspective (e.g., whether or not the teacher is included in the video or if the video is 
from the teachers’ point of view), 2) Evaluating the “correctness” of responses (e.g., identifying 
viable theoretical lenses and measurement structures to accommodate unexpected yet “correct” 
responses), 3) Achieving acceptable psychometric quality (e.g., balancing reliability and validity 
concerns with reasonable measurement administration protocols and costs).  While Kaiser et al., 
present potential solutions to these challenges, given the variability of scholarship with respect to 
teacher noticing, additional perspectives on the vexing challenges of measuring teachers’ noticing 
capacities are worthy of exploration.  

Plan for Engaging Professional Noticing Assessment Issues 
To productively address issues of assessment of professional noticing identified in the previous 

section, the group will engage in both small and large group discussions and action plans. While an 
overview of the topics with research and practice-based examples will be presented, we want to 
primarily take an inductive approach by using the group’s collective knowledge about and experience 
with the assessment issues. Thus, the plans for the sessions are as follows: 

Session 1 will include a very brief overview of teacher noticing for participants new to the 
construct. The primary focus of this session, however, will be on methods and challenges of 
assessing or evaluating teacher noticing. Several tools, frameworks, rubrics, progressions from 
various contexts will be shared for discussion with the audience applying one or more to 
presented scenarios.  The facilitators expect discussion around 1) in what contexts has teacher 
noticing been studied, 2) what tools, frameworks, rubrics, progressions have been used to notice 
teacher noticing, 3) are there tools that can reliably and validly assess teacher noticing, and 4) 
what are the potential benefits, challenges, and consequences to assessing teacher noticing? The 
specific agenda will be narrowed with input from working group participants. 

Session 2 will begin with a quick synopsis of session 1, outlining the proposed agenda for 
studying assessment of teacher noticing. Based on the proposed agenda, participants will work in 
small groups to continue discussing and reflecting on a specific aspect of assessing professional 
noticing. This will allow for deeper reflections and connections within the smaller groups. By the 
end of Session 2, small groups will briefly report on their discussions, progress, and challenges 
of teacher noticing assessment to the larger group.  
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Session 3 will focus on developing an action plan for work beyond the conference.  Small 
group goals and activities will be communicated beyond the conference through the already 
present Teacher Noticing Facebook page.  The discussion and goals will inform a future teacher 
noticing conference for which the 2013/2014 working groups are in the early planning 
stages.  Another possible outcome of the working group might be a compendium of methods 
used to assess teacher noticing. 

Anticipated Follow-up Activities 
The primary goal of this working group is to examine and further refine the research on 

assessment of teacher noticing with the ultimate goal of using such knowledge to support teachers in 
the development of their professional noticing for the benefit of students’ mathematical 
understanding. The working group will create an environment where participants and small groups 
can network and create mutually beneficial collaborations that have the potential to further inform 
future teacher noticing research and practice. It will be encouraged for small groups to think of next 
steps that are appropriate for their topic, whether they be the development of a measurement tool or 
multi-site research projects. The group will continue to update information on professional noticing 
on the Internet, including the Facebook group. Participants will also be kept in communication 
regarding any updates on the professional noticing monograph, and potentially participating in a 
focused conference on professional noticing. 

Extensions of Previous Working Group Activities 
Assessing professional noticing capacities is an increasingly vexing challenge; thus, we think this 

focus is a timely way to extend previous working group activities. Kaiser, Busse, Hoth, König, & 
Blömeke (2015) recently highlighted the various theoretical and methodological complexities of 
video-based assessments of teachers’ competence. Even when a theoretical framework guides the 
development of an assessment, specific content and pedagogical practices need to be selected 
(Leatham et al., 2015). Kaiser, et al. (2015) point out that there needs to be a balance between 
reliability and validity by taking feasibility into consideration in terms of the assessment length, 
grades, and number of classroom situations. They also argue that noticing can be linked to other 
concepts and knowledge frameworks because it has a very action-oriented view of teaching.  While 
they viewed video-based assessments as promising, there were still challenges in developing 
questions, coding and eliciting responses that reflect practices. To scale up video-based assessments, 
Kersting, Sherin, & Stigler (2014) used a machine to automatically code short answer responses. The 
machine scores were highly correlated to human scores and provided insights into task clarity and 
scoring rubrics.  

Teaching mathematics is complex; thus, assessing professional noticing poses many 
challenges. By engaging in meaningful conversations around assessment, the working group’s 
collective knowledge will be able to get at strategies for addressing and overcoming some of the 
challenges to measuring noticing capacities. 
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